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Abstract

Recent works paid effort on the structure search issue for tensor network (TN)1

representation, of which the aim is to select the optimal network for TN contraction2

to fit a tensor. In practice, however, it is more inclined to solve its sub-problem:3

searching TN structures from candidates with a similar topology like a cycle or lat-4

tice. We name this problem the graph-constrained structure search, and it remains5

open to this date. In this work, we conduct a thorough investigation of this issue6

from both the theoretical and practical aspects. Theoretically, we prove that the7

TN structures are generally irregular under graph constraints yet can be universally8

embedded into a low-dimensional regular discrete space. Guided by the theoretical9

results, we propose a simple algorithm, which can encode the graph-constrained10

TN structures into fixed-length strings for practical purposes by a “random-key”11

trick, and empirical results demonstrate the effectiveness and efficiency of the12

proposed coding method on extensive benchmark TN representation tasks.13

1 Introduction14

Tensor networks (TNs) are recognized as a popular framework for solving extremely15

high-dimensional problems arising in domains such as quantum simulation, machine16

learning and signal processing. In general, TNs are used to represent the high-17

dimensional states/models/data by a network of low-dimensional tensors (a.k.a., cores),18

such that the requirement on computation and storage would be significantly reduced.19
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Figure 1: Which tensor
ring (TR) is the optimal?

20

It is of importance to select an appropriate structure in the practical21

use of TNs. There are many studies on learning TN ranks for specific22

models [26–28, 43, 46, 47] to name a few, and recently several works23

paid the effort on learning more general TN structures with arbitrary24

topology [17, 19, 21, 25]. Surprisingly, however, none of them can25

effectively solve a seemly easier task: how to learn the optimal matching26

from the modes onto the cores of a TN? For instance as illustrated in27

Figure 1, there are three different candidates to represent a tensor by28

tensor ring (TR) [47]. We need algorithms, which can learn the optimal29

one from the three. It is actually a special case of learning the optimal30

TN structures under graph constraints, a sub-problem of the existing31

structure search for TN representation.32

The state of affairs raises important unresolved questions. Is the afore-33

mentioned task really easier than the general structure search? What34

are the properties of TN structures under graph constraints, and how to35

effectively solve the problem in practice?36
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In this work, we shed light on these questions through a theoretical and empirical investigation of the37

graph-constrained TN structures.38

We first prove the graph constraint makes TN structures being irregular. In particular, both the39

addition and random perturbation is not closed on the candidate set. This result helps to explain40

why the conventional search algorithms on grids give no guarantee of feasibility of the solutions.41

Furthermore, on the scale of the search problem, we prove the symmetry of the graph-constraint plays42

a role to determine the cardinality of TN structures, yet there exists a universal cardinality bound43

across a varies of practical TNs, such as tensor train (TT) [30], tensor ring (TR) and PEPS [38]. The44

result reveals the possibility to construct a regular discrete space, from which we can represent those45

irregular TN structures by elements in a compact manner.46

Guided by the theoretical results, this work also sheds light on a practical solution for the graph-47

constrained structure search issue. We propose a novel coding method to encode TN structures into48

fix-length strings by a “random-key” trick, a random mapping from TN structure space to coding49

space. The regularity of the coding space allows to apply the population-based algorithms equipped50

with the proposed coding method to tackling the search issue for TN representation effectively. We51

conduct extensive experimentation on a variety of benchmarks. The results show that the proposed52

method often obtain better TN structures than many existing rank-selection and structure search53

algorithms.54

2 Preliminaries and problem setup55

In this section, we present the basic concepts on tensor network (TN), and give a formal definition of56

the graph-constrained structure search for TN representation.57

2.1 Tensor network (TN) and structure search for tensor network representation (TNR)58

An order-N tensor is a multi-dimensional array of real numbers represented by Xi1,i2,...,iN ∈59

RI1×I2×···×IN , where im, m ∈ [N ] is defined as the index regarding the mth mode of X 1 and [N ]60

denotes a set of integers from 1 to N . Tensor contraction [10], a binary operation on tensors, is61

defined as a multiplication of two tensors under their same indices. For instance, given two order-262

tensors Ai,j ∈ RI×J , Bj,k ∈ RJ×K , the tensor contraction of A and B under the index j returns63

Ci,k = Ai,jBj,k ∈ RI×K , which is equivalent to the matrix multiplication.64

A tensor network (TN) is roughly defined as a collection of tensors (a.k.a., cores), which are65

tensor-contracted under some, or all, of their indices according to a specific pattern [29]. Recent66

works [25, 42] show that the “patterns” of TNs can be precisely described by edge-weighted simple67

graphs. TN structures thus can be formulated by adjacency matrices of graphs. Formally, we define68

the TN with a general “pattern” as follows.69

Definition 1 (Tensor network.) Let AR =
{
A ∈ (ZR+1)

N×N |A(i, i) = 0, ∀i ∈ [N ], andA = A>
}

,70

an order-N tensor network (TN) of the size I1 × I2 × · · · × IN under a structure A ∈ AR defines a71

mapping :72

X = TN(V;A) ∈ RI1×I2×···×IN , (1)
where V = {Vi, i ∈ [N ]} represents a collection of cores in which the size of Vi, i ∈ [N ] equals73

the multiplication of Ii and all non-zero entries of A(i, :), and TN( · ;A) denotes a series of tensor74

contractions of V under the indices [25] described by A.75

We observe that Definition. 1 models a rich family of TNs with the ranks upper-bounded by R (due76

to ZR+1), including TT, TR, PEPS and etc., but also note that the TNs that contain internal cores are77

not included in this form.78

Tensor network representation (TNR) of a tensor X is defined as finding a specific core-set V such79

that Eq. (1) holds. The structure search for TNR is thus to find the optimal matrix A ∈ AR, such that80

X can be represented by V that satisfies Eq. (1). In particular, the search problem can be solved by81

min
A∈AR

φX (A), s.t.X = TN(V;A) for someV, (2)

1The indices would be omitted for brevity if there is no confusion.
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where φX : AR → R denotes a measure of the TN structures like compression ratio. Note that82

similar frameworks were also introduced in works [17, 21], where the entries of A corresponds to83

the TN-ranks formulated as a vector in those works. Lemma 5 in Sec. 3 will show the matrix form of84

A would provide additional structural information to analyse the property of TN structures.85

2.2 Graph-constrained structure search for TNR86

The graph-constrained structure search issue is also modeled as (2) yet constraining the feasible space87

AR into a graph-induced subset, in which the TN structures have similar topological forms. To build88

the connection to graphs, we first show the existence of a bijective mapping from AR to a graph89

space.90

Lemma 2 There is a bijective mapping Ψ : AR → GR, where GR denotes a set containing all91

possible vertex-labeled, simple yet weighted graphs (G, fR) = (V,E, fR) with N vertices and a92

edge-weighting function fR : e ∈ E → [R], and we name the unweighted part G the topology of TN93

a TN structure.94

The claim is naturally true by the relation between graphs and the adjacency matrices. The bijection95

in Lemma 2 implies that for each A ∈ AR we can always find a unique (G, fR) corresponding to96

it. Table 1 in the supplementary material illustrates the correspondence between graphs and the97

well-known TNs. We next construct graph-constrained TN structures by the isomorphism of a graph98

G0 = (V,E0) and the mapping Ψ given in Lemma 2. A formal definition is given as follow.99

Definition 3 (Graph-constrained TN structures.) Given a vertex-labeled simple graph G0 =100

(V,E0) and the mapping Ψ in Lemma 2, the TN structures under G0 are defined as101

HG0,R = {H ∈ AR|GH
∼= G0 where (GH , fR,H) = Ψ(H)} , (3)

where ∼= denotes the graph isomorphism.102

As given in Definition 3, HG0,R is a subset of AR and its elements own the topologies being103

isomorphic to G0. For instance, suppose G0 to be a cycle graph of 4 vertices, i.e., C4, then HC4,R104

contains all TR structures of order-4 with the ranks upper-bounded by R as Figure 1. It is thus105

expected to solve the mentioned optimal matching problem by searching structures on HG0,R. Not106

only that, but also note HG0,R equals AR if G0 is a completion graph, i.e., KN . Next, we define the107

problem of graph-constrained structure search for TNR by HG0,R.108

Definition 4 (Graph-constrained structure search for TNR.) Given a graph G0 and the corre-109

sponding HG0,R obtained as Definition 3, the graph-constrained structure search for TNR is to solve110

the following problem:111

min
H∈HG0,R

φX (H), s.t.X = TN(V;H) for someV. (4)

It is shown from Definition 4 that the set HG0,R restricts the optimization process only searching on112

the TN structures, which has the same topology G0 up to permutations of the vertices [5]. Moreover,113

although (4) owns a similar form to its unconstrained counterpart (2), it will be proved in the next114

section that the existing algorithms on (2) may be not available on the graph-constrained search issue.115

Remark. Note that Definition 1 allows the entries of A to equal 1, which implies the rank-one116

contraction between cores. According to the fact given in [25, 42] that the weight-one edges can117

be removed from TNs, we thus know that the solution of (4) would have a subgraph of G0 as its118

“true” topology. Therefore, solving (4) has the capability of achieving not only isomorphic but also119

subgraphs of G0.120

3 Algebraic properties of graph-constrained TN structures121

In this section, we focus on the properties of HG0,R, the set containing all TN structures constrained122

under a graph G0. From an algebraic perspective, we first show HG0,R is irregular under most of123

graph constraints by proving that the set is not closed under addition and random perturbation. After124

that, we analyse the cardinality of HG0,R, which reflects the scale of the search problem. We derive125
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the precise cardinality of HG0,R across many well-known TNs, and prove a universal cardinality126

bound of HG0,R under all connected low-degree graphs.127

To understand the property of HG0,R, we first prove all its elements own a factorization of the128

multiplication of a rank-induced matrix and a permutation matrix.129

Lemma 5 (Factorization of HG0,R.) Given a vertex-labeled simple graph G0 = (V,E0), for any130

H ∈ HG0,R, there exists a permutation matrix P of the size |V | × |V | and a bijective linear mapping131

ΩG0
: (ZR+1)

|E0| → (ZR+1)
|V |×|V | such that H can be factorized as132

H = PΩG0
(r)P>, (5)

where | · | denotes the cardinality and r ∈ (ZR+1)
|E0| denotes the rank vector of dimension |E0|.133

Intuitively, Lemma 5 implies that the rank-induced matrix ΩG0(r) forms a linear sub-space of134

dimension |E0|, then HG0,R takes all “flips and rotations” of the subspace into account due to the135

permutation matrix P. A visual illustration of HG0,R is shown on the most left of Figure 2. We can136

see that HG0,R has an “irregular shape” visually, and this property is formally proved as follows.137

Proposition 6 (Irregularity of HG0,R.) Assuming R ≥ 2, the following two claims are held.138

1. Addition (modulo R+ 1) is not closed on HG0,R if G0 = (V,E0) or its complement is not139

complete;140

2. With a relatively sparse graph G0, the Bernoulli-distributed perturbation on HG0,R is not141

closed with a probability approximately being larger than (1− 1/R)|E0|.142

The proof is given as supplementary material. Proposition 6 effectively say that the operations used143

in common search algorithms, such as the recombination and mutation in genetic algorithms (GAs)144

or progressive search in greedy methods, cannot guarantee the outputs being contained by HG0,R,145

leading to the invalidation of those algorithms on this issue.146

Next, we jump to the cardinality of HG0,R, which reflects how many candidates we have under a147

graph constraint. From a information-theoretic perspective, the cardinality is proportional to the least148

required code length on TN structures in general. A smaller cardinality generally implies a easier149

search process especially for the population-based algorithms. Below, we first prove the cardinality150

of HG0,R under a general graph constraint.151

Lemma 7 (Cardinality of HG0,R.) Given a vertex-labelled simple graph G0 = (V,E0), we have152

log(|HG0,R|) = |E0| log(R) + log(|V |!)− log(|Aut(G0)|), (6)

where log( · ) denotes the natural logarithm and Aut(G0) denotes the graph automorphisms of G0.153

As shown on the right of Eq. (6), the first two terms correspond to the TN-ranks and permutations as154

Lemma 5, respectively, while the third term log(|Aut(G0)|) reflects the symmetry of G0. it implies155

the cardinality of HG0,R would be small if G0 owns strong symmetry. From the TN perspective, it156

means the TNs with symmetric topologies like TR and the complete TN (CTN) [48] are expected to157

own a smaller size of HG0,R. For those well-known TNs, we show their corresponding cardinality of158

HG0,R as follow.159

Proposition 8 Assume order-N TN models, of which the ranks are upper-bounded by R, then we160

have161

1. TT [30]: log(|HPN ,R|) = (N − 1) log(R) + log(N !)− log(2)162

2. TR [47]: log(|HCN ,R|) = N log(R) + log ((N − 1)!)− log(2)163

3. CTN [48]: log(|HKN ,R|) = (N2 −N) log(R)/2164

4. T-tree [42]: (N − 1) log(R) + log(N) ≤ log(|HTN ,R|) ≤ log(|HPN ,R|)165

5. PEPS [38] : log(|HLm,n
|) ≤ (2mn−m− n) log(R) + log((mn)!)− log(4)166

6. Tucker2 [36]: log(|HK1,N
|) = N log(R)167

2Note that the Tucker model is not strictly contained by Definition. 1.
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In Proposition 8, the inequalities for the T-tree models is due to the variety of the tree structures, and168

in PEPS the equality is held if m and n are relatively prime. We observe from Proposition 8 that169

TR would have a smaller HG0,R than TT in the case of large N . It is intuitively true since the TR170

structure is more symmetric than the one of TT. However, we also observe that, except CTN and the171

Tucker model, there always exists a factorial of N in the equations for the rest of TNs. It implies that172

the cardinality of HG0,R for those TNs is not significantly different from each other. Below, we prove173

the fact is true for all TNs, of which the corresponding G0 is connected and low-degree.174

Proposition 9 (A universal cardinality bound on HG0,R.) Assume G0 = (V,E0) is connected175

graph and its maximum degree ∆G0
is a constant that is far less than |V |, then we have176

log(|HG0,R|) ≥ O (|V | log(R) + |V | log(|V |)) , (7)

where O( · ) denotes the big-O notation.177

The result is proved by bounding the both |E0| and |Aut(G0)| in Lemma 5 by the maximum degree178

∆G0 using the Handshaking lemma known in graph theory and Theorem 2 given in [22], respectively.179

In addition, we also use the Stirling’s approximation [32] to obtain a tight bound for the logarithm of180

factorials to further simplify the expression.181

The assumption of a small ∆G0
is reasonable since in the practical TNs the cores are expected to be182

low-order (see Table 1 given in the supplementary material for instance). Proposition 9 means that183

there is a G0-independent bound on the cardinality of HG0,R for all connected and low-degree graphs,184

and we can see the bound is relatively tight by intuitively comparing the results with Proposition 8.185

As shown in (7), the first term |V | log(R) corresponds to the number of all possible ranks bounded by186

R, and the second term |V | log(|V |) has the same scale to log(|V |!) for the Stirling’s approximation.187

It implies that, in the case of connected and low-degree G0, the cardinality of HG0,R is close to the188

combination of all possible ΩG0(r) and P in Lemma 5. In other words, the factorization given in189

Lemma 5 is nearly unique on HG0,R. From a pragmatic perspective, the result say that we can solve190

the constrained structure search issue from the factorization space as a alternative. More importantly,191

such the factorization space is independent to topology, because G0 only determine the mapping ΩG0 ,192

which is bijective, linear and fixed beforehand. The result guides us to find the practical solution on193

the graph-constrained structure search issue from the factorization space.194

4 Encoding graph-constrained TN structures via a random-key trick195

Inspired by the theoretical results, we introduce a practical coding method to embed the irregular TN196

structures into a regular discrete space, in which the population-based metaheuristics like GAs can be197

directly used for structure search. Last, experiments on a variety of benchmarks are implemented to198

demonstrate the effectiveness of the method.199

4.1 Method200

Figure. 2 depicts the coding process. We encode the elements of HG0,R from two ingredients: the201

rank-induced matrix ΩG0
(r) and the permutation P as Lemma 5. For the former, since the mapping202

ΩG0
is bijective and linear, the rank vector r of dimension |E0| is directly used as the code for this203

ingredient.204

For the latter, we randomly embed P into the space [0, 1]|V |, a set of decimal number vectors, by205

a random-key trick [4], which is popularly used to solve the optimal sequencing tasks. For the206

details, the random-key representation encode a permutation with a vector of random numbers207

from [0, 1], and the order of these random numbers reflects the permutation. For instance, the code208

(0.46, 0.91, 0.33) would represent the permutation 2 → 3 → 1, by which we naturally have its209

matrix form P. Finally,the encoded strings are simply the concatenation of the two ingredients.210

One advantage of the random-key trick is robustness to the structure of HG0,R. Regardless of the211

irregularity of HG0,R, we always have the regular key space [0, 1]|V |, on which the operations such212

as addition and perturbation are always available. It implies that the proposed coding method is213

G0-independent, and many population-based metheuristics such as the one in [25] can be directly214

applied to graph-constrained structure search (see the numerical results given below.) .215
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Lemma 5

random-key

concatenation

encoded strings

rank-vector

(Graph-constrained TN structures)

Figure 2: Illustration of encoding the graph-constrained TN structures into fixed-length strings. As
Lemma 5, the structures are factorized by the rank-induced matrix ΩG0

(r) and permutation matrix
P. In the method, ΩG0

(r) is encoded by its non-zero entries, i.e. the rank-vector r, into the space
[R]|E0| (the orange square). By the random-key trick, P is represented a vector of random number in
the “key space” typically [0, 1]|V | (the square with a mixed color in the figure). The final string is
obtained by the concatenation of the two aspects. Note that, in the key space, different elements in
the area with the same color represent the same permutation.

The proposed method gives more compact codes than the work in [25]. In the graph-constraint216

scenario, directly encoding the entries of the adjacency matrix as [25] cannot consider the “low-217

dimensional enssence” of HG0,R due to the irregularity. However, by the proposed method, the218

code length is shorted as O(|V |) compared to O(|V |2) in [25]. A shorter code length implies faster219

convergence and lower computational requirement for the population-based methods in general. For220

the proposed method, we also prove the coding efficiency given in the supplementary material, which221

reflects the gap of the code length from the Shannon entropy on HG0,R.222

4.2 Numerical results223

In this section, we evaluate the practical effectiveness and efficiency of the proposed coding method224

on various benchmark tasks for tensor network representation (TNR).225

4.2.1 Searching the optimal TN structures on synthetic data in TR format and beyond.226

In this experiment, we examine whether using the proposed coding method can learn sufficiently227

good low-dimensional representation on synthetic tensors in TR (including TT) format.228

Data generation. We generate batches of tensors with randomly selecting TR structures. Specifically,229

we first let the dimension of each tensor mode equal 3. Then, we randomly generate the TR-ranks230

at discrete uniform distribution on {1, 2, 3, 4} and the cores at Gaussian distribution N(0, 1), and231

randomly permute the tensor modes after contracting the cores.232

Experiment setup. The proposed coding method are directly applied to the genetic algorithm (GA)233

in [25] by replacing its chromosome design aspect, where we let G0 be a cycle graph and the rank234

bound R be equal to 7. Details of hyper-parameters on the GA are introduced in the supplementary235

material. For comparison, we also implement various types of TR decomposition methods with236

adaptive rank selection, which include the singular value decomposition (SVD) based method TR-237

SVD [47], least-squares-based method TR-ALSAR [47], Bayesian model Bayes-TR [35], and two238

general heuristics TR-LM [28] (exhaustive search) and TNGA [25] (population-based).239

The experimental results are reported in Table 1, where the tensor order covers {4, 6, 8} and the 5240

generated tensors for each order are denoted as Trial A∼E. For performance evaluation, we use the241

Eff. index [25], the ratio of number of parameters between the learned structures and the ground-truth242

TRs, to illustrate the model efficiency. We also illustrate the relative square error (RSE) and the243

generation (Gen.) of the optimal individuals in TNGA and ours in the table.244

Results. As shown in Table 1, only our method can always achieve the same or lower-dimensional245

representation than the ground-truth. We observe that most of the TR decomposition methods fail246

dealing with the permutation on tensor-modes, and such the fact would limit the application of247

the TR methods in the practical use on high-order problems. We also observe the performance of248
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Table 1: Experimental results of searching structures on synthetic data in TR format. In the table, Eff.
denotes the parameter ratio between the structures by different methods and the ground-truths; RSE
in round brackets indicates the relative square error (ignored if smaller than 10−4.) and Gen. in angle
brackets indicates the generation of the reported individual in TNGA and our method.

Trial Order 4 – Eff.↑ (RSE↓) 〈Gen.↓〉
TR-SVD [47] TR-LM [28] TR-ALSAR [47] Bayes-TR [35] TNGA [25] Ours

A 1.00 1.00 0.21 1.00 1.00 〈004〉 1.00 〈003〉
B 0.64 1.00 1.00 0.64 1.00 〈002〉 1.00 〈003〉
C 1.17 1.17 0.23 1.00 1.17 〈005〉 1.17 〈003〉
D 0.57 0.57 0.32 1.25 (0.10) 1.00 〈003〉 1.00 〈002〉
E 0.43 0.48 0.40 0.40 1.00 〈007〉 1.00 〈003〉

Trial Order 6 – Eff.↑ (RSE↓) 〈Gen.↓〉
TR-SVD [47] TR-LM [28] TR-ALSAR [47] Bayes-TR [35] TNGA [25] Ours

A 0.21 0.44 0.14 (2e-3) 0.25 (2e-3) 0.82 〈011〉 1.00 〈010〉
B 0.14 0.15 0.14 0.44 (0.40) 0.90 (6e-3) 〈015〉 1.00 〈009〉
C 0.57 1.00 0.85 0.29 1.00 〈022〉 1.00 〈012〉
D 0.21 0.39 0.10 0.13 1.03 〈018〉 1.16 〈010〉
E 0.15 0.30 0.01 (0.02) 0.12 1.00 〈016〉 1.00 〈007〉

Trial Order 8 – Eff.↑ (RSE↓) 〈Gen.↓〉
TR-SVD [47] TR-LM [28] TR-ALSAR [47] Bayes-TR [35] TNGA [25] Ours

A 0.10 0.16 0.03 (0.20) 0.03 0.48 〈017〉 1.00 〈019〉
B 0.09 0.43 0.06 (0.02) 0.06 (7e-4) 0.29 (2e-3) 〈020〉 1.02 〈015〉
C 0.03 0.31 0.02 (0.01) 0.02 0.49 〈015〉 1.11 〈025〉
D 0.20 0.53 0.02 (0.07) 0.02 (0.02) 0.32 〈027〉 1.06 〈013〉
E 0.33 0.33 0.02 (0.02) 0.02 (3e-3) 0.23 〈023〉 0.88 〈010〉

Table 2: Experimental results of searching structures on synthetic data in various TN format. In the
table, Eff. denotes the parameter ratio between the structures by different methods and the ground-
truths; RSE in round brackets indicates the relative square error (ignored if smaller than 10−4.) and
Gen. in angle brackets indicates the generation of the reported individual of our methods. For rows,
“ranks” means we fix the permutation part yet only learning the ranks, while “ranks+matching” means
both the optimal ranks and permutation are learned.

TNs Our method Trial – Eff.↑ (RSE↓) 〈Gen.↓〉
A B C D

T-Tree [42] ranks 0.40 〈005〉 0.41 (0.02) 〈008〉 0.40 (9e-3) 〈006〉 0.65 (0.04) 〈005〉
ranks+matching 1.29 〈016〉 1.17 〈014〉 1.11 〈012〉 1.55 〈012〉

PEPS [38] ranks 0.41 〈010〉 0.43 (0.02) 〈024〉 0.39 (6e-3) 〈027〉 0.71 〈005〉
ranks+matching 1.14 〈013〉 1.00 〈016〉 1.00 〈007〉 1.21 〈009〉

H-Tucker [16] ranks 0.49 (0.01) 〈014〉 0.64 〈010〉 1.09 〈012〉 0.81 〈006〉
ranks+matching 1.42 〈008〉 1.21 〈023〉 1.18 〈007〉 1.29 〈011〉

MERA [11, 33] ranks 0.72 (0.01) 〈012〉 0.95 〈011〉 1.93 〈011〉 0.65 (0.04) 〈014〉
ranks+matching 0.95 〈024〉 1.32 〈008〉 2.30 〈024〉 1.00 〈027〉

TNGA appears dramatically deterioration when increasing the tensor order. As analyzed at the end of249

Section 4.1, TNGA suffers from the dimension explosion of the search space. In this case, TNGA250

has to search the solution from about 4.6× 1023 candidates, which is almost 8.0× 1016 larger than251

the one of ours.252

TN structure search not limit to TR. The proposed coding method is also useful for many well-253

known TNs in machine learning and physic not limit to TR. Under a similar setup for TR, we apply254

the proposed method to the TNs including T-tree (order-7) [42], PEPS (order-6) [38], hieratical255

Tucker (H-Tucker, order-6) [16] and multi-scale entanglement renormalization ansatz (MERA,256
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order-8) [11, 33]. Details of the data generation phase are given in the supplementary material.257

Table 2 illustrates the Eff., RSE and Gen. values by our method, where the rows of “ranks” mean258

we only learn the optimal TN-ranks while the rows of “ranks+matching” mean both the ranks and259

permutation are learned by our method. As shown in Table 2, our method achieves the TN structures260

as good as or even better than the ground-truth for various TNs. In addition, we also observe that a261

correct permutation on modes would significantly improve the representational power of TNs.262

4.2.2 Benchmarks on real-world data263

We consider three benchmark TNR problem on real-world data, where two of them is to represent264

the data and the other one is to represent learning models. Details of the experiment setup and more265

results are given in the supplementary material.266

1. Image compression. We use GA equipped with the proposed coding method (in TR format)267

to compress 14 natural images randomly chosen from BSD500 [1], where images are268

grayscaled, resized by 256 × 256, and tensorized into order-8 tensors by two different269

tensorization: a “Python-like” reshaping operation denoted by “Trivial” and visual data270

tensorization (VDT) [6, 24, 45], a image-resolution-based tensorization method. As the271

result, we show the compression ratio (CR, in log form) and RSE (in round brackets) by the272

methods TR-SVD, TR-LM and ours in Table 3, and visualize the summary statistics of the273

learned permutation by our method in Figure 3.274

2. Image completion. The same method is also implemented on image completion, a task275

to predict missing pixels from the observation. In the experiment, 8 images from USC-276

SIPI [40] are chosen and tensorized by VDT of order-9. After that, the entries are randomly277

removed at uniform distribution under the missing rate {50%, 70%, 90%}, respectively. We278

show the average of RSE of predicting the missing values in Table 4 compared with the279

TT/TR completion methods TT-SGD [45], TRLRF [44], TRALS [39].280

3. Reparameterization of tensorial Gaussian process (GP). TNR is applied to parameteriz-281

ing the variational mean of GPs. In the experiment, we reparameterize the TT variational282

mean given in [20] by our method to search better structures. In a regression task on283

datasets CCPP [37], MG [14] and Protein [12], we have the TT variational mean of the284

order-{4, 6, 9}, respectively. In the result, we evaluate the performance by the number of285

parameters and mean square error (MSE, in the round brackets) shown in Table 5.286

Table 3: Average of log compression ratio and
RSE (in round brackets) for image decomposition.
.

TR-SVD [47] TR-LM [28] Ours

Trivial 0.95(0.14) 0.94(0.14) 1.35(0.14)
VDT 1.11(0.15) 1.07(0.14) 1.30(0.14)
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Figure 3: Visualization of statistics on the similar-
ity to the original permutation.

Table 4: Average of RSE on image comple-
tion under various missing percentage.

TTSGD [45] TRLRF [44] TRALS [39] Ours

50% 0.16 0.12 0.13 0.11
70% 0.17 0.13 0.13 0.12
90% 0.18 0.20 0.18 0.16

Table 5: Number of parameters and MSE (in
round brackets) of GP regression under three
datasets.

CCPP MG Protein

TTGP [20] 2640 (0.06) 3360 (0.33) 2880 (0.74)
Ours 2244 (0.06) 3008 (0.33) 2032 (0.74)

287

288

VDT is verified as a more effective way for tensorization. The results in Table 3 show that,289

our method owns higher compression ratio under close RSE compared to other methods. More290

importantly, the results show a significant difference when learning structures from two tensorization.291

Figure 3 illustrates the statistics on the similarity between the original permutation and the learned292

ones by our method. We observe from Figure 3(a) that in VDT the learned permutation is significantly293

closer to the original one than that in the “Trivial”. Additionally, Figure 3(b) shows the cumulative294

distribution function (CDF), where we can see that, in VDT the probability is larger than 0.8 for295
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the similarity being smaller than or equal to 2 . It implies that with a large probability the learned296

structures in VDT own at most a pair of permutation difference compared to the original one. On the297

contrary, for “Trivial” the probability is almost zero in the same interval. Hence, it is verified from298

the empirical results by our method that VDT is more effective way for image tensorization than the299

trivially reshaping operations.300

Exploring TN structures obtains lower-dimensional representation from incomplete data. As301

shown in Table 4, our method achieve a comparable performance on the image completion task.302

Especially when the missing ratio is high, our method is forced to explore better TN structures not303

limit to the ranks, such that the lower-dimensional representation would be applied and results in304

more accurate prediction. Similar claims were also discussed in recent works [7, 17].305

Tensor-reparameterization: a potential way to compress learning models. TNs are known as306

an efficient framework to compress learnables variables by low-dimensional cores. In the experi-307

ment, we illustrate from a “proof-of-concept” level that the model would be further compressed by308

re-parameterizing the learned TN in model. As shown in Table 5, we always use fewer parameters309

than its “teacher” model TTGP [20] to achieve the same MSE on the three datasets. It implies that310

our method give more efficient TNR by search better structures. Unlike training the model with311

simultaneously searching TN structures, we empirically find that searching better structures from the312

well-trained model in TN format would achieve better compression ratio. We intuitively conjecture313

that, by structure search, it is likely to obtain more efficient representation for a tensor, which has314

been in low-rank TN format. In the training phase, on the other hand, the models are not significantly315

low-rank in general. Therefore, the tensor reparameterization often gives better performance in316

practice. A rigorous analysis on this issue is still an open problem.317

5 Discussion318

Our experiments show good TN structures including ranks and permutations can be effectively learned319

in practice by the proposed coding method under extensive family of graph constraints, and our320

theoretical results show the the superior performance is thanks to the low-dimensional essence hidden321

behind the irregularity of the graph-constrained TN structures. More surprisingly, Proposition 9322

shows that such the low-dimensional essence of TN structures is ubiquitous for most of practical323

TNs. As a consequence, we expect this work can promote the understanding on the structure search324

issue on tensor networks from both the theoretical and practical aspects, and the empirical claims in325

experiments are also expected to inspire more potential applications of TNs in machine learning.326

Limitation. Theoretically, we only study the TNs, which do not contain the internal cores. Some327

well-known models like (H-)Tucker and MERA are not contained in the theory, although the proposed328

coding method works well for those models in experiments. Empirically, the proposed coding method329

is more suitable for the population-based methods like GAs, which are still computationally expensive330

compared to other heuristics. Also, the experiments on real-world benchmarks are only illustrative331

and proof-of-concept. More numerical results are necessary if stronger statements such as the332

performance improvement are expected.333

6 Related works334

Learning the optimal TN structures is a generalization of the rank selection issue for TN models [8, 9,335

18, 26–28, 34, 43, 46, 47], and it is known as a tough task especially for the models that contain cycles336

in the topology [3, 23, 42]. More recently, there are several studies on learning TN structures [17, 19,337

21, 25] in a more general form. Another line of works that are close to ours are studies focusing on338

the partition issue for H-Tucker decomposition [2, 13, 15], where the modes would be clustered to339

determine the optimal tree structure. Unlike them, this work is the first to solve the optimal matching340

problem as illustrated in Figure. 1. Moreover, we are the only few to theoretically study the structure341

search issue for tensor networks. From the algorithmic aspect, the random-key trick in our coding342

method is first proposed by [4], and popularly applied to solving difficult sequencing tasks such as343

the “travelling salesman problem” and the “clique problem” [31] in computational graph theory. Our344

method is also close to the subgraph search issue in the recent work [41], yet we focus on the different345

tasks and issues.346
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