
Designing Draft Models for Speculative Decoding

Anonymous ACL submission

Abstract

Speculative Decoding is a widely used tech-001
nique to speed up inference for Large Lan-002
guage Models (LLMs) without sacrificing qual-003
ity. When performing inference, speculative004
decoding uses a smaller draft model to gener-005
ate speculative tokens and then uses the target006
LLM to verify those draft tokens. The speedup007
provided by speculative decoding heavily de-008
pends on the choice of the draft model. In this009
work, we perform a detailed study comprising010
over 350 experiments with LLAMA-65B and011
OPT-66B using speculative decoding and de-012
lineate the factors that affect the performance013
gain provided by speculative decoding. Our ex-014
periments indicate that the performance of spec-015
ulative decoding depends heavily on the latency016
of the draft model, and the draft model’s capa-017
bility in language modeling does not correlate018
strongly with its performance in speculative de-019
coding. Based on these insights we explore a020
new design space for draft models and design021
hardware-efficient draft models for speculative022
decoding. Our newly designed draft model for023
LLAMA-65B can provide 60% higher through-024
put than existing draft models and can general-025
ize further to the LLAMA-2 model family and026
supervised fine-tuned models.027

1 Introduction028

In recent years, Large Language Models (LLMs)029

have emerged as a cornerstone of modern compu-030

tational linguistics, offering unprecedented capa-031

bilities in generating and interpreting human lan-032

guage. As the demand for faster and more effi-033

cient language processing grows, understanding034

and optimizing the inference throughput of these035

models becomes increasingly crucial. Decoder-036

only LLMs (Brown et al., 2020; Touvron et al.,037

2023a,b) use auto-regressive decoding to perform038

inference. Auto-regressive decoding is known to be039

hardware inefficient (Miao et al., 2023; Liu et al.,040

2023a), leading to poor resource utilization and low 041

throughput during inference. 042

Several methods (Yu et al., 2022; Wang et al., 043

2020; Kwon et al., 2023; Dao et al., 2023; Hong 044

et al., 2023) have been studied to optimize the serv- 045

ing of LLMs. One promising approach to improve 046

the throughput for serving LLMs without accuracy 047

loss is speculative decoding (Stern et al., 2018; Xia 048

et al., 2023a; Leviathan et al., 2023). When us- 049

ing speculative decoding to serve an LLM (usually 050

100s of billion parameters), a draft model (a signifi- 051

cantly smaller LLM) is used to generate speculative 052

tokens. The target LLM model then verifies the out- 053

put of the draft model and only outputs tokens that 054

match its output. In the case of speculative decod- 055

ing, the target LLM for inference acts as a verifier 056

for the draft model. By leveraging faster inference 057

of smaller draft models, speculative decoding turns 058

autoregressive decoding on the target LLM into a 059

more hardware-friendly batched operation (similar 060

to “prefill”), thereby increasing throughput while 061

preserving accuracy. 062

Given the promised benefits of speculative de- 063

coding, this paper first focuses on understanding 064

the key factors that dictate the throughput improve- 065

ments that can be obtained. We perform a com- 066

prehensive benchmarking study and profile spec- 067

ulative decoding to characterize bottlenecks. We 068

perform over 350 experiments, using LLMs like 069

LLAMA-65B, OPT-66B, and fine-tuned chat mod- 070

els such as Vicuna-33B (Chiang et al., 2023) as 071

target models and LLAMA and OPT families as 072

draft models, ranging from ≈ 5× to 528× fewer 073

parameters than the target models. Our findings 074

show that the key bottleneck in speculative decod- 075

ing is the draft model’s latency, highlighting the 076

need to optimize draft model designs. 077

Next, we find that existing draft models, which 078

are typically designed only for improving accuracy 079

in a given parameter budget, are sub-optimal for 080

maximizing the throughput with speculative decod- 081

1

LLM Inference Prompt
Prefill

Prompt
PrefillSpeculative Decoding

LLM generates
x1

Draft generates
x1, ..., xn

LLM generates
x2

LLM generates
x3

k out of n tokens accepted,
repeat m times till termination

LLM prefills
x1, ..., xn

Draft generates
xk+1, ..., xk+n+1

LLM prefills
xk+1, ..., xk+n+1

LLM generates
x4

TAR =

Figure 1: This figure shows the speculative decoding process. In vanilla LLM inference, after the prompt is
processed into KV caches (Prefill phase), LLM generates the output token by token in an autoregressive manner
(Autoregressive generation phase). In speculative decoding, a draft model is first used to generate n candidate
tokens at each step (Draft token generation phase). The LLM verifies the candidate tokens and accepts k (k ≤ n)
tokens (LLM verification phase). Since LLM knows all n candidate tokens in advance, this step is identical to
a prefill step of length n. In both cases, this process is repeated until either an end-of-sequence (EOS) token is
generated or the maximum generation limit has been reached.

ing. From our experiments, we first observe that082

the draft model latency is bottlenecked by model083

depth, and higher model depth leads to increased084

latency (Section 3.2). Second, we also find that085

draft model accuracy on language modeling tasks086

does not correlate strongly with its performance087

in speculative decoding (Section 3.3), i.e., a draft088

model with higher accuracy on language modeling089

task can have similar TAR to a model with lower090

accuracy. Based on these two insights, we propose091

designing new draft models that trade increased092

depth for width (thus retaining the same parame-093

ter count) and show that our new draft models can094

boost inference throughput using speculative de-095

coding by over 60%. Finally, we show how pruning096

methods like Sheared-LLAMA (Xia et al., 2023b)097

can generate smaller draft models with favorable098

configurations.099

Our Contributions:100

• To the best of our knowledge, we are the first101

work to conduct comprehensive experiments102

on serving the open source LLAMA-65B and103

OPT-66B models utilizing speculative decod-104

ing, conducting more than 352 experiments105

to elucidate the factors one needs to consider106

while selecting and designing a draft model.107

• We show the need for a systematic redesign108

of draft models used for speculative decod-109

ing. We demonstrate that using accuracy110

on language modeling tasks to choose the111

draft model for speculative decoding can lead112

to suboptimal choices, and our experiments113

highlight that redesigning draft models can114

improve the throughput of speculative de-115

coding by up to 60%. Based on these in-116

sights, our pruned LLAMA-796M provides117

up to 60% higher throughput than Sheared-118

LLAMA-1.3B while using only 0.8% of to- 119

kens (0.42B vs 50.42B) used to train Sheared- 120

LLAMA-1.3B. We also show that LLAMA- 121

796M works well for other LLMs, such as 122

LLAMA-2 families of models and supervised 123

fine-tuned models (Vicuna-33B). 124

• Finally, we also study how improvements in 125

models and hardware can further impact draft 126

model design for future generations of LLMs. 127

(Section 5.1). 128

2 Background and Related Work 129

First, we provide a high-level overview of LLM 130

inference and the use of speculative decoding. 131

2.1 Background 132

A decoder-only LLM performs inference in two 133

phases: a prefill phase and an autoregressive- 134

decoding phase. In the prefill phase, the LLM is 135

initialized with a context or prompt, formulated as 136

C = {c1, c2, ..., cn}, where C represents the input 137

context and n the length of the prefill. In the prefill 138

phase, the model processes the whole input context 139

in parallel and performs next-word prediction. Dur- 140

ing the autoregressive-decoding phase, the model 141

generates new text sequentially, one token at a time, 142

building upon the context provided in the prefill 143

phase. Due to its sequential nature, the autoregres- 144

sive decoding phase is widely known to be mem- 145

ory bandwidth bound on modern GPUs (Leviathan 146

et al., 2023). 147

To improve hardware utilization and throughput, 148

Schuster et al. (2022); Chen et al. (2023) proposed 149

speculative decoding, where a significantly smaller 150

draft model generates multiple tokens, and the tar- 151

get LLM performs verification on the generated 152

tokens in parallel. The verification is akin to pre- 153

fill stage in LLM inference. As long as more than 154

2

5.0 5.2 5.4 5.6 5.8 6.0 6.2
TAR

10

20

30

40
Th

ro
ug

hp
ut

 (t
ok

en
s/

s)

OPT-66B Throughput (Tokens/s)

OPT-125m

OPT-350m OPT-1.3b
OPT-2.7b

OPT-6.7b

Throughput (tokens/s) vs TAR MMLU

(a) OPT Series on MMLU

4.5 4.6 4.7 4.8 4.9 5.0
TAR

5
10
15
20
25
30
35
40

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

OPT-66B Throughput (Tokens/s)

OPT-125M

OPT-350M OPT-1.3B
OPT-2.7B

OPT-6.7B

Throughput (tokens/s) vs TAR Hellaswag

(b) OPT Series on Hellaswag

Figure 2: This figure shows the throughput of different draft models from the OPT series. As model size increases,
throughput decreases due to higher inference latency despite consistent increases in TAR.

one token is accepted on average, speculative de-155

coding can potentially provide speedups. Figure 1156

shows how inference using speculative decoding157

differs from auto-regressive decoding. It is widely158

reported (Miao et al., 2023; Liu et al., 2023a) that159

the number of tokens accepted by the target model160

influences the speedup provided by speculative de-161

coding.162

In this work, we conduct a comprehensive em-163

pirical study to identify the performance bottleneck164

of speculative decoding and identify strategies to165

design the best draft model for a given LLM.166

2.2 Related Work167

LLM Inference There has been significant168

amount of work on improving LLM serving includ-169

ing work in Orca (Yu et al., 2022), LightSeq (Wang170

et al., 2020), DeepSpeed Inference (Aminabadi171

et al., 2022), PagedAttention (Kwon et al., 2023),172

FlashDecoding (Dao et al., 2023) and FlashDecod-173

ing++ (Hong et al., 2023). These works seek to174

improve LLM inference by better utilization of175

hardware. There are lines of work that have looked176

at pruning LLMs based on input context to speed177

up inference (Liu et al., 2023b) or using shallower178

and wider neural networks for machine transla-179

tion (Kasai et al., 2020). However, in this work,180

we focus on speculative decoding (Leviathan et al.,181

2023; Chen et al., 2023; Santilli et al., 2023), which182

has been inspired by speculative execution in hard-183

ware (Hennessy and Patterson, 2011).184

Speculative Decoding Several prior works have185

studied ways to improve speculative decoding. Liu186

et al. (2023a) seeks to continuously train the draft187

model on the output of the target model to improve188

the token acceptance rate. However, training on the189

same hardware during inference can be challeng-190

ing, depending on the inference request rate and 191

hardware utilization. Predictive Pipeline Decod- 192

ing (PPD) (Yang et al., 2023) was one of the first 193

methods to introduce the use of early exit (Schuster 194

et al., 2022) from the target model to obtain draft 195

tokens. Similar to PPD, Draft&Verify (Zhang et al., 196

2023) seeks to combine the use of early exit with 197

speculative decoding, where the early exit (Schus- 198

ter et al., 2022; Bae et al., 2023) from the target 199

model acts as a draft token. A drawback of these 200

methods is that the maximum benefit in latency 201

is capped. For example, in speculative decoding, 202

we can use draft models that are orders of magni- 203

tude (e.g., ≈100x-1000x) smaller than the target 204

model, while early exit methods usually exit af- 205

ter performing inference over at least a fourth of 206

the model (Schuster et al., 2022), thus, limiting 207

the gain in throughput. Other lines of work, such 208

as Medusa (Cai et al., 2024), propose fine-tuning 209

multiple generation heads within the LLM that do 210

not match the LLM output distribution exactly but 211

maintain the generation quality. 212

In this work, we aim to understand how the 213

choice of draft model affects the throughput pro- 214

vided by speculative decoding. We use insights 215

from benchmarking to design draft models that 216

maximize speculative decoding throughput. 217

3 Understanding Speculative Decoding 218

To study the effects of the choice of the draft model, 219

we first perform a detailed study on serving OPT- 220

65B and LLAMA-65B (two popular LLMs) using 221

speculative decoding. 222

Setup. We implement speculative decoding in 223

the Microsoft Deepspeed library (Microsoft, 2023). 224

We use the same setup as SpecInfer (Miao et al., 225

2023), first using the draft model to generate draft 226

3

OPT-125M OPT-350M OPT-1.3B OPT-2.7B OPT-6.7B0
20
40
60
80

100
120
140
160

Ti
m

e
(m

s)
Performance Breakdown of Draft and Target Latency

Target Latency
Draft Latency

Figure 3: Performance Breakdown of OPT speculative
decoding, lookahead length is set to be optimal for each
draft model found empirically.

2420161284
Number of layers

0.000
0.002
0.004
0.006
0.008
0.010
0.012

La
te

nc
y

(s
)

Single-step Decoding Latency of various 350M Models

(a) In this figure, we fix model parameters to 350M and vary
the number of layers and attention heads. As the number of
layers decreases from 24 to 4, the number of attention heads
increases from 16 to 56 (Table 6 in the Appendix).

2420161284
Number of layers

0.000
0.002
0.004
0.006
0.008
0.010
0.012

La
te

nc
y

(s
)

Single-step Decoding Latency vs Layer Depth

(b) In this figure, we fix layer width and increase the number
of layers. The number of parameters in the model increases
from 79M to 350M.

16 20 24 28 32 36
Number of Attention Heads

0.000
0.002
0.004
0.006
0.008
0.010
0.012

La
te

nc
y

(s
)

Single-step Decoding Latency vs Layer Width

(c) In this figure, we fix model depth and increase the number
of attention heads in each layer. The number of parameters in
the model increases from 350M to 1B.

Figure 4: This figure shows microbenchmarks on how
model depth and width affect decoding latency.

tokens and then using the target model to verify227

the output of the draft model. We set the batchsize228

to 1 and use greedy decoding. For all our exper-229

iments, we use 4 Nvidia 80GB A100 GPUs. We230

perform our experiment on the OPT and LLAMA231

base models (Zhang et al., 2022; Touvron et al., 232

2023a) on MMLU (Hendrycks et al., 2020), Hel- 233

laswag (Zellers et al., 2019), and Chatbot Arena 234

datasets (Zheng et al., 2023). For MMLU, we use 235

the standard 5-shot setup. The remaining datasets 236

were evaluated in a zero-shot setting. We use OPT- 237

66B and LLAMA-65B as the target LLM for OPT 238

and LLAMA series and use OPT-125M, OPT- 239

350M, OPT-1.3B, OPT-2.7B, and OPT-6.7B as 240

draft models for OPT series, and LLAMA-7B, and 241

LLAMA-13B as draft models for LLAMA series. 242

Metrics. To quantify the performance of different 243

draft models when performing inference on a target 244

model, we measure throughput (tokens generated 245

per second) and TAR (Figure 2). We note that the 246

primary goal of speculative decoding is to improve 247

throughput. 248

3.1 Bottlenecks in Speculative Decoding 249

To understand the throughput of LLMs, we first 250

plot a latency breakdown of speculative decoding 251

in Figure 3. We show the latency breakdown be- 252

tween the draft token generation phase and the tar- 253

get model verification phase for serving OPT-66B 254

model when using various variants of OPT as the 255

draft model. A similar figure for LLAMA models 256

(Figure 9) can be found in the Appendix. 257

In Figure 3, the time taken by the draft model 258

for token generation increases with an increase in 259

model sizes, going from 6.23 ms for OPT-125M to 260

18.56 ms for OPT-6.7B. However, even the small- 261

est draft model, OPT-125M, still takes significant 262

time in a speculative decoding iteration to perform 263

draft model autoregressive decoding. Though the 264

target LLM has a higher latency in each decoding 265

iteration, it only has to perform one prefill oper- 266

ation on the entire candidate token sequence. In 267

contrast, the draft model has to perform multi-step 268

autoregressive decoding sequentially, creating a 269

bottleneck. This highlights why draft model la- 270

tency is one of the key bottlenecks in speculative 271

decoding performance. We note that while Figure 3 272

uses lookahead values from 6 to 8, depending on 273

the draft model, even if we scale lookahead length 274

to hundreds of tokens, the target model verifica- 275

tion time stays constant. The draft model latency 276

remains the bottleneck due to the difference in effi- 277

ciency between prefill and auto-regressive decod- 278

ing. Next, we investigate how we can reduce draft 279

model latency. 280

4

4.4 4.5 4.6 4.7 4.8 4.9 5.0
TAR

25

50

75
Ac

cu
rc

y

125M 350M
1.3B2.7B

6.7B
OPT Models Accuracy vs TAR on Hellaswag

(a) Model accuracy vs TAR for OPT models

3.8 4.0 4.2 4.4 4.6
TAR

25

50

75

100

Ac
cu

ra
cy 1.3B

2.7B 7B 13B

LLaMA Models Accuracy vs TAR on Hellaswag

(b) Model accuracy vs TAR for LLAMA models

Figure 5: This figure shows the task accuracy versus TAR for OPT and LLAMA models on Hellaswag. The accuracy
numbers are obtained from OpenLLM Leaderboard (HuggingFace, 2023).

3.2 Understanding Draft Model Latency281

When studying the breakdown in latencies for spec-282

ulative decoding in the previous section, we ob-283

served something intriguing in Figure 3. We see284

that OPT-350M has a similar draft-model latency285

as OPT-1.3B, a model almost four times its size.286

This indicates that OPT-350M is inefficient, and287

we can design better models.288

We perform three microbenchmarks to validate289

our hypothesis and analyze decoding throughput:290

First, we fix the total model parameters at 350M291

and see how changing layer width and depth would292

affect decoding latency. Then, we fix either the293

layer width or depth to be the same as in OPT-294

350M and modify the other to see how latency295

scales with wider layers or shallower models.296

Figure 4 shows the results of these three bench-297

marks. In the first benchmark (Figure 4a), we vary298

the number of attention heads, feed-forward di-299

mension, and layers in a model to keep the model300

parameters at around 350M. The detailed configu-301

ration for each model can be found in Table 6 in302

the Appendix. The plot shows that the autoregres-303

sive decoding latency is linear in terms of layer304

depth despite each model having roughly the same305

parameter count.306

The same is true for the second benchmark (Fig-307

ure 4b). The original OPT-350M model has 24308

layers. As we reduce the number of layers while309

keeping all other configurations the same, the au-310

toregressive decoding latency decreases linearly.311

On the other hand, the third benchmark (Figure 4c)312

shows that as we scale the number of attention313

heads up from the original OPT-350’s 16 heads to314

36 heads, the decoding latency stays almost con-315

stant even if layer width has doubled.316

These experiments indicate more latency-317

efficient model architectures with the same param-318

eter budget exist. Changing the number of layers319

and attention heads not only changes the through-320

put but also affects the quality of predictions made 321

by the model. We will next study how changes in 322

model depth and width affect model accuracy and 323

TAR and the correlation between them. 324
3.3 Understanding Draft Model TAR 325

In prior work (Leviathan et al., 2023), speculative 326

decoding throughput is modeled by 1−αγ+1

(1−α)(γc+1) , 327

where 1−αγ+1

1−α represents the improvement factor 328

(expected number of tokens matched in each itera- 329

tion) and γc+1 represents the combined latency of 330

draft and target models. Therefore, tokens matched 331

per iteration (also known as TAR) have a linear 332

effect on speculative decoding throughput. 333

In this section, we perform experiments to un- 334

derstand the correlation between the accuracy of 335

a model on popular NLP tasks and its TAR. We 336

plot the accuracy of a model against the TAR it 337

achieves in Figure 5. Surprisingly, we find that 338

TAR has little correlation to the model’s accuracy 339

on a task. We believe this lack of correlation is due 340

to the majority of tokens in a sentence not being 341

content words, which do not affect the accuracy of 342

the model on a specific task. 343

For example, if a user asks a model: What is 344

the capital of Uruguay? An LLM may correctly 345

answer: The capital of Uruguay is Montevideo. 346

But a draft model, without retaining this much 347

knowledge, may respond incorrectly: The capital 348

of Uruguay is Paris. For model accuracy evalua- 349

tion, this would be a failure. However, this would 350

be a good set of candidate tokens in speculative 351

decoding, as the first five words are generated cor- 352

rectly. Therefore, as shown in Figure 5, TAR in- 353

creases sub-linearly with an increase in model size, 354

irrespective of its accuracy on the task. Results 355

on more datasets can be found in the Appendix 356

(Figure 10). 357

Combining insights from these experiments, 358

we observe that current draft models are not de- 359

signed to maximize speculative decoding through- 360

5

put. Next, we will show how to design new draft361

models that outperform existing models.362

4 Draft Model Design for Speculative363

Decoding364

The above results indicate that to improve the365

throughput of speculative decoding, it is necessary366

to improve the latency of draft models, i.e., can we367

design a model that provides a similar TAR at a368

lower inference cost? In the next section, we study369

the possibility of such a design based on the above370

insights.371

4.1 Draft Model Design372

In section 3.1, we show that model depth bottle-373

necks draft model latency, while in section 3.3, we374

show that a draft model’s performance in specula-375

tive decoding is largely irrelevant to its accuracy on376

language modeling. These two insights prompted377

us to test if we can build a wider and shallower378

network and study how it affects latency and TAR.379

Method: We leverage recent advances in struc-380

tured LLM pruning, Sheared-LLAMA (Xia et al.,381

2023b), which provides a framework to prune382

larger models to a specified smaller configuration.383

Sheared-LLAMA (Xia et al., 2023b) learns layers,384

attention heads, and neurons to mask from the large385

model to prune it into the specified small model.386

The flexibility enables us to prune LLAMA-7B387

into desirable model configurations. In our exper-388

iments, we prune our models from LLAMA-7B389

using 0.4B tokens sampled from the RedPajama390

Dataset (Computer, 2023) (the same as in Sheared-391

LLAMA (Xia et al., 2023b)), but skipped the ex-392

pensive fine-tuning step on 50B more tokens (and393

hence the name NoFT). We find that this is suffi-394

cient to achieve a significantly higher throughput.395

Deep vs Wide Model Comparison: Our goal396

is to start with LLAMA-7B and produce a wider397

version of Sheared-LLAMA-1.3B while keeping398

the number of parameters the same as in Sheared-399

LLAMA-1.3B. We choose Sheared-LLAMA-1.3B400

since it achieves the highest throughput in our401

benchmark among existing models (Blue dots in402

Figure 6). We use two configurations: the first con-403

figuration was provided by the Sheared-LLAMA404

authors (NoFT-1.3B), and we designed the second405

configuration (NoFT-Wide-1.3B) to optimize for406

better speculative decoding throughput. Table 1407

shows the detailed configuration of the two models.408

We slash the number of layers by half, from 24 to409

12, and keep the total parameter count roughly the410

same by increasing the intermediate size from 5504411

Table 1: This table shows the model configuration of
the two pruned models. Here l represents the number
of layers, h represents the number of attention heads,
dinter represents intermediate size, and dmodel represents
model dimension.

Model l h dinter dmodel

NoFT-1.3B 24 16 5504 2048
NoFT-Wide-1.3B 12 20 9280 2560
NoFT-Wide-796M 5 32 11008 4096
NoFT-Wide-543M 3 32 11008 4096
NoFT-Wide-290M 1 32 11008 4096

to 9280, the number of attention heads from 16 to 412

20, and the corresponding model dimension from 413

2048 to 2560. 414

Figure 6a, 6b, and 8b show that we can achieve 415

up to 30% higher speculative decoding throughput 416

using only 0.8% of tokens used to train Sheared- 417

LLAMA-1.3B. 418

Table 2 also shows the latency and TAR of the 419

two sheared models on MMLU. The deep variant 420

(NoFT-1.3B) can achieve 3% higher TAR, but the 421

wide variant (NoFT-Wide-1.3B) reduces draft la- 422

tency by 49%, improving overall throughput by 423

41%. We found results are very similar for other 424

datasets, such as Chatbot Arena (Figure 8b in the 425

Appendix) and Hellaswag (Figure 6b). This exper- 426

iment shows a need to rethink the model design 427

space for speculative decoding, where we should 428

specifically design models for higher throughput. 429

Draft model scaling: To understand the limita- 430

tion of draft model depth-width tradeoff in spec- 431

ulative decoding, we created three configurations, 432

NoFT-Wide-796M, 543M, and 290M, that use the 433

same number of attention heads, intermediate size, 434

and model dimension as LLAMA-7B, but reduce 435

the number of layers to 5, 3, and 1, respectively. 436

This is the widest configuration possible using the 437

Sheared-LLAMA pruning scheme. 438

Figure 6 shows that the NoFT-Wide-796M 439

model provides another 20% improvement in 440

throughput over NoFT-Wide-1.3B and demon- 441

strates up to 60% throughput improvement over the 442

existing Sheared-LLAMA-1.3B model. Though 443

the smaller NoFT-Wide-543M provides up to 40% 444

throughput improvements over Sheared-LLAMA- 445

1.3B, it has a lower throughput than NoFT-Wide- 446

796M. 447

Results in figure 6 show that reducing the layer 448

count to less than 5 layers would cause the model’s 449

alignment capability to reduce dramatically. In 450

addition, as we reduce models to 5 layers, target 451

model latency takes more than 80% of the time 452

6

1 2 3 4 5
TAR

5

10

15

20

25

30

35
Th

ro
ug

hp
ut

 (t
ok

en
s/

s)

LLaMA-65B Throughput (Tokens/s)
NoFT-Wide-290M

NoFT-Wide-543M

NoFT-Wide-796M
NoFT-Wide-1.3B

NoFT-1.3B
1.3B

2.7B7B

13B

Throughput (tokens/s) vs TAR MMLU LLaMA

(a) LLAMA Series on MMLU

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
TAR

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

LLaMA-65B Throughput (Tokens/s)
NoFT-Wide-290M

NoFT-Wide-543M

NoFT-Wide-796M

NoFT-Wide-1.3B

NoFT-1.3B
1.3B

2.7B7B

13B

Throughput (tokens/s) vs TAR Hellaswag LLaMA

(b) LLAMA Series on Hellaswag
Figure 6: This figure shows the throughput scaling of different draft models from the LLAMA series on MMLU
and Hellaswag. Asterisks represent models that are pruned but not fine-tuned. The red asterisks represent model
configurations that we designed.

Table 2: This table shows the speculative decoding
throughput and the latencies to generate 8 tokens us-
ing the two pruned draft models.

Draft Model TAR Latency (ms) Tput (tokens/s)

NoFT-1.3B 3.81 105.1 23.10
NoFT-Wide-1.3B 3.70 53.5 32.59

in a decoding cycle. Therefore, further reducing453

the latency would only provide a marginal gain454

in overall decoding latency since the target model455

latency remains constant. In this case, the drop456

in TAR significantly outweighs the latency gain,457

causing decoding throughput to decrease.458

4.2 Ablation Studies459

In this section, we study if using a different or460

supervised fine-tuned target model would affect461

our draft model’s performance.462

Varying the target model: Prior experiments463

are performed with LLAMA-65B as the target464

model. As newer generations of models roll out, we465

would like to see if our conclusion holds on newer466

generations of models. In this ablation study, we467

evaluate our best NoFT-Wide-796M model against468

LLAMA-2-70B model. Table 3 shows that though469

our NoFT-Wide-796M is distilled from LLAMA-470

7B, it can achieve a similar token acceptance rate471

when the target model is from LLAMA-2 family.472

We believe the similarity in performance is due to473

similar training datasets. This shows that our dis-474

tilled model can be applied to future families of475

models based on similar training recipes with little476

to no changes.477

Supervised fine-tuned models: Prior exper-478

iments are performed on base models to study479

the scaling of draft models. In practice, super-480

vised fine-tuned models are adopted for their better481

instruction-following capabilities. In this section,482

Table 3: This table shows the tokens accepted per iter-
ation when we use different target models. The draft
model we use is NoFT-Wide-796M.

Target Model MMLU Hellaswag Chatbot Arena

LLAMA-65B 2.66 2.74 2.61
LLAMA-2 70B 2.55 2.68 2.64

Table 4: This table shows the throughput of specula-
tive decoding (tokens/s) with Vicuna 33B as the target
model.

Draft Model MMLU Hellaswag Chatbot Arena

Tiny-LLAMA-1.1B 20.78 18.25 18.73
NoFT-Wide-796M 29.87 26.55 25.61

we compare our best NoFT-Wide-796M model to 483

Tiny-LLAMA-1.1B with Vicuna 33B as the target 484

model. Note that our NoFT-Wide-796M is pruned 485

from the base version of LLAMA-7B without fine- 486

tuning. Table 4 shows that NoFT-Wide-796M out- 487

performs Tiny-LLAMA-1.1B in all cases by up to 488

45%. While Tiny-LLAMA-1.1B has a TAR 35% 489

and 32% higher than NoFT-Wide-796M on MMLU 490

and Hellaswag, respectively, its latency is 4x higher 491

due to having 22 layers in the model compared 492

to NoFT-Wide-796M with merely 5 layers. This 493

ablation study also demonstrates how speculative 494

decoding is bottlenecked by draft model depth and 495

that a draft model obtained from the non-fine-tuned 496

base model, when appropriately designed, can still 497

provide significant speedup over draft models fine- 498

tuned for chatbot purposes. 499

5 Discussion 500

Next, we discuss how our insights can change if 501

the models or the underlying hardware change. 502

5.1 Future Draft Model Design 503

To study how compute and performance changes 504

can lead to different choices of draft models, we use 505

a performance model. The original speculative de- 506

7

Table 5: This table shows the latency reduction needed
for larger draft models to achieve parity throughput with
OPT-125M on MMLU.

Model Latency (ms) Parity Latency Reduction (%)

125M 43.7 43.7 0
350M 79.8 50.6 36.6
1.3B 87.1 58.7 32.6
2.7B 114.3 49.8 56.4
6.7B 139.5 68.2 51.1

coding (Leviathan et al., 2023) model 1−αγ+1

(1−α)(γc+1)507

can be simplified to the following to remove the508

unnecessary assumption of mutual independence509

between generated tokens in a sequence:510

Tput =

TAR

(tdtarget + tddraft)
if TAR > 1,

1

(tdtarget + tddraft)
if TAR ≤ 1.

511

In the Appendix (Figure 12), we show that this sim-512

plified formula almost perfectly captures the real513

speculative decoding throughput. Here, td repre-514

sents the latency to generate d tokens autoregres-515

sively. In this section, with the aid of the perfor-516

mance model, we provide quantitative answers to517

several questions: First, we study the improvement518

in TAR a larger draft model needs to be provided to519

compensate for the additional inference cost. Next,520

we study how much improvement in latency is re-521

quired to change the choice of the draft model.522
Improvement in TAR needed to switch to a523

larger draft model model. In Figure 2, we ob-524

served that with existing datasets and models, we525

are better off with the smallest model as the draft526

model, e.g., OPT-125M, than choosing a larger527

model. However, there is a possibility that the TAR528

difference will become greater for new datasets. In529

Figure 7, we plot the improvement in TAR (extra530

TAR), which larger models in the OPT model fam-531

ily should provide to match the throughput of the532

smallest model (OPT-125M) for MMLU. We find533

that if a 1.3B model can achieve a TAR advantage534

greater than 2 over OPT-125M for a new workload,535

we would choose the 1.3B model instead. Further-536

more, given that the maximum TAR is capped at537

8 in our scenario due to the length of draft token538

generation, it becomes unfeasible for OPT-2.7B539

and OPT-6.7B to surpass OPT-125M in perfor-540

mance. This is because the improvement needed541

in TAR for OPT-6.7B to match the throughput of542

OPT-125M would exceed this maximum limit.543
Improvement in latency for switching to higher544

TAR model. As hardware evolves, latency scal-545

ing patterns may change with more computing546

125M 350M 1.3B 2.7B 6.7B
OPT Draft Models

0

2

4

6

8

10

TA
R

Maximum TAR

Additional TAR Required for Parity Throughput MMLU
Current TAR
Additional TAR

Figure 7: This figure shows the extra TAR needed for
each model to achieve parity throughout with OPT-
125M on MMLU.

power and memory bandwidth. Therefore, conclu- 547

sions drawn on specific hardware (e.g., A100) may 548

not hold for newer or older hardware (e.g., H100 549

or V100). To account for changing hardware, we 550

study how much draft model latency improvement 551

is needed to achieve throughput parity. To demon- 552

strate this, we first compute the latency reduction 553

needed for different members in OPT family to 554

reach the same throughput as the smallest draft 555

model in Table 5. We find that up to 56% of latency 556

reduction is needed to achieve the same through- 557

put. For instance, for OPT-1.3B to achieve parity 558

throughput with OPT-125M, its latency needs to be 559

reduced by 32.9%. This reinforces our finding that 560

latency reduction provided by the smaller models 561

has significantly more benefit than the extra TAR 562

provided by a larger draft model. 563

6 Conclusion 564

In this work, we conduct a large-scale experimen- 565

tal study to understand how we can optimize the 566

throughput of speculative decoding. Using our ex- 567

periments, we outline the various factors that affect 568

speculative decoding throughput. We observe that 569

draft model accuracy on language modeling does 570

not correlate strongly with its performance in spec- 571

ulative decoding. Further, we find that draft model 572

latency is bottlenecked by model depth, and higher 573

model depth increases latency. Based on these two 574

insights, we propose new draft models pruned to 575

align with the target model while trading model 576

depth for width. Our proposed draft model can 577

increase throughput by up to 60% over existing 578

models. We find that the pruned models can be 579

used for supervised fine-tuned target models with- 580

out modification and discuss how future models 581

may impact draft model selection. 582

8

7 Limitations583

Our work aims to improve the inference efficiency584

of LLMs by designing better draft models for spec-585

ulative decoding. Since speculative decoding pre-586

serves the output from the LLM, our work will not587

amplify existing biases in LLMs. However, limit-588

ing and reducing such biases are out of the scope of589

this work. Furthermore, since we are making LLM590

generation more efficient, we believe our work will591

not have a significant negative environmental im-592

pact.593

References594

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-595
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,596
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff597
Rasley, et al. 2022. Deepspeed-inference: enabling598
efficient inference of transformer models at unprece-599
dented scale. In SC22: International Conference for600
High Performance Computing, Networking, Storage601
and Analysis, pages 1–15. IEEE.602

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-603
Young Yun. 2023. Fast and robust early-exiting604
framework for autoregressive language models with605
synchronized parallel decoding. arXiv preprint606
arXiv:2310.05424.607

Tom Brown, Benjamin Mann, Nick Ryder, Melanie608
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind609
Neelakantan, Pranav Shyam, Girish Sastry, Amanda610
Askell, et al. 2020. Language models are few-shot611
learners. Advances in neural information processing612
systems, 33:1877–1901.613

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,614
Jason D Lee, Deming Chen, and Tri Dao. 2024.615
Medusa: Simple llm inference acceleration frame-616
work with multiple decoding heads. arXiv preprint617
arXiv:2401.10774.618

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,619
Jean-Baptiste Lespiau, Laurent Sifre, and John620
Jumper. 2023. Accelerating large language model621
decoding with speculative sampling. arXiv preprint622
arXiv:2302.01318.623

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,624
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan625
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion626
Stoica, and Eric P. Xing. 2023. Vicuna: An open-627
source chatbot impressing gpt-4 with 90%* chatgpt628
quality.629

Together Computer. 2023. Redpajama: An open source630
recipe to reproduce llama training dataset.631

Tri Dao, Daniel Haziza, Francisco Massa, and Grig-632
ory Sizov. 2023. Flashdecoding. https://pytorch.633
org/blog/flash-decoding/. Accessed: January634
26, 2024.635

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 636
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 637
2020. Measuring massive multitask language under- 638
standing. arXiv preprint arXiv:2009.03300. 639

John L Hennessy and David A Patterson. 2011. Com- 640
puter architecture: a quantitative approach. Elsevier. 641

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xi- 642
uhong Li, Jun Liu, Kangdi Chen, Hanyu Dong, and 643
Yu Wang. 2023. Flashdecoding++: Faster large 644
language model inference on gpus. arXiv preprint 645
arXiv:2311.01282. 646

HuggingFace. 2023. Open llm leader- 647
board. https://huggingface.co/spaces/ 648
HuggingFaceH4/open_llm_leaderboard. Ac- 649
cessed: January 26, 2024. 650

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, 651
and Noah A Smith. 2020. Deep encoder, shallow 652
decoder: Reevaluating non-autoregressive machine 653
translation. arXiv preprint arXiv:2006.10369. 654

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 655
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 656
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 657
memory management for large language model serv- 658
ing with pagedattention. In Proceedings of the 29th 659
Symposium on Operating Systems Principles, pages 660
611–626. 661

Yaniv Leviathan, Matan Kalman, and Yossi Matias. 662
2023. Fast inference from transformers via spec- 663
ulative decoding. In International Conference on 664
Machine Learning, pages 19274–19286. PMLR. 665

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto- 666
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang. 667
2023a. Online speculative decoding. arXiv preprint 668
arXiv:2310.07177. 669

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang 670
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang, 671
Yuandong Tian, Christopher Re, et al. 2023b. Deja 672
vu: Contextual sparsity for efficient llms at infer- 673
ence time. In International Conference on Machine 674
Learning, pages 22137–22176. PMLR. 675

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 676
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom- 677
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and 678
Zhihao Jia. 2023. Specinfer: Accelerating generative 679
llm serving with speculative inference and token tree 680
verification. arXiv preprint arXiv:2305.09781. 681

Microsoft. 2023. Deepspeed. https://github.com/ 682
microsoft/deepspeed. Accessed: January 26, 683
2024. 684

Andrea Santilli, Silvio Severino, Emilian Postolache, 685
Valentino Maiorca, Michele Mancusi, Riccardo 686
Marin, and Emanuele Rodolà. 2023. Accelerating 687
transformer inference for translation via parallel de- 688
coding. arXiv preprint arXiv:2305.10427. 689

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://pytorch.org/blog/flash-decoding/
https://pytorch.org/blog/flash-decoding/
https://pytorch.org/blog/flash-decoding/
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://github.com/microsoft/deepspeed
https://github.com/microsoft/deepspeed
https://github.com/microsoft/deepspeed

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,690
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.691
2022. Confident adaptive language modeling. Ad-692
vances in Neural Information Processing Systems,693
35:17456–17472.694

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.695
2018. Blockwise parallel decoding for deep autore-696
gressive models. Advances in Neural Information697
Processing Systems, 31.698

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier699
Martinet, Marie-Anne Lachaux, Timothée Lacroix,700
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal701
Azhar, et al. 2023a. Llama: Open and effi-702
cient foundation language models. arXiv preprint703
arXiv:2302.13971.704

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-705
bert, Amjad Almahairi, Yasmine Babaei, Nikolay706
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti707
Bhosale, et al. 2023b. Llama 2: Open founda-708
tion and fine-tuned chat models. arXiv preprint709
arXiv:2307.09288.710

Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang,711
and Lei Li. 2020. Lightseq: A high performance712
inference library for transformers. arXiv preprint713
arXiv:2010.13887.714

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu715
Wei, and Zhifang Sui. 2023a. Speculative decod-716
ing: Exploiting speculative execution for accelerating717
seq2seq generation. In Findings of the Association718
for Computational Linguistics: EMNLP 2023, pages719
3909–3925.720

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi721
Chen. 2023b. Sheared llama: Accelerating language722
model pre-training via structured pruning. arXiv723
preprint arXiv:2310.06694.724

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dim-725
itris Papailiopoulos, and Kangwook Lee. 2023. Pre-726
dictive pipelined decoding: A compute-latency727
trade-off for exact llm decoding. arXiv preprint728
arXiv:2307.05908.729

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-730
jeong Kim, and Byung-Gon Chun. 2022. Orca: A731
distributed serving system for {Transformer-Based}732
generative models. In 16th USENIX Symposium733
on Operating Systems Design and Implementation734
(OSDI 22), pages 521–538.735

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali736
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a737
machine really finish your sentence? arXiv preprint738
arXiv:1905.07830.739

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,740
Gang Chen, and Sharad Mehrotra. 2023. Draft741
& verify: Lossless large language model accelera-742
tion via self-speculative decoding. arXiv preprint743
arXiv:2309.08168.744

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 745
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 746
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 747
Opt: Open pre-trained transformer language models. 748
arXiv preprint arXiv:2205.01068. 749

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 750
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 751
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 752
Judging llm-as-a-judge with mt-bench and chatbot 753
arena. arXiv preprint arXiv:2306.05685. 754

A More Experiment Results 755

In this section, we show more experimental analy- 756

sis of speculative decoding. In Figure 8, we plot the 757

throughput of OPT and LLAMA models against 758

its TAR on Chatbot Arena. This figure shows that 759

as model size increases, throughput generally de- 760

creases due to significantly higher inference latency 761

despite consistent increases in TAR. 762

In Figure 9, we plot the throughput of OPT and 763

LLAMA models against its TAR on Chatbot Arena. 764

This figure shows that draft latency occupies a large 765

chunk of time in a speculative decoding iteration, 766

opening up new avenues for designing draft models 767

optimal for speculative decoding. 768

In Figure 10, we plot the task accuracy versus 769

TAR for OPT and LLAMA models on MMLU. 770

The accuracy numbers are obtained from Open- 771

LLM Leaderboard (HuggingFace, 2023). This fig- 772

ure shows that task accuracy is irrelevant to TAR. 773

774

Required TAR to match throughput. We can 775

also use our analytical model to predict the TAR 776

necessary for different models to achieve a tar- 777

get throughput. This can be useful in scenar- 778

ios where developers deploy speculative decoding- 779

based LLMs and must meet a throughput goal. In 780

Figure 11, we plot the TAR needed by existing 781

models to achieve a specific throughput. The fig- 782

ure shows that the TAR gap between draft mod- 783

els at each given throughput is much larger than 784

we observed in Figure 2. When the throughput 785

requirement is high, a large draft model, such as 786

OPT-6.7B, can’t achieve the desired throughput. 787

This will allow model designers to quickly judge 788

which draft and target model pair allows them to 789

meet throughput requirements. 790

B OPT-350M Configurations 791

Table 6 shows the detailed model configurations 792

of the OPT-350M variants we created. The goal is 793

10

4.2 4.4 4.6 4.8 5.0
TAR

5
10
15
20
25
30
35
40

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

OPT-66B Throughput (Tokens/s)

OPT-125M

OPT-350M OPT-1.3B
OPT-2.7B

OPT-6.7B

Throughput (tokens/s) vs TAR Chatbot Arena

(a) Throughput scaling with increasing TAR in OPT series on
Chatbot Arena

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
TAR

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

LLaMA-65B Throughput (Tokens/s)
NoFT-Wide-290M

NoFT-Wide-543M

NoFT-Wide-796M

NoFT-Wide-1.3B

NoFT-1.3B
1.3B 2.7B

7B

13B

Throughput (tokens/s) vs TAR Chatbot Arena LLaMA

(b) Throughput scaling with increasing TAR in LLAMA series
on Chatbot Arena

Figure 8: This figure shows the throughput scaling against TAR for Chatbot Arena.

LLaMA-7B LLaMA-13B0
25
50
75

100
125
150
175
200

Ti
m

e
(m

s)

Performance Breakdown of Draft and Target Latency
Target Latency
Draft Latency

Figure 9: Performance Breakdown of LLAMA specu-
lative decoding, lookahead length is set to be optimal
lookahead length found empirically.

Table 6: This table shows model configuration of var-
ious OPT-350M models we created. The goal is to
explore the tradeoff between model depth and width
while keeping the total parameter count constant.

Num Layers Attn. Heads Hidden size FFN Dim

24 16 1024 4096
20 20 1280 3448
16 22 1408 4096
12 28 1792 3448
8 36 2304 3448
4 56 3584 3448

to keep the total parameter count close to that of794

OPT-350M while adjusting model width and depth.795

C Simplifying Analytical model796

The original speculative decoding paper (Leviathan797

et al., 2023) proposed an analytical model798
1−αγ+1

(1−α)(γc+1) to describe the speedup achieved by799

speculative decoding, where α denotes the ex-800

pected token acceptance rate (in percentage) and801

γ denotes the lookahead length. However, this802

model is inaccurate since it assumes that the tokens803

generated in a sentence are mutually independent.804

Table 7: This table shows the latency of each auto-
regressive generation step of the draft model.

Model Latency (ms)

OPT-125M 6.23
OPT-350M 11.74
OPT-1.3B 12.64
OPT-2.7B 16.35
OPT-6.7B 18.56

We simplify this cost model and use our updated 805

analytical model in our experiments. 806

Assuming a setup similar to prior 807

work (Leviathan et al., 2023; Chen et al., 808

2023; Miao et al., 2023) where speculative 809

execution of the draft model and target model 810

verification phases happen sequentially, the 811

performance of speculative decoding can be 812

decomposed into the following factors, 813

Tput =

TAR

(tdtarget + tddraft)
if TAR > 1,

1

(tdtarget + tddraft)
if TAR ≤ 1.

814

Considering a case where, in each iteration, d 815

tokens are generated by the draft model, tddraft de- 816

picts the time draft models take to generate d draft 817

tokens, while tdtarget is the time taken by the target 818

model for verifying those d draft tokens. TAR is 819

used to denote the average number of tokens that 820

were matched across a query or a dataset. 821

Verifying Analytical Model In Figure 12, we 822

compare the throughput predicted by our model 823

with throughput measured on real hardware for 824

two model families: LLAMA (7B and 13B) and 825

11

4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2
TAR

10

20

30
Ac

cu
ra

cy
125M 350M 1.3B 2.7B 6.7B

OPT Models Accuracy vs TAR on MMLU

(a) Model accuracy vs. TAR for OPT models on MMLU
and Hellaswag

4.4 4.6 4.8 5.0 5.2 5.4
TAR

20

40

60

Ac
cu

ra
cy

1.3B 2.7B
7B

13B

LLaMA Models Accuracy vs TAR on MMLU

(b) Model accuracy vs TAR for LLAMA models on
MMLU and Hellaswag

Figure 10: This figure shows the task accuracy versus TAR for OPT and LLAMA models on MMLU. The accuracy
numbers are obtained from OpenLLM Leaderboard (HuggingFace, 2023).

20 tokens/s 30 tokens/s 40 tokens/s
Throughput (tokens/s)

0

1

2

3

4

5

6

7

8

TA
R

Maximum TAR

TAR vs Throughput for Different Models
OPT-125M OPT-350M OPT-1.3B OPT-2.7B OPT-6.7B

Figure 11: This figure shows the required TAR to
achieve a given throughput.

OPT (125M, 350M, 1.3B, 2.7B, and 6.7B) to serve826

LLAMA-65B and OPT-66B on MMLU.827

We run these experiments on 4 Nvidia 80GB828

A100 GPUs for 100 iterations on the real server,829

and the error bars in Figure 12 represent the stan-830

dard deviation of the measurement. For the per-831

formance model, we collect tddraft and tdtarget on832

a real cluster with a single iteration. For TAR, we833

collect the average token acceptance rate from the834

MMLU dataset. The maximum deviation we ob-835

served between our proposed analytical model and836

the results obtained is 3.5%. The close correspon-837

dence between our performance model and real838

measurements shows that our performance model839

accurately predicts the throughput of speculative840

decoding.841

LLa
MA-7

B

LLa
MA-1

3B

OPT-
12

5M

OPT-
35

0M

OPT-
1.3

B

OPT-
2.7

B

OPT-
6.7

B
0

10

20

30

40

Th
ro

ug
hp

ut
 (t

ok
en

s /
 se

co
nd

s) Performance Comparison: Profiled vs read
Profiled
Real

Figure 12: This figure shows that our performance
model correctly captures the real performance of specu-
lative decoding. We use LLAMA-65B and OPT-66B as
the target model for each model family, respectively.

12

	Introduction
	Background and Related Work
	Background
	Related Work

	Understanding Speculative Decoding
	Bottlenecks in Speculative Decoding
	Understanding Draft Model Latency
	Understanding Draft Model TAR

	Draft Model Design for Speculative Decoding
	Draft Model Design
	Ablation Studies

	Discussion
	Future Draft Model Design

	Conclusion
	Limitations
	More Experiment Results
	OPT-350M Configurations
	Simplifying Analytical model

