
Detrimental Memories in Transfer Learning

Amal Alnouri 1 Timothy J Wroge 2 Bilal Alsallakh 2

Abstract
The source domain in transfer learning provides
essential features that enable effective and data-
efficient learning on the target task. Typically,
the finetuning process does not explicitly account
for how the knowledge about the source domain
interacts with the target task. We demonstrate
how that knowledge can interfere with the tar-
get task leading to negative transfer. Specifi-
cally, certain memories about the source domain
can distract the finetuned model in certain in-
puts. We provide a method to analyze those
memories in typical foundational models and
to surface potential failure cases of those mod-
els. This analysis helps model developers ex-
plore remedies for those failure cases. Our results
can be reproduced at https://github.com/
AmAlnouri-JKU/TL_Interference

.1. Introduction
Consider a typical application of transfer learning (TL) in
image classification. The task is to train a deep neural
network to classify images of cats and dogs. We use the
Dogs-vs-Cats dataset (Cukierski, 2013) to finetune a ResNet-
18 model (He et al., 2016), pretrained on ImageNet (Deng
et al., 2009). The model reaches 97.8% validation accuracy.

What happens when the input contains instances of Ima-
geNet classes besides cats and dogs? Figure 1 demonstrates
the prediction results for a dog image that features a visu-
ally prominent instance of the espresso class. As evi-
dent in Figure 1b, the model classifies the input as cat,
mostly based on the region occupied by the coffee mug as
evident in the GradCAM heatmap (Selvaraju et al., 2017).
Interestingly, when this region is occluded, the model cor-
rectly classifies the input, focusing on salient features of the
Dog class (Figure 1c). These observations suggest that the
finetuned model is still able to recognize certain ImageNet
classes. Moreover, this ability can interfere with the target
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Figure 1. Cats-vs-dogs classification of a challenging input (a),
using: (b, c) A model pretrained on ImageNet vs. (d) the same
model trained from scratch. The fine-tuned model recognizes
the espresso instance, which interferes with its prediction, as
the GradCAM heatmap reveals (b). Masking this instance (c) or
training from scratch (d) mitigates the interference.

task. Training the model from scratch seems to mitigate this
interference (Figure 1d).

We present a method to expose source-domain knowledge
that can interfere with the target task in TL, focusing on
image classification and on finetuning pretrained weights as
a dominant form of TL. Our contributions are:

• Investigating how source memories can interfere with
the target task (Section 2).

• Proposing methods to expose this interference (Sec-
tion 3).

• Demonstrating how the above-mentioned interfering
memories explain real-world failure cases (Section 4).

We elaborate on related work in Section 5 and discuss po-
tential solutions to mitigate the interference in future work.
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2. Our Hypothesis: Lingering Memories
We refer to the dataset a model is pretrained on as the source
domain, and to the dataset this model is fine-tuned on as the
target domain. Also, we refer to the process of training the
model on the target task with the pretrained weights used for
initialization as the standard fine-tuning (SFT) paradigm for
transfer learning. This process might involve adding new
randomly-initialized layers such as a linear classification
head. The process might also involve freezing the weights
of certain pretrained layers.

Our hypothesis for the misprediction we observe in Sec-
tion 1 is that the standard finetuning (SFT) paradigm for TL
is inherently inadequate: This paradigm does not explicitly
account for how the source knowledge interacts with the tar-
get task. Specifically, input features that manifest frequently
in the source domain and rarely in the target domain can be
challenging and potentially detrimental.

For example, consider a source domain where instances of
espresso are abundant. A model pretrained on this do-
main is likely to learn this feature, especially if it is relevant
for the pretraining task. Now consider a target domain that
contains no visual instances of espresso in its training
images. In the SFT paradigm, such irrelevant memories
might become partially or completely lost in case the pre-
trained weights are not frozen, a phenomenon called Catas-
trophic Forgetting. Nevertheless those memories might also
be largely retained, since the SFT paradigm has no mech-
anism to explicitly destroy them. In that case, a test-time
input that contains espresso can activate those memories
as evident in Figure 1b, an edge case the model did not
encounter during the finetuning process. Those lingering
memories become detrimental as they make the predictions
of the fine-tuned model arbitrary when activated. In contrast,
trained the same model “from scratch” starting with random
initialization can handle the same input correctly, as evident
in (Figure 1d).

3. Exposing Lingering Memories
We call input features that manifest frequently in the source
domain and rarely in the target domain as source-only fea-
tures. Those features could represent object or scene cat-
egories, as well as low-level visual concepts, e.g. zig-zag
patterns (Kim et al., 2018). Lingering memories are source-
only features that continue to be recognized by the finetuned
model. Without loss of generality, we utilize ImageNet
classes to demonstrate how we expose those memories.

3.1. Identifying source-only features

We denote by Ms a model pretrained on a source dataset
Ds and by Mt the same model after finetuning on the target
dataset Dt using the SFT paradigm. We denote by M b a

baseline version of the model trained “from scratch” starting
with random initialization. We denote by C(D) the classes
of D. We denote by H(M) the classification head of M
and by B(M) the remaining layers in M, often called the
backbone. We leverage the predictions of Ms to assess the
visual content of an image in Dt. A class among the top-k
predictions suggests that the image contains visual features
related or similar to it. We compute a score for each class
cs ∈ C(Ds) to quantify the prevalence of those features in
Dt:

v(cs) =
∣∣x ∈ Dt : cs ∈ topk(M

s(x))
∣∣ (1)

A relatively high value of v(cs) indicates that the corre-
sponding visual features manifest frequently in Dt. Figure 4
provides examples of ImageNet classes that do or do not
manifest in the Cats-vs-Dogs dataset. Among C(Ds) we
identify source-only features as:

F s\t =
{
c ∈ C(Ds) : v(c) ≤ vlo

}
(2)

where k and vlo are parameters we choose depending on the
source and target datasets.

3.2. Identifying lingering features

A source-only feature c is lingering if the target model can
recognize it in a given input. To quantify this ability, we
construct a new model that applies the fine-tuned backbone
layers B(Mt) followed by the source classification head
H(Ms). The new model, denoted by Mst, can recognize a
source-only feature if B(Mt) has sufficient signal about it:

L = {c ∈ F s\t : mean({pc(Mst(x)) : x ∈ Dc}) > plo}
(3)

where pc denotes the prediction score of class c, Dc is the
subset of Ds labeled as c, and plo is a threshold we choose
based on the source model characteristics.

As a qualitative evidence of lingering features, consider the
input images in Figure 2. Both the Espresso class and
the Cock class are source-only features as illustrated in
Figure 4. The finetuned model can still recognize instances
of those classes as the corresponding GradCAM heatmaps
suggest, both when present alone (first row) and besides
a target class (third row). In contrast, when the model is
trained from scratch, the heatmaps focus only on the target
class as evident in the third row. Moreover, the heatmaps
for this model are arbitrary in the first row, where the target
classes do not manifest in the input. This is expected since
this model is indifferent to source-only features.

4. Impact of Lingering Memories
Lingering memories might impact the target task if the cor-
responding features manifest in the input. However, since
they correspond to source-only features, these memories
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Figure 2. Demonstrating lingering memories using Grad-CAM attribution maps. The first row depicts how two ImageNet samples are
processed by the source ResNet-18 model Ms, fine-tuned model Mt, and baseline model Mb. The samples are of source-only classes
whose features are still recognizable by Mt as evident in the heat maps. The second row illustrates two samples from the target dataset.
The third row illustrates composite inputs where the target samples (2nd row) are randomly overlaid over the ImageNet samples (1st row).

remain dormant when feeding M t with data points from
Dt. We synthesize inputs that activate these memories in
order to systematically analyze how they impact M t. We
further demonstrate this impact using natural test images we
crawled beyond Dt.

For each class in L we construct composite images that
contain both an instance of cs and an instance of a target
class ct. For this purpose, we superimpose a random image
from Dt as an overlay at a random location on top of each
instance of cs in the validation subset of Ds. We denote the
resulting set of composite images by I(cs). The overlay is
downscaled by 40% along both dimensions, covering only
0.42 = 16% of the image area and leaving significant details
about cs as demonstrated in the third row of Figure 2. To
identify which pixels lead M t to predict a target label ct
for a given input x ∈ I(cs), we compute a class activation
map A(x,M t, ct) using GradCAM. This map represents
the importance of each pixel to the model prediction.

A distraction has likely happened if A(x,M t, ct) and
A(x,Ms, cs) resemble each other outside the overlay re-
gion. To quantify this resemblance, we decompose each
attribution map into two regions A = Ao + Ab that corre-
spond to the overlay region and to the background region
respectively. We further focus on the pixels whose heatmap
values are above the 80% percentile, denoted by P80(A),
and compute the intersection over union between them:

distraction(x,M) = IoU(P80(A
b(x,M, ct)),

P80(A
b(x,Ms, cs)) (4)

Figure 3a plots distraction(x,M t) vs. distraction(x,M b)
for all classes cs ∈ L, averaging over the respective samples
x ∈ I(cs). Both M t and M b are ResNet-18 models trained
on the Cats-vs-Dogs dataset. We computed L with plo =
0.01 which is 10 times higher than the expected score with
a no-skill ImageNet classifier. The fine-tuned model is
significantly more likely to be distracted than the baseline
model in the presence of lingering features.

Impact on real-world images We crawled a variety of
real images that contain cats or dogs besides objects that cor-
respond to lingering features. Figure 3b demonstrates how
the fine-tuned ResNet-18 can be distracted in the presence
of such features, leading to wrong predictions. Figures 7- 8
provide a variety of additional examples with various ar-
chitectures trained under different schemes (supervised and
self-supervised). It further demonstrates how occluding
the distracting objects results in accurate predictions and
GradCAM heatmaps (Figure 5). In contrast the fine-tuned
model is not distracted in the presence of source features
that are common in the target dataset, as evident in Figure 3c
(further examples in Figure 6).

5. Discussion
Negative Transfer (NT) is a well-known phenomenon in
TL (Pan & Yang, 2009; Weiss et al., 2016), where knowl-
edge transfer has a negative impact on the target task. A
variety of studies and techniques have been proposed to char-
acterize and to reduce this impact. A recent survey (Zhang
et al., 2022) categorizes these techniques into secure trans-
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Figure 3. Impact of lingering memories. (a) Comparing the distraction of the fine-tuned and baseline models . Each dot represents a
source class cs and encodes the average distraction over 100 composite images in I(cs). (b, c) GradCAM heatmaps for real-world images
that contain an instance of a target class along with (b) a source-only feature and (c) a source feature that is common in the target dataset.

fer, domain similarity estimation, distant transfer, and NT
mitigation. A major root cause behind NT is the distribution
differences between the source and the target domains (Seah
et al., 2013; Ge et al., 2014; Wang et al., 2019).

Our work aims to provide a nuanced understanding of NT,
proposing lingering memories as the mechanism in which it
manifests. Our approach is inspired by the paired-associates
learning paradigm in behavioural psychology (Postman &
Stark, 1969), which shows how NT induces interference
similar to the distractions we demonstrate. We draw fur-
ther inspiration from domain adaptation theory which sug-
gests that “for effective domain transfer to be achieved,
predictions must be made based on features that cannot
discriminate between the training (source) and test (target)
domains” (Ganin et al., 2016).

5.1. Potential Mitigation Approaches

We outline possible NT mitigation approaches based on our
characterization of lingering memories as the root cause.

Interference Detection It is possible to detect if lingering
memories are present in an inference-time input x, before
feeding it into he target model Mt. We can leverage the
source model Ms for this purpose by feeding x into this
model and determining if this model can detect one of the
classes that correspond to lingering memories L as follows:

Interference ⇐⇒ p(Mst(x)) > plo (5)

If a potential interference is detected, the output Mt(x)
might be impacted by negative transfer. Accordingly, We
can flag x as an input that should be processed in alternative
ways, e.g., using a model trained from scratch or with help

of human experts if the use case allows human intervention
in the decision-making process.

Retraining the source model One simple mitigation of
NT incurred by source-only features is to remove the cor-
responding classes from Ds and to transfer from a source
model Ms pretrained only on the remaining classes. In fact
various studies observed improved TL by pretraining on
only selected subsets of ImageNet (Kucer & Oyen, 2021;
Wang et al., 2019). This approach, however, defeats the pur-
pose of Foundational Models as general-purpose pretrained
backbones, that are often prohibitive to train from scratch.

Interference-aware finetuning Ultimately, we need to
make the finetuning process aware of the distribution dif-
ferences between Ds and Dt. Our future work aims to
investigate training objectives that can unlearn source-only
features during finetuning as outlined in Appendix B.

6. Conclusion
We investigated how source-domain knowledge can be
sometimes detrimental to the target task in TL, focusing
on finetuning of pretrained weights as the predominant
paradigm of TL. We identified source-only features as a po-
tential culprit since they almost never manifest in the target
dataset. This deprives the finetuned model of the ability to
learn how to properly handle inputs in which these features
manifest, with respect to the target task. We demonstrated
how the model can be distracted by those features, leading
to erroneous inference. Our future work aims to understand
which aspects of finetuning impact NT as exemplified in
Figure 7 and to explore possible mitigation thereof.
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A. Additional Figures and Examples
In Figure 4 we provide examples of source-only features we identified in the ImageNet dataset with respect to the Cats-vs-
Dogs target dataset, in addition to source features that are common in the target dataset. For simplicity, we consider the
ImageNet classes to be the source features. Nevertheless, lower-level features such as zig-zag patterns and vegetation could
be considered when comparing the source and target domain.

Figure 4. Illustrating the difference between source-only features and ones shared between the source and target domains: (a) Examples
of ImageNet classes that do not manifest in the target Cats-vs-Dogs dataset. (b) Examples of ImageNet classes that manifest in the
Cats-vs-Dogs dataset according to Eq 1. This includes different feline and canine classes, classes that have similar visual features such as
weasel, and classes of objects that commonly appear together with cats and dogs, as illustrated in (c). (c) Samples from the Cats-vs-Dogs
datasets where kerchief, jack-o’-lantern, and tennis ball manifest.

In Figure 5 we demonstrate how occluding source-only features in the input eliminates the distraction of the fine-tuned
model and results in accurate prediction. This provides an evidence that lingering memories about those source-only features
is the root cause of distraction.

Figure 5. Prediction results and GradCAM heatmaps of the fine-tuned model for four real-world images that contain cats alongside
instances of source-only classes. Occluding these instances eliminates the distraction evident otherwise.

In Figure 6 we demonstrate how features shared between the source and target domains do not confuse the fine-tuned target
model.
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Figure 6. Prediction results and GradCAM heatmaps of the fine-tuned model for real-world images that contain the target object alongside
instances of source classes that are common in the target set. Each class demonstrates examples for one source class. Notice how the
fine-tuned model is not distracted by those instances, as evident in the heatmaps and the highly-accurate prediction results.

Impact of Training Set Size In Figure 7 we demonstrate how increasing the size of the target training set helps mitigate
negative transfer induced by lingering memories. A large training set is more likely to destroy those memories compared
with a small dataset. This is evident in the GradCAM heatmaps where the model focuses increasingly less on the distracting
objects.

Figure 7. Demonstrating how the size of the target training set impacts the distraction of fine-tuned model. The four examples depicted
contain a target class along with a source-only features. Training on a large dataset reduces the impact of those features on the fine-tuned
model as evident through the prediction scores and the GradCAM heatmaps.

Impact of Model Architecture In Figure 8 we demonstrate how source-only features can trigger different lingering
memories in different architectures. This depends on which source knowledge is retained or destroyed during the fine-tuning
process, which can vary between different architectures. This also depends on the training hyperparameters such as the
aforementioned training set size, number of iterations, and regularization techniques.
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Figure 8. Demonstrating how models of various architectures can be impacted by lingering memories. Notice how different models
might vary in which source-only features might be retained during training and hence might result in lingering memories and potential
distraction.

B. Potential Future Work and Solutions to Negative Transfer
In this section we explore mitigation measures that may be relevant to address the issues outlined in negative transfer in
this paper. There is an excellent summary of work for these solutions outlined by (Zhang et al., 2022) as well as by (Weiss
et al., 2016). We would like to outline mitigation measures and other ways of approaching the problem of negative transfer.
Because negative transfer is fundamentally a problem of source features contributing poorly to the target dataset, we can try
to understand ways that these source features can be suppressed in the course of training.

Some straightforward solutions could solve this using regularization. If we consider the set of features for a class in the
source domain (e.g. Zebra) and another class in the target domain (e.g. Cat), we can represent these features as sets:

FZebra = {fi ∈ F |activation(fi, x) > at,∀x ∈ Dzebra} (6)

FCat = {fi ∈ F |activation(fi, x) > at,∀x ∈ Dcat} (7)

For some activation threshold at and the total set of potential neural features as F . Given this representation, we would want
to suppress any feature {f ∈ F zebra|f /∈ F cat} as these are the memories that may trigger cases of negative transfer.

Some potential mitigation measures for this may be to implement an L1 regularization to the optimization such that the
network is as parsimonious as possible with its activations; this should lead to sparsity in the output of the network and
decrease the chance that irrelevant features propagate and cause an unwanted affect to the predictions in the target domain.

Equivalently options like network pruning may also help in these situations. Since network pruning is primarily focused on
minimizing feature activation, it may be a good candidate to mitigate cases of negative transfer.
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