
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAUSAL STRUCTURE LEARNING IN HAWKES PRO-
CESSES WITH COMPLEX LATENT CONFOUNDER NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multivariate Hawkes process provides a powerful framework for modeling tempo-
ral dependencies and event-driven interactions in complex systems. While exist-
ing methods primarily focus on uncovering causal structures among observed sub-
processes, real-world systems are often only partially observed, with latent sub-
processes posing significant challenges. In this paper, we show that continuous-
time event sequences can be represented by a discrete-time causal model as the
time interval shrinks, and we leverage this insight to establish necessary and suf-
ficient conditions for identifying latent subprocesses and the causal influences.
Accordingly, we propose a two-phase iterative algorithm that alternates between
inferring causal relationships among discovered subprocesses and uncovering new
latent subprocesses, guided by path-based conditions that guarantee identifiabil-
ity. Experiments on both synthetic and real-world datasets show that our method
effectively recovers causal structures despite the presence of latent subprocesses.

1 INTRODUCTION

Understanding causality in complex systems is essential across diverse scientific and practical do-
mains, including social networks (Zhou et al., 2013), neuroscience (Bonnet et al., 2022), and finance
(Hawkes, 2018). Multivariate Hawkes processes (Hawkes, 1971), with their ability to model tempo-
ral dependencies and event-driven interactions, have emerged as powerful tools for capturing these
dynamics. A majority of existing approaches (Xu et al., 2016; Salehi et al., 2019; Idé et al., 2021)
learns Hawkes processes by using Granger causality (Kim et al., 2011) and fitting continuous-time
event sequences via maximum likelihood (Veen & Schoenberg, 2008). Another line of work reduces
reliance on high-resolution event timestamps by performing likelihood-based estimation directly on
pre-binned counts (Shlomovich et al., 2022; Cai et al., 2022; Qiao et al., 2023).

Almost all existing methods, including the two lines above, implicitly assume causal sufficiency:
all task-relevant subprocesses (i.e., event sequences) are fully observed, and the goal is to uncover
causal structure only among those observed subprocesses. In practice this assumption is often vi-
olated: many real-world systems are only partially observable, with some event sequences entirely
unmeasured. For example, in neuroscience, limitations of neural recording leave many neurons
unobserved even though they influence recorded neurons (Huang, 2015), obscuring the true causal
structure. Shelton et al. (2018) proposes a method to impute missing event times within an observed
subprocess via posterior sampling, but this does not handle entirely unobserved subprocesses unless
one specifies their existence and number in advance—an impractical requirement. Identifying such
latent subprocesses is crucial for reliable causal discovery, particularly when they act as confounders.

In this paper, we target the general scenario of partial observability: we seek to recover the causal
structure among both observed and latent subprocesses without prior knowledge about whether la-
tent subprocesses exist, how many there are, or where they connect. We first show that, as the time
interval shrinks, the multivariate Hawkes process admits a discrete-time linear causal representa-
tion. Leveraging second-order (cross-covariance) statistics of this representation, we show that the
causal graph is virtually identifiable, without prior knowledge of latent subprocesses, when each
latent subprocess has suitable observed surrogates. Our main contributions are:
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• To the best of our knowledge, we provide the first principled framework that identifies latent sub-
processes and recovers causal structure in continuous-time event sequences without prior knowl-
edge of the existence or number of latent subprocesses.

• By showing that multivariate Hawkes processes can be represented by a linear causal model over
discretized variables, we derive necessary and sufficient conditions for identifying latent subpro-
cesses and inferring causal influences.

• We develop a two-phase iterative algorithm that alternates between causal-structure recovery and
latent-subprocess discovery, using rank tests on cross-covariance matrices of observed discretized
variables; it requires no prior knowledge of latent components.

2 RELATED WORK

Related work relevant to this paper are two areas: Hawkes processes and causal discovery. We
briefly review the most relevant works here; a more detailed discussion is deferred to Appendix A.

Hawkes Processes. Hawkes processes provide a flexible framework for modeling temporal depen-
dencies among events (Hawkes, 1971; Laub et al., 2015). Existing methods for learning Hawkes
structures from continuous-time data predominantly rely on likelihood-based estimation, using ei-
ther parametric kernels (e.g., exponential, power-law) (Xu et al., 2016) or nonparametric procedures
(Lewis & Mohler, 2011), often combined with sparsity regularization (Zhou et al., 2013; Idé et al.,
2021). The NPHC method (Achab et al., 2018) estimates integrated kernels via moment-matching,
providing a nonparametric alternative. These approaches are effective when all subprocesses are ob-
served, but they do not account for latent components. When only binned event counts are available,
another line of work fits Hawkes models by maximizing likelihood over bin counts (Shlomovich
et al., 2022; Cai et al., 2022; Qiao et al., 2023), but such methods again presuppose full observabil-
ity. In contrast, although our framework also operates on discretized data, it departs from likelihood-
based fitting: by leveraging the autoregressive representation of Hawkes processes, we exploit low-
rank patterns in cross-covariances, thus enabling the identification of latent subprocesses.

Causal Discovery. Existing causal discovery methods are primarily designed for settings where
variables follow deterministic relations, rather than stochastic event-driven dynamics such as
Hawkes processes. Classical approaches for i.i.d. data include constraint-based (Spirtes et al., 2001),
score-based (Chickering, 2002), and functional approaches (Shimizu et al., 2006). Extensions to
handle latent variables include rank-based methods that identify hidden structures in linear models
(Huang et al., 2022; Dong et al., 2023). While these allow latent variables, their guarantees typically
hold only up to equivalence classes and rely on restrictive structural and cardinality assumptions
that are incompatible with Hawkes dynamics. For time-series data, LPCMCI (Gerhardus & Runge,
2020) adapts conditional-independence testing to temporal domains. However, it assumes weak
autocorrelation and exogenous latent variables, assumptions that are violated in Hawkes processes
where dense cross-lag dependencies and endogenous latent subprocesses naturally arise. Although
our method also leverages second-order (rank) statistics, it differs in two key respects. First, it tar-
gets subprocesses in multivariate Hawkes systems rather than static variables and accommodates
both endogenous and exogenous latent subprocesses. Second, it establishes identifiability through
time-aware rank constraints specifically tailored to Hawkes dynamics, avoiding the infeasible as-
sumptions underlying existing rank- or independence-test based approaches.

3 PARTIALLY OBSERVED MULTIVARIATE HAWKES PROCESS-BASED
CAUSAL MODEL

This section introduces the causal modeling framework for partially observed Hawkes processes and
establishes the key definitions that support the subsequent results on structure discovery.

3.1 MULTIVARIATE HAWKES PROCESS

A multivariate Hawkes process is a self-exciting point process modeling temporal dependencies
among events via a set of counting subprocesses NG = {Ni}li=1, where Ni(t) records the number
of type-i events up to time t (Hawkes, 1971; Laub et al., 2015). For each i ∈ {1, . . . , l}, the intensity
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of subprocess Ni that governs the event-triggering behavior is:

λi(t) = µi +

l∑
j=1

∫ t

0

ϕij(t− s) dNj(s), (1)

where µi is the background intensity, and ϕij(s) ≥ 0,∀s ∈ (0,∞) is excitation function, which
measures the decaying influence of historical type-j events on the subsequent type-i events and
is piecewise continuous. (Strictly) stationarity requires the spectral radius of the influence matrix
Φ ∈ Rl×l with entries Φij =

∫∞
0

ϕij(s)ds to be less than one (Bacry & Muzy, 2016). A detailed
exposition of Hawkes process is deferred to Appendix B. See also Fig. 1a for illustration.

We are interested in identifying, for each subprocess Ni, the minimal set of subprocesses PG ⊆ NG
such that λi(t) depends only on the historical events of the subprocesses in PG and not on others.
Formally, this corresponds to

∫ t

0
ϕij(t − s) dNj(s) > 0 for each Nj ∈ PG , and zero otherwise. In

this case, Ni is said to be locally independent (Didelez, 2008) of NG\PG given PG .

3.2 MODEL DEFINITION

To formalize our framework, we define a graphical causal model for multivariate Hawkes processes,
where nodes represent subprocesses and directed edges correspond to nonzero excitation functions.
The goal is to recover the causal structure among both observed and latent subprocesses.
Definition 3.1 (Partially Observed Multivariate Hawkes Process-based Causal Model (PO-MHP)).
Let G := (NG , EG) be a directed graph, where each node Ni ∈ NG represents a subprocess in a
multivariate Hawkes process. A directed edge Eij ∈ EG exists iff

∫ t

0
ϕij(t − s) dNj(s) > 0. The

node setNG consists of p observed nodesOG := {Oi}pi=1 and q latent nodes LG := {Li}qi=1, which
correspond to the observed and latent subprocesses, respectively.

The PO-MHP model naturally allows cycles and self-loops that are typically challenging to analyze
(Claassen & Mooij, 2023). Two subprocesses Ni and Nj form a directed cycle if there exist directed
paths from Ni to Nj and from Nj back to Ni. Any subprocess Ni has self loop if

∫ t

0
ϕii(t −

s) dNi(s) > 0. Furthermore, it allows for the presence of latent subprocesses, and directed edges
may exist between any pair of subprocesses, whether observed or latent; both Ni and Nj may be
either observed or latent. To the best of our knowledge, it is the first principled work to investigate
such a general structure in Hawkes processes.
Definition 3.2 (Cause and Effect). For any Ni, Nj ∈ NG , if there exists a directed path from Ni to
Nj , then Nj is said to be a effect of Ni, and Ni is said to be a cause of Nj .
Definition 3.3 (Parent-Cause Set). For Ni ∈ NG , the minimal set PG ⊆ NG \ {Ni} is called its
parent-cause set if every directed path from nodes in NG\{Ni} to Ni passes through some node in
PG . In the special case where Ni has a self-loop, it is also included in PG .
Proposition 3.4 (Parent-Cause Set and Local Independence). Subprocess Ni is locally independent
(defined in Section 3.1) of NG\PG given PG if and only if PG is the parent-cause set of Ni in NG .

Proposition 3.4 is the PO-MHP analogue of the local Markov property: even with cycles and self-
loops, conditioning on the parent-cause set PG screens off Ni from all other subprocesses.

4 STRUCTURE IDENTIFICATION IN PARTIALLY OBSERVED HAWKES
PROCESSES

In this section, we formalize partially observed Hawkes processes in a discrete-time framework and
develop rank-based tests on observed counts that enable identification of the summary causal graph,
including relationships mediated by latent subprocesses.

4.1 FROM CONTINUOUS-TIME TO DISCRETE-TIME REPRESENTATION

Directly inferring the causal structure among subprocesses in a multivariate Hawkes process is chal-
lenging, particularly with latent subprocesses, as Eq. 1 defines a continuous-time stochastic process

3
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(a) (b) (c) (d)

Figure 1: Figure 1: Illustration of multivariate Hawkes processes. (a) Point process representation
with three subprocesses N1, N2, N3, where the continuous timeline is partitioned into intervals of
length ∆. (b) The corresponding summary causal graph, the central object of this paper, with causal
relations N1 ← N2 ↔ N3 and self-loops on all nodes. (c) The window causal graph, showing the
underlying time-lagged causal mechanism: each node denotes the count in one interval of length ∆,
modeled as a weighted sum of lagged parent nodes plus noise (Eq. 1). (d) A minimal example with
a latent subprocess L1 confounding O1 and O2, highlighting the primary focus of this paper.

where λi(t) is the expected history-dependent instantaneous rate. Instead of relying on conventional
maximum-likelihood fitting, we present an explicit correspondence between Hawkes dynamics and
a specified discrete-time linear autoregressive causal model, which enable the identification of latent
subprocesses and the causal structure by applying statistical tests only on observed count data.
Theorem 4.1 (Hawkes Process as a Linear Autoregressive Model). Let NG := {Ni}li=1 be a sta-
tionary multivariate Hawkes process with background intensities {µi}li=1 and excitation functions
{ϕij(s)}li,j=1. Define the discretized event count in the n-th time window of size ∆ ∈ (0, δ) as

N
(n)
i := Ni (n∆)−Ni ((n− 1)∆) , with N

(0)
i = 0,

where δ > 0 depends on the moment structure of the process. Then, as ∆→ 0, the Hawkes process
admits the linear autoregressive representation

N
(n)
i =

l∑
j=1

n∑
k=1

θ
(k)
ij N

(n−k)
j + ε

(n)
i + θ

(0)
i , n ∈ Z+, (2)

where θ
(0)
i = ∆ · µi is the background parameter, θ(k)ij =

∫ k∆

(k−1)∆
ϕij(s)ds is the excitation coeffi-

cient, and ε
(n)
i denotes the n-th realization of a serially uncorrelated white noise sequence.

Theorem 4.1 shows that each current-bin count N (n)
i (referred to as variable hereafter) is a linear

combination of lagged counts {N (n−k)
j }k∈{1,...,n}

j∈{1,...,l} plus noise. The discretized variables therefore
encode the causal structure of the underlying continuous-time subprocesses. As illustrated in Fig. 1,
a directed edge N2→N1 in the summary graph corresponds to edges from all lagged variables of
N2 into N

(n)
1 in the window graph. This summary–window correspondence allows us to infer the

causal structure among subprocesses by testing structural relations among the discretized variables.
The proof of Theorem 4.1 appears in Appendix G.

In practice, it is unnecessary to include all lags k = 1, . . . , n. Because the excitation function ϕij(s),
which serves as a decay kernel, typically has finite support, the coefficients θ

(k)
ij =

∫ k∆

(k−1)∆
ϕij(s) ds

vanish for large k, distant lags N (n−k)
j therefore have little influence on N

(n)
i . We define the small-

est cutoff K at which this occurs as the number of effective lags. Accordingly, we truncate to at most
m lags with m≥K, a standard finite-window practice in time-series estimation (Hyvärinen et al.,
2010; Peters et al., 2013), though they assume acyclic summary graphs and understate latent com-
ponents. A practical way to estimate K is to retain lagged variables whose correlations with current
variables remain statistically significant. Moreover, a bin width ∆ small relative to the support of
the excitation function is sufficient; see Appendix Q.3 for an empirical illustration.

4.2 STRUCTURE DISCOVERY THROUGH RANK CONSTRAINTS

In this section, we link second-order statistics of Hawkes data to variables in the window causal
graph, which in turn enables identification of the summary causal graph—even with latent sub-
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(a) (b) (c) (d)

Figure 2: Examples of causal graphs with latent confounder subprocesses. (a) Summary graph
where O1, O2, O3, O4 are observed and L1 is latent. (Unlike Figure 1d, O1, O2 are shown without
self-loops to simplify the derivation.) (b) Corresponding window causal graph among O1, O2, and
L1 with two effective lags. (c) More complex case where L1 connects O1, O2 via intermediate latent
subprocesses L2, L3. All subprocesses have self-loops except L2 and L3. (d) An even more intricate
case, extending (c) with more complex intermediate latent subprocess paths and an additional edge
O2 → L1. All subprocesses except the intermediate latent ones have self-loops.

processes. Under the linear representation in Eq. 2 with white noise, the causal structure induces
characteristic low-rank patterns in cross-covariance matrices of observed discretized variables.

4.2.1 FROM OBSERVED PARENTS TO LATENT CONFOUNDER SUBPROCESSES

To illustrate, consider Fig. 1. Although the summary causal graph may contain directed cycles and
self-loops, the associated window causal graph is a directed acyclic graph (DAG): by construction,
future events cannot causally influence the past, reflecting the intrinsic temporal (Granger-causal)
directionality (Shojaie & Fox, 2022). In this example, all three subprocesses are observed. In the
summary graph, the parent-cause set of N1 is PG := {Ni}i∈{1,2}. In the window graph, consider
the observed variable set Nv := {N (j)

i }j∈{n−m,...,n}
i∈{1,2,3} , where m is chosen to be at least the number

of effective lags. Conditioning on the lagged variable set Pv := {N (j)
i }j∈{n−m,...,n−1}

i∈{1,2} renders N
(n)
1

d-separated from the remaining variables Rv := Nv \ (Pv ∪ N
(n)
1 ). Consequently, the rank of the

cross-covariance between N
(n)
1 ∪ Pv and Rv ∪ Pv equals |Pv|. The theorems below formalize this

connection between rank constraints and the window-graph structure, which we then leverage to
identify the summary causal graph, including cases with latent subprocesses.

Lemma 4.2 (D-separation and Rank Constraints in the Window Graph). Consider the window
causal graph of a PO-MHP. For any disjoint variable sets Av , Bv and Cv , Cv d-separates Av

and Bv , if and only if rank(ΣAv∪Cv, Bv∪Cv ) = |Cv|, where ΣAv∪Cv, Bv∪Cv denotes the cross-
covariance matrix between Av ∪Cv and Bv ∪Cv , and |Cv| is the cardinality of Cv .

Proposition 4.3 (Identifying Observed Parent-Cause Set). Consider a PO-MHP with observed sub-
processes OG := {Oi}pi=1. The followings are equivalent:

• In the summary graph, the set PG ⊆ OG is the parent-cause set of the subprocess O1.
• In the window graph, with the observed variable set Ov := {O(j)

i }j∈{n−m,...,n}
i∈{1,2,...,p} , PG is the minimal

set such that lagged variable set Pv := {O(j)
i }j∈{n−m,...,n−1}

Oi∈PG
contains all parent variables of the

current variable O
(n)
1 .

• PG is the minimal set such that variable set Pv d-separates O(n)
1 from the rest Ov\{Pv ∪O

(n)
1 }.

• PG is the minimal set such that rank(Σ
O

(n)
1 ∪Pv, Ov\O(n)

1
) = |Pv|.

The criterion in Proposition 4.3 involves only observed variables. Whenever an observed subprocess
O1 satisfies this criterion, its parent-cause set PG is uniquely determined (by the minimality condi-
tions in items 2–4), and O1 is locally independent of all other observed subprocesses given PG . As
we show next, these four equivalent statements remain valid even with latent subprocesses.

One type of latent subprocess is the intermediate latent subprocess, which, if it exists, may lie
on directed paths between an observed subprocess and each of its identified parent-cause set. In
general, such intermediates are unidentifiable and typically omitted, since their effects can be ab-
sorbed by the identified parent-cause set. Nevertheless, owing to the specific structure of discretized
Hawkes processes, once the observed parent causes of an observed subprocess have been identified

5
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via Proposition 4.3, it is possible to quantify the number of intermediate latent subprocesses along
these paths. Detailed statements and proofs are deferred to Appendix C. Unless otherwise stated,
for notational simplicity we do not consider intermediate latent subprocesses into parent-cause set.

Another type of latent subprocess is the latent confounder subprocess, a key focus of this paper.
It is a latent subprocess that must be included in the parent-cause set to render its observed effect
subprocess locally independent of others. For example, in Fig. 2a the structure O1 ← L1 → O2

makes L1 a latent confounder of O1 and O2; in this case, O1 and O2 are locally independent only
when conditioning on L1. Proposition 4.3 will not identify the parent-cause set of either O1 or O2,
since such confounders are unobserved. Furthermore, note that Eq. 1 does not specify the excitation
function. We impose the following mild constraint on it to facilitate identification.
Assumption 1 (Excitation Function). We consider that the excitation function takes the form
ϕij(s) = aijw(s), ∀i, j ∈ {1, . . . , l}, where aij is a constant capturing the peer influence between
event types i and j, and w(s) is a common decay function depending only on the time lag s.

This assumption is quite general. For instance, the widely used exponential decay function αije
−βs

(Zhou et al., 2013) falls into this class. Other examples include normalized linear decay, nor-
malized logistic decay, and related forms (Burt, 2000). Moreover, following standard practice in
causal discovery (Spirtes, 2013; Huang et al., 2022), we also adopt the rank-faithfulness assumption
for Hawkes processes. Intuitively, this assumption rules out pathological parameterizations where
causal relationships cannot be identified. It holds generically with infinite data, since the degener-
ate cases where rank-faithfulness fails constitute a set of Lebesgue measure zero (Spirtes, 2013).
Further details are deferred to Appendix D.

4.2.2 CHARACTERIZING LATENT CONFOUNDERS VIA RANK CONSTRAINTS

We now characterize when latent confounder subprocesses leave identifiable low-rank signatures in
cross-covariance matrices, moving from illustrative examples to general conditions. Given the exci-
tation function ϕij(s) = aijw(s), the excitation coefficients in Eq. 2 are θ

(k)
ij =

∫ k∆

(k−1)∆
ϕij(s) ds =

aij

∫ k∆

(k−1)∆
w(s) ds, where the integral term

∫ k∆

(k−1)∆
w(s) ds depends only on the time lag k. Consider

the summary graph and its corresponding window graph with m = 2 lagged variables, as illustrated
in Figs. 2a and 2b. According to the linear causal model in Eq. 2, the structural equations for the
current variables O

(n)
1 } and O

(n)
2 are[

O
(n)
1

O
(n)
2

]
= E

[
L

(n−1)
1

L
(n−2)
1

]
+

[
ϵ
(n)
o1 + θ

(0)
o1

ϵ
(n)
o2 + θ

(0)
o2

]
,E =

[
ao1l1

∫∆

0
w(s) ds ao1l1

∫ 2∆

∆
w(s) ds

ao2l1

∫∆

0
w(s) ds ao2l1

∫ 2∆

∆
w(s) ds

]
. (3)

It is evident that the coefficient matrix E has rank 1. Consequently, the cross-covariance matrix satisfies

rank

(
Σ{O(n)

1 ,O
(n)
2 }, {O(j)

i }j∈{n−m,...,n}
i∈{3,4}

)
= 1. For details, see Proposition 4.5 and its proof in Appendix K.

This indicates a single latent confounder subprocess L1 that serves as the parent cause of both O1 and O2, such
that, conditional on L1, {O1, O2} are locally independent of {O3, O4}.

However, if O1 and O2 in Figure 2a also have self-loops (as illustrated in Figure 1d), the rank
of the coefficient matrix is no longer 1. The self-loops generate additional indirect causal ef-
fects propagated from the lagged latent variables {L(j)

1 }j∈{n−m,...,n−1} through the lagged observed
variables {O(j)

i }j∈{n−m,...,n−1}
i∈{1,2} to the current variables O

(n)
1 and O

(n)
2 . Since these lagged ob-

served variables are available, we can include them in the cross-covariance matrix, which yields

rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , {O(j)

i }j∈{n−m,...,n}
i∈{3,4} ∪{O(j)

i }j∈{n−m,...,n−1}
i∈{1,2}

)
= 2m+ 1, where 2m corresponds

to the lagged variables of the two observed subprocesses O1 and O2, and 1 corresponds to the latent confounder
subprocess. See Appendix E for further details.

Furthermore, in more complex scenarios, as illustrated in Figs. 2c and 2d, the causal pathways from the latent
confounder L1 to the observed subprocesses O1 and O2 become increasingly intricate. To address such cases,
we formalize the symmetric path situation, which precisely characterizes those graphical configurations that
induce rank deficiency in certain sub-covariance matrices of the observed subprocesses. It underpins the sub-
sequent theorems by establishing a one-to-one correspondence between the underlying graph structure and its
observable statistical properties.

Definition 4.4 (Symmetric Acyclic Path Situation). Consider a latent confounder L1 and an observed effect
subprocess set OG1. The following conditions define the symmetric path situation:

6
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• There exist directed paths from L1 to each subprocess in OG1 such that each path consists exclusively of
intermediate latent subprocesses (i.e., no observed subprocesses appear along these paths), and neither L1

nor any subprocess in OG1 appears as a non-end point along these paths.
• All such directed paths have the same length, meaning they contain the same number of intermediate latent

subprocesses.
• All such directed paths are acyclic. Naturally, none of the intermediate latent subprocesses involved have

self-loops.

The structure in Fig. 2c satisfies Definition 4.4, where the latent confounder L1 connects O1 and O2 through
the intermediate latent subprocesses L2 and L3, respectively, both without self-loops. If one intermediate
subprocess is removed (e.g., L3), the condition in Definition 4.4 is violated, since the path from L1 to O1

would then include one intermediate latent subprocess L2, whereas the path from L1 to O2 would include
none. Similarly, in the more complex structure shown in Fig. 2d, the core structure formed by the blue causal
edges satisfies Definition 4.4, and the addition of the green edges still preserves this property. However, adding
an extra edge, for instance, from L5 to L3, would break the condition, as it would introduce both asymmetry
and cycles into the paths. The subsequent theorems will leverage this path condition to formally characterize
graph structures involving the identification of latent confounder subprocesses.

Proposition 4.5 (Identifying Latent Confounder from Observed Effects). Consider a PO-MHP with ex-
citation function ϕij(s) = aijw(s) under rank faithfulness. The system consists of observed sub-
processes OG := {Oi}pi=1 and potentially latent subprocesses. Let Ov := {O(j)

i }j∈{n−m,...,n}
i∈{1,...,p}

denote the set of corresponding observed variables. For any two observed subprocesses {O1, O2},

rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , Ov\{O

(n)
1 ,O

(n)
2 }

)
= 2m + 1, if and only if there exists a latent confounder

subprocess L1 in the parent-cause set of {O1, O2} such that conditioning on P ′
G := L1 ∪{Oi}i∈{1,2} renders

{O1, O2} locally independent of OG\P ′
G , and L1 with {O1, O2} satisfy the Definition 4.4.

Proposition 4.5 allows us to infer the existence of a latent confounder from its observed effects. This naturally
raises the question: How can we systematically infer the remaining causal relations involving these inferred
latent subprocesses? This challenge is illustrated in the four summary graphs of Fig. 3. In the following, we
show how the observed effects can serve as surrogates for their latent confounders, thereby enabling recovery
of the remaining causal structure.

(a) (b) (c) (d)

Figure 3: Illustrative examples of interactions among inferred latent confounder and the remaining
observed subprocesses. In (a)–(c), assume L1 has been inferred from its observed effects {O1, O2}.
(a) O3 causes L1. (b) Both L1 and O3 cause O4. (c) L1 causes L4, where L4 can be inferred from
{O3, O4}. (d) L1 serves as the latent confounder of both inferred latent confounder L2 and L3.

Definition 4.6 (Observed Effects as Surrogates). For each latent subprocess L1 inferred from its observed
effects {O1, O2}, we designate one of its observed effects, denoted De(L1) := O1, as an observed surrogate
of L1. The surrogate is chosen such that there exists a directed path from L1 to De(L1) that does not traverse
any other observed subprocess. We further define Sib(De(L1)) as the set of observed siblings of De(L1),
consisting of all known other observed subprocesses influenced by L1 through paths that likewise do not pass
through any other observed subprocess.

For any observed subprocess O1, we adopt the unified notation De(O1) = O1 and, correspondingly,
Sib(De(O1)) = ∅. Moreover, Sib(De(L1)) captures the minimal set of observed subprocesses required
to isolate the local influence of L1 on the rest of the system, except through De(L1).

Theorem 4.7 (Identifying Parent-Cause Set with Latent Confounder Involved). Consider a PO-MHP with
excitation function ϕij(s) = aijw(s) under rank faithfulness. The system NG := OG ∪ LG consists of
observed subprocesses OG := {Oi}pi=1, and inferred latent confounder processes LG whose parent-cause
sets remain to be identified. Let Ov := {O(j)

i }j∈{n−m,...,n}
i∈{1,...,p} denote the corresponding observed variable

set. For a subprocess N1 ∈ NG and a candidate parent-cause set P ′
G ⊆ NG , when either N1 is latent,

or P ′
G contains latent subprocesses, or both, the following condition holds: P ′

G is the minimal set such that
rank (ΣAv,Bv ) = |Av|−1, where Av := {De(N1)

(j),De(Li)
(j)}j∈{n−m,...,n}

Li∈P′
G

∪{O(j)
i }j∈{n−m,...,n−1}

Oi∈P′
G

∪
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{O(j)
i }j∈{n−m,...,n}

Oi∈Sib(De(N1))∪{Sib(De(Li))}Li∈P′
G

and Bv := Ov\
(
De(N1)

(n) ∪ {De(Li)
(n)}Li∈P′

G

)
, if and

only if P ′
G is a subset of the true parent-cause set of N1 such that: (i) conditioning on SG := P ′

G ∪ De(N1) ∪
{De(Li)}Li∈P′

G
∪Sib(De(N1))∪ {Sib(De(Li))}Li∈P′

G
renders Ni locally independent of NG\SG; (ii) for

each Li ∈ P ′
G , the latent confounder Li with observed effects {De(N1),De(Li)} satisfies Definition 4.4; and

(iii) all possible observed surrogates of Ni in OG have been identified and added into the observed sibling set.

With Theorem 4.7 (and Proposition 4.3), we can identify arbitrary causal relations among both observed and
inferred latent subprocesses. This naturally raises a final question: How can we further discover new latent
subprocesses that are causally related to inferred latent subprocesses, as in Fig. 3d? As shown below, the
observed surrogate can still be leveraged for this purpose.

Theorem 4.8 (Identifying Latent Confounder from Latent Confounder ). Consider a PO-MHP with excitation
function ϕij(s) = aijw(s) under rank faithfulness. The system NG := OG ∪ LG consists of observed sub-
processes OG := {Oi}pi=1, and inferred latent confounder subprocesses LG whose parent-cause sets remain
unidentified by Theorem 4.7. Let Ov := {O(j)

i }j∈{n−m,...,n}
i∈{1,...,p} denote the corresponding observed variable set.

For any two subprocesses N1, N2 ⊆ NG (either observed or latent), rank (ΣAv,Bv ) = |Av|−1, where Av :=

{De(Ni)
(j)}j∈{n−m,...,n}

i∈{1,2} ∪{O(j)
i }j∈{n−m,...,n}

Oi∈Sib(De(N1))∪Sib(De(N2))
, and Bv := Ov\{De(N1)

(n),De(N2)
(n)}

, if and only if there exists a latent confounder subprocess L1 in the parent-cause set of {N1, N2} such that: (i)
conditioning on P ′

G := L1 ∪ {Ni}i∈{1,2} ∪ {Sib(De(Ni))}i∈{1,2} renders {N1, N2} locally independent of
NG\P ′

G; (ii) L1 with {De(N1),De(N2)} satisfies Definition 4.4; and (iii) all possible observed surrogates of
{N1, N2} in OG have been identified and added into the observed sibling set.

Theorem 4.7 and Theorem 4.8 are extensions of Proposition 4.3 and Proposition 4.5, respectively. These extend
the framework by replacing latent subprocesses with their observed surrogates when evaluating the rank of the
relevant cross-covariance matrices. Equipped with these four key theorems, we are now ready to present the
discovery algorithm in the next section.

5 RANK-BASED DISCOVERY ALGORITHM

In this section, we present a two-phase iterative algorithm that leverages the identification theorems to progres-
sively recover causal relationships among discovered subprocesses and to uncover new latent subprocesses. Let
AG denote the active process set, consisting of subprocesses whose parent causes remain unidentified. Initially,
AG is set to the observed subprocess set OG and is updated throughout the procedure. Moreover, due to cycles
in the summary causal graph, observed subprocesses previously identified as effects may still act as causes for
other subprocesses in AG , and thus remain under investigation. The overall procedure is in Algorithm 1.

Algorithm 1 Two-Phase Iterative Discovery Algorithm
Input: Observed subprocess set OG
Output: Causal graph G
1: Initialize partial causal graph G := ∅ and active process set AG := OG .
2: repeat
3: (G,AG)← Identifying Causal Relations (G,AG ,OG). // Phase I
4: (G,AG)← Discovering New Latent Subprocesses (G,AG ,OG). // Phase II
5: until AG is empty or no updates occur.
6: return G

Phase I: Identifying Causal Relations Each iteration begins with Phase I, which identifies the causal
structure of under-investigated subprocesses (both observed and latent) in AG . In this phase, we systematically
iterate over each subprocess in AG and test its parent causes using the current set AG ∪ OG . If a subprocess’s
parent-cause set is fully contained by this set, it can be identified using Proposition 4.3 and Theorem 4.7. Once
identified, the subprocess is removed from AG . The phase continues until no further updates occur. Detailed
steps are given in Algorithm 2 in Appendix O.1.

Phase II: Discovering New Latent Subprocesses When no additional subprocesses in AG can be
resolved in Phase I, the algorithm proceeds to Phase II. Here, we search for new latent confounder subprocesses
by exhaustively checking all pairs in AG using Proposition 4.5 and Theorem 4.8. Identified latent confounders
are merged if pairs overlap in subprocesses, implying a shared latent parent cause. AG is then updated by
adding the new latent subprocesses and removing their effects. After that, the algorithm returns to Phase I. This
procedure continues until AG is empty or unchanged. Details are provided in Algorithm 3 in Appendix O.2.

8
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Theorem 5.1 (Identifiability of the Causal Graph). Consider a PO-MHP with excitation function ϕij(s) =
aijw(s) under rank faithfulness. If every latent confounder subprocess, along with all its observed surrogates
(≥ 2), satisfies Definition 4.4, then the causal graph over observed and latent confounder subprocesses can be
identified. When no latent subprocesses exist, the causal graph is fully identifiable using only Phase I.

Moreover, the computational complexity depends on the number of subprocesses (including latent confounders)
and the density of the underlying causal graph, which together determine the number of iterations required for
complete graph discovery. A detailed complexity analysis is in Appendix P.

6 EXPERIMENTS

Synthetic Data We compare our method against six strong baselines. SHP (Qiao et al., 2023) and THP (Cai
et al., 2022) are likelihood-based approaches for discretized (binned) Hawkes data, while NPHC (Achab et al.,
2018) is a cumulant-based method for original Hawkes data. Since existing Hawkes-based methods cannot
identify latent subprocesses without prior knowledge, we additionally include two rank-based approaches de-
veloped for i.i.d. linear latent models, Hier. Rank (Huang et al., 2022) and RLCD (Dong et al., 2023), as well
as LPCMCI (Gerhardus & Runge, 2020), a time-series baseline that accounts for exogenous latent confounder
variables, though all three rely on strong assumptions not satisfied in our setting (See Appendix A). For these
methods, we apply them to discretized Hawkes data. For our method, we evaluate both event sequences gen-
erated by the Hawkes process in Eq. (1) and data generated directly from the discrete-time model in Eq. (2).
We test on six synthetic graph families: the fully observed graph in Fig. 1b and five structures with latent sub-
processes in Figs. 2a and 3a–3d. Results are reported as average F1-scores over ten runs on a personal CPU
machine. Additional experimental details and extended results (larger graphs, sensitivity to ∆, and robustness
to rank-faithfulness violations) are provided in Appendix Q. As shown in Fig. 4, our method consistently out-
performs all baselines. Notably, latent cases typically require larger sample sizes: because the spectral radius
of a stationary Hawkes process is < 1, causal influences attenuate along latent paths, making reliable detection
more data-demanding.

Figure 4: F1-score comparisons for first four synthetic causal graphs (Cases 1–4), corresponding to
the structures in Figs. 1b, 2a, 3a and 3b. See Appendix Q.3 for additional cases.

Figure 5: Inferred causal subgraph
from the cellular network dataset,
where Alarm id=7 is success-
fully identified as a latent subpro-
cess.

Real-world Data We evaluate our method on a public cellular
network dataset (Qiao et al., 2023) with expert-validated ground
truth. The original dataset contains 18 alarm types from 55 de-
vices (≈ 35k events over eight months), though not every de-
vice exhibits all alarms. We focus on device id=8, which in-
cludes the alarms relevant to the subgraph of interest. For evalu-
ation, we consider a five-alarm subgraph (Alarm ids=0-3 and
7) and treat Alarm id=7 as latent by manual exclusion. Notably,
Alarm id=1 and Alarm id=3 are observed effects of this latent
subprocess, enabling its recovery from observed data. Our inferred
graph (Fig. 5) successfully recovers the latent subprocess and its pri-
mary influences; the only discrepancy with the ground truth is a sin-
gle missing edge, Alarm id=1→ Alarm id=3. Furthermore, on
this sub-dataset our method quantitatively outperforms representa-
tive baselines; see Appendix Q.4 for details.

7 CONCLUSION AND FUTURE WORK

We presented a principled framework for structure learning in partially observed multivariate Hawkes pro-
cesses (PO-MHP), capable of uncovering both causal relationships among observed subprocesses and latent
confounder subprocesses influencing them. By leveraging sub-covariance rank conditions and a tailored path
constraint, we derived necessary and sufficient conditions for identifiability and designed a two-phase itera-
tive algorithm that reconstructs the full causal graph with guarantees. Future work includes relaxing these
conditions to broaden applicability and applying to diverse real-world datasets for deeper domain insights.

9
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We review related work in three areas: point processes, Hawkes processes, and causal discovery.

Point Processes A large body of research studies temporal dependencies in general point processes. Meek
(2014) introduced a graphical framework based on δ∗-separation and process independence to connect graph-
ical representations with statistical properties. Gunawardana et al. (2011) proposed a one-dimensional point
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process model with piecewise-constant conditional intensity, enabling closed-form Bayesian inference of tem-
poral dependencies. Chwialkowski & Gretton (2014) developed a kernel-based independence test for general
random processes, offering a nonparametric perspective.

Other works focus on specific structural settings. Basu et al. (2015) studied Granger causality for discrete
transition processes with grouping structures. Daneshmand et al. (2014) proposed a parametric cascade gener-
ative process for continuous-time diffusion networks. In the setting of marked point processes, Didelez (2008)
introduced graphical models capable of capturing local independence across marks, generalizing dependency
analysis in complex systems.

Hawkes Processes Hawkes processes (Hawkes, 1971; Laub et al., 2015) form a prominent class of self-
exciting point processes that model how past events influence future occurrences. A major research line es-
timates Hawkes structures from continuous-time event data, typically via likelihood-based methods. These
approaches assume parametric excitation kernels such as exponential or power-law (Zhou et al., 2013; Zhao
et al., 2015), or adopt nonparametric procedures (Lewis & Mohler, 2011; Luo et al., 2015), often combined with
sparsity or low-rank regularization (Xu et al., 2016; Idé et al., 2021). The NPHC method (Achab et al., 2018)
provides a nonparametric alternative, estimating integrated kernels through moment-matching. While effective
when all subprocesses are observed, these approaches do not address the presence of latent components.

When only discretized or binned counts are available, another line of work fits Hawkes models directly from
bin data. Shlomovich et al. (2022) proposed an EM algorithm with importance sampling to recover parameters
from binned observations without precise timestamps. Qiao et al. (2023) introduced SHP, which learns causal
structure from binned event sequences using sparsity-regularized likelihood. Cai et al. (2022) developed THPs,
which impose topological constraints to recover causal influences from discrete sequences. These binned-
likelihood approaches, however, assume full observability and do not infer the existence or number of latent
subprocesses.

Causal Discovery Causal discovery aims to infer causal relations from data, traditionally under i.i.d. as-
sumptions with DAG structures (Pearl, 2009). Classical approaches include constraint-based methods (e.g.,
PC Spirtes et al. (2001)), score-based methods (e.g., GES Chickering (2002)), and functional approaches (e.g.,
LiNGAM Shimizu et al. (2006)). Latent variables pose major challenges, leading to extensions such as FCI
and its variants (Spirtes et al., 1995; Colombo et al., 2012; Claassen et al., 2013), which use conditional inde-
pendence to infer partial structures under exogenous latent confounder variables.

More recent advances explore settings with causally related latent confounder variables. Huang et al. (2022) and
Dong et al. (2023) identify equivalence classes in linear models using second-order (rank) statistics. However,
these methods typically rely on restrictive assumptions—such as hierarchical latent structures or cardinality
constraints—that are incompatible with Hawkes dynamics. In Hawkes-induced time series, autoregressive
representations are dense across lags, observed surrogates are often fewer than effective latent “parents,” and
endogenous latent confounder subprocesses arise naturally. Other works, such as Xie et al. (2020; 2022) and
Jin et al. (2023), leverage higher-order statistics to improve identifiability, but they still assume i.i.d. data, which
may introduce spurious dependencies once temporal dynamics are ignored.

Causal discovery has also been extended to time-series domains. Approaches such as SVAR-based LiNGAM
(Hyvärinen et al., 2010) and PC-style temporal methods like PCMCI (Runge, 2020) and LPCMCI (Gerhardus
& Runge, 2020) rely on conditional independence tests over lagged variables. Yet these methods presuppose
weak autocorrelation and exogenous latent variables, assumptions that are violated in Hawkes processes, which
exhibit dense cross-lag interactions and endogenous latent subprocesses.

A.0.1 DETAILED RELATION TO BINNED HAWKES ESTIMATION

Shlomovich et al. (2022) address parameter estimation for binned Hawkes processes via a modified EM algo-
rithm when only bin counts Nt = N((t+ 1)∆)−N(t∆) are observed and exact event times are unavailable.
The bin counts are treated as observed data and the unobserved event times T as latent variables (their Eq. 6).
Because direct Monte Carlo sampling of T is intractable in Hawkes models, they employ importance sampling
to simulate within-bin timestamps that match the observed counts, thereby maximizing the (binned) likelihood
(see their Sec. 2).

Our goal and methodology differ. Leveraging the link between INAR and linear autoregressive models, The-
orem 4.1 establishes an explicit linear structural representation for discretized multivariate Hawkes processes.
This connection enables causal discovery directly over binned variables—including the identification of latent
confounder subprocesses—with identifiability guarantees (Propositions 4.3 and 4.5; Theorems 4.7 and 4.8).
In contrast to likelihood maximization based on simulated event times, our framework uses time-aware rank
constraints on cross-covariances to recover causal structure. To the best of our knowledge, prior work has not
provided a direct, theoretically grounded reduction from Hawkes processes to linear structural models for the
purpose of causal discovery.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.0.2 DETAILED RELATION TO RANK-BASED LATENT DISCOVERY

Huang et al. (2022) (and related works by Xie et al. (2022) and Dong et al. (2023)) study latent structure
discovery under i.i.d. assumptions and continuous variables. Our problem differs substantively: we aim to
recover causal structure among observed and latent subprocesses in multivariate Hawkes processes, where
each subprocess is a point process and inference is performed on discretized representations.

Different Data Domain and Causal Assumptions Huang et al. (2022) (and Xie et al. (2022)) assume
a latent hierarchical structure, specifically: (i) there are no direct causal links among observed variables, and
all dependencies among observed variables arise exclusively from their latent confounder variables; and (ii)
observed variables cannot cause latent variables, i.e., endogenous latent confounders are ruled out (see Eq. 1
and Definition 1 in Huang et al. (2022), and Eq. 1, 2 and Definition 1 in Xie et al. (2022)). Neither assumption
is needed in our framework. We allow both direct observed-to-observed edges (see Proposition Proposition 4.3
in our paper) and the existence of endogenous latent confounder subprocesses that can be caused by observed
subprocesses (see Theorem 4.7 in our paper).

Cardinality Requirements vs. Hawkes Density Huang et al. (2022), Xie et al. (2022), and Dong et al.
(2023) rely on a cardinality condition of the form |children| > |parents| for certain latent sets (cf. Definition
4 in Huang et al. (2022), Condition 1 in Xie et al. (2022), Definition 5 in Dong et al. (2023)). This is gener-
ally incompatible with discretized Hawkes processes, whose autoregressive representation is inherently dense
(Eq. 2 in our paper): if a latent L1 causes O2, then each discretized variable O

(n)
2 is influenced by many lags

of L1 (potentially hundreds or thousands in practice), making the required |children| > |parents| condition fail
systematically. Our method avoids such cardinality assumptions: leveraging the separable excitation (Assump-
tion 1), we place lagged observed variables on both sides of carefully chosen cross-covariance blocks so that
rank deficiency reliably signals latent confounders (lines 199–216; Proposition 4.5; Theorem 4.8).

Time-Aware vs. i.i.d. Causal Discovery The above i.i.d. methods do not exploit temporal order and,
in principle, can test variables at time n as putative parents of variables at time n − 1. Our procedure is
explicitly time-aware: candidate parents for t = n are restricted to appropriate lags (Propositions 4.3 and 4.5;
Theorems 4.7 and 4.8), aligning identification with Hawkes dynamics. This distinction mirrors PC (Spirtes
et al., 2001) (i.i.d.) vs. PCMCI (Runge, 2020) (time series).

B MULTIVARIATE HAWKES PROCESS DETAILS

Before introducing multivariate Hawkes process, we first describe the temporal point process and counting
process briefly. A temporal point process is a random process whose realization consists of a list of discrete
events in time {T1, T2, . . . } taking values in [0,∞). Another equivalent representation is the counting process,
N1 = {N1(t)|t ∈ [0,∞)}, where N1(t) records the number of events before time t and N1(0) = 0. A
multivariate point process with l types of events is represented by l counting processes {Ni}li=1 on a probability
space (Ω,F ,P). Ni = {Ni(t)|t ∈ [0,∞)}, where Ni(t) is the number of type-i events occurring before
time t and Ni(0) = 0. U = {1, . . . , l} (sometimes abbreviated as [l]) represents the set of event types.
Ω = [0,∞)×U is the sample space. F = F(t) is a filtration, that is, a non-descreasing family of σ-algebras
which for each time point t ∈ R, represent the set of event sequences the processes can realize before time
t. P is the probability measure. Point processes can be characterized by the conditional intensity function,
which models patterns of interest, such as self-triggering or self-correcting behaviors (Xu et al., 2015). The
conditional intensity function is defined as the expected instantaneous rate of type-i events occurring at time t,
given the event history:

λi(t) = lim
h→0

E[Ni(t+ h)−Ni(t)|H(t)]

h
, (4)

where H(t) = {(tk, i)|tk < t, i ∈ U} collects historical events of all types before time t. The multivariate
Hawkes process is a class of multivariate point processes characterized by a self-triggering pattern as defined
in Eq. 1.

C IDENTIFYING INTERMEDIATE LATENT SUBPROCESSES

As shown in the summary causal graph in Fig. 6a, L1 is an intermediate latent subprocess on the directed path
fromthe observed subprocess O2 to O3. According to Proposition 4.3, L1 is not identifiable and its effect is
attributed to O2, leading to the inference that O2 is the parent cause of O3. This is because the influence of L1

is indistinguishable from that of O2 and can be effectively merged into O2.

Consider now the corresponding window causal graph shown in Fig. 6b. The observed variable set is given by
Ov := {O(j)

i }j∈{n−m,...,n}
i∈{1,2,3} , where m = 3 exceeds the number of effective lags (which is 2 in this example).
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(a) (b)

Figure 6: Example of an intermediate latent subprocess on the directed path from O2 to O1. (a)
The summary causal graph, where L1 is the intermediate latent subprocess. (b) The corresponding
window causal graph with two effective lags.

Instead of conditioning on all three lagged variables {O(n−1)
2 , O

(n−2)
2 , O

(n−3)
2 } of O2, we exclude O(n−1)

2 and
condition only on {O(n−2)

2 , O
(n−3)
2 }. In this case, O(n)

3 becomes d-separated from the remaining variables in
Ov . This property arises because, due to the presence of the intermediate latent subprocess L1, O(n−1)

2 no
longer has a direct influence on O

(n)
3 . The following corollary formalizes a general method for identifying

the number of intermediate latent subprocesses that may exist between an observed subprocess and each of its
inferred observed parent causes.

Corollary C.1 (Identifying Intermediate Latent Subprocesses). Let OG := {Oi}pi=1 denote the observed sub-
processes, with the corresponding observed variable set Ov := {O(j)

i }j∈{n−m,...,n}
i∈{1,2,...,p} . Consider an observed

subprocess O1 and its inferred observed parent-cause set PG ⊆ OG . For any O2 ∈ PG , let h be the largest
value such that the lagged variable set Pv := {O(j)

i }j∈{n−m,...,n−1}
Oi∈PG

\{O(j)
2 }j∈{n−h,...,n−1} d-separates

O
(n)
1 from the remaining variables Ov\{Pv ∪O

(n)
1 }. Equivalently, h is the largest value such that:

rank
(
Σ{O(n)

1 }∪Pv, Ov\{O
(n)
1 }

)
= |Pv|.

This is equivalent to stating that the shortest directed path from O2 to O1 that does not pass through any other
observed subprocess consists of h latent subprocesses.

Remark C.2. In Corollary C.1, O1 and O2 may refer to the same subprocess in cases where Proposition 4.3
infers that O1 has a self-loop. In such cases, Corollary C.1 can be used to determine whether this self-loop
represents a direct self-excitation or is mediated through intermediate latent subprocesses.

Proof. Let OG := {Oi}pi=1 and Ov := {O(j)
i }j∈{n−m,...,n}

i∈{1,2,...,p} . Consider an observed subprocess O1 and its
inferred parent-cause set PG . For any O2 ∈ PG , assume the shortest directed path from O2 to O1 consists of h
latent subprocesses. This implies that the lagged variables {O(j)

2 }j∈{n−h,...,n−1} do not influence O(n)
1 , while

the variables {O(j)
2 }j∈{n−m,...,n−h} do.

Thus, the variable set Pv = {O(j)
i }j∈{n−m,...,n−1}

Oi∈PG
\{O(j)

2 }j∈{n−h,...,n−1} is the minimal set that d-separates

O
(n)
1 from the remaining variables. By Lemma 4.2, this implies:

rank
(
Σ{O(n)

1 }∪Pv, Ov\{O
(n)
1 }

)
= |Pv|.

This completes the proof.

D RANK FAITHFULNESS FOR THE HAWKES PROCESS

Assumption 2 (Rank Faithfulness for the Hawkes Process). A probability distribution p is rank faithful to the
graph G if every rank constraint on any sub cross-covariance matrix that holds in p is entailed by every linear
structural model (as defined in Eq. 2) with respect to G and the excitation function ϕij(s) = aijw(t), ∀i, j ∈
{1, . . . , l}.
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The rank faithfulness assumption is widely adopted in the causal discovery literature for i.i.d. data (Spirtes,
2013; Huang et al., 2022). In our setting, it concerns only the excitation function coefficients aij , and prior
studies have shown that violations of this assumption occur only in degenerate cases of Lebesgue measure
zero. Specifically, it fails only in rare pathological scenarios, such as when multiple aij coefficients involving
those of latent subprocesses are exactly equal across different subprocesses in a manner that induces rank
deficiency—situations that are highly unlikely to arise in practical applications.

To empirically assess the robustness of our method to potential violations of rank faithfulness, we con-
duct a sensitivity analysis where, for each synthetic graph, we choose the exponential excitation function
ϕij(s) = αije

−βs and deliberately assign identical aij values to two randomly selected edges, thereby artifi-
cially increasing the risk of the violation of rank faithfulness. The results, reported in Table 3 in Appendix Q.3,
demonstrate that our method remains robust even under such perturbations.

E ACCOUNTING FOR SELF-LOOPED OBSERVED SUBPROCESSES UNDER
LATENT CONFOUNDER INFLUENCE

(a) (b)

Figure 7: Illustration of self-Looped observed subprocesses under latent confounder influence. (a)
Summary causal graph where O1, O2, O3, and O4 are observed subprocesses, and L1 is a latent
confounder subprocess. All subprocesses have self-loops. (b) Corresponding window causal graph
for (a), illustrating the discretized causal mechanisms among O1, O2, and L1, with two effective
lags.

Consider Fig. 7, where O1 and O2 also have self-loops. As shown in Fig. 7b, these self-loops introduce
additional indirect effects, where the lagged latent variables {L(j)

1 }j∈{n−m,...,n−1} propagate their influence
to the current variables O(n)

1 and O
(n)
2 through the observed lagged variables {O(j)

i }j∈{n−m,...,n−1}
i∈{1,2} .

Fortunately, since these lagged variables are observed, they can be explicitly incorporated into the structural
equations and, correspondingly, into the covariance matrix. Considering the window graph in Fig. 7b with
m effective lagged variables, the structural equations for the observed variables {O(j)

i }j∈{n−m,...,n}
i∈{1,2} can be

written as:



O
(n)
1

O
(n−1)
1

· · ·
O

(n−m)
1

O
(n)
2

O
(n−1)
2

· · ·
O

(n−m)
2


= E



L
(n−1)
1

· · ·
L

(n−m)
1

O
(n−1)
1

· · ·
O

(n−m)
1

O
(n−1)
2

· · ·
O

(n−m)
2


+



ϵ
(n)
o1 + θ

(0)
o1

ϵ
(n−1)
o1 + θ

(0)
o1

· · ·
ϵ
(n−m)
o1 + θ

(0)
o1

ϵ
(n)
o2 + θ

(0)
o1

ϵ
(n−1)
o2 + θ

(0)
o1

· · ·
ϵ
(n−m)
o2 + θ

(0)
o1


, (5)
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E =



ao1l1

∫∆

0
w(s)ds · · · ao1l1

∫m∆

(m−1)∆
w(s)ds 1

1· · · 1 0
0· · · 0

0
0· · · 0 1

0· · · 0 0
0· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0· · · 0 0
0· · · 1 0

0· · · 0

ao2l1

∫∆

0
w(s)ds · · · ao2l1

∫m∆

(m−1)∆
w(s)ds 0

0· · · 0 1
1· · · 1

0
0· · · 0 0

0· · · 0 1
0· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0· · · 0 0
0· · · 0 0

0· · · 1


.

m

m

(6)

It is straightforward to see that the rank of the coefficient matrix E is 2m+ 1. Accordingly, by including these
observed lagged variables in the cross-covariance matrix, we obtain:

rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , {O(j)

i }j∈{n−m,...,n}
i∈{3,4} ∪{O(j)

i }j∈{n−m,...,n−1}
i∈{1,2}

)
= 2m+ 1,

where 2m corresponds to the observed lagged variables of O1 and O2, and 1 corresponds to the latent con-
founder subprocess L1. For a formal proof, see Proposition 4.5 and Appendix K. This result implies the
presence of a latent confounder subprocess L1, such that the set {L1, O1, O2} forms the parent-cause set of
{O1, O2}. Conditioning on this set renders {O1, O2} locally independent of O3 and O4.

F PROOF OF PROPOSITION 3.4

Proof. According to Definition 3.3, a set PG1 is the parent-cause set for Ni ∈ NG if and only if every directed
path from any node in NG\{Ni} to Ni passes through at least one node in PG1. In the special case where Ni

has a self-loop, Ni itself is also included as a parent cause. This implies that each subprocess Nj ∈ PG1 must
have a directed influence on Ni, formally expressed as

∫ t

0
ϕij(t− s) dNj(s) > 0, and zero otherwise.

On the other hand, as discussed in the last paragraph of Section 3.1 and in (Didelez, 2008), Ni is said to
be locally independent of the rest of the system given a minimal set PG2 ⊆ NG if and only if

∫ t

0
ϕij(t −

s) dNj(s) > 0 for each Nj ∈ PG2, and zero otherwise.

Therefore, we can see PG1 = PG2. Ni is locally independent of NG\PG given PG if and only if PG is the
parent-cause set for Ni in NG . This completes the proof of Proposition 3.4.

G PROOF OF THEOREM 4.1

Proof. To prove Theorem 4.1, we proceed in three steps. First, we define the multivariate INAR sequence
(Definition G.1) and show that it admits a linear autoregressive model representation (Proposition G.3). Then,
in Theorem G.5, we establish that this multivariate INAR counting process converges weakly to a multivariate
Hawkes process as the bin size ∆ → 0, with the correspondence between the parameters of both models made
explicit. The details are as follows:

Step 1: Definition of the Multivariate INAR model. We begin by introducing the multivariate INAR
model, adapted from Definition 20 in the paper B. Hawkes forests in (Kirchner, 2017).

Definition G.1 (Multivariate integer-valued autoregressive model (Kirchner, 2017)). An multivariate integer-
valued autoregressive time series(multivariate INAR) is a sequence of N0-valued random variables Xv =

{X(n)
1 , X

(n)
2 , . . . , X

(n)
l }n∈Z+ with X

(0)
i = 0, defined as:

X
(n)
i =

l∑
j=1

n∑
k=1

X
(n−k)
j∑
h=1

ξ
(θ

(k)
ij )

h + ϵ
(n)
i , i ∈ {1, . . . , l}, n ∈ Z+, (7)

where the reproduction coefficients θ
(k)
ij ≥ 0 with the subcritical matrix [

∑n
k=1 θ

(k)
ij ](i,j)∈{1,...,l}, and the

immigration coefficients θ(0)i ≥ 0. ϵ(n)
i

iid∼ Pois(θ(0)i ) and ξ
(θ

(k)
ij )

h

iid∼ Pois(θ(k)ij ) are mutually independent and

also independent of ϵ(n)
i .
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Remark G.2. Definition G.1 follows Definition 20 in paper B. Hawkes Forests in (Kirchner, 2017), but with
adapted notation to match Theorem 4.1. Key correspondences include: d → l, i → j, j → i, l → h,

(Xn)n∈Z → Xv , X(j)
n → X

(n)
i , ξ(i,j,k)n,l → ξ

(θ
(k)
ij )

h , ϵ(j)n → ϵ
(n)
i , αi,j,k → θ

(k)
ij , α0,j → θ

(0)
i . We also restrict

indices to n ∈ Z+ to match our Hawkes process formulation (Eq. 1); this is purely notational and does not
affect the model semantics, as the indices are used to describe relative positions within the time series.

Step 2: Linear autoregressive representation of the INAR model. The multivariate INAR sequence
admits an equivalent linear autoregressive representation, as shown in Proposition G.3, corresponding to Propo-
sition 3.1 in (Kirchner, 2016a). The current variable X(n)

i is expressed as a weighted sum of all lagged variables
Xn−k

j , plus a constant term θ
(0)
i and a stationary white-noise term ε

(n)
i .

Proposition G.3. Let Xv be a l-dimensional INAR sequence as in Definition G.1 with immigration coefficients
θ
(0)
i ≥ 0, reproduction coefficients θ(k)ij ≥ 0, and X

(0)
i = 0. Then

ε
(n)
i := X

(n)
i − θ

(0)
i −

l∑
j=1

n∑
k=1

θki,jX
(n−k)
j , n ∈ Z+, (8)

defines a white-noise sequence, i.e., (ε(n)
i ) is stationary, E[ε(n)

i ] = 0, i ∈ {1, . . . , l}, n ∈ Z+. Moreover,
let the l × l noise matrices unu

⊤
n′ := [ε

(n)
i ε

(n)
j ](i,j)∈{1,...,l} and reproduction-coefficient matrices Ak :=

[θ
(k)
ij ](i,j)∈{1,...,l}, we have:

E[unu
⊤
n′ ] =

{
diag

((
Il×l −

∑n
k=1 Ak

)−1
)
, n = n′,

0l×l, n ̸= n′.
(9)

Remark G.4. Proposition G.3 is adapted from Proposition 3.1 of (Kirchner, 2016a), which also appears as
Proposition 6 of the same paper in the author’s doctoral thesis (Kirchner, 2017). The original formulation uses
full vector and matrix notation; here, we present each dimension separately for consistency with our notation.
Moreover, we adapted notations as in Remark G.2.

Step 3: Convergence of the INAR to a Hawkes process. Finally, we show that the multivariate INAR
process converges to a multivariate Hawkes process as ∆ → 0. The corresponding parameters of the INAR
and the Hawkes process are also stated in the below theorem.

Theorem G.5 (Multivariate INAR converging to multivariate Hawkes process (Kirchner, 2017)). Let NG1 =
{Ni}li=1 be a stationary multivariate Hawkes process with background intensities {µi}li=1, and piecewise-
continuous excitation functions {ϕij(s) ≥ 0,∀s ∈ (0,∞)}li=1. For bin width ∆ ∈ (0, δ), let Xv =

{X(n)
1 , X

(n)
2 , . . . , X

(n)
l )n∈Z+ be an multivariate INAR sequence with:

θ
(0)
i = ∆µi, θ

(k)
ij =

∫ k∆

(k−1)∆

ϕij(s)ds,

and X
(0)
i = 0. From the sequences Xv , we define a family of point processes NG2 = {N∆

i }li=1, where for
each N∆

i ,

N∆
i (t) :=

∑
n:n∆≤t

X
(n)
i , t ∈ [0,∞). (10)

Then, NG2 converges weakly to NG1 in distribution, as ∆ → 0.

Remark G.6. Theorem G.5 is a simplified version of Theorem 25 in (Kirchner, 2017). The original proof pro-
ceeds via convergence of Hawkes forests (constructed via branching random walks), showing that the Hawkes
process is a limit of INAR-based approximating forests. The convergence of Hawkes process and INAR comes
from the convergence of Hawkes forest and the approximating forest with corresponding parameters. We adapt
it here with a direct correspondence between Hawkes and INAR parameters, and restrict domains to t ∈ [0,∞)
and n ∈ Z+ for consistency and clarification. Typically, Hawkes process results hold for both domains (Laub
et al., 2015, Remark 2), since variable t and n is used only to calibrate relative positions. Moreover, besides
the notation changes in Remark G.2, we adopt: NF → NG1, NF(∆) → NG2, the reproduction intensities
hi,j = wi,jmi,j → excitation function ϕij .

Remark G.7. The constant δ in the Theorem G.5 comes from the moment structure of the INAR sequence. For
details, see Theorem 2 in (Kirchner, 2016b) and Corollary 24 in paper B. Hawkes forests in (Kirchner, 2017).
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In summary: The linear autoregressive representation of the multivariate INAR model is established in
Proposition G.3, based on the model definition provided in Definition G.1. The convergence of the multi-
variate INAR process to the multivariate Hawkes process, along with the correspondence of their parameters,
is presented in Theorem G.5. Together, these results validate the discrete-time linear formulation stated in
Theorem 4.1. This completes the proof.

H PROOF OF LEMMA 4.2

Proof. The proof of Lemma 4.2 is based on Proposition 2.2 and Theorem 2.4 from (Sullivant et al., 2010),
which we restate here for completeness.

Proposition H.1 (Rank Characterization of Conditional Independence (Sullivant et al., 2010)). Let X ∼
N (µ,Σ) be a multivariate normal random vector, and let A, B, and C be disjoint subsets of indices. Then
the conditional independence statement XA ⊥⊥ XB | XC holds if and only if the cross-covariance matrix
ΣA∪C,B∪C has rank |C|.

Although this result was originally established for linear acyclic models with independent Gaussian noise, it
relies solely on second-order properties (variance and covariance) of the data and leverages path analysis rooted
in the independence of noise terms. Consequently, this result remains valid for linear models with arbitrary
noise distributions, since the argument applies to any distribution with finite second moments.

Theorem H.2 (Conditional Independence in Directed Graphical Models (Sullivant et al., 2010)). In a directed
graph G, a set C d-separates A and B if and only if the conditional independence statement XA ⊥⊥ XB | XC

holds for every distribution that is Markov with respect to G.

Combining the two results, we obtain the following: For any linear acyclic causal model with disjoint variable
sets Av , Bv , and Cv , the set Cv d-separates Av and Bv in the associated causal graph if and only if:

rank(ΣAv∪Cv,Bv∪Cv ) = |Cv|.

This equivalence confirms that the d-separation criterion in the causal graph corresponds to a rank condition on
the cross-covariance matrix ΣAv∪Cv,Bv∪Cv .

The window causal graph in PO-MHP is a directed acyclic graph with linear causal relations and serially
uncorrelated white noise. Therefore, the above rank condition applies directly to the window causal graph in
the PO-MHP framework. This completes the proof.

I PROOF OF PROPOSITION 4.3

Proof. For any subprocess O1, we prove the equivalence of the four statements step by step.

(1) ⇔ (2): If PG is the parent-cause set of O1 in the summary graph, by construction of the window causal
graph, it equivalent to that the corresponding lagged variable set Pv contains all direct parent variables of O(n)

1 .
This follows from the fact that, in the window graph, directed edges exist from the effective lagged variables
of each parent subprocess to O

(n)
1 . Moreover, by definition of the parent-cause set, PG is minimal with this

property.

(2) ⇔ (3): If Pv contains all parent variables of O(n)
1 in the window graph, by the Markov property of DAGs,

Pv d-separates O
(n)
1 from all other observed variables in Ov\

(
Pv ∪ {O(n)

1 }
)

. Reversly, if Pv d-separates

O
(n)
1 from all other observed variables in Ov\

(
Pv ∪ {O(n)

1 }
)

, by the Granger causality-events in the future

cannot causally influence events in the past, Pv should contain all parent variables of O
(n)
1 in the window

graph. Moreover, by definition of the parent-cause set, PG is minimal with this property.

(3) ⇔ (4): By applying Lemma 4.2, the d-separation between O
(n)
1 and the rest of the variables, conditioned

on Pv , is equivalent to the rank constraint:

rank
(
Σ{O(n)

1 }∪Pv, Ov\{O
(n)
1 }

)
= |Pv|.

(4) ⇔ (1): Assume the rank condition holds for Pv . By Lemma 4.2, this implies that Pv d-separates O
(n)
1

from all other observed variables in the window graph. Translating back to the summary graph, this implies
that PG is the minimal parent-cause set of O1, as no smaller set can block all paths to O1.

Thus, all statements are equivalent. This completes the proof.
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J PRELIMINARIES FOR PROOFS OF PROPOSITION 4.5 AND THEOREMS 4.7
AND 4.8

To establish this result, we rely on the concepts of trek separation (t-separation) and d-separation introduced by
(Sullivant et al., 2010), which provide powerful tools for analyzing latent structures in linear causal models.

Definition J.1 (Trek (Sullivant et al., 2010)). A trek in the DAG G from variable Vi to variable Vj is an ordered
pair of directed paths (P1,P2) where P1 has sink Vi, P2 has sink Vj , and both P1 and P2 have the same
source Vk. The common source Vk is called the top of the trek, denoted top(P1,P2). Note that one or both
of P1 and P2 may consist of a single variable, that is, a path with no edges. A trek (P1,P2) is simple if the
only common variable among P1 and P2 is the common source top(P1,P2). We let T (Vi, Vj) and S(Vi, Vj)
denote the sets of all treks and all simple treks from Vi to Vj , respectively.

Definition J.2 (T-separation (Sullivant et al., 2010)). Let Av , Bv , CA, and CB be four subsets of total variable
set Vv . We say the ordered pair (CA, CB) t-separates Av from Bv if, for every trek (τ1; τ2) from a variable
in Av to a variable in Bv , either τ1 contains a variable in CA or τ2 contains a variable in CB.

Theorem J.3 (Trek separation for directed graphical models (Sullivant et al., 2010)). The sub-matrix
∑

A,B

has rank less than equal to r for all covariance matrices consistent with the graph G if and only if there exist
subsets CA,CB ⊂ VG with |CA|+ |CB | ≤ r such that (CA,CB) t-separates A from B. Consequently,

rank(ΣA,B) ≤ min{|CA|+ |CB | : (CA,CB) t-separates A from B}

and equality holds for generic covariance matrices consistent with G.

Corollary J.4 (T-separation and D-separation (Sullivant et al., 2010)). A set C d-separates A and B in G if
and only if there is a partition C = CA ∪CB such that (CA,CB) t-separates A ∪C from B ∪C.

Therefore, when CA and CB are disjoint, the combined set CA ∪ CB also serves as a d-separator between
A and B. Moreover, since the window graph in the Hawkes process is a DAG with linear relations, the above
results can be directly applied after suitable adaptation to the Hawkes process setting.

K PROOF OF PROPOSITION 4.5

Proof. We prove both directions of the equivalence.

(⇐) If such a latent confounder L1 exists, the rank condition holds. Suppose there exists a latent
confounder L1 that is one common parent cause in the parent-cause set of {O1, O2}, and that L1 together with
{O1, O2} makes them locally independent of other subprocesses.

Given that L1 and its paths to O1 and O2 satisfy Definition 4.4, the contribution of L1 to both O1 and O2 in
the window graph occurs through the same number of latent intermediates, resulting in an aligned contribution
across time lags. In this setup, the influence of L1 will appear as a shared component across the observed
variables {O(j)

i }i∈{1,2}
j∈{n−m,...,n}.

Consider the window graph with m considered effective lags. Following the logic of trek separation, in the
window graph with m effective lagged variables, the minimal choke set CA that t-separates O(n)

1 , O
(n)
2 from

the rest is given by:

CA := {L(j)
1 }j∈{n−m,...,n−1} ∪ {O(n)

i }j∈{n−m,...,n−1}
i∈{1,2} .

It is equivalent to that CA is the minimal set that d-separates {O(n)
1 , O

(n)
2 } from the Ov\{O(n)

1 , O
(n)
2 }.

Thus, by Theorem J.3, the generic rank of the cross-covariance matrix is bounded above by |CA| = 2m+m =
3m, where 2m comes from observed lagged variables of {O1, O2} and m comes from latent lagged variables
of L1. However, due to the structure of the excitation function ϕij(s) = aijw(s), the latent subprocess L1

contributes effectively as a single shared component across all its lagged variables, reducing the effective rank
from m to 1.
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To explain this, we first write the structural equations for the observed variables {O(j)
i }j∈{n−m,...,n}

i∈{1,2} as the
linear regression on those check points as:

O
(n)
1

O
(n−1)
1

· · ·
O

(n−m)
1

O
(n)
2

O
(n−1)
2

· · ·
O

(n−m)
2


= E



L
(n−1)
1

· · ·
L

(n−m)
1

O
(n−1)
1

· · ·
O

(n−m)
1

O
(n−1)
2

· · ·
O

(n−m)
2


+



ϵ
(n)
o1 + θ

(0)
o1

ϵ
(n−1)
o1 + θ

(0)
o1

· · ·
ϵ
(n−m)
o1 + θ

(0)
o1

ϵ
(n)
o2 + θ

(0)
o1

ϵ
(n−1)
o2 + θ

(0)
o1

· · ·
ϵ
(n−m)
o2 + θ

(0)
o1


, (11)

E =



ao1l1

∫∆

0
w(s)ds · · · ao1l1

∫m∆

(m−1)∆
w(s)ds 1

1· · · 1 0
0· · · 0

0
0· · · 0 1

0· · · 0 0
0· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0· · · 0 0
0· · · 1 0

0· · · 0

ao2l1

∫∆

0
w(s)ds · · · ao2l1

∫m∆

(m−1)∆
w(s)ds 0

0· · · 0 1
1· · · 1

0
0· · · 0 0

0· · · 0 1
0· · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0· · · 0 0
0· · · 0 0

0· · · 1


.

m

m

(12)

It is straightforward to see that the rank of the coefficient matrix E is 2m+1, because the two row corresponding
to O

(n)
1 and O

(n)
2 in E are linearly dependent (proportional to each other).

Furthermore, the cross-covariance matrix of {O(j)
i }j∈{n−m,...,n}

i∈{1,2} and Ov\{O(n)
1 , O

(n)
2 }, i.e.,

Σ{O(j)
i }j∈{n−m,...,n}

i∈{1,2} , Ov\{O
(n)
1 ,O

(n)
2 } can be written as ECAC

⊤
AF

⊤ where E and F are coefficient

matrix by regressing variables on those choke points. The rank(CAC
⊤
AF

⊤) has full column rank, be-
cause F calculated from regressing all the rest variables Ov\{O(n)

1 , O
(n)
2 } on CA and without blocking

lagged variables, no shrinkage of rank occurs. Consequently, the rank of the cross-covariance matrix

rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , Ov\{O

(n)
1 ,O

(n)
2 }

)
= rank

(
ECAC

⊤
AF

⊤) = rank(E) = 2m + 1 (The

following theorem proofs also adopt a similar way).

Thus, the total rank becomes:

rank = 2m (from observed lags of O1 and O2) + 1 (from L1) = 2m+ 1.

(⇒) If the rank condition holds, there exists a latent confounder L1 satisfying the claimed
properties. Conversely, assume the observed rank condition:

rank

(
Σ{O(j)

i }j∈{n−m,...,n}
i∈{1,2} , Ov\{O

(n)
1 ,O

(n)
2 }

)
= 2m+ 1.

By construction of the window graph (Eq. 2), if there were no latent confounder between O1 and O2, the rank
would be at most 2m, corresponding to the observed lagged variables of O1 and O2. The observed rank being
strictly 2m+ 1 thus implies the presence of an additional latent variable influencing both O1 and O2.

Due to the rank faithfulness assumption (Assumption 2), such a rank elevation uniquely corresponds to a latent
subprocess L1 acting as a parent cause of both O1 and O2. Furthermore, for the rank increment to be exactly
one, the causal paths from L1 to O1 and O2 must satisfy the symmetric path situation (Definition 4.4): i.e.,
the paths only involve intermediate latent subprocesses of the same depth without self-loops, ensuring that
the contribution of L1 introduces a single additional rank component shared by both O1 and O2 at the same
temporal lag level.

Finally, by construction, conditioning on P ′
G := L1∪{O1, O2} removes all causal influence from L1, rendering

{O1, O2} locally independent of the remaining observed subprocesses.

This completes the proof.
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L PROOF OF THEOREM 4.7

Proof. We prove both directions of the equivalence.

(⇐) If such a parent-cause set P ′
G exists, the rank condition holds. Assume that P ′

G is the minimal
set of subprocesses such that:

• P ′
G is a subset of the parent-cause set of N1.

• Conditioning on SG := P ′
G ∪De(N1)∪{De(Li)}Li∈P′

G
∪Sib(De(N1))∪{Sib(De(Li))}Li∈P′

G
renders

N1 locally independent of all other subprocesses in the system.
• All possible observed surrogates of Ni in OG have been identified.
• For each Li ∈ P ′

G , the relationship between Li and its observed effects {De(N1),De(Li)} satisfies Defini-
tion 4.4.

In this setup, the lagged variables of De(N1) and De(Li), as well as the lagged and current
variables of their observed siblings Sib(De(N1)) and Sib(De(Li))Li∈P′

G
, appear in both Av

and Bv . The rank contribution from these observed variables is deterministically: |Ov1| :=∣∣∣∣∣{De(N1)
(j),De(Li)

(j)}j∈{n−m,...,n−1}
Li∈P′

G
∪ {O(j)

i }j∈{n−m,...,n−1}
Oi∈P′

G
∪ {O(j)

i }j∈{n−m,...,n}
Oi∈Sib(De(N1))∪{Sib(De(Li))}Li∈P′

G

∣∣∣∣∣.
The remaining part of Av , i.e., Av\Ov1, consists of the current variables {De(N1)

(n),De(Li)
(n)}Li∈P′

G
.

Given the symmetric path structure (Definition 4.4), each latent confounder Li ∈ P ′
G contributes exactly one

shared latent component, as the influence propagates through symmetric, acyclic paths. Due to the specific
excitation function ϕij(s) = aijw(s), this results in precisely one rank contribution per latent subprocess,
regardless of the number of lagged variables.

Thus, the latent contribution adds exactly:

|Ov2| :=
∣∣∣{Li}Li∈P′

G

∣∣∣ = ∣∣∣De(Li)
(n)}Li∈P′

G

∣∣∣
rank-one components.

Combining both observed and latent contributions, the total rank becomes:

|Ov1|+ |Ov2| = |Ov1|+ |Ov2|+ 1 (from De(N1)
(n))− 1 = |Av| − 1.

(⇒) The rank condition implies the claimed causal structure and local independence. Assume
that P ′

G is the minimal set such that:

rank (ΣAv,Bv ) = |Av| − 1

By the theory of trek separation (Theorem J.3), such a rank deficiency implies that the information flow between
Av and Bv must pass through a set of choke points, corresponding to the candidate parent causes in P ′

G .

If no latent confounders existed, or if P ′
G were not part of the parent-cause set of N1, the rank would be

exactly |Ov1|, solely contributed by the lagged variables of observed surrogates and both the current and lagged
variables of their siblings.

Since all possible observed surrogates of Ni in OG have been identified, the extra deficiency of rank (i.e.,
|Ov2|) thus directly implies the existence of latent subprocesses contributing shared rank-one components. By
the rank faithfulness, this observed rank pattern is only consistent with the existence of latent subprocesses
{Li}Li∈P′

G
that act as confounders between De(N1) and their respective observed effects, and these latent

subprocesses are members of the parent-cause set of N1.

For the rank deficit per latent subprocess to be exactly one, the contribution from each latent subprocess must
propagate through symmetric acyclic paths, consistent with Definition 4.4, ensuring a single rank-one compo-
nent contribution per latent subprocess. Moreover, the inclusion of the observed surrogates and their siblings
ensures that no alternative paths can explain the dependency patterns. Thus, P ′

G must be the subset of parent
causes, satisfying the conditional local independence of N1 given SG .

Therefore, the rank condition is both necessary and sufficient to identify P ′
G as the subset of parent causes of

N1, considering both observed and latent subprocesses. This completes the proof.

M PROOF OF THEOREM 4.8

Proof. We prove both directions of the equivalence.
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(⇐) If such a latent confounder L1 exists, the rank condition holds. Assume there exists a latent
confounder subprocess L1 such that:

• L1 is a common parent cause of {N1, N2}.
• Conditioning on P ′

G := L1 ∪ N1, N2 ∪ Sib(De(Ni))i∈{1,2} renders {N1, N2} locally independent of the
rest of the system NG\P ′

G .
• All possible observed surrogates of {N1, N2} in OG have been identified.
• L1 and its observed effects {De(N1),De(N2)} satisfy Definition 4.4.

By the Definition 4.4, the causal influence from L1 to {De(N1),De(N2)} is symmetric and only propagates
through the same number of intermediate latent subprocesses without self-loops. Under this condition, the
contributions of L1 to the observed surrogates {De(N1),De(N2)} appear as a rank-one component across the
lagged variables of these subprocesses, aligned in time.

Thus, in the window graph, the latent influence from L1 will introduce exactly one additional rank compo-
nent across the observed variable set Av beyond the rank contribution from the observed lagged variables
themselves.

Formally, following the arguments for Proposition 4.5, the rank of ΣAv,Bv is determined by the minimal set of
choke points that t-separate Av from Bv in the window graph. Given the assumed structure:

• The lagged variables of {De(N1),De(N2)} and both the current and lagged variables of their observed
siblings, denoted as Ov1 := {De(Ni)

(j)}j∈{n−m,...,n−1}
i∈{1,2} ∪ {O(j)

i }j∈{n−m,...,n}
Oi∈Sib(De(N1))∪Sib(De(N2))

, appear in
both Av and Bv , contributing deterministically |Ov1| to the rank.

• The influence from L1 propagates symmetrically to both De(N1) and De(N2) through acyclic paths com-
posed exclusively of latent subprocesses, per Definition 4.4. As a result, due to the excitation function
ϕij(s) = aijw(s), the total rank contribution from L1 is exactly one.

Therefore, the total rank becomes:

rank (ΣAv,Bv ) = |Ov1|+ 1 = |Av| − 1

(⇒) If the rank condition holds, such a latent confounder L1 must exist. Now assume the ob-
served rank condition:

rank (ΣAv,Bv ) = |Av| − 1

We know that parent-cause sets of all inferred latent confounder processes in NG remain unidentified even after
applying Theorem 4.7. In the absence of any new latent confounder, the maximum possible rank would be
|Ov1|, corresponding solely to the contributions of the lagged variables of {De(N1),De(N2)} and both the
current and lagged variables of their observed siblings. The observed rank being exactly |Ov1|+1 = |Av|−1
implies the existence of an additional latent source influencing both N1, N2 and their observed surrogates.

Due to the rank faithfulness, this increment must be attributed to a unique latent subprocess L1 that acts as a
confounder for N1 and N2. Moreover, the fact that the rank increment is only one implies that the paths from
L1 to N1, N2 must satisfy the symmetric and acyclic conditions in Definition 4.4, ensuring that the influence
of L1 is captured as a rank-one shared component at the observed surrogates level.

Moreover, the inclusion of the observed surrogates and their siblings ensures that all other possible paths and
confounding structures are blocked, enforcing P ′

G := L1 ∪ {N1, N2} ∪ {Sib(De(Ni))}i∈{1,2} in ensuring
local independence and all possible observed surrogates of {N1, N2} in OG have been identified.

Thus, the rank pattern is both necessary and sufficient to imply the existence of L1 and the claimed causal and
conditional independence structure. This completes the proof.

N PROOF OF THEOREM 5.1

Proof. We prove the theorem by considering the two cases separately: (i) the system contains no latent subpro-
cesses, and (ii) the system contains latent subprocesses.

Case (i): No latent subprocesses. In this case, the system consists solely of observed subprocesses OG .
Since there are no latent confounders, Phase I alone is sufficient for identifiability. This follows directly from
Proposition 4.3, which ensures that for each observed subprocess, its parent-cause set can be uniquely identified
by checking the rank condition of the relevant cross-covariance matrices. Thus, the entire causal graph can be
identified solely through Phase I.

Case (ii): Presence of latent subprocesses. In the general case where latent subprocesses exist, the
algorithm relies on the synergy between Phase I and Phase II.
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• Phase I iteratively identifies the parent-cause set for each subprocess (including both observed and previ-
ously discovered latent subprocesses) whose parent-cause set is fully contained in the current set of known
subprocesses. By Proposition 4.3 and Theorem 4.7, this identification is guaranteed when no unknown latent
confounders intervene or when latent confounders are already represented by their observed surrogates.

• Phase II handles the discovery of new latent confounder subprocesses by systematically applying Propo-
sition 4.5 and Theorem 4.8. The identifiability is guaranteed under the condition that all latent confounder
subprocesses and their associated observed effects satisfy Definition 4.4. This condition uniquely ensures that
each latent confounder subprocess contributes a unique, identifiable rank-1 pattern in the cross-covariance
matrix of its observed surrogates and their siblings, enabling its detection through the rank conditions estab-
lished in the theorems. The latent cofounder subprocesses that do not satisfy Definition 4.4 remain unidenti-
fied.

Termination and completeness. The algorithm alternates between Phase I and Phase II. Since each iter-
ation either identifies a new parent-cause set or discovers a new latent subprocess, and given the finite number
of subprocesses (including latent ones), the algorithm must eventually terminate.

By construction:

• All observed subprocesses will eventually have their parent-cause sets identified through Phase I.
• All latent subprocesses satisfying Definition 4.4 will be identified through Phase II and incorporated into the

active set for further investigation.
• The recursive application of the identification theorems ensures that no causal relationships (either between

observed, latent, or between observed and latent) will remain unidentified under the conditions.
• If Definition 4.4 fails for any latent, the algorithm terminates without fabricating that latent or any edges it

would entail, thereby returning only the identifiable portion of the causal graph (sound abstention).

Thus, under excitation function ϕij(s) = aijw(s) and rank faithfulness, the entire causal graph consisting of
both observed subprocesses and latent confounders can be identified. This completes the proof.

O DETAILS OF IDENTIFICATION ALGORITHM

O.1 PHASE I

The detailed algorithm for Phase I is in Algorithm 2.

Algorithm 2 Identifying Causal Relations
Input: Partial causal graph G, Active subprocess set AG , Observed subprocess set OG
Output: Partial causal graph G, Active subprocess set AG
1: repeat
2: Select a subprocess N1 from AG .
3: for Len = 1 to |AG ∪ OG | do
4: repeat
5: Select subset P ′

G ⊆ AG ∪ OG such that |P ′
G | = Len.

6: if (AG ∪ OG ,P ′
G , N1) satisfies Proposition 4.3 and Theorem 4.7 then

7: AG = AG\N1, and update G.
8: Return to line 2.
9: end if

10: until All subsets of AG ∪ OG with size Len selected.
11: end for
12: until AG is not updated or |AG | ≤ 1.
13: return: G, AG

O.2 PHASE II

The detailed algorithm for Phase II is in Algorithm 3.

P COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

In this section, we analyze the computational complexity of our two-phase iterative algorithm, which alternates
between: (1) inferring causal relationships among discovered subprocesses and (2) identifying new latent sub-
processes. Let n denote the number of processes in the active process set AG and m denote the number of
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Algorithm 3 DiscoveringNewLatentComponentProcesses
Input: Partial causal graph G, Active subprocess set AG , Observed subprocess set OG
Output: Partial causal graph G, Active subprocess set AG
1: Initialize cluster set C := ∅ and the group size Len = 2.
2: repeat
3: Select a subset YG from AG such that |YG | = Len.
4: if (AG ∪ OG ,YG) satisfies Proposition 4.5 and Theorem 4.8 then
5: Add YG into C.
6: end if
7: until All subset of AG with size Len selected.
8: Merge all the overlapping sets in C.
9: for each merged set Ci ∈ C do

10: Introduce a new latent subprocess Lj .
11: AG = AG ∪ Lj\Ci, and update G.
12: end for
13: return: G, AG

subprocesses in the augmented process set TG := AG ∪ OG at the start of each phase. Assume each test is an
oracle test.

Phase I: Inferring Causal Relationships

For each component process N1 ∈ AG , we evaluate subsets of TG starting from subsets of size 1 up to the size
of TG , stopping when the test result is positive. In the worst case, for each N1, we need to evaluate all subsets
of TG , which requires

∑m
k=1

(
m
k

)
tests. For one subprocess N1 ∈ AG , if its parent-cause set is found, AG is

updated. After that, the algorithm will restart to go over all the subprocesses in AG to make sure no parent-
cause set of subprocesses in AG can be found. In the worst case, the algorithm find parent-cause set for the last
component process in AG each time. The complexity of Phase I is upper bounded by: O

(
n!

∑m
k=1

(
m
k

))
.

Phase II: Identifying New Latent Subprocesses

In this phase, we test all subsets of AG of size 2. Since there are
(
n
2

)
such subsets, the complexity of Phase II

is upper bounded by: O
((

n
2

))
.

Overall Complexity

The total complexity of the algorithm depends on the number of (both observed and latent) subprocesses and
the structural density of the causal graph, as these factors determine the number of iterations required for the
algorithm to run. Combining the two phases, for each iteration, the overall complexity is approximately upper
bounded by: O

(
n!

∑m
k=1

(
m
k

)
+

(
n
2

))
.

In practical scenarios, the structural density of the causal graph and sparsity of dependencies may reduce the
number of required iterations and tests, leading to improved efficiency compared to this worst-case analysis.

Q MORE DETAILS OF EXPERIMENTS

Q.1 SYNTHETIC DATA GENERATION AND IMPLEMENTATION

We evaluate our method on two types of synthetic data: event sequences generated by the Hawkes process in
Eq. (1), and discrete-time data generated directly from the discrete-time model in Eq. (2)

Hawkes Process Data: We generate event sequences using the tick library (Bacry et al., 2017), an efficient
framework for simulating multivariate Hawkes processes. The excitation function is set as exponential kernel
ϕij(s) = αije

−βs, where β is fixed at 1. αij is sampled uniformly from [0.8, 0.99] except for Case 1. Because
of the cycles between N2 and N3 of Case 1, large αij may lead to nonstationarity. Thus, we sample αij

uniformly from [0.40, 0.80] specifically for Case 1. To ensure stationarity and avoid explosive behavior, we
verify the spectral radius of the integrated excitation matrix after generating αij . To discretize the sequences for
our method, we select the time bins of length 0.1 and consider 600 effective lag time bins as discretized lagged
variables for the calculation sub-covariance matrix. The sample size corresponds to the number of discrete data
points.

Discrete-Time Series Data: To assess our method under ideal discrete-time conditions (i.e., exactly satisfying
Theorem 4.1), we generate data directly from Eq. (2). The excitation function is set as exponential kernel
ϕij(s) = αije

−βs. The coefficients αij and decay parameter β are set as above. Similar to the Hawkes data,
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we verify the spectral radius to ensure stationarity. The noise terms are drawn from independent Gaussian
distributions. We set the number of effective lagged variables to 200. The sample size corresponds to the
number of discrete data points.

Preprocessing and Rank Deficiency Testing: For each trial, we standardize the discretized data to ensure
fair comparison. To test for rank deficiency, we use canonical correlation analysis (CCA) (w Anderson, 1974),
following the procedure in (Huang et al., 2022). We use the grid search to find the best rank test threshold. We
also conduct a empirical sensitivity analysis for test threshold. The result is in Appendix Q.3. A threshold of
0.10 provides a good balance across multiple scenarios.

Data Usage for Baselines: For Hawkes process-based methods (SHP (Qiao et al., 2023), THP (Cai et al., 2022),
and NPHC (Achab et al., 2018)), we use the raw Hawkes process data produced by the tick library. For rank-
based methods designed for i.i.d. data with linear relations (Hier. Rank (Huang et al., 2022) and RLCD (Dong
et al., 2023)) and time series baseline (LPCMCI (Gerhardus & Runge, 2020), we use the discretized Hawkes
process data.

We run all the experiments on a personal CPU machine.

Q.2 EVALUATION METRICS

We evaluate the accuracy of causal structure recovery using the standard F1-score, which combines precision
and recall.

Causal relationships among both latent and observed subprocesses are represented by an adjacency matrix,
where each entry is either 1 or 0, indicating the presence or absence of a directed edge, respectively. Specifically,
AdjG(i, j) = 1 denotes a directed edge from the j-th subprocess to the i-th subprocess, while AdjG(i, j) = 0
indicates no such edge.

We measure the similarity between the estimated and ground-truth adjacency matrices using the F1-score. First,
we compute precision, defined as

precision =
true positives

total inferred positives
,

which represents the proportion of correctly inferred edges among all predicted edges. Next, we calculate
recall, defined as

recall =
true positives

total ground-truth positives
,

which captures the proportion of correctly inferred edges relative to the true causal edges. The F1-score, given
by

F1-score = 2 · precision × recall
precision + recall

,

harmonizes precision and recall to provide a balanced measure of structural recovery.

Practical Considerations

In practice, the indices of latent subprocesses in the estimated (summary) graph may not correspond to those in
the ground truth. To address this, following Huang et al. Huang et al. (2022), we permute the latent subprocess
indices in the estimated graph and select the permutation that minimizes the difference from the true graph.
When the number of estimated latent subprocesses is smaller than the true number, we add isolated latent
nodes to balance the comparison. Conversely, if the estimate exceeds the true number, we select the subset that
best matches the true latent subprocesses.

Additionally, since our inferred summary graph simplifies the underlying causal structure, by omitting interme-
diate latent subprocesses and redundant edges as formalized in our theorems and Definition 4.4, we adjust the
ground-truth adjacency matrix to this idealized representation before comparison. This ensures a fair evaluation
of causal discovery.

For baselines designed for i.i.d. data with linear relations (i.e., Hier. Rank (Huang et al., 2022) and RLCD
(Dong et al., 2023)), their output graphs capture relationships among discretized variables, rather than subpro-
cesses. To enable fair comparison, we regard an edge N1 → N2 as correctly identified if more than half of the
considered variables associated with N1 have inferred edges to those of N2.

Q.3 ADDITIONAL SYNTHETIC EXPERIMENT RESULTS

Comparisons on Cases 5 and 6 Fig. 8 shows the F1-score comparisons for Cases 5 and 6, which corre-
spond to intricate latent confounder structures illustrated in Fig.3c and Fig.3d. These cases involve interactions
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between latent confounders. The results indicate that our method maintains strong performance even under
these challenging causal configurations.

Figure 8: F1-score comparisons on the remaining two causal graphs (Cases 5 and 6), involving latent
confounder interactions. Case 5 and Case 6 correspond to the causal structures in Figs. 3c and 3d,
respectively.

Sensitivity to Time Discretization Interval We evaluate the sensitivity of our method to the choice
of the discretization interval ∆ with decay parameter β = 1 in the exponential excitation function ϕij(s) =
αije

−βs. As shown in Table 1, when ∆ is set to 0.01 or 0.05, our method achieves consistently high F1-scores
across all cases, confirming that the discretized representation sufficiently preserves the temporal dynamics
of the underlying Hawkes process. Even at ∆ = 0.1, the performance remains stable. However, when ∆
increases to 0.3, we observe a sharp drop in performance, highlighting that overly coarse discretization leads to
significant loss of temporal resolution, impairing the estimation of causal structures. The result shows the need
to choose a small bin width ∆ relative to the typical support of the excitation function (Kirchner, 2016a).

Table 1: Performance of our method under varying ∆ values using 80k Hawkes process samples
generated by the tick library with decay parameter β = 1 in the exponential excitation function.
Case 1–3 correspond to Figs. 1b, 2a, and 3a, respectively. Results are averaged over ten runs.
Performance remains stable and high when ∆ ≤ 0.1, but degrades significantly at ∆ = 0.3 due to
the loss of fine-grained temporal information.

Precision Recall F1-Score
∆ Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

0.01 0.98 0.91 0.84 0.92 0.93 0.83 0.93 0.92 0.84
0.05 1.00 0.96 0.83 0.84 0.98 0.82 0.90 0.97 0.82
0.10 1.00 0.91 0.86 0.87 0.93 0.83 0.93 0.92 0.84
0.30 0.50 0.55 0.50 0.17 0.63 0.33 0.25 0.59 0.40

Sensitivity to Rank-Test Threshold We evaluate the sensitivity of our method to the threshold τ used
in the rank test (i.e., the cutoff deciding rank deficiency). We vary τ ∈ {0.01, 0.05, 0.10, 0.20} and assess
three representative cases. Each experiment uses 30k Hawkes samples generated by the tick library under
an exponential excitation function ϕij(s) = αije

−βs with β = 1 and time interval ∆ = 0.1; results are
averaged over ten runs. As shown in Table 2, in the fully observed setting (Case 1) precision remains 1.00
while recall decreases as τ increases, whereas in latent settings (Cases 2–3) a moderately larger threshold
improves precision because of the attenuation of causal influences through the latent subprocesses. Overall, a
threshold of 0.10 provides a good balance across different scenarios.

Robustness to Violations of Rank Faithfulness To test robustness under violations of rank faithful-
ness, we randomly select two edges in each synthetic graph and assign them identical coefficients αij for the
exponential excitation function ϕij(s) = αije

−βs in every run, with β = 1 and time interval ∆ = 0.1. This
manipulation introduces potential linear dependencies in the cross-covariance matrix, which could challenge
rank-based methods. As presented in Table 3, despite the induced degeneracy, our method maintains strong per-
formance, especially as the sample size increases. These results suggest that our approach is robust to moderate
violations of rank faithfulness in practical scenarios.

Evaluation on a Larger and More Complex Causal Graph We further evaluate our method on a
larger causal graph with 14 subprocesses, as shown in Fig. 9. Table 4 reports the F1-scores averaged over ten
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Table 2: Sensitivity to the rank-test threshold τ . Each entry is averaged over ten runs on 30k sam-
ples generated with an exponential kernel (β = 1). Case 1–3 correspond to Figs. 1b, 2a, and 3a,
respectively. Overall, a threshold of 0.10 provides a good balance across different scenarios.

Precision Recall F1

Threshold τ Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

0.01 1.00 0.42 0.57 0.80 0.53 0.50 0.88 0.47 0.53
0.05 1.00 0.62 0.62 0.64 0.73 0.54 0.77 0.67 0.57
0.10 1.00 0.66 0.72 0.60 0.75 0.65 0.74 0.71 0.68
0.20 1.00 0.76 0.68 0.47 0.85 0.63 0.62 0.80 0.65

Table 3: Performance of our method when, in each run, two edges in each graph are randomly
assigned identical coefficients αij for the exponential excitation function, increasing the risk of rank
deficiency. Hawkes process samples are generated by the tick library. Case 1–3 correspond to
Figs. 1b, 2a, and 3a, respectively. Results are averaged over ten runs. Despite these perturbations,
our method maintains strong performance, demonstrating robustness to such violations.

Precision Recall F1-Score
#Samples Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

30k 0.87 0.60 0.72 0.87 0.75 0.71 0.87 0.67 0.71
50k 0.92 0.83 0.76 0.84 0.82 0.73 0.87 0.82 0.74
80k 0.95 0.84 0.83 0.90 0.83 0.80 0.92 0.83 0.81

runs. Despite the increased complexity, our method successfully recovers the underlying causal structure with
high accuracy.

Figure 9: Illustration of a larger causal graph consisting of 14 subprocesses, used to evaluate scala-
bility and robustness.

Scalability and Runtime Profiling We profile runtime on three representative synthetic graphs (Cases 1–
3) and two real-world settings. All runs were executed on an AMD EPYC 9454 CPU. The first real-world
setting follows our main paper: a five-alarm subgraph (Alarm ids=0-3 with one latent Alarm id=7) from
device id = 8. The second merges all devices into a single multivariate event sequence with all 18 alarms
to gauge scaling with graph size. We observe that Case 1 is fastest as no latent confounders are present and
Phase I suffices. Case 2 introduces latent confounders, requiring both phases in the first iteration and increasing
runtime. Case 3 is slowest among synthetic cases because the latent confounder is itself caused by an observed
subprocess, triggering an additional iteration to identify its observed parent. For real data, merging all devices
markedly increases runtime as the sequence spans all 18 alarms and may deviate from a homogeneous Hawkes
mechanism. A phase-wise complexity breakdown is provided in Appendix P, which offers further insight into
the scalability of the algorithm.

Q.4 ANALYSIS OF REAL-WORLD DATASET RESULTS

We evaluate our method on a real-world cellular network dataset (Qiao et al., 2023), which includes expert-
validated ground-truth causal relationships. The dataset comprises 18 distinct alarm types and ∼35,000
recorded alarm events collected over eight months from an operational telecommunication network. This
benchmark has been widely used in prior work (e.g., the PCIC 2021 causal discovery track and (Qiao et al.,
2023)), where performance for many methods is available and top F1-scores are reported up to ≈ 0.6.
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Table 4: Performance of our method on the larger causal graph in Fig. 9, using Hawkes process
data generated by the tick library. Results are averaged over ten runs. The method consistently
recovers the causal structure with improving accuracy as sample size increases.

Sample Size Precision Recall F1-score
30k 0.65 0.52 0.58
50k 0.71 0.58 0.64
80k 0.80 0.71 0.75

Table 5: Runtime across synthetic and real-world settings.

Graph Type Runtime (s)
Case 1 227.80
Case 2 1036.01
Case 3 2603.95
Real Dataset (Alarm ids=0--3, device id = 8) 1364.71
Real Dataset (all devices merged; 18 alarms) 20914.29

For our evaluation, we focus on a subgraph involving five alarm types (Alarm ids=0-3 and 7) from device id
= 8, where Alarm id=7 is manually excluded and treated as a latent subprocess. Both Alarm id=1 and
Alarm id=3 are observed effects of this latent subprocess, providing an opportunity to assess our method’s
ability to infer latent confounders. The ground-truth causal subgraph is shown in Figure 10. Compared with our
inferred causal graph, the ground truth contains an additional edge from Alarm id=1 to Alarm id=3. How-
ever, as noted in Definition 4.4, causal edges between observed effects of a latent confounder are permissible
in our framework.

During inference, using Proposition 4.3 and Theorem 4.7, we correctly identify Alarm ids=0,1,3 as the
parent causes of Alarm id=2, and Alarm ids=1,3 as the parent causes of Alarm id=0. The parent-
cause sets of Alarm id=1 and Alarm id=3 cannot be fully explained by the observed subprocesses alone.
This necessitates the existence of a latent confounder influencing both, leading to the successful identification
of Alarm id=7 as a latent subprocess.

Figure 10: Ground-truth causal subgraph from the metropolitan cellular network dataset.
Alarm id=7 is treated as a latent subprocess.

Baselines and Schemes. We also quantitatively compare our method with representative Hawkes-based
approaches (SHP (Qiao et al., 2023), THP (Cai et al., 2022), NPHC (Achab et al., 2018)), two rank-based
latent-variable methods for i.i.d. data (Hier. Rank (Huang et al., 2022), RLCD (Dong et al., 2023)), and a
time-series method designed for exogenous latents (LPCMCI (Gerhardus & Runge, 2020)). For fairness, all
baselines are evaluated on the same sub-dataset (Alarm ids=0--3 and 7 from device id=8) as our method,
with performance averaged over ten runs using parameter grid search.

Results on the Sub-dataset. Our method achieves the best F1-score when the data conforms to a single
multivariate Hawkes process (per-device setting). Table 6 reports the average F1-scores.

Merged-devices analysis. For completeness, we also merge events from all 55 devices into a single mul-
tivariate sequence with all 18 alarm types and analyze it with our method. This setting violates the assumption
that samples share the same generative mechanism (devices can be heterogeneous), and it yields a much lower
F1-score (0.17). This illustrates why per-device analysis is more compatible with our assumptions, whereas
merged-device data can confound structure learning.
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Table 6: F1-scores on the cellular network sub-dataset (Alarm ids=0-3 and 7, device id = 8)
where Alarm id=7 is manually excluded and treated as a latent subprocess; averages over 10
runs.

Algorithm F1-score
SHP 0.49
THP 0.48
NPHC 0.42
Hier. Rank 0.00
RLCD 0.39
LPCMCI 0.43
Ours 0.76

Dataset description. The dataset records 34,838 alarm events from a metropolitan cellular network (Qiao
et al., 2023), covering 18 alarm types and 55 devices. Each record contains:

• Alarm ID: one of 18 alarm types,
• Device ID: one of 55 devices,
• Start Timestamp: time when the alarm was triggered,
• End Timestamp: time when the alarm was resolved.

For causal analysis, we sort events by alarm type and use the start timestamp as the event time, yielding a
temporally ordered sequence suitable for inference.
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