
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

SPECTRAL JOURNEY: HOW TRANSFORMERS PREDICT
THE SHORTEST PATH

Andrew Cohen, Andrey Gromov, Kaiyu Yang, Yuandong Tian
Meta, FAIR

{andrewcohen,gromovand,kaiyuy,yuandong}@meta.com

ABSTRACT

Decoder-only transformers lead to a step-change in capability of large language
models. However, opinions are mixed as to whether they are really planning or
reasoning. A path to making progress in this direction is to study the model’s
behavior in a setting with carefully controlled data. Then interpret the learned
representations and reverse-engineer the computation performed internally. We
study decoder-only transformer language models trained from scratch to predict
shortest paths on simple, connected and undirected graphs. In this setting the rep-
resentations and the algorithm learned by the model are completely interpretable.
We present three major results: (1) Two-layer decoder-only language models can
learn to predict shortest paths on simple, connected graphs containing up to 10
nodes. (2) Models learn a graph embedding that is correlated with the spectral
decomposition of the line graph. (3) A new, approximate path-finding algorithm
Spectral Line Navigation that relies on the spectral decomposition of the line graph
to compute shortest paths.

1 INTRODUCTION

The rise of decoder-only transformers led to a dramatic change in the capabilities and adoption
of large language models (Vaswani et al., 2017; Achiam et al., 2023; Anthropic, 2024; Touvron
et al., 2023; Dubey et al., 2024). Despite the apparent success, it remains unclear whether the
models are capable of planning or reasoning (Kambhampati et al., 2024; Mirzadeh et al., 2024).
The lack of clarity is partially due to absence of a quantitative, verifiable definition of planning or
reasoning. For this reason, language models are typically evaluated via performance on benchmarks
focusing on math problems or multi-hop composition, where finding solutions requires humans
to reason (Cobbe et al., 2021; Yang et al., 2024). Unfortunately, these results cannot distinguish
“true reasoning/planning” from pattern matching or retrieval due to web-scale training and possible
data contamination. To make matters worse, models are often very sensitive to the exact prompt,
leading to brittleness when evaluated on variations of math problems with changed variable values
or irrelevant clauses (Mirzadeh et al., 2024). In other work, brittleness is shown to be correlated
with test set contamination (Oren et al., 2023).

One way to progress is to go beyond benchmark numbers and study language model internal dy-
namics in settings with carefully controlled, structured data (Ye et al., 2024; Edelman, 2024). In
such settings, it may be possible to define the notion of reasoning precisely, by showing that model
learned a general algorithm from a few examples. This algorithm can be extracted by interpreting
the representations developed by the model. Mechanistic interpretability (MI) is a research area
that aims to understand representations and reverse-engineer the computations learned by neural
networks (Elhage et al., 2021). It has revealed that models can learn general algorithms and repre-
sentations in algorithmic tasks such as modular arithmetic (Power et al., 2022; Nanda et al., 2023;
Gromov, 2023; Liu et al., 2022a; He et al., 2024), path-finding in directed acyclic graphs (Khona
et al., 2024), Markov chains (Nichani et al., 2024), iterative algorithms (Cabannes et al., 2024) and
generating complex objects in diffusion models (Okawa et al., 2024). Some MI work has proved
useful for language models (Templeton et al., 2024) and general ML tasks (Liu et al., 2022b).

We argue that investigating language model behavior (during training and inference) in a general
abstract problem space that requires reasoning, such as graphs and graph operations, may lead to a

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 1: Overview (a) We train 2-layer transformers to predict nodes in the shortest path between a
source and target node for a given graph represented sequentially as a list of edges and nodes. (b) We
find a strong correlation between model embeddings in layer 1 and the spectral decomposition of the
graph and (c) attention head dynamics (attention activations denoted by thickness of edge) in layer
2 which attend to the the current and target node edge tokens. Using this, we derive, implement, and
evaluate a novel (approximate) path-finding algorithm Spectral Line Navigation (SLN). (d) During
training, the model first learns to predict paths with 2 nodes (connected by a single edge) and then
learns an algorithm for paths with >2 nodes. Accuracy on paths of length 3, 4 and beyond improve
simultaneously. (e) After training, the model achieves 99.42% accuracy on the test set and SLN
achieves 99.32% accuracy.

taxonomy of algorithms and computations learned by language models for reasoning tasks. Graphs
can model many reasoning and planning problems, such as Trivia, navigation, and math word prob-
lems (). Additionally, the wealth of research on graph theory in computer science and mathematics
provides many useful ideas for analysis.

In this work, we study GPT-style transformer models trained from scratch to predict shortest paths
on simple, connected, and undirected graphs. Then, we inspect the attention maps and learned
representations to identify the algorithm employed by the model to compute the shortest path. Sur-
prisingly, we find that two-layer models can learn to perform this task on graphs with up to 10 nodes,
while one-layer models cannot. Mechanistic analysis shows no evidence of traditional dynamic pro-
gramming approaches (Dijkstra, 1959; Bellman, 1960; Brinkmann et al., 2024). Instead, we find
evidence of an algorithm that is spectral in nature (Chung, 1997). At a high level, the model learns
an embedding scheme of edges which is correlated with their distance in the graph and then selects
nodes using the minimum of this distance. We then implement this algorithm directly (without rely-
ing on the neural network) and evaluate it on the test set (described in the following sections) getting
99.32% accuracy. We refer to this spectral algorithm as Spectral Line Navigation (SLN). Although
spectral methods for finding shortest paths have been (briefly and recently) studied in the graph
theory literature (Steinerberger, 2020), to the best of our knowledge, SLN is a novel (approximate)
shortest path finding algorithm. Similar algorithmic ideas have been recently discovered in previous
MI work (Khona et al., 2024).

The major results of this work are as follows:

• Two-layer decoder-only transformer models can learn to predict shortest paths on simple,
connected graphs containing up to 10 nodes. Furthermore, models with a single attention
head can learn the task, but increasing the headcount while keeping the number of param-
eters fixed allows the model to learn the task faster.

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

• Models learn a graph embedding that is correlated with the spectral decomposition of the
line graph1. Furthermore, models strongly attend to the edges containing the current node
and the target node when selecting a next edge in the path.

• An approximate path-finding algorithm SLN, which uses the distance between edges in the
spectral decomposition of the line graph to compute shortest paths.

2 PRELIMINARIES

In this work, we study simple, connected and undirected graphs. We do not make any restrictions
for cycles. A graph G is defined as G = (V,E) where V is a set of nodes and E is a set of edges
E = {(vi, vj) | vi, vj ∈ V, i ̸= j}. We denote an edge between nodes vi, vj as ei,j .

Shortest Path Problem Since we study connected graphs, for a source node vsrc and target
node vtgt, vsrc ̸= vtgt, there exists a sequence of nodes or path which connects them P =
(vsrc, vi, vi+1, ..., vj , vtgt) where esrc,i, ei,i+1, ej,tgt ∈ E. We refer to the pair (vsrc, vtgt) as
the query and we define the length ℓ of path P as the number of nodes in P .

The shortest path problem is to find the path with the fewest nodes between vsrc and vtgt. We de-
fine the shortest path as P ∗ and the length of the shortest path ℓ∗. Note, P ∗ may not be unique.
Computing shortest paths is a well-studied problem in graph theory and computer science and many
algorithms exist (Cherkassky et al., 1996). In general, finding shortest paths is a challenging opti-
mization problem as there may be many paths connecting two nodes. Selecting between these paths
for the shortest requires non-trivial planning and reasoning.

Line Graph The Line Graph of a graph is another graph L(G) = (VL, EL) which represents the
adjacencies between edges (Harary & Norman, 1960). Each edge in G is represented by a node in
L(G) and two nodes are connected in L(G) if the edges share a common node in G. Formally, L(G)
is constructed as:

• VL = {vij | eij ∈ E}
• EL = {eijk | eij , ejk ∈ E}

Graph Laplacian and Spectral Decomposition The Laplacian L of a graph G = (V,E) is a
matrix representation defined as

L = D −A

where D is the diagonal degree matrix of nodes in G and A is the adjacency matrix of G. Nodes
with high degree will have a large impact on the spectrum of L so it is common to consider the
normalized Laplacian L̄ defined as

L̄ = D− 1
2LD− 1

2

D
− 1

2
i,j =

{
1√

deg(vi)
i = j

0 i ̸= j

where deg(vi) is the degree of node vi. Then,

L̄i,j =

1 i = j

−1√
deg(vi)deg(vj)

i ̸= j, eij ∈ E

0 else

The spectral decomposition of L̄ (and L) and is a standard method for quantifying node connectivity
for such tasks as finding node clusters. For connected undirected graphs, the eigenvalues are always
positive and real-valued. The smallest eigenvalue is always zero and the eigenvector coefficient
corresponding to the second smallest eigenvalue (i.e., the Fiedler Vector) corresponds to the sparsest
clustering of nodes. For more fine-grained clustering, the eigenvector coefficients for the k smallest
non-zero eigenvalues is used (Chung, 1997).

1A line graph is a graph obtained from a given graph by replacing all edges by nodes and adding edges if
the corresponding edges in the original graph share a node

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3 EXPERIMENTAL SETTINGS

Data We generate simple connected graphs of 3–10 nodes using the Labelled Enumeration algo-
rithm (Mckay, 1983; Mckay). which yields approximately 12M non-isomorphic graphs in total. In
this setting, the shortest path P ∗ has between 2 and 10 nodes, and thus the length 2 ≤ ℓ∗ ≤ 10.
We partition the graphs into 80% for training and 20% for testing. For each pair of nodes within a
graph, we compute the shortest path for the forward and reverse directions using the Python package
NetworkX (Hagberg et al., 2008).

Given a graph and query (a pair of nodes), we randomly select either the forward or reverse shortest
path, but not both, to prevent the model from learning symmetry shortcuts. Although there may
be multiple shortest paths between two nodes, for each sample we select only one. Samples are
bucketed by both path length and the number of nodes in the graph. We then sample as uniformly
as possible from these buckets given that the number of paths of a particular path length decreases
as the length increases (e.g., there are fewer paths of length 9 in graphs up to 10 nodes than paths of
length 4). In this manner, we generate approximately 1M training samples and 500K test samples
where the test set contains exclusively graphs not in the training set.

ℓ̄− ℓ∗

Figure 2: (Top) Probability of generating a shortest path by path length for 2-layer models with
1,2,4,8 heads on the test set. Increasing the number of heads improves performance, although all
models are able to perform the task with high accuracy. The worst category is the 1-head model
on paths of length 6 where the 1.5 interquartile range is above 0.95. (Bottom) The occurrence
of samples by probability of correctness and the ℓ̄ − ℓ∗ (defined in Equation 1). Yellow is larger.
Samples in which there are many paths of similar length between source and target (ℓ̄ − ℓ∗ → 1)
contribute to the failures. As the number of heads increase, the model becomes more robust.

Representing Graphs as Tokens Each sample is structured as a list of edges, a list of nodes, the
source and target nodes and then a list of nodes corresponding to the shortest path. We use a set of 6
control tokens to denote an edge, the beginning of the node list, the beginning of the query and the
beginning of the shortest path in addition to standard beginning and end of sequence tokens. Each
of the 10 node labels is a separate token thus, the vocabulary contains 16 total tokens. Please refer
to Table 2 in Appendix A.2 for a complete description of the entire vocabulary.

Control tokens serve to explicitly identify the different components of a sample to relieve the model
from needing to infer this from context. Additionally, control tokens serve as registers for the model
to store intermediate results (Goyal et al., 2024; Darcet et al., 2024; Brinkmann et al., 2024).

Model We train two-layer decoder-only transformer models (Vaswani et al., 2017) with RoPE posi-
tional embeddings (Su et al., 2021). We use a fixed hidden dimension of 512 and train models with
1, 2, 4, and 8 heads. For a complete list of hyperparameters, please see Table 1 in Appendix A.1.

During training and testing, for each sample, we randomly shuffle the edge order, the node ordering
within edges and the node ordering in the node list as well as relabel each node. This maintains
the same graph structure but ensures the computations and representations the model learns will be
robust to any specific labeling and ordering of a particular graph. In what follows, we refer to this
procedure as a remap. Finally, we mask the loss on all but the tokens in the shortest path because
the edge list, node list and source and target tokens are inherently unpredictable.

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

4 TRAINING RESULTS

In this section, we evaluate the model’s ability to learn the task of generating shortest paths. As
stated in Section 3, there may be multiple shortest paths between the source and target node. Thus,
we present two results: the total probability assigned to all shortest paths and the distribution of path
probabilities when many exist. For additional experimental results ablating model graph size, please
see Appendix B.1.

Figure 3: Probability distribution over j ∈ {2, 3, 4, 5, 6, 7} shortest paths for 2 layer models with
1,2,4, and 8 heads. Samples are grouped by the number of shortest paths between source and target
in the range. We compute the probability of each of the j paths and sort them in descending order.
Each point is the mean and standard deviation over the test set.

4.1 ACCURACY

Figure 2 shows the probability of generating a shortest path resolved by the path length for 2-layer
models with 1,2,4, and 8 heads on the test set. For a given graph and query, we compute all shortest
paths (Hagberg et al., 2008) and compute the probability of sampling each path from the model with
a temperature of τ = 0.7. The sum of these probabilities is the probability that the model correctly
generates a shortest path for a given graph and query. The distribution of probabilities over paths is
presented in the next section.

In the top row of Figure 2, we observe that the number of heads is positively correlated with accuracy
(although all model variants perform well and the worst category is the 1-head model on paths of
length 6 where the 1.5 interquartile range is above 0.95). Additionally, we observe that path length
is not necessarily correlated with difficulty.
In the bottom row of Figure 2, we characterize the samples which have a less than 80% chance of
being solved by each model. In the failure cases, we observe that there usually exist many near-
optimal paths (e.g., if the shortest path has length 4, there may be other paths of length 5) to which
the model assigns non-trivial probability. For each sample, we take the 10 paths to which the model
assigns the highest probability. Then, we separate the paths with length ℓ > ℓ∗ and compute the
average ℓ̄.

We propose the following metric to measure the variation in path length:

ℓ̄− ℓ∗ (1)

Note, ℓ̄ − ℓ∗ ≥ 1 because ℓ̄ is the average path length of paths ℓ > ℓ∗. We filter samples for
4 ≤ ℓ∗ ≤ 8 as these are the samples with decreased performance. For each model, we bucket
samples by the the probability assigned to the shortest paths in increments of 0.2 up to 0.8 and
the value of ℓ̄ − ℓ∗. We plot the occurrences as color in the bottom row of Figure 2. These plots
show there is a greater frequency of lower probability samples as the value of ℓ̄ − ℓ∗ approaches 1.
Additionally, models become more robust to this effect with increasing heads.

4.2 DISTRIBUTION OF PATHS

In this section, we show that all model variants learn a distribution over paths even though we don’t
explicitly train the model on different paths for a given graph and query (up to a remap) over
epochs.

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

hcurrent

htarget

Generation 2 2 1 2 1 4

Figure 4: Attention activations of hcurrent and htarget of the 4 head model in the final layer visu-
alized as thickness of an edge for an example graph and shortest path query from source node (2)
to target node (8). Each column corresponds to 1 iteration of generation and the current node and
path so far is highlighted in blue. (Top) hcurrent attends to the edge tokens corresponding to edges
containing the current node in the sequence. Additionally, the relative attention activation is reduced
for the edge connecting the current node to the previous node. (Bottom) htarget attends to the edge
tokens corresponding to edges containing the target node.

All model variants exhibit a similar pattern - for each k, there is one path to which the model assigns
> 50% probability and then a decaying but non-trivial probability to the rest of the paths. Although
this behavior emerges without explicitly training for it, it is not clear that resampling the path over
training epochs would drastically change the distribution and we leave this for future work.

We group samples by the number of paths j ∈ {2, 3, 4, 5, 6, 7} with length ℓ∗ and compute the
probability for each path with each model. Then, we rank the path probabilities by descending order
and average the probabilities over the rankings. We report these results in Figure 3.

5 MECHANISTIC INVESTIGATION

In this section, we provide two mechanistic results which we use to propose and implement SLN later
on. Specifically, we show that the model learns attention heads which strongly attend to the edge
control tokens ⟨e⟩ of edges which contain the current and target nodes in the second layer. Then,
we examine the embeddings of the edge control tokens after the first layer and show that the model
learns an embedding scheme wherein the distance between edge representations is correlated with
the distances obtained by a spectral decomposition of L(G). To obtain intermediate representations
from the model, we use the Python package TransformerLens (Nanda & Bloom, 2022).

5.1 ATTENTION MAPS

In Section 4, we showed that increasing the number of heads correlated with improved accuracy. In
this section, we examine attention activations as the model autoregressively generates a path between
source and target node. We refer to the most recent intermediate node in the generated path as the
current node.

We identify two distinct attention head mechanics in the second (and final) layer and denote them
by hcurrent and htarget and define their functions as:

• hcurrent: Attends to the edge control token ⟨e⟩ of edges which contain the current node in
the shortest path.

• htarget: Attends to the edge control token ⟨e⟩ of edges which contain the target node in the
shortest path.

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 5: Cosine similarity of distance matrices between the top 20 principal components of edge
token embeddings and the eigenvector coefficients of the 20 smallest non-zero eigenvalues of the
normalized Laplacian of L(G) over 10000 random samples. For each sample, we apply remap 100
times. For 1, 2 and 4 heads, the maximums (red square) are 0.928, 0.907 and 0.909, respectively
with 4 eigenvector and 4 PCA coefficients. For 8 heads, the maximum is 0.826 with 7 eigenvector
and 20 PCA coefficients.

To find hcurrent and htarget, we manually inspect activation maps when the model is generating
paths of at least 4 nodes. We focus on these paths, because the attention activations for paths with
< 4 nodes are less peaked for hcurrent and htarget, suggesting the model may use a potentially
simpler algorithm in these cases (e.g., a ‘lookup’ table when the source and target nodes are con-
nected by an edge). We select the heads from each model whose maximum activations correspond
to ⟨e⟩ containing the current or target nodes. Note that the 2-head model does not need any selec-
tion, whereas the 8-head model learns redundant hcurrent and htarget. Since the model distributes
activation according to the degree of a node (which varies across samples), we normalize attention
activations by dividing by the maximum value in a given sample. Additionally, other heads in the 4
and 8 head models attend to other control tokens as well as other edges in the graph, but we leave
interpreting these activations to future work.

Figure 6: (x-axis) Unnormalized pairwise dis-
tance matrix of top 4 PCA coefficients of the
embeddings of the control tokens ⟨e⟩ after the
first layer of the 4-head model versus (y-axis)
unnormalized pairwise distances between the
eigenvector coefficients of edges corresponding
to the smallest 4 non-zero eigenvalues of the
normalized Laplacian of L(G). Values are com-
puted over all pairs of edges from 100 random
samples and then we subsample 10% of values.
The Pearson correlation coefficient is 0.92

In Figure 4, we show the activations of hcurrent

and htarget (visualized as the thickness of an
edge) for an example graph as the 4-head model
generates the first 3 nodes in the shortest path.
In the top row, hcurrent attends to the edge to-
kens corresponding to edges containing the cur-
rent node in the sequence. Additionally, the rel-
ative attention activation is reduced for the edge
connecting the current node to the previous node,
which we interpret as a mechanism to avoid re-
turning to the previous node as this would not be
the shortest path. In the bottom row, htarget at-
tends to the edge tokens corresponding to edges
containing the target node. We report the average
normalized activations of hcurrent and htarget on
⟨e⟩ versus other edges, respectively at the first
(source) node for paths of length 4 or greater over
the test set in Table 3 in Appendix B.2.

5.2 SPECTRAL PARTITIONING
OF L(G) AND MODEL EMBEDDINGS

Given the results in the previous section, we in-
vestigate the embeddings of the edge control to-
ken ⟨e⟩ after the first layer (as these are the repre-
sentations to which the attention heads in the second layer attend). We assume that these embeddings
represent specific edges (namely, the edge that precedes the control token). To interpret the algo-
rithm learned by the model we ask: is there an algorithmic way to embed edges that comes directly
from the graph theory. The most obvious guess is to consider spectral embeddings of the line graph
Laplacian. Below we show that representations found by the model correlate strongly with the line

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

graph Laplacian. Specifically, we show that the principal components of the edge embeddings are
correlated to the edge representations in the spectral decomposition of L(G).

For a given sample, we apply remap 100 times and collect the activations of the residual stream
after the first layer of the representation of ⟨e⟩, retaining the original edge orderings to do pairwise
comparisons. For each remap, we compute the principal components separately to obtain a low-
dimensional representation for each edge. We then average the pairwise distances between these
representations over each remap. Alternatively, for the original graph, we compute the spectral
decomposition of the normalized Laplacian of L(G) and use the eigenvector coefficients to obtain
a representation for each edge as is commonly done in spectral graph theory. These representations
are completely independent of the model. This yields two vectors of length

(
n
2

)
where n is the

number of edges in the graph. We normalize both of these vectors to the range [−1, 1] and compute
their cosine similarity. Note cosine similarity is in the range [−1, 1] where two vectors are more
correlated as the value approaches 1.

We perform the above procedure for 10000 random samples from the test set and compute the cosine
similarity when varying the number of eigenvector coefficients and PCA coefficients. We report the
results in Figure 5. For 1, 2 and 4 heads, the maximums are 0.928, 0.907 and 0.909, respectively
with 4 eigenvector and 4 PCA coefficients. For 8 heads, the maximum is 0.826 with 7 eigenvector
and 20 PCA coefficients.

Figure 6 shows the Pearson correlation between the (unnormalized) pairwise embedding distances of
the top 4 principal components of the 4-head model’s edge token representations and the eigenvector
coefficients of edges corresponding to the smallest 4 non-zero eigenvalues. These values are selected
as they correspond to the maximum cell in Figure 5. We compute the pairwise distances over
100 randomly sampled graphs and then subsample 10% of points to plot. The Pearson correlation
coefficient is 0.92. In simple terms, Figure 6 means that (on average) if two edges are close in
model-embedding space then they are also close spectra-embedding space.

We note that the ⟨e⟩ embeddings are fundamentally incapable of perfectly matching the L(G) de-
composition due to the causal mask - the specific order of the edges may make it impossible for the
model to represent the precise relative distances as they may become ’closer’ due to a future edge to
which the model cannot attend. It is possible that an encoder-decoder architecture (Vaswani et al.,
2017) would be more successful but this is beyond the scope of this work as we want to understand
the dynamics of decoder-only models.

6 PROPOSED PATH-FINDING ALGORITHM

In this Section we argue that the algorithm used by the model can be interpreted completely. Since
we know that model essentially learns spectral embeddings, it is reasonable to ask: can we design a
simple algorithm that leverages these embeddings (and possibly distances in the embedding space)
to find the shortest path. We use the insights from Section 5 to propose a (novel) path-finding
algorithm which we call Spectral Line Navigation (SLN). There exist shortest path algorithms which
use the graph Laplacian (Steinerberger, 2020). To the best of our knowledge, SLN is the first which
uses the Laplacian of L(G).

There are three key components which follow from the results in Sections 5.1 and 5.2, respectively.
Given a graph G = (V,E), and source and target nodes, we first compute edge embeddings of the
graph edges using the spectral decomposition of the Laplacian of L(G). Then, beginning at the
source node, we iteratively apply the following three steps until we reach the target node:

1. Gather the embeddings of edges containing the current node (i.e., hcurrent) and target
node (i.e., htarget), constructing the sets Ecurrent = {ecurrent,i | ecurrent,i ∈ E} and
Etarget = {etarget,j | etarget,j ∈ E}.

2. Compute the L2 distance matrix Dcurrent,target between elements in Ecurrent and Etarget

Dcurrent,target
i,j = ∥ecurrent,i − etarget,j∥2

ecurrent,i ∈ Ecurrent

etarget,j ∈ Etarget

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

The i, j’th entry Dcurrent,target
i,j is the estimate of the distance in the graph between edges

ecurrent,i and etarget,j .
3. Select the edge ecurrent,i with minimum distance to any of the the edges in Etarget.

î← argmini,jD
current,target

Then, node î is the next node in the path.

We implement and run SLN on the test set and are able to achieve a final accuracy of 99.32%. We
found that for most graphs (roughly 80%) using only the second smallest eigenvalue (i.e., the Fiedler
vector from Section 2) for edge embeddings is sufficient. However, for other graphs we needed to
increase the number k of non-zero eigenvalues we consider for edge embeddings. We report the log
of counts for each 1 ≤ k ≤ |E| in Figure 9 in Appendix B.3. Additionally, please see Appendix B.1
wherein we predict and demonstrate with ablations that the model will fail to learn SLN as a function
of the hidden dimension and maximum number of edges in the graphs. Additionally, please see
Appendix B.1 wherein we predict and demonstrate with ablations that the model will fail to learn
SLN as a function of the hidden dimension and maximum number of edges in the graphs.

7 RELATED WORK

Interpretability and Reasoning Ideas from Mechanistic Interpretability have been applied to mod-
els trained on algorithmic data to understand the types of algorithms models may discover. Solutions
learned by transformers trained on modular arithmetic have been fully reverse-engineered (Nanda
et al., 2023) and the dynamics of feedforward networks have been theoretically characterized (Gro-
mov, 2023; Tian, 2024; He et al., 2024). In transformers trained on data generated by iterative al-
gorithms, the model learns a corresponding attention head which applies this iterative scheme (Ca-
bannes et al., 2024). Circuits in transformers exist which can compose atomic subject-object re-
lations into multi-hop relations across entities (Wang et al., 2024a) as well as compose variable
relationships and assignments in propositional logic (Hong et al., 2024).

Graph Problems with Language Models Graph problems have served as a useful testbed for un-
derstanding the capabilities of language models with benchmarks such as GraphQA (Fatemi et al.,
2024), CLRS-text (Markeeva et al., 2024) and NLGraph (Wang et al., 2023). Graph problems also
have been used to illuminate numerous token representation limitations for solving combinatorial
problems with language models (Ying et al., 2021; Perozzi et al., 2024; Markeeva et al., 2024; Bach-
mann & Nagarajan, 2024).

Path-finding with Language Models Interpreting language models trained on path finding tasks
is of great interest as it is a problem that fundamentally requires planning and reasoning (Wang
et al., 2024b). Models trained on directed acyclic graphs (Khona et al., 2024) to find any path, not
necessarily the shortest, learn an algorithm that is very similar to SLN however it relies on node
embedding distances instead of edge embedding distances, possibly due to differences in graph
representation. There is no connection to the Graph or Line Graph Laplacian and we do not have any
constraints on cycles in our setting. 6-layer decoder-only models trained to predict the path between
source and target nodes in binary trees learn an iterative mechanism applied per layer whereas our
model learns a embedding distance-based mechanism (Brinkmann et al., 2024). The SearchFormer
line of work shows that encoder-decoder transformers can be trained to generate A∗ search traces in
order to navigate mazes and often generate smaller search trees than A∗ itself (Lehnert et al., 2024;
Su et al., 2024). Finally, there exist many alternate lines of work such as Graph Neural Networks (Wu
et al., 2021) and Looped Transformers (De Luca & Fountoulakis, 2024).

8 CONCLUSION

In this work, we have investigated the problem of training to and understanding how decoder-only
language models predict shortest paths. To that end, we have shown 2-layer models can learn this
task with high accuracy and, by observing attention head dynamics and demonstrating a high cor-
relation between token embeddings and the eigendecomposition of the normalized Laplacian of the
line graph, proposed a novel path-finding algorithm Spectral Line Navigation. There are many pos-
sible directions for future work such as graph tasks beyond the shortest path, exploring the trade-off
between model and graph size and alternative forms generalization besides unseen graph structures.

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. 2024.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. International
Conference on Machine Learning, 2024.

Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, pp. 87–90, 1960.

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. A mech-
anistic analysis of a transformer trained on a symbolic mulit-step reasoning task. Association for
Computational Linguistics, 2024.

Viven Cabannes, Charles Arnbal, Wassim Bouaziz, Alice Yang, Francois Charton, and Julia Kempe.
Iteration head: A mechanistic study of chain-of-thought. Advances in Neural Information Pro-
cessing Systems, 2024.

Boris Cherkassky, Andrew Goldberg, and Tomasz Radzik. Shortest paths algorithms: theory and
experimental evaluation. Mathematical Programming, 1996.

Fan Chung. Spectral graph theory. American Mathemetical Society, 1997.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Timothee Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. International Conference on Learning Representations, 2024.

Artur Back De Luca and Kimon Fountoulakis. Simulation of graph algorithms with looped trans-
formers. arXiv preprint arXiv:2402.01107, 2024.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
pp. 269–271, 1959.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Benjamin Edelman. Combinatorial Tasks as Model Systems of Deep Learning. PhD thesis, Harvard
University, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models, 2024.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Nagarajan
Vaishnavh. Think before you speak: Training language models with pause tokens. International
Conference on Learning Representations, 2024.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Aric Hagberg, Daniel Schult, and Pieter Swart. Exploring network structure, dynamics, and function
using networkx. Python in Science Conference, pp. 11–15, 2008.

10

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Frank Harary and Robert Norman. Some properties of line digraphs. Rendiconti del Circolo Matem-
atico di Palermo, 1960.

Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence
of in-context learning and skill composition in modular arithmetic tasks. arXiv preprint
arXiv:2406.02550, 2024.

Guan Zhe Hong, Nishanth Dikkala, Enming Luo, Cyrus Rashtchian, Xin Wang, and Rina Panigrahy.
How transformers solve propositional logic problems: A mechanistic analysis. arXiv preprint
arXiv:2411.04105, 2024.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Position: Llms can’t plan, but can help planning in
llm-modulo frameworks. arXiv preprint arXiv:2402.01817, 2024.

Mikail Khona, Maya Okawa, Jan Hula, Rahul Ramesh, Kento Nishi, Robert Dick, Ekdeep Singh
Lubana, and Hidenori Tanaka. Towards an understanding of stepwise inference in transformers:
A synthetic graph navigation model. arXiv preprint arXiv:2402.07757, 2024.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrap-
ping, 2024.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams. To-
wards understanding grokking: An effective theory of representation learning. Advances in Neu-
ral Information Processing Systems, 35:34651–34663, 2022a.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In
The Eleventh International Conference on Learning Representations, 2022b.

Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi,
Charles Blundell, Tom Goldstein, Avi Schwarzschild, and Petar Veličković. The clrs-text al-
gorithmic reasoning language benchmark. arXiv preprint arXiv:2406.04229, 2024.

B. D. Mckay. Simple graphs. URL https://users.cecs.anu.edu.au/˜bdm/data/
graphs.html.

B. D. Mckay. Applications of a technique for labelled enumeration. Congressus Numerantium, pp.
207–221, 1983.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathemetical reasoning in large
language models. arXiv preprint arXiv:2410.05229, 2024.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/
TransformerLensOrg/TransformerLens, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress meausres
for grokking via mechanistic interpretability. Internation Conference on Learning Representa-
tions, 2023.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional abilities emerge
multiplicatively: Exploring diffusion models on a synthetic task. Advances in Neural Information
Processing Systems, 36, 2024.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunoria Hashimoto. Proving
test set contamination in black box language models. arXiv preprint arXiv:2310.17623, 2023.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024. URL
https://arxiv.org/abs/2402.05862.

11

https://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://users.cecs.anu.edu.au/~bdm/data/graphs.html
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://arxiv.org/abs/2402.05862

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Stefan Steinerberger. A spectral approach to the shortest path problem. Linear Algebra and its
Applications, 2020.

Di Jia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqing Zheng. Dualformer:
Controllable fast and slow thinking by learning with randomized reasoning traces. arXiv preprint
arXiv:2410.01779, 2024.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. arxiv e-prints, art. arXiv preprint
arXiv:2104.09864, 2021.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Yuandong Tian. Composing global optimizers to reasoning tasks via algebraic objects in neural nets.
arXiv preprint arXiv:2410.01779, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
mechanistic journey to the edge of generalization. Advances in Neural Information Processing
Systems, 2024a.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=UDqHhbqYJV.

Siwei Wang, Yifei Shen, Shi Feng, Haoran Sun, Shang-Hua Teng, and Wei Chen. Alpine: Unveiling
the planning capability of autoregressive learning in language models. Conference on Neural
Information Proessing Systems, 2024b.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural newtorks. IEE Transactions on Neural Networks and
Learning Systems, 32:4–24, 2021.

Sohee Yang, Elena Griboskaya, Nora Kassner, Mor Geva, and Sebastion Riedel. Do large language
models latently perform multi-hop reasoning. Association for Computational Linguistics, 2024.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of Language Models: Part 2.1,
Grade-School Math and the Hidden Reasoning Process. ArXiv e-prints, abs/2407.20311, July
2024. Full version available at http://arxiv.org/abs/2407.20311.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 28877–28888. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/f1c1592588411002af340cbaedd6fc33-Paper.pdf.

12

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://openreview.net/forum?id=UDqHhbqYJV
https://openreview.net/forum?id=UDqHhbqYJV
http://arxiv.org/abs/2407.20311
https://proceedings.neurips.cc/paper_files/paper/2021/file/f1c1592588411002af340cbaedd6fc33-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f1c1592588411002af340cbaedd6fc33-Paper.pdf

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A TRAINING DETAILS

A.1 HYPERAMETERS

Field Value

layers 2
num heads {1, 2, 4, 8}
hidden dim 512
MLP hidden dim 2048
vocab size 16
RoPE θ 10000.0
weight decay 0.001
optimizer adamw
β1 0.9
β2 0.99
lr scheduler cosine annealing
lr ratio .1
warmup epochs 1
epochs 2000

Table 1: Training Parameters

A.2 CONTROL TOKENS

Token Description

[0− 9] Nodes
⟨bos⟩ Beginning of sequence
⟨eos⟩ End of sequence
⟨e⟩ An edge between the previous two node tokens
⟨n⟩ The beginning of the node list and end of the edge list
⟨q⟩ Beginning of the query. The following two node tokens are the source and target

nodes
⟨p⟩ Beginning of the path. The following nodes are the nodes in the shortest path

beginning with the source and ending with the target

Table 2: Vocabulary

B ADDITIONAL RESULTS

B.1 ABLATIONS

In this section, we present two additional results. Given the algorithm SLN which we have identified,
we are able to make a prediction about the model size required to learn the task of predicting shortest
paths. Specifically, since the Laplacian of the line graph is an NxN matrix where N is the number of
edges in the graph, to fully represent this matrix, the hidden dimension of the model must be greater
than N . In our setting, graphs contain up to 10 nodes, so the minimum hidden dimension we would
predict to learn the task is

(
10
2

)
= 45. We test this prediction in Figure 7 with the same experimental

setting described in Section 3. 2-layer models with 4 attention heads and hidden dimension of 64
and greater are able to reduce the loss and learn the task. However, the 2-layer model with a hidden
dimension of 32 fails. We also point out that the greater the hidden dimension, the more quickly it
can reduce the loss.

A natural follow up experiment is to ablate the maximum number of edges in graphs in the training
set. We present these results in Figure 8. The 2-layer model with hidden dimension of 32 is able

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 7: Ablation of the hidden dimension of the 2-layer model with 4 attention heads. We predict
that the model will fail when the maximum number of edges in a graph (45) exceeds the hidden
dimension. The model with hidden dimension of 64 and greater are able to reduce the loss and learn
the task but 32 is not.

to reduce the loss if we bound the maximum number of edges (e.g., 15 and 25) but at 35 edges the
model is still unable to learn.

Figure 8: Ablation of the maximum number of edges in graphs in the training set. When we bound
the number of edges to be less than the hidden dimension, the model is able to reduce the loss.

B.2 ATTENTION HEADS

We present additional results to complement the results in Section 5.1. We find hcurrent and htarget

by manually expecting attention maps of each head in each model. Since the model distributes
activation according to the degree of a node (which varies across samples), we normalize atten-
tion activations by dividing by the maximum value in a given sample. In Table 3, we present the
activations of hcurrent and htarget averaged over the test set.

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Head 2 (/2) Head 4 (/4) Head 5 (/8)
Current 0.826 0.75 0.779
Other 0.284 0.029 0.026
Ratio 2.91 25.86 29.96

Head 1 (/2) Head 1 (/4) Head 1 (/8)
Target 0.865 0.868 0.561
Other 0.45 0.036 0.007
Ratio 1.92 24.11 80.14

Table 3: Table showing that each model learns heads which attend to current node/target node edges

B.3 SPECTRAL LINE NAVIGATION

Figure 9: The log of k counts needed for SLN to successfully find the shortest path over the test set.
For most graphs, using only the second smallest k = 1 (i.e., Fiedler Vector) is sufficient.

We implement and run SLN on the test set and are able to achieve a final accuracy of 99.32%. We
found that for most graphs (roughly 80%) using only the second smallest eigenvalue (i.e., the Fiedler
vector from Section 2) for edge embeddings is sufficient. However, for other graphs we needed to
increase the number k of non-zero eigenvalues we consider for edge embeddings. We report the log
of counts for each 1 ≤ k ≤ |E| in Figure 9.

15

	Introduction
	Preliminaries
	Experimental Settings
	Training Results
	Accuracy
	Distribution of Paths

	Mechanistic Investigation
	Attention Maps
	Spectral Partitioning of L(G) and Model Embeddings

	Proposed Path-Finding Algorithm
	Related Work
	Conclusion
	Training Details
	Hyperameters
	Control Tokens

	Additional Results
	Ablations
	Attention Heads
	Spectral Line Navigation

