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ABSTRACT

Drug discovery is a time-consuming process, primarily due to the vast number of 1

molecular structures that need to be explored. One of the challenges in drug design 2

involves generating rational ligand conformations. For this task, most previous 3

approaches fall into the singleton category, which solely rely on ligand molecular 4

information to generate ligand conformations. In this work, we contend that the 5

ligand-target interactions are also very important in providing crucial semantics 6

for ligand generation. To address this, we introduce PsiDiff, a comprehensive 7

diffusion model that incorporates target and ligand interactions, as well as lig- 8

and chemical properties. By transitioning from singleton to pairwise modeling, 9

PsiDiff offers a more holistic approach. One challenge of the pairwise design is 10

that the ligand-target binding site is not available in most cases and thus hinders 11

the accurate message-passing between the ligand and target. To overcome this 12

challenge, we employ graph prompt learning to bridge the gap between ligand 13

and target graphs. The graph prompt learning of the insert patterns enables us to 14

learn the hidden pairwise interaction at each diffusion step. Upon this, our model 15

leverages the Target-Ligand Pairwise Graph Encoder (TLPE) and captures ligand 16

prompt entity fusion and complex information. Experimental results demonstrate 17

significant improvements in ligand conformation generation, with a remarkable 18

18% enhancement in Aligned RMSD compared to the baseline approach. 19

1 INTRODUCTION 20

The protracted nature of drug discovery stems primarily from the substantial search space it encom- 21

passes (Polishchuk et al., 2013; Du et al., 2022). In the realm of drug design, ligand conformations 22

generation based on ligand molecular graphs is crucial for constructing low-energy molecules in 23

3D Euclidean space (Liu et al., 2023). Recent advancements in deep learning, especially generative 24

models, have shown promise in efficiently selecting and ranking highly promising candidates for drug 25

discovery, leading to significant time and cost savings (Dara et al., 2021; Stärk et al., 2022). Several 26

notable contributions have emerged in this field. Shi* et al. (2020) introduce flow-based models, while 27

Mansimov et al. (2019) present VAE-based models, for molecular coordinate generation. Additionally, 28

Shi et al. (2021) and Xu et al. (2022) propose end-to-end models for estimating the gradient fields 29

of atomic coordinates using denoising score matching and diffusion methods, respectively. Notably, 30

GeoDiff incorporates a rot-translation invariant network design by employing a zero Center of Mass 31

(CoM) system, utilizing rot-invariant inputs and a rot-equivariant projection. 32

However, all of the aforementioned methods generate ligand conformations in a singleton manner, 33

which means their sole reliance on the ligand’s molecular graph. This approach limits their capacity 34

to consider additional factors or constraints beyond the ligand itself, leading to potential issues of 35

producing invalid or incorrect conformations. For instance, as depicted in Figure 1(b)(c), GeoDiff 36

overlooks the crucial ligand-target interaction, while target information encompasses essential chemi- 37

cal and geometric details, resulting in suboptimal drug molecular conformations. Consequently, these 38

limitations may result in high-energy conformations that are unstable and not in equilibrium states. 39

Taking inspiration from Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021), who 40

employ language to offer broader supervision, enhance generality, interpretability, and control in 41

image synthesis, we leverage target information as an additional source of supervision. This method 42

shifts from considering individual ligands in singleton to examining ligand-target interactions and 43
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Figure 1: (a) Overview of our model: additional target and ligand pairwise interaction is incorporated into the diffusion model by graph prompt
to generate ligand conformations. (b) Target information helps the model to capture the correct shapes of the 6cf7 ligand conformation structure,
whereas (c) shows zoom-in pictures of the 6cf7 ligand. In (b) and (c), Green: reference ligand conformation crystal structure; Cyan: target pocket;
Blue: wrong ligand conformation generated by GeoDiff-PDBBind2020, which fails to catch the extra long-range non-covalent interaction; Red:
improved ligand conformation generated by our model, closer to the reference structure. ∆EGAP : HOMO-LUMO energy gap to describe the
stability of conformations, the lower, the more stable.

relationships in pairs. This transition acknowledges the significance of pairwise interactions in shaping44

the behavior and properties of ligand-target pairs, enabling a more comprehensive understanding of45

the ligand conformation structure by considering the interactions between ligand-target pairs. Our46

proposed model, named Pairwise Structure Interaction Conditional Diffusion (PsiDiff), leverages47

ligand-target interaction information to guide the sampling process, while incorporating ligand48

chemical properties as additional constraints. By incorporating pairwise interactions, our model49

effectively addresses the challenges of semantic relevance. It takes into account the chemical and50

geometric features of the target protein, ligand-target complex, and local ligand chemical properties.51

This comprehensive approach ensures the generation of ligand conformations that possess meaningful52

context for drug design and selection.53

In pairwise designs, one of the challenges is the difficulty in obtaining accurate ligand-target message54

passing due to the lack of ligand-target binding sites in most cases. To address this issue, PsiDiff55

utilizes graph prompts (Sun et al., 2023; 2022; Fang et al., 2022) to bridge the gap between ligand56

and target graphs. Graph prompts are inspired by natural language processing (NLP) prompts and57

are used to guide and improve the performance of graph models by providing structured input or58

instructions. In our model, graph prompts implicitly incorporate ligand-target interactions into the59

ligand conformation generation task. The prompt tokens are initialized with the structure of the target60

graph. The ligand-prompt message passing block (LPMP) and ligand-prompt complex graph insert61

the prompts into the ligand graphs hierarchically and throughout the diffusion steps. By incorporating62

target and ligand pairwise interactions through graph prompts, PsiDiff enhances stability and enables63

the generation of desirable ligand conformations. In summary, our main contributions are as follows:64

• We introduce PsiDiff, a comprehensive diffusion model that incorporates ligand-target interactions.65

By transitioning from singleton to pairwise modeling, PsiDiff generates ligand conformations with66

meaningful biological semantics, significantly enhancing their relevance and usefulness in drug67

design.68

• PsiDiff applies the concept of graph prompts to implicitly extract the pairwise ligand-target69

interaction and insert it into the ligand graph at each step of the diffusion model. This approach70

enables the generation of ligand conformations with pairwise information.71

• The effectiveness of PsiDiff is demonstrated through experimental results on the PDBBind-202072

dataset. We observed significant improvements in Aligned RMSD compared to the baseline,73

achieving an enhancement of approximately 18%.74

2
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2 RELATED WORK 75

Ligand-Target Docking Problem Ligand-target interaction (DTI) problems play a significant role 76

in drug discovery by finding the suitable binding pose of ligand conformations onto some targets 77

(McNutt et al., 2021; Halgren et al., 2004). In recent years, graph-based methods have emerged as a 78

promising approach for addressing these problems. DiffSBDD (Schneuing et al., 2022) is a notable 79

method that focuses on generating molecular structures specifically tailored for the docking problem 80

by generating ligands nearby targets. It utilizes a diffusion-based approach to generate diverse 81

molecular configurations centered around a given target molecule. EquiBind (Stärk et al., 2022) and 82

TANKBind (Lu et al., 2022) are two docking methods that use graph neural networks to predict the 83

coordinates of ligands and identify the binding pocket on the rigid protein. However, these methods 84

are primarily focused on generating a single, optimal binding pose and may not capture the full 85

conformational space of the ligand. Additionally, TANKBind requires further optimization from the 86

ligand-target distance map to the ligand Euclidean coordinates. Furthermore, both DiffDock (Corso 87

et al., 2023) and EquiBind require RDKit initialization at the beginning, which involves changing the 88

atom positions by rotating and translating the entire molecule and rotating the torsion angles of the 89

rotatable bonds. This initialization step can be problematic for molecules that cannot be initialized by 90

RDKit (Riniker & Landrum, 2015) and limits the applicability of these methods to binding-pose 91

conformation generation tasks (Du et al., 2022). In our method, the initialization is on the ligand 92

atomic coordinates as Gaussian noise without any priorities. Moreover, instead of binding a molecule 93

to some desired target, we use target information to improve the performance of molecular generation. 94

95

Conditional generation Generation tasks that rely on self-information often involve predicting a 96

predefined set of object categories. However, this form of supervision imposes significant limitations 97

on the generality and usability of such models. These limitations arise from the fact that additional 98

labeled data is necessary to effectively capture and predict visual concepts beyond the predefined 99

categories (Radford et al., 2021). To address these limitations, Radford et al. (2021) introduces a 100

conditioned generation paradigm that incorporates text information, enabling the model to leverage 101

a broader source of supervision during the image generation process. The experimental results 102

demonstrate that the inclusion of text-side information enhances the generality and usability of the 103

generated images, leading to improved performance on image-generation tasks. Motivated by the 104

success of this approach, we draw inspiration from Radford et al. (2021) and propose incorporating 105

target information in the generation of ligand conformations. By considering target information 106

alongside the ligand molecular graph, we aim to enhance the generality and usability of the generated 107

ligand conformations, similar to the improvements observed in image generation tasks. 108

3 TARGET-LIGAND SIDE INFORMATION GUIDED DIFFUSIONS 109

Problem Definition The problem at hand is defined as a target and ligand pairwise interaction 110

conditioning ligand conformation generation task. Formally, the objective is to learn a parameterized 111

distribution pθ,ϕ(XL | GP ,GL, c) that approximates the Boltzmann distribution, which represents 112

the probability distribution of ligand conformations coordinates XL in the equilibrium states (Noé 113

et al., 2018). Here the conditions for the generation task are target graphs GP ligand graphs GL, and 114

ligand chemical properties c. with detailed construction in Section 4.2. The learned distribution can 115

then be utilized to independently draw heavy atom coordinates of ligands. In other words, given the 116

target molecule graphs, ligand molecule graphs, and ligand chemical properties, our goal is to learn a 117

probability distribution that generates conformations consistent with the given conditions. 118

Forward Process Consider that the data distribution in the equilibrium states q(XL0
) undergoes 119

a gradual transformation into a well-behaved and analytically tractable distribution q(XLT
), e.g. 120

Normal distribution, through iterative applications of a Markov diffusion kernel q(XLt | XLt−1) for 121

discrete time step from 1 to T , 122

q(XLt
| XLt−1

) = N (XLt
;
√

1− βtXLt−1
, βtI) (1)

where β1, ..., βT is a fixed variance schedule at each time step, XLt
denotes the ligand atom co- 123

ordinates at step t. Note that the diffusion process above is discrete for t from 1 to T . If we take 124

3
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continuous time steps by small time step change ∆t, the forward process can be described by the Îto125

diffusion stochastic differential equation (SDE) (Anderson, 1982):126

dXL = f(XL, t)dt+ g(t)dω (2)

where ω is a standard Wiener process, f(XL, t) is the drift coefficient calculated by127

f(XL, t) = − 1
2βtXL, and g(t) is the diffusion coefficient derived by g(t) =

√
βt. The de-128

tailed derivative of the Îto diffusion stochastic differential equation (SDE) from Equation 1 can be129

found in Appendix A.5.130

131

Reverse Process Starting from XLT
drawn from some analytically tractable distribution132

pT (XLT
) = q(XLT

), we are going to derive the data distribution p0 and generate sample XL0
133

by reversing the diffusion process:134

p(XL0:T−1
| XLT

) =

T∏
t=1

p(XLt−1
| XLt

) (3)

To incorporate the chemical properties and target-ligand side information in the diffusion model, our135

key treatment lies in using neural networks to parameterize p(XLt | XLt−1) by pθ,ϕ(XL | c,GP ,GL).136

In particular, a new energy function is added to guide the generation process to respect the chemical137

properties. Following the Bayes’ theorem whose details are in Appendix A.5, our new energy-guided138

SDE for the reverse process is:139

dXL = [f(XL, t)dt− g(t)2(sθ(XLt ,GP ,GL, t)− λ∇XL
Gϕ(XLt ,GL, t))dt] + g(t)ωXL

, (4)

where score function network sθ(XLt ,GP ,GL, t) is the gradient of log-likelihood of the distribution at140

step t, i.e. sθ(XLt ,GP ,GL, t) = ∇θXL
logpθ,ϕ(XL | c,GP ,GL), Gϕ is the energy function network141

designed to meet the chemical properties in guidance of the generation progress, λ is the scalar weight142

on the guidance, and ωXL
is a standard Wiener process from T to 0. Using the Euler-Maruyama143

solver (Zhao et al., 2022; Song et al., 2021) to discretize the reverse SDE above, we get an iterative144

update equation of ligand conformation samples:145

XLt−1
= XLt

− [f(XLt
, t)− g(t)2(sθ(XLt

,GP ,GL, t)− λ∇XL
Gϕ(XLt

,GL, t))] + g(t)z, (5)

where z ∼ N (0,1). The sampling algorithm is in Appendix A.6.146

Learning Score and Energy Networks From the reverse process above, the key networks we147

need to learn are the score function network sθ(XLt
,GP ,GL, t) and the energy function network148

Gϕ(XLt
,GL, t). First of all, the following total training loss is adopted in this paper:149

L(θ, ϕ) = Ls(θ) + λLG(ϕ), (6)

where Ls = E[∥sθ − s∥2] with s sampled from the standard normal distribution and LG = E|Gϕ −150

cprop| where cprop represent desired chemical properties. The training algorithm is given in Appendix151

A.6. In the next section, we are going to introduce the design detail of networks sθ and Gϕ.152

4 EQUIVARIANT TARGET-LIGAND NETWORK DESIGN153

In this section, we begin by stating the principle of our model design, which is rot-translational154

invariance, as discussed in Section 4.1. We then delve into the detailed design of the parameterized155

score function sθ(XLt
,GP ,GL, t) in Section 4.2. To involve ligand-target interaction, we apply a156

learnable graph prompt in the design of the score function. By incorporating pairwise information by157

graph prompt in sθ, which is overlooked in previous generation models, we address the problems158

illustrated in Figure 1. This pairwise design enables the model to consider the specific characteristics159

of the target pocket, leading to more reasonable generational of ligand conformations that align with160

ligand-target interaction. In addition, we explain the energy function Gϕ(XLt
,GL, t) in Section 4.3.161

The energy model is parameterized by a pre-trained model Gϕ based on the stacked Equivariant162

Graph Convolution Layer (EGCL) (Satorras et al., 2021; Hoogeboom et al., 2021) for chemical163

properties in 4.3.164

4
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Figure 2: (a). Singleton methods consider ligand itself solely in diffusion method to generate ligand conformations. (b). Our method considers
graph prompts to extract pairwise interaction and update ligand graph by the graph prompt to diffusion steps. (c). Two hierarchical insert patterns.
In the left figure, ligand and prompt entity fusion insert pattern concatenate ligand and prompt graphs and fed it into LPMP together with ligand
graph. In the right figure, we combine the two graphs as a complex graph and add edges for nodes within some Euclidean distance cutoff.

4.1 ROT-TRANSLATIONAL INVARIANCE 165

To ensure the score-based diffusion generation process maintains the desired rot-translational invariant 166

property when working with 3D Euclidean coordinates, the generated distribution, denoted as 167

pθ,ϕ(XL0
), should remain unaffected by rotations and translations applied to the ligand coordinates. 168

The rot-translational invariance on pθ,ϕ(XL0
) can be guaranteed by the rot-translational invariance of 169

pθ,ϕ(XLT
) and the rot-translational invariance of markov kernal. Formally, we claim the following 170

theorem: 171

Theorem 1. If the initial density pθ,ϕ(XLT
| c,GP ,GL) is rot-translational invariant, and the 172

conditional Markov kernel pθ,ϕ(XLt−1 | XLt , c,GP ,GL) is rot-translational equivariant. Then 173

generated density pθ,ϕ(XL0) is also rot-translational invariant. The rot-translational equivariance 174

for the conditional Markov kernel is guaranteed by the rot-translational equivariance of the score 175

function sθ and the energy function Gϕ. 176

The invariance of pθ,ϕ(XLT
) is achieved because the distribution represents an isotropic Gaussian, 177

which is inherently invariant to rotations around the zero CoM (Xu et al., 2022). The zero CoM 178

operation can again ensure the translational invariance for the Markov kernels. On the other hand, 179

the rotational equivariance of the Markov kernel pθ,ϕ(XLt−1
| XLt

) is accomplished by calculating 180

the weighted average of invariant features depending on the 3D Euclidean coordinates through 181

the utilization of atom pairwise distances, Gaussian curvature and mean curvature. We give the 182

detailed proof for Theorem 1 in Appendix A.4. The parameterized sθ is the average of rot-equivariant 183

transforms in graph neighborhood weighted by rot-invariant features based on such pairwise distances, 184

Gaussian curvature and mean curvature. 185

4.2 TARGET-LIGAND PAIRWISE GRAPH PROMPT ENCODER (TLPE) 186

In this section, we present a detailed description of the parameterized encoder TLPE, which designed 187

to approximating the score function s(XL). TLPE incorporats ligand-target interaction information 188

and maintains the rot-translational equivariance of the Markov kernel. Our approach utilizes a graph 189

prompt to learn ligand-target interaction during each diffusion step, as illustrated in Figure 2. We 190

initialize graph prompt tokens based on target graphs, extract prompt tokens and token structures 191

using the target graph feature extractor (Section 4.2), insert the graph prompt into the ligand graph 192

(Section 4.2), and then use the updated ligand graph as input for the diffusion steps. 193

Prompt Tokens and Token Structures Ligand graphs are constructed from the molecular graphs 194

denoted as GL = (NL, EL). The nodes for the ligand molecular graph are heavy atoms with node 195

features FLj , while the edges denote the chemical covalent bonds. Ligand graphs are first fed into 196

5
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graph neural networks to extract ligand node features FL and edge features EL. The prompt graph is197

denoted as Gc = (P, S), where P denotes the set of prompt tokens pi while S denotes edges of the198

prompt graph. The number of tokens equals the number of down-sampled target graph nodes. We199

initialize the prompt token as the target graph constructed by the Surface Distance Function used in200

dMaSIF Sverrisson et al. (2021). Notably, targets are represented as point cloud graphs, where nodes201

correspond to point clouds in close proximity to the heavy atoms following dMaSIF (Sverrisson et al.,202

2021). The details for ligand and target graphs can be found in Appendix A.6.203

Inserting Patterns After constructing the graph prompt token, our next objective is to insert it into204

the ligand graph. We designed two inserting patterns to insert the graph prompt into the ligand graph205

hierarchically. The first one treats the ligand and prompt graphs as a new two-node graph, allowing206

messages to pass between them. This approach establishes effective communication between the two207

nodes by a feature assembling block called the Ligand-Prompt Message Passing Block (LPMP). This208

block facilitates the insertion of prompt graphs into ligands, enabling them to interact and exchange209

information. As shown in Figure 2(c) left, inspired by the message passing thought, we introduce210

the ligand prompt entity fusion block. The two nodes to be considered are FL and Z. Here FL is the211

ligand node features and Z = Concat(FL, P ) is the concatenated ligand-prompt node features.212

To facilitate message passing between the newly constructed graph nodes, we employ five sub-blocks213

for layer-wise graph updates, with additional details provided in AppendixA.6. These sub-blocks214

cover all edges and iteratively produce Z over multiple layers, denoted as Z = LPMP(FL,Z). Our215

approach treats targets as fixed and rigid entities, focusing on updating the partitions within the216

ligand graphs. To transfer the concatenated node features to ligand nodes, we employ average pooling.217

Subsequently, we compute the output feature FLoutlocal
by applying an MLP to the concatenation of218

ligand node and edge features, represented as FLoutlocal
= MLP(Pool(Z)⊙Elocal).219

The second insertion pattern involves creating a complex graph where nodes combine both ligand220

and prompt graph nodes. While the LPMP approach primarily focuses on ligand and prompt node221

feature interactions, emphasizing interactions between two complete entities. Here we aim to enhance222

the interpretation of inter-graph interactions at the edge level. To achieve this, we construct a complex223

graph that integrates ligand and prompt nodes. In this complex graph, we establish edges between224

nodes based on specific distance cutoffs. The edges connecting the ligand and prompt graphs represent225

ligand-prompt "inter-interactions," while edges within the ligand graphs account for long-range effects226

on non-covalent nodes. It is important to note that the prompt graph remains fixed throughout the227

diffusion process, and edges within the prompt are disregarded.228

To build the feature extractor for the complex graph, we utilize SchNet (Schütt et al., 2017). This
feature extractor enables message passing for the l-th layer as described in Eq. 7. In this context,
Φmglobal

and Φhglobal
represent the parameterized complex branch network, while θmglobal

and
θhglobal

correspond to the parameters within the complex branch.

mCjy
= Φmglobal

(FCl
j
,Fl

Cy
,Djy,Ejy; θmglobal

),FCj

= Φhglobal
(Fl

Cj
,

∑
y∈N(j)

mCjy
; θhglobal

) (7)

Where y denotes the nodes in the ligand-prompt complex graph with y ∈ {ligand, prompt}, j is229

the ligand node index. m and h denote the parameters for message passing and the aggregation230

on complex nodes, respectively. The output feature is then passed through an MLP together with231

complex edges Eglobal to get the output feature FLoutglobal
= MLP(FL

C ⊙Eglobal).232

After that, we use the equivariant transform block to calculate the weighted average of the rot-233

translational invariant features. This block helps to transfer features with the same dimensionality as234

ligand edges to the dimensionality of ligand nodes. The details are shown in 4.2235

Rot-Translational Equivariance for TLPE We have two inserting patterns as discussed above.236

To make sure that sθ is rot-translational equivariant, both the two inserting patterns should satisfy237

rot-translational equivariance.238

The rot-translational invariance of the LPMP block is satisfied because the two inputs for the LPMP239

block FL,Z are rot-translational invariant. They only depend on the invariant chemical features,240

6
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pairwise distances, and the Gaussian and mean curvature. Therefore, FLoutlocal
is rot-translational 241

invariant because Z and Elocal only depend on the invariant chemical features, pairwise distances, and 242

the Gaussian and mean curvature. As a result, the output of the LPMP block is also rot-translational 243

invariant. 244

The rot-translational invariance of the complex inserting pattern satisfies since all the features are 245

either dependent on pairwise distances or independent of coordinates. Overall FLoutglobal
is rot- 246

translational invariant because Z and Elocal only depend on the invariant chemical features, pairwise 247

distances, and the Gaussian and mean curvature. We provide the detailed proof in Appendix A.4. 248

We claim that if we requires the Markov Kernel being rot-translational equivariant, the score function
should be rot-translational equivariant in Theorem 1. As discussed above, the output features for both
insertting patterns are rot-translational invariant because all the features exhibit invariance since they
are either dependent on pairwise distances or independent of coordinates. We have

sθ =
∑

j′∈N(j)

dirjj′FLout
jj′

as the equivariant transformation, where dirjj′ denotes the unit director of the vector between the 249

coordinates of two nodes, calculated as dirjj′ = 1
Djj′

(XLj
−XLj′ ). So the score sθ is the linear 250

combination of roto-equivariant transforms dir in graph neighborhood weighted by rot-invariant 251

features FLout
jj′

. Here, FLout
jj′

means FLoutlocal
in ligand prompt entity fusion while FLoutglobal

252

in the complex graph. 253

4.3 EQUIVARIANT ENERGY MODELS 254

The energy model utilized to guide the sampling process is formulated as the gradient of the estimation 255

Gϕ. The energy model takes ligand molecular graphs as input, along with ligand atom coordinates. To 256

train the model, we employ the stacked Equivariant Graph Convolution Layer (EGCL) (Satorras et al., 257

2021; Hoogeboom et al., 2021), with fixed ligand atom types. The Equivariant Graph Convolution 258

Layer (EGCL) guarantees the transition equivariance by the zero-CoM operation. The model is 259

rotational equivariant because there is only linear operation on the coordinates and all the nonlinear 260

operations on coordinates-dependent functions using pairwise distance instead of coordinates. The 261

details for the equivariant energy models are in Appendix A.6. 262

5 EXPERIMENTAL RESULTS 263

5.1 DATASET 264

We use PDBBind-2020 for both training and sampling in this work. Following the same data splitting 265

strategy as Lu et al. (2022) and removing ligand-atom pairs with atoms outside the selected 32 atom 266

types in Appendix A.6 or data that cannot be processed by Psi4 or RDKit for property calculation, 267

we obtained 13,412, 1,172, and 337 pairs of complexes in the training, validation, and test sets, 268

respectively. The test set does not contain any data that appear in or are similar to the training or 269

validation sets. 270

Unlike traditional ligand conformation generation datasets such as GEOM (Ramakrishnan et al., 271

2014a), which contain no target data, PDBBind contains both ligand and target data, but they have 272

a one-to-one correspondence. This enables us to effectively capture both intra-ligand long-range 273

interactions and ligand-target ’inter-graph’ interactions, as described in Section.4.2. 274

5.2 EXPERIMENT SETTING 275

We use Adam (Kingma & Ba, 2014) as the optimizer for both the diffusion and energy guidance 276

models. The diffusion model was trained with 5000 steps for inference in the aligned RMSD 277

experiment and 1000 steps for the RMSD experiments. It took around two days on eight Tesla A100 278

GPUs to train for 80 epochs. 279

During sampling, we add complex information only when σ < 0.5 for ligands with more than 50 280

atoms (i.e., large ligands) and when σ < 3.4192 for those with fewer than 50 atoms (i.e., small 281
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ligands). For the pseudo-edge threshold, we used 8Å as the intra-edge threshold and 2.8Å as the282

inter-edge threshold. Empirically, atoms within 8Å have non-covalent interactions inside a molecule.283

We chose the inter-edge threshold by first calculating the fraction of the number of atoms in the ligand284

and pocket, which was 7.08%. Then, we chose the 7.08% quantile of the pairwise distances, which285

was 2.8Å. The experiment settings for the chemical property energy model are in Appendix A.6.286

Evaluation Metric We evaluate the generation quality in two aspects: similarity to the crystal287

conformations, which is evaluated by the aligned RMSD in Eq.8. For two conformations X ∈ Rn×3288

and X̂ ∈ Rn×3, with Rg denoting the rotation in SE(3) group, the alignment of two conformations289

can be evaluated by the Kabsch-aligned RMSD:290

RMSDAlign(X, X̂) = min
X′∈RgX̂

RMSD(X,X′), (8)

where RMSD(X, X̂) = ( 1n
∑n

j=1 ∥Xj , X̂j∥2)
1
2 .291

5.3 RESULTS ON ALIGNED RMSD292

In this section, we conduct a comparison by calculating the average of five generated conformations293

and evaluating them against baseline models, namely the ligand conformation generation method294

(GeoDiff (Xu et al., 2022)) and the docking method (TANKBind (Lu et al., 2022)). To ensure a fair295

evaluation, we employed the same training set as TANKBind (PDBBind-2020) and retrained the296

GeoDiff model on this dataset. It is worth noting that the performance of the original weights provided297

by GeoDiff, which were trained on GEOM-QM9 (Ramakrishnan et al., 2014b) and GEOM-Drugs298

(Axelrod & Gómez-Bombarelli, 2020) datasets, is even worse due to the disparity in data distribution299

between those datasets. More detailed results can be found in Appendix A.7. For clarity, we use the300

term GeoDiff-PDBBind to refer to the GeoDiff model retrained on the PDBBind dataset.301

Models Aligned RMSD(Å)↓
mean 25th 50th 75th

GeoDiff-PDBBind 2.79 1.61 2.47 3.58
TANKBind 2.61 1.43 2.20 3.15

PsiDiff 2.609 1.417 2.033 2.97
PsiDiff + FF 2.36 1.335 1.98 2.85

Table 1: RMSD after alignment by Kabsch algorithm on PDBBind-2020(filtered)

The quality of the generated conforma-302

tions can be assessed using the aligned303

RMSD, as defined in Eq. 8. Table304

1 presents the results. Notably, our305

method achieved a 17.7% reduction in306

the median aligned RMSD compared307

to GeoDiff-PDBBind, and a 7.6% re-308

duction compared to TANKBind, with-309

out any additional optimization. Further-310

more, by applying a simple force field311

optimization (Halgren, 1996), our method achieved a 20% reduction compared to GeoDiff-PDBBind312

and a 10% reduction compared to TANKBind. These improvements highlight the effectiveness of our313

approach in enhancing the quality of the generated conformations.314

5.4 ABLATION STUDY FOR DIFFERENT STRUCTURES315

To show the improvement in each of the new components we introduced in this paper, we316

conducted a comprehensive assessment of various factors, including the complex graph con-317

struction, the intra-ligand inside ligand and the inter-edge long-range connection between the318

ligand and target, the LPMP node feature assembler, and energy funtion guidance through319

ablation studies. By systematically analyzing the impact of these components, we gained320

valuable insights into their individual effects on the overall performance of the system.321

Models Aligned RMSD(Å)↓
mean 25th 50th 75th

w/o complex branch 2.72 1.63 2.17 3.07
w/o LPMP 2.73 1.52 2.17 3.35

PsiDiff 2.609 1.417 2.033 2.97

Table 2: Ablation study removing the new designed blocks will damage the perfor-
mance.

322

As depicted in Figure 3, the blue confor-323

mation (without intra-ligand and inter-324

ligand-target long-range connections) ex-325

hibited a higher likelihood of instability326

and high energy due to the conformation327

collapsing together. However, the model328

trained without non-covalent edges did329

not converge successfully, as indicated in330

8
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Table 2. The absence of interaction edges 331

between the ligand and target prevented the model from capturing crucial interactions, resulting 332

in outliers in larger conformations and an unusually high mean value. This highlights the model’s 333

inability to accurately represent the system without considering non-covalent interactions. 334

For the yellow conformation (without ligand-target complex), reasonable poses, including the 335

center position and orientation inside the pocket, were not consistently achieved. Although the 336

aligned RMSD in Table 2 did not increase significantly due to the alignment and pose adjust- 337

ments, the removal of the complex branch still impacted the performance of aligned RMSD. 338

Figure 3: Ablation study for the effect of the intra-ligand long-range connection,
the inter-edges connection between ligand and LPMP. The blue ligand is generated
without long-range edges. The yellow ligand is the one without complex, the green
one is the one without LPMP, and the red one is the standard version with all the
components.

339

The introduction of the LPMP feature 340

assembler block enhanced the ligand’s 341

ability to capture the shape of the pocket 342

by transferring chemical and geometric 343

messages from the target nodes to the 344

ligand nodes, as observed in the differ- 345

ence between the green and red confor- 346

mations in Figure 3. The removal of 347

the LPMP block, as shown in Table 2, 348

adversely affected the performance of 349

aligned RMSD. 350

Furthermore, we compared the aligned RMSD for models utilizing different chemical properties as 351

the energy function, in contrast to the model incorporating all three chemical properties used in our 352

experiment. Each individual chemical property contributed to a slight decrease in RMSD, whereas 353

employing all three properties yielded the best overall results. Further details and results are provided 354

in Appendix A.7. 355

Our model can treat the DTI problem in an end-to-end manner without RDKit initialization. To 356

evaluate the binding pose for the generated conformations, we used the ligand RMSD. We also 357

compared our method to recent docking tasks as baselines to assess the performance of our approach 358

in generating biologically meaningful conformations that are consistent with the given conditions 359

while also being relevant for drug design and development. The detailed results are in the A.7. 360

6 CONCLUSION 361

This paper introduces PsiDiff, a conditional diffusion-based ligand conformation generation model 362

that incorporates ligand-target interaction and chemical properties using an energy-guided score-based 363

diffusion SDE. The model guarantees rot-translational equivariance through the zero-CoM system 364

and equivariant transformation. The Target-Ligand Pairwise Graph Encoder (TLPE) employs the 365

graph prompt idea to implicitly extract the unpreditable ligand-target interaction in each diffusion 366

step. The graph prompt initializing by target graph is inserted to ligand graph. The insertion strategies 367

consider the insertion hierarchically with ligand prompt entity fusion and complex graph. PsiDiff 368

outperforms existing methods and holds promise for drug design and conformation generation tasks, 369

with potential applications in protein-protein docking and ligand-protein soft docking projects. 370

9



Under review as a conference paper at ICLR 2024

REFERENCES371

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their372

Applications, 12(3):313–326, 1982. ISSN 0304-4149. doi: https://doi.org/10.1016/0304-4149(82)373

90051-5. URL https://www.sciencedirect.com/science/article/pii/0304414982900515.374

Simon Axelrod and Rafael Gómez-Bombarelli. Geom, energy-annotated molecular conformations375

for property prediction and molecular generation. Scientific Data, 9, 2020.376

Andrew J. Bordner and Andrey A. Gorin. Protein docking using surface matching and supervised377

machine learning. Proteins: Structure, 68, 2007.378

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:379

Diffusion steps, twists, and turns for molecular docking. International Conference on Learning380

Representations (ICLR), 2023.381

Suresh Dara, Swetha Dhamercherla, Surender Singh Jadav, Christy M Babu, and Mohamed jawed382

Ahsan. Machine learning in drug discovery: A review. Artificial Intelligence Review, 55:1947 –383

1999, 2021.384

Yuanqi Du, Tianfan Fu, Jimeng Sun, and Shengchao Liu. Molgensurvey: A systematic survey in385

machine learning models for molecule design. ArXiv, abs/2203.14500, 2022.386

Taoran Fang, Yunchao Zhang, Yang Yang, and Chunping Wang. Prompt tuning for graph neural387

networks. arXiv preprint arXiv:2209.15240, 2022.388

Thomas A. Halgren. Merck molecular force field. v. extension of mmff94 using experimental data,389

additional computational data, and empirical rules. Journal of Computational Chemistry, 17, 1996.390

Thomas A. Halgren, Robert B. Murphy, Richard A. Friesner, Hege S. Beard, Leah L. Frye, W. Thomas391

Pollard, and Jay L. Banks. Glide: a new approach for rapid, accurate docking and scoring. 2.392

enrichment factors in database screening. Journal of medicinal chemistry, 47 7:1750–9, 2004.393

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion394

for molecule generation in 3d. International Conference on Machine Learning (ICML), 2021.395

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,396

abs/1412.6980, 2014.397

Shengchao Liu, Weitao Du, Yanjing Li, Zhuoxinran Li, Zhiling Zheng, Chenru Duan, Zhiming398

Ma, Omar Yaghi, Anima Anandkumar, Christian Borgs, et al. Symmetry-informed geometric399

representation for molecules, proteins, and crystalline materials. arXiv preprint arXiv:2306.09375,400

2023.401

Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng.402

Tankbind: Trigonometry-aware neural networks for drug-protein binding structure pre-403

diction. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/404

2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html.405

Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho. Molecular geometry406

prediction using a deep generative graph neural network. Scientific Reports, 9, 2019.407

Andrew T McNutt, Paul G. Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew408

Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: molecular docking with deep learning.409

Journal of Cheminformatics, 13, 2021.410

Frank Noé, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium states of411

many-body systems with deep learning. Science, 365, 2018.412

Fakir S. Nooruddin and Greg Turk. Simplification and repair of polygonal models using volumetric413

techniques. IEEE Transactions on Visualization and Computer Graphics, 9(2):191–205, 2003.414

Jeong Joon Park, Peter R. Florence, Julian Straub, Richard A. Newcombe, and S. Lovegrove. Deepsdf:415

Learning continuous signed distance functions for shape representation. 2019 IEEE/CVF Confer-416

ence on Computer Vision and Pattern Recognition (CVPR), pp. 165–174, 2019.417

10

https://www.sciencedirect.com/science/article/pii/0304414982900515
http://papers.nips.cc/paper_files/paper/2022/hash/2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f89a23a19d1617e7fb16d4f7a049ce2-Abstract-Conference.html


Under review as a conference paper at ICLR 2024

Robert M. Parrish, Lori A. Burns, Daniel G. A. Smith, Andrew C. Simmonett, A. Eugene DePrince, 418
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A APPENDIX 489

A.1 CODE 490

All the code, data, and model checkpoints are available at https://anonymous.4open.science/r/PsiDiff- 491

C441. 492

A.2 NOTATION 493

We provide the main notations used in the paper here. 494

Notations
GL Ligand molecule graph
GP Target point cloud graph sampled similar to Sverrisson et al. (2021)

XL ∈ Rn×3,XP ∈ Rm×3 Ligand and target coordinates
CL, centerP ∈ R3 Ligand and target center
pθ(XL | GP ,GL, c) Parameterized ligand atom coordiantes distribution

j, j′ Node index for ligand graphs
i, i′ Node index for target graphs
m,n Number of nodes in target and ligand

NL,FL ∈ Rdl×n Ligand node and node features
NP ,FP ∈ Rdp×m Target node and features
NC ,FC ∈ Rdp×m Lig-Tar complex node and features
Z ∈ Rm×n×d Concat ligand and target feature

DT ,DL,Dinter Target, ligand, inter pairwise distances
Eii′ ,Ejj′ ,Eij Target, ligand, inter edge features

sθ Parameterized score funtion
Gϕ Energy Guidance model
c Chemical Properties
⊙ Tensor concatenation

Table 3: Notations used in the paper

A.3 ROT-TRANSLATION INVARIANT 495

Normalization GeoDiff (Xu et al., 2022) operates on the ligand conformation’s original coordinates, 496

while the diffusion model operates on a normalized space (Sohl-Dickstein et al., 2015). To ensure 497

consistency in the scalar values between small and large complexes, we initially normalize all the 498

coordinates. Despite the normalization, our model remains rot-translation invariant due to the linearity 499

of the transformation. 500

To apply the standard DDPM sampling process, we normalize both the ligand and target coordinates, 501

matching their value range to that of the standard Gaussian noise in Equation 9. 502

X̃L =
XL − centerP√

varP
, X̃P =

XP − centerP√
varP

(9)

XL0
= X̃L0

∗
√
varP + centerP (10)

Here, centerP is the center of mass for the target coordinates, varP is the maximum of the variance 503

of the XYZ coordinates for the target, calculated as varP = max(varPX
, varPY

, varPZ
). This 504

normalization guarantees that the ligand and target coordinates share the same value range, which is 505

crucial for the diffusion process. 506

Following the sampling process, we restore the generated conformations to their original coordinates 507

using the recorded mean and variance, as illustrated in Equation 10. The targets are treated as fixed 508

and rigid, with their centers and variances considered scalars. Consequently, the normalization 509

transformations for the ligands retain rot-translational invariance. We provide detailed proofs of the 510

rot-translational invariance with normalization in Appendix A.4. 511

512
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Rot-translational Invariant To ensure the score-based diffusion generation process maintains513

the desired rot-translational invariant property when working with 3D Euclidean coordinates, the514

generated distribution, denoted as pθ,ϕ(XL0
), should remain unaffected by rotations and translations515

applied to the ligand coordinates as shown in . The invariance of pθ,ϕ(XLT
) is achieved because the516

distribution represents an isotropic Gaussian, which is inherently invariant to rotations around the517

zero CoM (Xu et al., 2022). The zero CoM operation can again ensure the translational invariance for518

the Markov kernel. On the other hand, the rotational equivariance of the Markov kernel pθ,ϕ(XLt−1 |519

XLt) is accomplished by calculating the weighted average of invariant features depending on the 3D520

Euclidean coordinates through the utilization of atom pairwise distances, Gaussian curvature and521

mean curvature.522

A.4 PROOF OF THEOREM. 1523

If the initial density pθ,ϕ(XLT
| c,GP ,GL) after normalization is rot-translational invariant, and524

the conditional Markov kernel pθ,ϕ(XLt−1
| XLt

, c,GP ,GL) is rot-translational equivariant. Then525

generated density pθ,ϕ(XL0
) is also rot-translational invariant. The rot-translational equivariance526

for the conditional Markov kernel is guaranteed by the rot-translational equivariance of the score527

function sθ and the energy function Gϕ.528

529

To prove the theorem, we first claim and prove the following lemmas.530

Lemma 2. If the initial density pθ,ϕ(XLT
) after normalization is rotational invariant, and the morkov531

kernel pθ,ϕ(XLT
| c,GP ,GL) is rotational equivariant. Then the final density pθ,ϕ(XL0

) is also532

rotational invariant.533

Proof. Let Rg denotes the rotation operation, we get:

pθ,ϕ(Rg(XL0
)) =

∫
pθ,ϕ(Rg(XLT

)pθ,ϕ(Rg(XL0:T−1) | Rg(XLT
)))dx1:T (11)

=

∫
p(Rg(XLT

)

T∏
t=1

pθ,ϕ(Rg(XLt−1
) | Rg(XLt

)))dx1:T (12)

(13)

The initial density pθ,ϕ(XLT
) after normalization is rotational invariant, gives pθ,ϕ(XLT

) =
pθ,ϕ(Rg(XLT

))
the morkov kernel is rotational invariant , gives pθ,ϕ(XLt−1

| XLt
) = (Rg(XLt−1

) | Rg(XLt
)), then

pθ,ϕ(Rg(XL0
)) =

∫
pθ,ϕ(XLT

)
T∏

t=1

pθ,ϕ((XLt−1
) | XLt

)dx1:T (14)

=

∫
p(XLT

)pθ,ϕ((XL0:T−1
) | XLT

)dx1:T (15)

= pθ,ϕ(XL0
) (16)

534

Lemma 3. The noise vector fields sθ(XLT
,GP ,GL, t) for the Markov kernels pθ,ϕ(XLT

| c,GP ,GL)535

are rotational equivariant.536

Formally, denote the ligand features and target features in ligand and target graphs as FL, FT ,537

respectively,538

Rgsθ(XLT
,GP ,GL, t) = sθ(RgXLT

, RgGP , RgGL, t), (17)
where RgXLT

means take the rotation matrix Rg on each ligand atom coordinates.539

Proof. In the ligand feature extractor, FLj ,Ejj′ are rotational invariant because they do not depend540

on coordiantes. the distance Djj′ is a scalar, which is also invariant,541

so for Eq. 46 47:542

Rgmjj′ = Φm(RgFLj
, RgFLj′ , RgDjj′ , RgEjj′ ; θm) = Φm(FLj

,FLj′ ,Djj′ ,Ejj′ ; θm) = mjj′

(18)

14
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and 543

RgFLj
= Φh(RgFLj

,
∑

j′∈N(j)

Rgmjj′ ; θh) = Φh(FLj
,

∑
j′∈N(j)

mjj′ ; θh) = FLj
(19)

In the target feature extractor, fchemi , fgeomii′ are scalars, and also invariant, for for Eq. 49: 544

RgFPi
= Φp(Rgfchemi

, Rgfgeomii′) = Φp(fchemi
, fgeomii′) = FPi

(20)

The feature assembler block only updates the node features, which are invariant, 545

RgFC = LTMP(RgFL, RgZ) = LTMP(FL,Z) = FC (21)

where Z = FL ⊙ FP , E is the edge features for the ligand-prompt complex, similar to the complex
branch.

RgFLout
= AdaptiveAveragePool(RgFC)⊙RgE (22)
= AdaptiveAveragePool(FC)⊙E (23)
= FLout

(24)

Finally, for the edge-to-node equivariant transformation

RgXLj
=

∑
j′∈N(j)

Rg
1

Djj′
(RgXLj

−RgXLj′ )RgFLout
jj′

(25)

= Rg

∑
j′∈N(j)

dirjj′FLout
jj′

(26)

= RgXLj (27)

Therefore Eq. 17 is satisfied. 546

Lemma 4. The energy model Gϕ based on EGCL is rot-translational equivariant with zero-CoM. 547

Proof. As the EGCL formulas shown in Eq. 45, the transition equivariance is satisfied by applying 548

zero CoM. We show the rotation equivariance here. 549

The parameterized network Φw,Φm,Φx,Φh, mjj′ is the message, FLj
is the ligand node feature 550

consisting of node types, time, and chemical properties, which is independent of coordinates and thus 551

being rotational invariant. 552

mjj′ = Φm(FLj
,FL′

j
,D2

jj′ ,Ejj′) = Φm(FLj
,FL′

j
, ∥RgXLj

−RgXL′
j
∥2,Ejj′) (28)

Where ∥RgXLj −RgXL′
j
∥2 = (XLj −XL′

j
)TRT

g Rg(XLj −XL′
j
) = ∥XLj −XL′

j
∥2 = D2

jj′ , so 553

mjj′ = Φm(FLj
,FL′

j
,D2

jj′ ,Ejj′) (29)

Then, 554

FLj
= Φh(FLj

,
∑
j ̸=j′

wjj′mjj′), (30)

RgXLj
= RgXLj

+
∑
j ̸=j′

Rg

XLj
−XL′

j√
D2

jj′ + 1
Φx(FLj

,FL′
j
,D2

jj′ ,Ejj′) (31)

With rotation Rg , the model satisfies

RgX
l+1
Lj

,Fl+1
Lj

= EGCL(RgX
l
Lj
, RgF

l
Lj
)

The above equation means that if the coordiantes and features are all rotational equivariant on the 555

EGCL layer l, then they are also rotational equivariant on next EGCL layer l + 1. Then, the energy 556

model Gϕ is also rotational invariant. 557

15
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Proof of Theorem. 1558

Proof. As discussed in GeoDiff Appendix A.5, the zero CoM operation can ensure the translational
invariance for pθ,ϕ(XL0

). The thing remaining to prove is the rotational invariance.
Then from Lemma 4, Gϕ(GL,XL, c, t) is rotational invariant giving that

Gϕ(RgXL,FLj , c, t) = Gϕ(XL,FLj , c, t)

Take derivatives and multiply Rg on both sides,

∇XL
Gϕ(RgXL,FLj

, c, t) = Rg∇RgXL
Gϕ(XL,FLj

, c, t)

Then, together with Lemma 3, Equation 4 is also rotational equivariant. Then the markov kernel is559

rotational equivariant.560

Then together with Lemma 2, pθ,ϕ(XL0
) is also transnational invariant. Finally, with the help of561

CoM-free system, pθ,ϕ(XL0) is rot-translational invariant.562

A.5 MODEL FORMULATION DETAILS563

Forward Process According to Sohl-Dickstein et al. (2015); Song et al. (2021), the data distribu-564

tion in the equilibrium states q(XL0) undergoes a gradual transformation into a well-behaved and565

analytically tractable distribution q(XLT
) through iterative application of a Markov diffusion kernel566

q(XLt | XLt−1) for discrete time step from 0 to T , where β1, ..., βT is a fixed variance schedule at567

each time step.568

q(XLt
| XLt−1

) = N (XLt
;
√

1− βtXLt−1
, βtI) (32)

569

q(XL1:T
| XL0) =

T∏
t=1

q(XLt | XLt−1) (33)

Equivalently, 1 can be written as following with zt−1 being the standard Gaussian noise:570

XLt =
√

1− βtXLt−1 +
√
βtzt−1, t = 1, ..., T (34)

According to Yang et al. (2022), to simplify the representation of q(XL1:T
| XL0), let αt = 1− βt571

and ᾱt =
∏t

s=1 αs, then:572

q(XL1:T
| XL0

) = N (XLt
;
√
ᾱtXL0

, (1− ᾱt)I) (35)

Equivalently,573

XLt =
√
ᾱtXL0 +

√
1− ᾱts (36)

The above diffusion process is discrete from 0 to T . If we take continuous time steps by small time574

step change ∆t, the forward process can be described by the Îto diffusion stochastic differential575

equation (SDE) (Anderson, 1982):576

dXL = f(XL, t)dt+ g(t)dω (37)

where ω is a standard Wiener process, f(XL, t) is the drift coefficient calculated by577

f(XL, t) = − 1
2βtXL, and g(t) is the diffusion coefficient derived by g(t) =

√
βt.578

579

Proof.
XLt

=
√
1− βtXLt−1

+
√
βtzt−1, t = 1, ..., T (38)

Define β̄t = Tβt, then 38 can be rewrite as:

XLt
=

√
1− β̄t

T
XLt−1

+

√
β̄t

T
zt−1, t = 1, ..., T

take β( t
T ) = β̄t, XL(

t
T ) = XLt , z( t

T ) = zt, then for t = {0, 1
T , ...,

T−1
T }, ∆t = 1

T , we have:

XL(t+∆t) =
√
1− β(t+∆t)∆tXL(t) +

√
β(t+∆t)∆tz(t)
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when ∆t → 0,
√
1− β(t+∆t)∆t = 1− 1

2β(t+∆t)∆t, then:

XL(t+∆t) = XL(t)−
1

2
β(t+∆t)∆tXL(t) +

√
β(t+∆t)∆tz(t)

then
dXL = f(XL, t)dt+ g(t)dω

where f(XL, t) = − 1
2βtXL, g(t) =

√
(βt) 580

Reverse Process According to Sohl-Dickstein et al. (2015); Song et al. (2021), starting from XLT
581

drawn from some analytically tractable distribution pT and reversing the diffusion process, we can 582

derive the data distribution p0 and sample XL0
from it. The reverse process can be described on the 583

reverse-time SDE given by Sohl-Dickstein et al. (2015); Song et al. (2021): 584

dXL = [f(XL, t)XLdt− g(t)2s(XL, t)dt] + g(t)ωXL
, (39)

where ωXL
is a standard Wiener process from T to 0, dt is a negative infinitesimal timestep, and 585

score function s(XL, t) is the gradient of log-likelihood of the distribution at step t s(XL, t) = 586

∇XL
logp(XL), with p(XL) being the marginal distribution of the SDE at time t. 587

Referring Song et al. (2021); Zhao et al. (2022), we can approximate the score function by some 588

neural network sθ and thus get the MSE loss for scoring matching as follows: 589

L = E[∥sθ − s∥2] (40)

Specifically, we design the Target-Ligand Pairwise Graph Encoder (TLPE) in Section 4.2 to get the 590

score function approximation. 591

592

To generate conformations, we need to solve the above reverse SDE. Song et al. (2021) utilize the 593

Euler-Maruyama solver to discretize the reverse SDE iteratively: 594

XLt−1 = XLt − [f(XLt , t)− g(t)2s(XLt , t)] + g(t)z, z ∼ N (0, 1) (41)

To ensure that the score-based diffusion system applied to the ligand’s Euclidean coordinates satisfies 595

rot-translational invariance, GeoDiff employs the Center of Mass (CoM) system. This system removes 596

the center of mass for the conformations at each step, guaranteeing translational invariance. For 597

achieving rot-invariance, GeoDiff initially operates on edge features, which are scalar quantities and 598

inherently rot-invariant. Subsequently, these features are projected into the coordinate system using 599

an equivariant transformation. However, in addition to rot-translational invariance, certain local scalar 600

chemical features such as Self-consistent field (SCF) energy, molecular orbital (HOMO)–lowest 601

unoccupied molecular orbital (LUMO) energy gaps, and Marsili-Gasteiger Partial Charges also play 602

a crucial role in equilibrium states but are not considered in GeoDiff. 603

Instead of focusing solely on the score function in GeoDiff ∇XL
logp(XL | GL), we consider 604

the controllable score function ∇XL
logp(XL | GP ,GL, c), where c denotes the chemical prop- 605

erties mentioned above GP ,GL denotes the target graph and ligand graph, respectively. Here we 606

define p(XL | GP ,GL) as the reverse process of q and is also a normal distribution while the 607

mean and variance have no closed form. Then as mentioned in Song et al. (2021); Zhao et al. 608

(2022), we apply Bayes’ theorem p(XL | c,GP ,GL)p(c) = p(c|XL,GP ,GL)p(XL|GP ,GL) where 609

p(c) is independent to XL. Here ligand chemical property and target graph are independent thus 610

p(c|XL,GP ,GL) = p(c|XL,GL). Taking derivative with respect to XL on both sides, it results in 611

the controllable score function: resulting in the following controllable score function: 612

∇XL
logp(XL | GP ,GL, c) = ∇XL

logp(XL | GP ,GL) +∇XL
logp(c | XL,GL) (42)

Then the reversed SDE controllable by the chemical properties can be described as follows: 613

dXL = [f(XL, c, t)dt− g(t)2(s(XL,GP ,GL, t)− λ∇XL
G(XL,GL, t))dt] + g(t)ωXL

, (43)

where ωXL
is a standard Wiener process from T to 0, dt is a negative infinitesimal timestep, and 614

score function s(XL,GP ,GL, t) is the gradient of log-likelihood of the distribution at step t, i.e. 615

s(XL,GP ,GL, t) = ∇XL
logp(XL | GP ,GL), with p(XL | GP ,GL) being the marginal distribution 616

of the SDE at time t. λ is the scalar weight on the guidance, G is the energy function for the three 617
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chemical properties mentioned before. And the reversed SDE shown in 4 is called Energy-guided618

Reverse-time SDE (Zhao et al., 2022).619

Similar to Zhao et al. (2022); Song et al. (2021), we utilize the Euler-Maruyama solver to discretize the620

reverse SDE and use the neural network to parameterize p(XL | c,GP ,GL) by pθ,ϕ(XL | c,GP ,GL).621

Specifically, we parameterize s and G by sθ and Gϕ, and then we get the updating of ligand622

conformation samples in each step:623

XLt−1
= XLt

−[f(XLt
, t)−g(t)2(sθ(XLt

,GP ,GL, t)−λ∇XL
Gϕ(XLt

,GL, t))]+g(t)z, z ∼ N (0, 1)
(44)

A.6 MODEL DETAILS624

Hyperparameters The essential hyperparameters are shown in Table. 4.

Table 4: Search space for PsiDiff to perform well on the validation set. The best choices for hyperparameters are marked in bold.

PARAMETERS SEARCH SPACE
Atom Type Num (Protein) 6, 28, 32
Atom Type Num (Ligand) 28
Inter-edge Distance Cutoff 2, 2.8, 5, 7, 8, 10, 15
Intra-edge Distance Cutoff 2, 2.8, 5, 7, 8, 10, 15

Protein Downsampling Rate 0.01, 0.03, 0.05, 0.1, 1
LTMP Depth 1, 2, 4, 6, 8

Training complex loss rate 1, 0.8, 0.5, 0.4, 0.1, 0
Learning Rate 1e-3, 1e-4, 1e-5

Learning Rate Scheduler Cosine annealing
Time steps 1000, 5000

625

Energy function in the energy guided diffusion model The energy model utilized to guide the626

sampling process is formulated as the gradient of the estimation Gϕ. The energy model takes ligand627

molecular graphs as input, along with ligand atom coordinates. To train the model, we employ the628

stacked Equivariant Graph Convolution Layer (EGCL) (Satorras et al., 2021; Hoogeboom et al., 2021),629

with fixed ligand atom types. Here, Gϕ represents the parameterized predictions of the chemical630

properties by the guidance model. The Equivariant Graph Convolution Layer (EGCL) guarantees the631

transition equivariance by the zero-CoM operation. The model is rotational equivariant because there632

is only linear operation on the coordinates and all the nonlinear operations on coordinates-dependent633

functions using pairwise distance instead of coordinates as shown in 45.634

mjj′ = Ψm(Fl
Lj
,Fl

L′
j
,D2

jj′ ,Ejj′), wjj′ = Ψwmjj′ ,F
l+1
Lj

= Ψh(F
l
Lj
,
∑
j ̸=j′

wjj′mjj′),

Xl+1
Lj

= Xl
Lj

+
∑
j ̸=j′

Xl
Lj

−Xl
L′

j√
D2

jj′ + 1
Ψx(F

l
Lj
,Fl

L′
j
,D2

jj′ ,Ejj′)

(45)

Here, Ψw,Ψm,Ψx,Ψh are learnable networks, mjj′ is the message, Fl
Lj

is the ligand node feature635

consisting of node types, time, and chemical properties. Ejj′ is the edge feature, which is the636

chemical bond type. Both are independent of the coordinates and thus are rot-translational invariant.637

Djj′ is the Euclidean distance and thus also rot-translational invariant. Then the update for Xl
Lj

is638

rot-translational equivariant.639

640

LTMP The LTMP feature assembler considers the ligand and complex graph as two nodes of a641

directed self-looped graph and tries to pass massages inside the graph. It consists of 5 sub-blocks: D642

to Z, Z to Z, Z to L, L to L, and L to Z. The detailed structures of these 5 blocks are shown in Figure643

4.644

645
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Figure 4: Sub-blocks of LTMP: Z to L, Z to Z, L to Z, D to Z, and L to L. The last subgraph shows the trigonometric multiplication block in the
L to L sub-block.

Graph representation and prompt inserting structure Ligand graphs have nodes as the heavy 646

atoms with node feature FL ∈ Rdl×n and edges being the chemical covalent bonds with edge 647

features Ejj′local
. The node features are one-hot embedded from 28 atom types while the edge 648

features are embedded by edge types and atomic pairwise distances. The atomic pairwise distances 649

are rot-translational invariant and all other features are scalars not relative to coordinates, thus the 650

ligand feature extractor is also rot-translational invariant. 651

In the provided ligand molecular graph, the consideration of strong chemical interactions solely 652

through chemical bonds overlooks the potential long-range connections between nodes that lack 653

covalent bonds but are in close proximity to each other in Euclidean space (Xu et al., 2022). This 654

limitation disregards important interactions and relationships between such nodes. To overcome the 655

limitations of previous approaches, we have integrated non-covalent interactions into our methodology 656

similar to GeoDiff (Xu et al., 2022). Specifically, when the Euclidean distance between two ligand 657

nodes is less than a designated threshold, we create pseudo edges between them. Additionally, the 658

distance between these nodes is encoded as part of the edge features, allowing our approach to 659

incorporate additional information about the spatial relationships between ligand nodes. 660

In our approach, we use a Graph Isomorphism Network (GIN) for the ligand-target interaction branch 661

as the ligand feature extractor in equations 46 and 47. Φmlocal
and Φhlocal

denotes the parameterized 662

ligand-target interaction networks. θmlocal
and θhlocal

denotes the parameters in the ligand-target 663

interaction branch. As demonstrated in the equations below, all the features exhibit invariance since 664

they are either dependent on pairwise distances or independent of coordinates. 665

mjj′ = Φmlocal
(Fl

Lj
,Fl

L′
j
, Djj′ ,Ejj′ ; θmlocal

) (46)
666

Fl+1
Lj

= Φhlocal
(Fl

Lj
,

∑
j′∈N(j)

mjj′ ; θhlocal
) (47)

Targets are represented as a point cloud graph, where the nodes correspond to point clouds in 667

close proximity to the heavy atoms. The point clouds are sampled using the surface distance 668

function (SDF) described in Equation 48. The motivation behind considering the SDF for sampling 669

is rooted in the fact that the surface of the target predominantly influences its properties, and 670

the SDF serves as a reliable representation of the protein surface (Zhu et al., 2010; Park et al., 671

2019; Venkatraman et al., 2009; Bordner & Gorin, 2007). Here, aj denotes the protein atoms 672

within the 32 atom types: (C, H, O, N, S, Se, Be, B, F, Mg, Si, P, Cl, V, Fe, Co, CU, Zn, 673

As, Br, Ru, Rh, Sb, I, Re, Os, Ir, Pt, Hg, Ca, Na, Ni), NP denotes the selected point clouds 674
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Figure 5: (a).TLPE: consists of the ligand-target interaction branch and complex branch; (b). Overview of LTMP block. (c). Ligand-target
complex: red dots: protein surface nodes, green lines: inter-interactions between ligand and target graphs, pink lines: non-covalent pseudo-edges
capturing long-range effects in ligand.

(nodes of the target graph), σ is the experimental atom radius for aj , and w is the averaged atom radius.675

676

SDF(NP) = −w · log
m∑
j=1

exp(−∥NP − aj∥/σ) (48)

The node features for the target graph encompass two main components: chemical features and677

geometric features. The chemical features consist of 32 node types, along with trainable chemical678

properties pertaining to the neighboring K atoms (K=16). Additionally, to capture the "shape" of the679

pocket surface more effectively, trainable geometric features, such as Gaussian curvatures and mean680

curvatures, are embedded within the node features. Formally, for the target point cloud graph, we681

follow the approach of Sverrisson et al. (2021) and extract the geometric and chemical features in682

equation 49. Here, f l
chemi

and fgeoml
ii′

denote the chemical and geometric features for the target683

nodes, respectively.684

Fl+1
Pi

= Φp(f
l
chemi

, f l
geomii′

) (49)

. Since Gaussian curvatures and mean curvatures are scalar quantities that remain invariant under685

rot-translation transformations, and the chemical properties are independent of the 3D Euclidean686

coordinates, the target feature extractor ensures rot-translational invariance. During the generation of687

ligand conformations, targets always remain unchanged and are regarded as rigid.688

While our approach uses a trainable feature extractor dMaSIF (Sverrisson et al., 2021) to capture689

features of the target graphs represented by dense point clouds, using all the sampled points may690

derive more precise results on target features but also result in a computationally expensive feature691

assembler when passing massage between ligand and target. Therefore, dense target features may692

be redundant when the features are already extracted without much information loss. To address693

these issues, we use Fastest Point Sampling (FPS) (Ye et al., 2021; Nooruddin & Turk, 2003) to694

downsample the target point clouds after features are extracted. This downsampling after target695

feature extraction enables us to reduce the computational cost of the feature assembler while696

still preserving the relevant information needed for generating biologically meaningful conformations.697

698

We try two combinations of backbone graph neural networks for the ligand feature extractor. The first699

one is Graph Convolution Network (GCN) for both ligand-target interaction and complex branches.700

The second one is SchNet (Schütt et al., 2017) for complex branch and Graph Isomorphism Network701

(GIN) for ligand-target interaction. The detailed structure is shown in Figure 6a. We also try a model702

similar to the energy model based on the EGNN model (Satorras et al., 2021; Hoogeboom et al.,703

2021) with the ligand atom types fixed and without the output MLP layer. The results show that the704

GCN version is better, so we finally it.705

For the target graph, we choose the differentiable geodesic convolution-based surface point cloud706
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feature extractor dMaSIF, the detailed structure is shown in Figure 6b. 707

708

Training and Sampling Algorithms To ensure that the value ranges of the target and ligand node 709

coordinates remain the same as the noises, which are sampled from standard normal distributions, we 710

normalize the coordinates before taking gradient descent steps on the Epsilon network to train the 711

noise score sθ. The Pseudo code for training is shown in Algorithm.1. 712

713

The energy guidance is defined as the gradient of the L2 norm of the difference between predicted and 714

reference chemical features. The training process for the energy guidance is shown in Algorithm. 1. 715

716

For the reverse process for sampling, we follow the standard DDPM algorithm with energy guidance 717

on the chemical properties, as shown in Eq.4. After finishing all sampling steps, we transfer the 718

coordinates value range back to the initial coordinates, as shown in the last line of Algorithm.2. 719

720

Experiments settings Three separate guidance models for gaps, energy, and charges were trained 721

separately. Each model was trained on one A100(40GB) GPU for five days for 5000 epochs. The 722

learning rate was set to be 2e−4 with a weight decay of 1e−16. We calculated the Self-consistent field 723

(SCF) energy and molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) energy 724

gaps using the Psi4 software (Parrish et al., 2017) and the Marsili-Gasteiger Partial Charges using 725

RDKit (Riniker & Landrum, 2015). 726

727

A.7 MORE RESULTS 728

GeoDiff Pretrained Model on GEOM-QM9 GeoDiff is trained on GEOM-QM9 (Ramakrishnan 729

et al., 2014b) and GEOM-Drugs (Axelrod & Gómez-Bombarelli, 2020) datasets, without any protein 730

data inside them. Our model requires target information thus the above datasets are not available. We 731

test the model weights given by GeoDiff and also retrain it on the PDBBind-2020 dataset. The direct 732

testing on the given weights does not convergent for most of the ligands in the PDBBind datasets. 733

Application on Ligand-Target-Interaction Problem As shown in 5, without any extra optimiza- 734

tion, our model achieves comparable results compared to the traditional method (GNINA (McNutt 735

et al., 2021) and GLIDE (c.) (Halgren et al., 2004) and the deep learning method (EquiBind (Stärk 736

et al., 2022) and TankBind (Lu et al., 2022)). With a simple one-step empirical force field (FF) (Hal- 737

gren, 1996) optimization, our method outperforms most of the existing methods or their combination 738
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Algorithm 1 Generation Model Training

Input: GL,GP ,XLt , c,XP , T
1: repeat
2: t ∼ Uniform(1, ..., T )
3: XL0

∼ q(XL0
)

4: X̃L0 =
XL0

−centerP√
varP

▷ Normalize ligand coordinates as Eq. 9

5: X̃P = XP−centerP√
varP

▷ Normalize target coordinates as Eq. 9
6: z ∼ N (0, I)

7: X̃Lt
=

√
ᾱtX̃L0

+
√
1− ᾱtz ▷ Perturb ligand coordinates as Eq. 5

8: Calculate sθ(GL,GP , X̃Lt
, X̃P , c, t)

9: Sample s from the isotropic normal distribution
10: Calculate Ls

11: Take gradient descent step on ∇θLs ▷ Loss function
12: until converged
13: repeat
14: t ∼ Uniform(1, ..., T )
15: XL0

∼ q(XL0
)

16: X̃L0 =
XL0

−centerP√
varP

▷ Normalize ligand coordinates as Eq. 9

17: X̃P = XP−centerP√
varP

▷ Normalize target coordinates as Eq. 9
18: z ∼ N (0, I)

19: X̃Lt
=

√
ᾱtX̃L0

+
√
1− ᾱtz ▷ Perturb ligand coordinates as Eq. 5

20: Calculate Gϕ(GL,XL, c, t) ▷ Predict chemical features
21: Calculate G by RDKit and Psi4 packages
22: Calculate LG

23: Take gradient descent step on ∇ϕLG

24: until converged

Algorithm 2 Equivariant Sampling

Input: GL,GP ,XP , c
Output: XL0

1: X̃P = XP−centerP√
varP

▷ Normalize target coordinates

2: X̃LT
∼ N (0, I) ▷ Random initial ligand coordinates

3: for t = T, ..., 1 do
4: z ∼ N (0, I) if t > 1, else z = 0

5: Calculate sθ(GL,GP , X̃Lt
, X̃P , c, t)

6: Calculate ∇XL
Gϕ(XLt

, t)

7: Update X̃Lt−1 by Equation 5
8: X̃Lt−1 = X̃Lt−1 − Center(X̃Lt−1) ▷ Take CoM
9: end for

10: XL0
= X̃L0

∗ √varP + centerP
11: ▷ Transfer the coordinates back to the initial value range
12: return XL0
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Models Ligand RMSD Percentiles(Å)↓
25th 50th 75th

GNINA 2.4 7.7 17.9
GLIDE (c.) 2.6 9.3 28.1
EquiBind 3.8 6.2 10.3

TANKBind 2.4 4.28 7.5
P2RANK+GNINA 1.7 5.5 15.9

EQUIBIND+GNINA 1.8 4.9 13
*GeoDiff-PDBBind 29.21 40.33 79.62

PsiDiff 5.49 7.29 9.50
PsiDiff + FF 1.8 2.49 3.40

Table 5: Ligand RMSD on PDBBind-2020(filtered), Geodiff does not consider the position of ligands during docking, and centered the results to
the origin of the Cartesian coordinate system.

Models Aligned RMSD(Å)↓
mean median

w/o guidance 2.65 2.08
SCF energy guidance 2.649 2.07

HOMO-LUMO energy gap 2.65 2.06
Marsili-Gasteiger Partial Charge 2.636 2.04

all 3 properties 2.609 2.033

Table 6: Ablation study for using different chemical properties as energy functions

of median and 75th quantile. 739

740

Figure 7: Ablation study for the effect of the guidance part. From left to right, the ligands are 5zjy, 5zk5, 6a6k, 6ggb. The red ligands are the
ones with ligand property guidance while the orange ones are without guidance. The green circles point to the benzene rings in each ligand.
Guidance helps to keep some geometric and chemical properties, such as the coplanarity of benzene rings.

More Ablation Study While the improvement in aligned RMSD in Table 2 due to the guidance 741

part may not be significant, further analysis revealed that guidance played a role in maintaining 742

certain geometric and chemical properties, such as the coplanarity of benzene rings. These constraints 743

assisted in generating more chemically reasonable molecules while satisfying energy or charge 744

constraints. Although such local structure constraints might not drastically alter the overall structure, 745

their presence explains the modest improvement in the aligned RMSD. Additional details and analysis 746

can be found in Figure 7. 747

We do more ablation studies by using different chemical properties as energy functions. The results 748

show that each chemical property helps to improve the performance a little. The best result is by 749

using all the 3 chemical properties as shown in Table 6. 750
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