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Abstract—This paper focuses on the prescribed-time (PT)
adaptive tracking control scheme for nonlinear systems. A time-
varying scaling transformation function (STF) is designed to
avoid the singularity issue in implementing the designed con-
troller while releasing the requirement of n-order differentiability
of the STF, thus providing a more relaxed criterion for PT
stability. Furthermore, a simplified filtering error compensation
method is proposed to ensure the convergence of filtering error
in prescribed time, thus reducing the impact of filtering error on
control performance. All signals in nonlinear systems are proved
to meet the PT stability requirement. The effectiveness of the
proposed scheme are substantiated through simulation results.

Index Terms—Adaptive tracking control, filtering error com-
pensation, nonlinear systems, prescribed-time control.

I. INTRODUCTION

Many practical systems can be formulated as nonlinear
systems. The backstepping technique stands out as a common
and robust approach. The backstepping control technology ex-
hibits several significant features, including global stability and
asymptotic tracking, which have been extensively studied in
[1] and [2]. Nevertheless, existing research primarily focuses
on asymptotical stabilization or uniform ultimate boundedness,
implying that system stabilization within finite time remains
unexplored.

Recently, great efforts have been achieved in finite-time
(FT) control for nonlinear systems [3]. Compared to traditional
infinite-time stabilization methods, FT stability has advantages
such as high convergence accuracy and fast convergence speed.
However, the convergence time of FT control is contingent
upon the system’s initial condition. Addressing this challenge,
the concept of fixed-time (FxT) convergence stability was in-
troduced in [4]. Nevertheless, the convergence time boundary
derived from stability analysis often diverges from the actual
settling time observed in simulations.

To address the aforementioned issues, the concept of
predefined-time (PdT) stability was introduced, which has
an attractive advantage of being able to preset the upper
bound on settling time. In addition, some related achievements
have been obtained in [5, 6]. However, the existing PdT
control schemes can only determine the upper bound of the
convergence time. Song et al. [7] systematically introduced
the prescribed-time (PT) control method, employing a scaling

transformation function (STF) that diverges towards being
unbounded as time approaches the user-defined terminal time.
Although there have been a lot of efforts devoted to the PT
control, the obtained result mentioned above are relatively
conservative. The STFs require n-order differentiability, which
lead to enhanced conservatism in the controller design process.
Moreover, the PT stability within the backstepping framework
causes the “complexity explosion” problem.

Inspired by the aforementioned discussions, an adaptive
prescribed-time control method is proposed for nonlinear
systems based on a first order sliding mode differentiator. The
main contributions are concluded as follows:

1) The filtering technique and the PT control technique
are combined to release the limitations of the n-order
differentiability of STFs.

2) In this paper, a simplified command filtering error com-
pensation strategy is proposed, which precisely sets the
convergence time of filtering errors without the need for
scaling.

II. PRELIMINARIES

A. Problem Formulation

In this paper, we consider a class of strict-feedback systems
with uncertainties, which is modeled by

ẋi = xi+1 + fi(x̄i), i = 1, . . . , n− 1

ẋn = u+ fn(x̄n),

y = x1,

(1)

where xi ∈ R represents the state with x̄i = [x1, x2, . . . , xi]
T

being the state vector, u is the control input signal and
y denotes the output, and fi(x̄i) is the uncertain smooth
nonlinear function.

B. Practical Prescribed-Time Stable

Definition 1: For the following system:

ẋ = f(x, t) (2)

where f is piecewise continuous in t and locally Lipschitz in x,
and x = 0 is the equilibrium point. Then, system (2) exhibits
PT global uniform asymptotic stability over time T if there
exists a function µ : [0, T ) → R+ that tends to infinity as t
approaches T , and a class KL function <, such that the norm



of x(t) is bounded by <(||x(0)||, (t)) for all t in [0, T ), where
T is a finite number determined during the design phase.

We put forward an improved time-varying STF defined on
the whole time interval as follows:

β(t) =


T

T − t+ ε
, t ∈ [0, T )

T

ε
, t ∈ [T,+∞)

(3)

where T represents any finite time duration permissible within
physical constraints set by the user, and ε denotes a small
constant.

Lemma 1: Given a radially unbounded positive definite LF
V (t)

V̇ (t) ≤ −c1V (t)− β̇(t)

β(t)
V (t) + b (4)

C. Fuzzy Logic Systems (FLSs)

The FLSs are used to estimate f(x) over a compact set Ω
as

f(x) = WT δ(x) + ε(x),∀x ∈ Ω

where W is the artificial constant vector given as W =

arg min
W

[
sup
t

∣∣∣f(x)− f̂(x)
∣∣∣]. ε(x) is the approximation error

bounded by a positive constant κ, that is, |ε(x)| ≤ κ.
Moreover, δ(x) is the fuzzy basis vector denoted as

δ(x) =

Ň∏
τ=1

µFτ (xτ )

∑r
τ=1[

Ň∏
τ=1

µFτ
(xτ )]

,

where µFτ
is the membership degree of xτ , and N is the

number of total fuzzy rules.

III. ADAPTIVE PRESCRIBED-TIME CONTROLLER DESIGN

Prior to finalizing the deduction and formulating the
prescribed-time controller, the subsequent coordinate transfor-
mation will be delineated as

z1 = y − yr,
zi = xi − αi−1, i = 2, . . . , n

(5)

where αi,n−1 is the virtual control signal.
According to (1) and (5), ż1 can be deduced as

ż1 = ẋ1 − ẏr
=f1 + z2 + α1 − ẏr.

(6)

Step 1: Construct the Lyapunov function as

V1 =
1

2
z2

1 +
1

2
θ2

1, (7)

where θ1 is defined as θ1 = ||W1||2. W1 is the artificial
constant vector which will be employed later.

Then, the time derivative of V1 represents

V̇1 = z1(f1 + z2 + α1 − ẏr)− θ̃1
˙̂
θ1, (8)

where θ̂1 is the estimation of θ1, and the error between θ1 and
θ̂1 is defined as θ̃1 = θ1 − θ̂1. f1 is the unknown term, which
can be estimated by FLSs to arbitrary accuracy κ1, namely,

f1 = WT
1 δ1 + ε1, |ε1| ≤ κ1 (9)

where W1 is the artificial constant vector, δ1 is the fuzzy basis
function, and ε1 is the approximation error.

Then, one has

V̇1 ≤ z1z2 + z1(α1 − ẏr)− θ̃1
˙̂
θ1 + z1λ1 +

1 + z2
1 + κ2

1

2
.

(10)
The virtual control signal α1 is designed as

α1 = (−1

2
c1 −

β̇

2β
)z1 −

1

2
z1 + ẏr − λ̂1, (11)

where λ̂1 is the estimation of λ1, and the error between λ1

and λ̂1 is defined as λ̃1 = λ1 − λ̂1.
The adaptive law is designed as

˙̂
θ1 = (−1

2
c1 −

β̇

2β
)θ̂1 +

1

2
z2

1δ
T
1 δ1. (12)

Then, we have

V̇1 ≤ z1z2 + (−c1 −
β̇

β
)
1

2
z2

1 − (c1 +
β̇

β
)
1

2
θ̃2

1 + %1, (13)

where %1 = 1
2 + 1

2κ
2
1 + ( 1

2c1 + β̇
2β )θ2

1.

Step i(i = 2, . . . , n− 1):
Given the computational complexity of calculations, we

employ the first-order sliding mode differentiator to estimate
α̇i−1.

Hence, we can obtain

α̇i−1 = pi−1 + ei−1, (14)

where ei−1 is the estimated error of differentiator.
The filtering error compensation mechanism is devised as

ei−1 = êi−1 + ẽi−1, (15)

where êi−1 represents the adaptive law for approximating the
filtering error ei−1, and ẽi−1 is the error between ei−1 and
êi−1.

The Lyapunov function candidate is chosen as

Vi = Vi−1 +
1

2
z2
i +

1

2
θ2
i (16)

Differentiating Vi, we can get

V̇i = V̇i−1 + zi(fi + zi+1 + αi − pi−1 − ei−1)− θ̃i ˙̂
θi (17)

Then, (17) can be re-expressed as

V̇i =V̇i−1 + zi(αi − pi−1 − ei−1)− θ̃i ˙̂
θi

+ ziλi +
1 + z2

i + κ2
i

2
+ zizi+1.

(18)



The virtual control signal αi is designed as

αi =(−1

2
c1 −

β̇

2β
)zi − zi−1 + pi−1

+ êi−1 −
1

2
zi − λ̂i,

(19)

The adaptive law is designed as

˙̂
θi = (−1

2
c1 −

β̇

2β
)θ̂i +

1

2
z2
i δ
T
i δi. (20)

Substituting (19) and (20) into (18), one has

V̇i ≤−
i∑

j=1

(c1 +
β̇

β
)
1

2
z2
j −

i∑
j=1

(c1 +
β̇

β
)
1

2
θ̃2
j

i∑
j=2

zj ẽj−1 + zizi+1 + %i,

(21)

where %i = %i−1 + 1
2 + 1

2κ
2
i + ( 1

2c1 + β̇
2β )θ2

i .
Step n: Select the Lyapunov function as

Vn =Vn−1 +
1

2
z2
n +

1

2
θ̃2
n. (22)

In the final step, the actual controller u is designed as
follows:

u =(−1

2
c1 −

β̇

2β
)zn − zn−1 + pn−1

+ ên−1 −
1

2
zn − λ̂n,

(23)

The adaptive law is designed as

˙̂
θn = (−1

2
c1 −

β̇

2β
)θ̂n +

1

2
z2
nδ
T
n δn. (24)

Then, we can get

V̇n ≤−
n∑
j=1

(c1 +
β̇

β
)
1

2
z2
j −

i∑
j=1

(c1 +
β̇

β
)
1

2
θ̃2
j

−
n∑
j=2

zj ẽj−1 + %n,

(25)

where %n = %n−1 + 1
2 + 1

2κ
2
n + ( 1

2c1 + β̇
2β )θ2

n.
Theorem 1: For the nonlinear systems with uncertainties

(1), under the first order differentiator (15), the filtering
error compensation mechanism (14), the controller (23), the
adaptive law (20) and the adaptive filtering update law (27), it
can guarantee that the tracking error z1 converges to a small
neighborhood of origin and all signals are prescribed-time
bounded.

Proof: For the compensating mechanism (15), select the
Lyapunov function as

Vc =
1

2

n∑
j=2

ẽ2
j−1 (26)

To compensate for the impact of filtering errors, the adaptive
filtering update law is designed as

˙̂ej−1 = −zj − (c1 +
β̇

β
)êj−1. (27)

Select V = Vn + Vc as the Lyapunov function candidate
of the nonlinear systems (1). Differentiating V , V̇ can be
expressed as

V ≤− c1V −
β̇

β
V + b (28)

From Lemma 1, (28) shows that the tracking error and the
filtering error will converge in the prescribed time. This ends
the proof.

IV. SIMULATION RESULTS

In this section, two examples are given to demonstrate the
validity of prescribed-time command filtering adaptive fuzzy
controller.

Example 1: Consider the uncertain nonlinear systems as
follows: 

ẋ1 = x2 + f1(x̄1)

ẋ2 = u+ +f2(x̄2)

y = x1

(29)

where f1(x̄1) = x1 exp(−0.5x1) and f2(x̄2) = −2x1 − x2.
The reference signal yr is defined as yr = 0.1 sin(2t).

In the simulation, the designed parameters are chosen as
c1 = c2 = 20 and ε = 0.1. The initial states are chosen as
x1(0) = −0.3 and x2(0) = −0.1. The adaptive parameters are
initialized to be θ̂1(0) = 0.2, θ̂2(0) = 0.4 and ê1(0) = 0.3,
respectively.

The output signal and reference signal trajectories are
depicted in Fig. 1. Fig. 2 illustrates the tracking error. From
Fig 3, it can be seen that the impact of filtering error has been
reduced within the prescribed time.
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Fig. 1. PT tracking control trajectory with T = 1s.
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Fig. 2. The curve of the tracking error z1 with T = 1s.
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Fig. 3. The curve of filtering error compensation adaptive parameter ê1 with
T = 1s.

V. CONCLUSION

In this paper, the FLS-based PT adaptive tracking con-
trol problem has been considered for nonlinear systems. A
simplified filtering error compensation mechanism has been
proposed to make filtering errors converge in the prescribed
time. Finally, the designed PT command filtering controller
ensures that all signals are PT bounded.
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