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Unseen No More: Unlocking the Potential of CLIP for
Generative Zero-shot HOI Detection

Anonymous Authors

ABSTRACT
Zero-shot human-object interaction (HOI) detector is capable of
generalizing to HOI categories even not encountered during train-
ing. Inspired by the impressive zero-shot capabilities offered by
CLIP, latest methods strive to leverage CLIP embeddings for im-
proving zero-shot HOI detection. However, these embedding-based
methods train the classifier on seen classes only, inevitably result-
ing in seen-unseen confusion of the model during testing. Besides,
we find that using prompt-tuning and adapters further increases
the gap between seen and unseen accuracy. To tackle this chal-
lenge, we present the first generation-based model using CLIP for
zero-shot HOI detection, coined HOIGen. It allows to unlock the po-
tential of CLIP for feature generation instead of feature extraction
only. To achieve it, we develop a CLIP-injected feature generator
in accordance with the generation of human, object and union fea-
tures. Then, we extract realistic features of seen samples and mix
them with synthetic features together, allowing the model to train
seen and unseen classes jointly. To enrich the HOI scores, we con-
struct a generative prototype bank in a pairwise HOI recognition
branch, and a multi-knowledge prototype bank in an image-wise
HOI recognition branch, respectively. Extensive experiments on
HICO-DET benchmark demonstrate our HOIGen achieves supe-
rior performance for both seen and unseen classes under various
zero-shot settings, compared with other top-performing methods.
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1 INTRODUCTION
Human-Object Interaction (HOI) detection, stemming from generic
object detection, entails precisely localizing and categorizing hu-
mans and objects, and simultaneously inferring their relationships
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Figure 1: Differences between existing embedding-based par-
adigm and our generation-based paradigm for zero-shot HOI
detection. The former exploits CLIP to train visual and se-
mantic embeddings of seen HOI categories only. Beyond that,
our generation-based paradigmdevelops a newCLIP-injected
feature generation module given either seen or unseen class
names. The generated features enable themodel to train seen
and unseen HOI categories jointly. Besides, we construct gen-
erative prototype bank andmulti-knowledge prototype bank
to enrich the HOI scores.

in images [6, 11, 12, 23, 24, 32, 41]. Existing studies on HOI detection
are typically devoted to closed-domain scenarios, assuming all test
classes have been seen at training stage. However, the methods are
hardly applied to open-domain scenarios where some test classes
are unseen and disjoint from seen ones. Considering the substan-
tial time and effort involved in acquiring all classes in advance,
zero-shot HOI detector remains a significant goal, as it is capable
of generalizing to unseen HOI categories not encountered during
training at all.

Thanks to its impressive generalization capability, contrastive
language-image pre-training (CLIP) [38] has been a key remedy for
various low-shot learning tasks [52, 53, 55]. Following this trend,
a few works [27, 36, 37, 48] position CLIP as a valuable source of
prior knowledge for zero-shot HOI detection, effectively discerning
and understanding unseen interactions between human and objects.
As depicted in Fig. 1(a), these methods follow an embedding-based
paradigm, which utilizes CLIP embeddings to recognize seen HOI
categories during training, and transfers the learned knowledge to
unseen categories at inference. Despite recent advancements, this
paradigm trains the classifier only on seen classes, inevitably lead-
ing the model to seen-unseen confusion during testing. That means
some samples of unseen categories might be mis-classified into the
set of seen categories. Moreover, some efforts suggest fine-tuning
CLIP embeddings by incorporating learnable prompts or adding
adapters, so as to further strengthen the adaptation on downstream
tasks [13, 52, 53]. For instance, ADA-CM [27] integrates a learn-
able adapter into CLIP image encoder and achieves a significant
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boost in the performance of both seen and seen HOI categories.
However, we note that current methods overlook a key phenome-
non: fine-tuning CLIP embeddings enlarges the performance gap
between seen and unseen HOI categories. The primary reason is
that, the fine-tuned embeddings become more influenced by image
samples of seen categories, resulting in impaired generalization of
the model to unseen categories. Hence, the remaining challenge for
zero-shot HOI detection is how we can adapt CLIP on seen categories
and meanwhile retain its generalization on unseen ones.

Instead of the embedding-based paradigm above, we reveal that
leveraging generation-based paradigm for zero-shot HOI detection
can alleviate the seen-unseen bias explicitly. To achieve it, we pro-
pose the first feature generation model for zero-shot HOI detection,
coined HOIGen. As shown in Fig. 1(b), HOIGen aims to harness
the potential of CLIP for generating image features, rather than
utilizing CLIP for feature extraction solely. In this way, it trains
the model for all HOI categories in a supervised learning manner.
Specifically, we devise a CLIP-injected feature generator based on
a variational autoencoder model, contributing the prior knowledge
learned in CLIP to the feature generation of human-object pairs,
humans, and objects. After the feature generator is trained, we
use it to produce a variety of synthetic image features used by a
HOI detection model, which comprises a pairwise HOI recognition
branch and an image-wise HOI recognition branch. For the former
branch, we integrate an off-the-shelf object detector (i.e. DETR)
with a CLIP image encoder to obtain realistic image features of seen
samples. Then we merge both synthetic and realistic features to-
gether and pass them into a generative prototype bank, resulting in
several pairwise HOI scores. Subsequently, in the image-wise HOI
recognition branch, we obtain two global image features from CLIP
and DINO [5] image encoders, respectively, and thereby construct
a multi-knowledge prototype bank, offering more comprehensive
image-wise HOI scores. Eventually, we fuse all the HOI scores from
the two branches to classify seen and unseen categories jointly.

Overall, this work has three-fold contributions below:

• This work is the first to address zero-shot HOI detection
via a generation-based paradigm using CLIP. It alleviates
the model overfitting on seen categories and improves the
generalization on unseen ones.

• We devise a new CLIP-injected feature generator, synthesiz-
ing image features of humans, objects and their unions simul-
taneously. Besides, we utilize the synthetic features to con-
struct a generative prototype bank for pairwise HOI recogni-
tion, and a multi-knowledge prototype bank for image-wise
HOI recognition, respectively.

• Extensive experiments on HICO-DET benchmark exhibit
superior performance of our HOIGen over prior state-of-the-
arts. Our method achieves an absolute mAP gain of 2.54 on
unseen categories and of 1.56 on seen categories.

2 RELATEDWORK
2.1 HOI Detection and Beyond
HOI detection task is an integration of object detection, human-
object pairing and interaction recognition. Broadly speaking, exist-
ing work can be categorized into one-stage and two-stage methods.

Initially, the two-stage methods [6, 11, 12, 27, 32, 36, 42, 45] predom-
inated in HOI detection. Its first stage utilizes off-the-shelf object
detectors to identify humans and objects according to their class
labels. Subsequently, independent modules are designed in the sec-
ond stage to classify interactions between each human-object pair.
On the other hand, thanks to the recent emergence of DEtection
TRansformer (DETR) [4], one-stage methods have witnessed a rapid
evolution [7, 10, 22–24, 29, 41, 44, 54]. The methods are typically
built upon a pre-trained DETR, predicting HOI triples directly in
an end-to-end fashion.

Zero-shot HOI. Beyond the conventional setting above, an
increasing line of work tends to research zero-shot HOI detection,
allowing themodel to infer some newHOI categories being not seen
during training. To tackle this problem, early endeavors developed
combinatorial learning, enabling the prediction of HOI triplets
during inference [2, 20, 21, 35]. Inspired by the rapid advancements
in visual-language pre-trained models like CLIP [38], more recent
work has tapped into zero-shot generalization capabilities of these
models to transfer prior knowledge for identifying unseen HOI
categories [3, 27, 33, 36, 37, 42, 43, 48]. Specifically, these methods
employ CLIP image encoder to encode raw images and subsequently
extract features related to human-object pairs using bounding boxes
acquired from an off-the-shelf detector. Subsequently, we achieve
the HOI score with a given image and a candidate human-object
interaction triplet. Although these embedding-based methods have
shown promise of CLIP embeddings for zero-shot learning, they
are inefficient for addressing the bias between seen and unseen
classes. Different from them, we devise a generative-based paradigm
for zero-shot HOI detection, with an aim of exploiting CLIP for feature
generation and alleviating the seen-unseen bias explicitly.

2.2 Generative Zero-Shot Learning
Generative zero-shot learning allows the model to generate un-
seen samples from their corresponding attributes, converting the
conventional zero-shot learning to a classic supervised learning
problem. Generative adversarial networks (GANs) [16] and vari-
ational autoencoders (VAEs) [25] are two prominent members of
generative models used for generalized zero-shot learning task
which needs to infer both seen and unseen classes. Through this
generative paradigm, the model can capture underlying data dis-
tributions and generate diverse samples resembling unseen cate-
gories [1, 9, 17, 28, 40, 49, 56]. In order to improve the generation
quality and stability, a few methods combine the advantages of
VAE and GAN for joint training to generate high-quality visual fea-
tures for unseen categories [14, 15, 26]. Recently, some pioneering
works study integrating CLIP to feature generation [19, 34, 39, 47].
For instance, CLIP-Forge [39] obtains the latent space of shapes by
training an auto-encoder and then trains a normalized flow network
to align the distribution of shape embeddings with image features
from a pre-trained CLIP image encoder. Likewise, CLIP-GEN [47]
obtains cross-modal embeddings through CLIP and converts the
image into a sequence of discrete tokens in the VQGAN codebook
space, training an autoregressive transformer and generating coher-
ent image tokens. A recent work similar to ours is SHIP [46], which
inserts pre-trained CLIP image-text encoders into a variational au-
toencoder (VAE) model, so as to generate synthetic image features
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given arbitrary names of unseen classes. However, this generation
method in SHIP is designed for simple image classification, but is
challenged the complex compositions of human, objects and ac-
tions in HOI detection. In this work, we develop a new CLIP-injected
feature generation model which is tailored specifically for zero-shot
HOI detection effectively.

3 PRELIMINARIES
3.1 Problem Formulation
Given an image 𝐼 as input, its detection results are in the form of five-
tuple (𝑏ℎ, 𝑠ℎ, 𝑏𝑜 , 𝑠𝑜 , 𝑐𝑜 ), where 𝑏ℎ, 𝑏𝑜 ∈ R4 represent the bounding
boxes of detected human and object instances; 𝑐𝑜 ∈ {1, ...,𝑂} indi-
cates the object category; 𝑠ℎ and 𝑠𝑜 are the confidence scores of de-
tected human and objects. The action category 𝑐𝑎 ∈ {1, ..., 𝐴} is then
identified and a confidence score 𝑠 is used for each human-object
pair. The final result is presented in the form of𝐻𝑂𝐼𝑖, 𝑗 =< ℎ, 𝑣𝑖 , 𝑜 𝑗 >
triplet, where ℎ represents the human, 𝑣𝑖 represents the category of
the verb, and 𝑜 𝑗 represents the category of the object. According to
whether verbs and objects in the unseen categories C𝑢𝑛𝑠𝑒𝑒𝑛 exist
during training, zero-shot HOI detection can be further divided into
three settings: (1) Unseen Composition (UC), where for all (𝑣𝑖 , 𝑜 𝑗 )
∈ C𝑢𝑛𝑠𝑒𝑒𝑛 , we have 𝑣𝑖 ∈ V𝑠𝑒𝑒𝑛 and 𝑜 𝑗 ∈ O𝑠𝑒𝑒𝑛 ; (2) Unseen Object
(UO), where for all (𝑣𝑖 , 𝑜 𝑗 ) ∈ C𝑢𝑛𝑠𝑒𝑒𝑛 , we have 𝑣𝑖 ∈ V𝑠𝑒𝑒𝑛 and 𝑜 𝑗 ∉
O𝑠𝑒𝑒𝑛 ; (3) Unseen Verb (UV), where for all (𝑣𝑖, 𝑜 𝑗) ∈ C𝑢𝑛𝑠𝑒𝑒𝑛 , we
have 𝑣𝑖 ∉V𝑠𝑒𝑒𝑛 and𝑜 𝑗 ∈O𝑠𝑒𝑒𝑛 . Note that,C𝑢𝑛𝑠𝑒𝑒𝑛 ,O𝑠𝑒𝑒𝑛 andV𝑠𝑒𝑒𝑛
represent unseen combination categories, seen object categories,
and seen verb categories, respectively.

3.2 Rethinking the Seen-unseen Bias
Generalized zero-shot learning suffers from inherently over-fitting
on seen classes and weakly generalization on unseen ones. This
problem becomes more difficult for HOI, as the number of HOI
categories is much larger than that of object categories only. After
a thorough examination of existing CLIP-based methods for zero-
shot HOI detection [27, 36, 37, 42, 43], a consistent phenomenon
we observe is they follow an embedding-based paradigm to infer
unseen categories. Yet, these methods fail to avoid confusion be-
tween seen and unseen classes during testing, because the primary
challenge persists in the absence of unseen categories during train-
ing. In addition, some of them leverage prompt tuning and adapters
to better adapt CLIP on HOI benchmarks, resulting in an improved
performance of both seen and unseen categories. Nevertheless,
they overlook a significant consequence that the seen-unseen bias
becomes more severe, because of adapting CLIP with seen data
only. For instance, ADA-CM [27], which is a recent state-of-the-
art, introduces two different settings. One is directly using CLIP
in a training-free (TF) fashion, and the other is adding a learnable
adapter to fine-tune (FT) the image embeddings obtained by CLIP.
As shown in Fig. 2, thanks to the use of such an adapter, the seen
accuracy obtains a substantial boost from 24.54% to 34.35%, and
meanwhile the unseen accuracy increases from 26.83% to 27.63%.
Nonetheless, we should be aware that the gap between seen and
unseen accuracy also improves a lot, from -2.29% to 6.72%. Through
such a relative comparison, we can conjecture that fine-tuning the
CLIP embeddings benefits the adaptation ability with seen data,

-2.29

6.72

3.56

9.81

0.8

Figure 2: Comparison of ourmethod and ADA-CM on unseen
and seen categories of HICO-DET dataset, under Non-rare
First Unseen Combination (NF-UC) setting.

whereas degenerates the generalization ability on unseen data. Dif-
ferently, our method takes both adaptation and generalization into
account. It can be seen that the unseen accuracy by our method
has a more remarkable gain, making the seen-unseen gap decrease
to 3.56%. We will elaborate on the details of our method below.

4 METHODOLOGY
4.1 Overview Framework
The framework of our proposed HOIGen, as depicted in Fig. 3,
comprises three primary parts: CLIP-injected feature generation
(Sec. 4.2), pairwise HOI recognition (Sec. 4.3) and image-wise HOI
recognition (Sec. 4.4). Firstly, during the feature generation stage,
we inject pre-trained CLIP into a variational autoencoder model,
so as to produce synthetic features from CLIP text encoder and
make them consistent with the real ones captured from CLIP image
encoder. Secondly, for the pairwise HOI recognition, we adopt an
off-the-shelf object detector (i.e. DETR) for bounding box detection.
Then we employ CLIP image encoder for ROI-Align calculation and
achieve real image features of seen samples, and collaborate the
synthetic features to the real ones for training seen and unseen cat-
egories jointly. Besides, we use the CLIP-injected feature generator
to construct a generative prototype bank, which aims to calculate
the pairwise HOI recognition scores. Thirdly, the image-wise HOI
recognition entails combining CLIP image encoder and DINO image
encoder, and also involves the use of synthetic features. It develops
a multi-knowledge prototype bank for computing the image-wise
HOI recognition scores. Finally, we fuse the HOI scores of different
branches for classifying the HOI category.

4.2 CLIP-injected Feature Generation
The idea of extracting CLIP feature embeddings for zero-shot HOI
detection has been studies in previous work [27, 36, 37, 42]. These
methods, however, fail to overcome the scarcity of unseen sam-
ples explicitly, resulting in a severe bias between seen and unseen
HOI categories. Beyond that, our objective is to fully harness the
potential of CLIP for feature generation, thereby leveraging prior

2024-04-12 15:34. Page 3 of 1–10.
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Figure 3: Overview of the proposed HOIGen model, which primarily comprises CLIP-injected feature generation, pairwise
HOI recognition branch and image-wise HOI recognition branch. We contribute CLIP image-text encoders to a variational
autoencoder, which synthesizes image features in a two-stage fashion. The pairwise HOI recognition branch utilizes CLIP
image features in conjunction with the bounding boxes obtained from a pre-trained DETR. The resulting features are fed into a
generative prototype bank for computing pair-wise HOI scores. On the other hand, the image-wise HOI recognition branch is
responsible for extracting global features by combining CLIP and DINO encoders, constructing a multi-knowledge prototype
bank for image-wise HOI scores. Finally, the scores from the two branches are fused together to predict the HOI category.

knowledge learned by CLIP to improve the generation quality. As
depicted in Fig. 3, in contrast to traditional feature generation meth-
ods, our feature generation model comprises three branches (i.e.
union, human, and object), in accordance with zero-shot HOI task.
Besides, we thoroughly impose the correlation among the three
branches and learn adaptive prompts to enhance their interdepen-
dence. Our feature generation is performed in two stages below.

Stage I: Train VAE encoder 𝐸 (·) and generator 𝐺 (·). In this
stage, the feature generation process needs to deal with image
regions of human-object union, human only, and object only, re-
spectively, which are denoted as 𝑖𝑚𝑔𝑢 , 𝑖𝑚𝑔ℎ and 𝑖𝑚𝑔𝑜 . For brevity,
we present the regions with 𝑖𝑚𝑔𝑘 where 𝑘 ∈ (𝑢,ℎ, 𝑜). First of
all, the CLIP image encoder 𝐼 (·) extracts realistic image features
𝑥𝑘 = 𝐼 (𝑖𝑚𝑔𝑘 ) given 𝑖𝑚𝑔𝑘 . Afterwards, we build a variational au-
toencoder model, where the encoder 𝐸 (·) encodes 𝑥𝑘 into a latent
code 𝑧𝑘 , and the generator 𝐺 (𝑧𝑘 , 𝑐𝑘 ) then reconstructs 𝑥𝑘 from
the latent code 𝑧𝑘 and the corresponding learnable class name 𝑐𝑘 .
Note that, different from previous work on generic image clas-
sification [46], our approach considers emphasizing meticulous
consideration of “human” categories, where we observe distinct
human expressions interacting with various objects. To achieve it,
we categorize “human” prompts based on the corresponding object
categories and introduce a novel prompt template (e.g. “person
who interacts with <OBJECT>”). For example, if a person interacts
with a bus, we label this person as “person who interacts with
bus”. This fine-grained categorization of humans facilitates more
precise associations between humans and objects, and captures
nuanced interactions between humans and specific objects. During

this stage, the optimization of both the encoder 𝐸 (𝑥𝑘 ) and the gen-
erator 𝐺 (𝑧𝑘 , 𝑐𝑘 ) is achieved by minimizing the following evidence
lower bound (ELBO) cost:

L𝑠𝑡𝑎𝑔𝑒𝐼 = L𝐾𝐿 + L𝑟𝑒𝑐𝑜𝑛
= 𝐾𝐿(𝐸 (𝑥𝑘 ) | |𝑝 (𝑧𝑘 |𝑐𝑘 )) + E[− log𝐺 (𝑧𝑘 , 𝑐𝑘 )],

(1)

where 𝐾𝐿 denotes the Kullback-Leibler divergence, 𝑝 (𝑧𝑘 |𝑐𝑘 ) is a
prior distribution that is assumed to be 𝑁 (0, 1), and − log𝐺 (𝑧𝑘 , 𝑐𝑘 )
estimates the reconstruction loss.

Stage II: Freeze encoder 𝐸 (·) and generator 𝐺 (·), and fine-
tune MLP. This stage is dedicated to bridging the gap between
synthetic and realistic images in HOIGen. It is noteworthy that the
first stage aligns with features extracted by the CLIP image encoder,
which may differ from the image features required in the following
detector. To solve it, the same generator 𝐺 (·) learned in Stage I
remains frozen during Stage II training. The input transitions from a
different dataset to a category prompt 𝑐𝑘 and a randomly initialized
normal distribution 𝑁 (0, 1), and through the frozen generator𝐺 (·).
Additionally, a new multilayer perceptron (MLP) is employed to
align the reconstructed synthetic features with the realistic features.
Throughout this process, only the MLP is optimized, while the other
components remain frozen. This optimization process is realized
through minimizing mean square error:

L𝑠𝑡𝑎𝑔𝑒𝐼 𝐼 = L𝑀𝑆𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

(MLP(𝑥 ′
𝑘
) − 𝑥𝑘 )2, (2)

where 𝑥 ′
𝑘
denotes the reconstructed features through generator

𝐺 (·) and 𝑥𝑘 indicates the realistic features extracted by CLIP in
2024-04-12 15:34. Page 4 of 1–10.
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Figure 4: Visualization of realistic (light regions) and syn-
thesized features (dark regions) using t-SNE, with respect to
unseen HOI categories from HICO-DET dataset [6]. We syn-
thesize 100 features per category. The left shows the feature
distributions of different pairs of <ACTION, OBJECT>, and
the right presents the features of different objects.

HOIGen. To show the quality of our generated features, we illustrate
their distributions using t-SNE in Fig 4. We can see that, the feature
distributions of different categories distinguish from each other
clearly. In addition, synthesized features are distribution-aligned
well with the corresponding realistic features in the space.

4.3 Pairwise HOI Recognition
Since most of existing methods are heavily affected by long-tail
distributions, it becomes challenging to effectively manage complex
scenes featuring a diverse range of interactive objects. To this end,
we construct a generative prototype bank by using the generated
features as key. It can alleviate the long-tail distribution, and avoid
the time-consuming project of loading keys in the training samples.
As shown in Fig 4, we generate 100 synthetic features for each
HOI category through the CLIP-injected feature generator, and also
generate the corresponding human and object synthetic features.
We then extract the seen and unseen features from them as the key
of the generative prototype bank. This design provides a powerful
generative prototype bank that can better capture feature distri-
butions. We convert the training labels into multi-hot encodings
𝐿𝑚ℎ ∈ R𝑁×𝐴 as the value for generative prototype bank. Inspired
by previous research [27, 36], while extracting a rich visual feature
prototypes, we also supplement semantic feature prototypes. Specif-
ically, we first use handcrafted prompts (i.e. A photo of a person
is <ACTION> an object) to generate the raw text description of
interactions. Then we pass such prompt into CLIP text encoder T
and obtain semantic prototype, thus enriching the prototype bank.

In training phase, given the feature map M extracted by the
CLIP image encoder, and simultaneously utilizing DETR to extract
the bounding boxes of the images. ROI-Align [18] is then applied to
derive the union feature 𝑣𝑢 , human feature 𝑣ℎ and object feature 𝑣𝑜 .
These elements are collectively used in the computation of pairwise
HOI recognition scores 𝑠𝑃 :

𝑠𝑃 =

𝑀∑︁
𝑖

𝜆𝑖𝑣𝑖𝑃
𝑇
𝑖 𝐿𝑚ℎ + 𝜆𝑡𝑣𝑢𝑃𝑇𝑇𝑒𝑥𝑡 , 𝑀 ∈ {𝑢,ℎ, 𝑜}, (3)

where 𝜆𝑢 , 𝜆ℎ , 𝜆𝑜 , and 𝜆𝑡 adjust the weights of different terms; 𝑃𝑇𝑒𝑥𝑡
signifies the utilization of manual prompts (e.g. A photo of a person
is <ACTION> an object) to generate initial textual descriptions of
interactions.

a photo of a [class]

person ride bicycle; person hold apple; …… 

HOI prompts:

person who interact with bicycle; 
person who interact with apple; …… 

Human prompts:

bicycle; apple; …… 

Object prompts:

𝐺(𝑧, 𝑐)𝑁~(0,1)

MLP

Keys: Values: 𝐿!"………

Generative 
Prototype Bank

Figure 5: Construction of generative prototype bank.

4.4 Image-wise HOI Recognition
Global context information is a crucial aspect that cannot be over-
looked in HOI detection. Hence, we not only utilize the global
features provided by CLIP but also leverage the self-supervision
capability of DINO [5] to enhance the contextual interactions in the
images. Concretely, we construct a key-valuemulti-knowledge
prototype bank for global knowledge ensemble. This bank con-
tains the pre-learned knowledge from both CLIP and DINO because
of caching two kinds of keys. Formally, we first utilize CLIP and
DINO to independently extract visual features of training images,
formulated as:

𝑃𝐷𝐼𝑁𝑂 = 𝐷𝐼𝑁𝑂 (𝐼𝑁 ), (4)

𝑃𝐶𝐿𝐼𝑃 = 𝐶𝐿𝐼𝑃𝑣𝑖𝑠 (𝐼𝑁 ), (5)

where 𝐼𝑁 denotes training images, 𝐶𝐿𝐼𝑃𝑣𝑖𝑠 denotes the visual en-
coder of CLIP in HOIGen and 𝑃𝐶𝐿𝐼𝑃 , 𝑃𝐷𝐼𝑁𝑂 ∈ R𝑁×𝐴 . In addition
to the key, we utilize the same 𝐿𝑚ℎ used in generative prototype
bank as the value for the multi-knowledge prototype bank.

In training phase, in order to fully extract global features, we use
the image encoder of CLIP and DINO to generate feature vectors
𝑣𝐶𝐿𝐼𝑃 , 𝑣𝐷𝐼𝑁𝑂 for the input image 𝐼𝑁 , respectively. Then use the
multi-knowledge prototype bank 𝑃𝐶𝐿𝐼𝑃 , 𝑃𝐷𝐼𝑁𝑂 to perform image-
wise HOI recognition. Finally, we obtain image-wise HOI scores
𝑠𝐼 ∈ 𝑅𝑁 by

𝑠𝐼 =

𝑀∑︁
𝑖

𝜆𝑖𝑣𝑖𝑃
𝑇
𝑖 𝐿𝑚ℎ, 𝑀 ∈ {𝐶𝐿𝐼𝑃, 𝐷𝐼𝑁𝑂}, (6)

where 𝜆𝐶𝐿𝐼𝑃 , 𝜆𝐷𝐼𝑁𝑂 balance the weights of different prototypes
based on CLIP and DINO.

2024-04-12 15:34. Page 5 of 1–10.
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Table 1: Zero-shot HOI detection results on HICO-DET benchmark. UC, UV and UO settings denote unseen composition, unseen
verb, and unseen object, respectively. RF and NF represent rare first and non-rare first.

(a) UC & UV & UO

Method Setting Full Seen Unseen

ConsNet [35] UC 19.81 20.51 16.99
EoID [48] UC 28.91 30.39 23.01
HOICLIP [37] UC 29.93 31.65 23.15
CLIP4HOI [36] UC 32.11 33.25 27.71
HOIGen (Ours) UC 33.44 34.23 30.26
GEN-VLKT [33] UV 28.74 30.23 20.96
HOICLIP [37] UV 31.09 32.19 24.30
CLIP4HOI [36] UV 30.42 31.14 26.02
LOGICHOI [30] UV 30.77 31.88 24.57
HOIGen (Ours) UV 32.34 34.31 20.27
CLIP4HOI [36] UO 32.58 32.73 31.79
HOIGen (Ours) UO 33.48 32.90 36.35

(b) RF-UC & NF-UC

Method Setting Full Seen Unseen

GEN-VLKT [33] RF-UC 30.56 32.91 21.36
HOICLIP [37] RF-UC 32.99 34.85 25.53
ADA-CM [27] RF-UC 33.01 34.35 27.63
CLIP4HOI [36] RF-UC 34.08 35.48 28.47
LOGICHOI [30] RF-UC 33.17 34.93 25.97
HOIGen (Ours) RF-UC 33.86 34.57 31.01

GEN-VLKT [33] NF-UC 23.71 23.38 25.05
HOICLIP [37] NF-UC 27.75 28.10 26.39
ADA-CM [27] NF-UC 31.39 31.13 32.41
CLIP4HOI [36] NF-UC 28.90 28.26 31.44
LOGICHOI [30] NF-UC 27.95 27.86 26.84
HOIGen (Ours) NF-UC 33.08 32.86 33.98

4.5 Training Objective
To classify the HOI categories, we need to combine the HOI scores
from the pairwise and image-wise branches together. The whole
objective is to optimize the network parameters 𝜃 via the cross-
entropy loss L𝑡𝑜𝑡𝑎𝑙 below:

𝜃∗ = argmin
𝜃

L𝑡𝑜𝑡𝑎𝑙 (𝑠 (
𝑀⋃
𝑗

𝐹 𝑗 (𝐼 ), 𝐾), 𝐿𝐺𝑇 ), 𝑀 ∈ {𝐼 , 𝑃, 𝐷}, (7)

where 𝐼 represents the input image, 𝐹𝐼 , 𝐹𝑃 , 𝐹𝐷 respectively represent
CLIP local feature extraction, CLIP global feature extraction and
DINO feature extraction, 𝐾 represents the prototype bank. 𝑠 is
the score combining pairwise and image-wise HOI scores, where
𝑠 = 𝑠𝑃 + 𝑠𝐼 . 𝐿𝐺𝑇 represents the ground truth label.

5 EXPERIMENTS
5.1 Experimental Protocol
Datasets and Metric.We conduct extensive experiments on the
most benchmarked and challenging dataset, HICO-DET [6]. It is
composed of 47,776 images, with 38,118 designated for training and
9,658 for testing. The annotations for HICO-DET encompass 600
categories of HOI triplets, derived from 80 object categories and
117 action categories. Besides, 138 out of the 600 HOI categories are
classified as Rare due to having fewer than 10 training instances,
while the remaining 462 categories are labeled as Non-Rare. Typ-
ically, the methods are evaluated with mean Average Precision
(mAP) metric.

Zero-shot Settings. Following the protocols established in pre-
vious work [30, 36, 37], To make a fair and comprehensive compari-
son with previous work, we construct zero-shot HOI detection with
five manners: Rare First Unseen Combination (RF-UC), Non-rare
First Unseen Combination (NF-UC), Unseen Combination (UC), Un-
seen Verb (UV), and Unseen Object (UO). Specifically, UC indicates
all action and object categories are included during training, but
some HOI triplets (i.e. combinations) are absent; Under the RF-UC
setting, the tail HOI categories are selected as unseen categories,
while NF-UC uses head HOI categories being unseen. The UV (or

UO) setting indicate that some action (or object) categories are not
concluded in the training set.

Implementation Details. We employ DETR with ResNet-50 as
backbone, and the CLIP variant with an image encoder based on
ViT-B/16. The DINO model we use is also pre-trained with ResNet-
50 backbone. First of all, we need to train the CLIP-injected VAE
model separately. We optimize it via the AdamW optimizer with
a learning rate of 10−3 for 50 epochs. The batch size is set to 256.
The dimension of the latent code 𝑧 is equal to that of the token
embeddings. Afterwards, we generate 100 features for each of both
seen and unseen HOI categories, and randomly choose some of
them to merge with some realistic features. Remarkably, we do not
use any external data or model since the generated model is also
trained on the same training dataset. We then optimize the whole
HOI detection model for 15 training epochs through AdamW with
an initial learning rate of 10−3. This batch size in this training stage
is 4. All experiments are conducted on a single NVIDIA RTX 4090
GPU card. Following [27], 𝜆𝐶𝐿𝐼𝑃 , 𝜆𝐷𝐼𝑁𝑂 , 𝜆𝑢 , 𝜆ℎ, 𝜆𝑜 are all set to 0.5,
while 𝜆𝑡 is set to be 1.0, for a fair comparison.

5.2 Comparison with the State-of-the-arts
Zero-shot HOI Detection.We show a comprehensive comparison
in Table 1, where our proposed HOIGen is superior to or on par
with the competitors under five zero-shot settings. First, in terms of
UC, RF-UC and NF-UC settings, our approach marks a significant
advancement, particularly for the performance of unseen categories.
Relative to the state-of-the-art methods, CLIP4HOI [36] and ADA-
CM [27], our unseen accuracy achieves a consistent gain of 2.55%,
2.54%, 1.57% for UC, RF-UC, and NF-UC, respectively. We note that
our results are also very competitive performance in both the seen
categories and overall metrics. Moreover, our approach benefits
improving the mAP accuracy of Full and Seen, as we also generate
additional features for seen categories apart from unseen ones. Sec-
ond, considering the UV setting, our relatively inferior performance
in the unseen accuracy may be attributed to the abstract nature of
actions, devoid of specific characteristics like objects. Besides, the
same action can be applied to various objects, posing a significant

2024-04-12 15:34. Page 6 of 1–10.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Unseen No More: Unlocking the Potential of CLIP for Generative Zero-shot HOI Detection MM ’24, 28 October - 1 November, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Fully-supervised HOI detection results on the HICO-
DET dataset. All the methods are built with ResNet-50.

Method Backbone Full Rare Non-rare

IDN [31] ResNet-50 23.36 22.47 23.63
HOTR [23] ResNet-50 25.10 17.34 27.42
ATL [20] ResNet-50 28.53 21.64 30.59
AS-Net [8] ResNet-50 28.87 24.25 30.25
QPIC [41] ResNet-50 29.07 21.85 31.23
MSTR [24] ResNet-50 31.17 25.31 32.92
UPT [50] ResNet-50 31.66 25.94 33.36
PVIC [51] ResNet-50 34.69 32.14 35.45
GEN-VLKT [33] ResNet-50 33.75 29.25 35.10
ADA-CM [27] ResNet-50 33.80 31.72 34.42
HOICLIP [37] ResNet-50 34.69 31.12 35.74
CLIP4HOI [36] ResNet-50 35.33 33.95 35.74
LOGICHOI [30] ResNet-50 35.47 32.03 36.22
HOIGen (Ours) ResNet-50 34.84 34.52 34.94

challenge in recognizing unseen verbs. Nonetheless, our HOIGen
has achieved new state-of-the-art results on Full and Seen mAP,
competing against HOICLIP [37]. Third, we conduct a compari-
son with CLIP4HOI [36] under the UO setting. It reveals that our
approach obtains superior results for all the three mAP metrics,
particularly evident for the unseen results, achieving a significant
increase of 4.56%.

Fully-supervised HOI Detection. Apart from zero-shot set-
tings, our feature generation can be also applicable in a fully-
supervised setting. We present the comparative results in Table 2.
Overall, LOGICHOI [30]achieves the highest Full accuracy among
other methods because it is designed specifically for normal HOI
detection. However, this method fails to retain the superior perfor-
mance under zero-shot setting (see Table 1). Notably, our HOIGen
becomes the new state-of-the-art for rare categories, improved by
approximately 0.6%. This suggests that the generated features ef-
fectively complement the limited number of real samples of rare
categories, even within this fully-supervised setting.

5.3 Ablation Study
We undertake a series of ablation experiments to verify the effective-
ness of the HOIGen model. All experiments are conducted under
the context of the NF-UC setting.

Component analysis. First of all, we conduct experiments
to delineate the contribution of each component to the model. As
reported in Table 3, we study the impact of feature generation, CLIP-
based and DINO-based image feature individually. It can be seen
that the feature generationmodule acts as themost influential factor
in raising the unseen accuracy performance, resulting in a 0.9%
improvement over the baseline (i.e. the first row in the table). This
finding underscores our motivation of exploring feature generation
for zero-shot HOI detection. In addition, the use of CLIP-based
image feature is observed to augment the seen accuracy by 0.61%.
Moreover, by integrating DINO-based image feature, we further
obtain 0.8%-0.9% gain in seen accuracy. These results reveal the

Table 3: Component analysis under the NF-UC setting on the
HICO-DET dataset. FG represents feature generationmodule,
and CLIP-img and DINO-img mean extracting image feature
frompre-trainedCLIP andDINO image encoder, respectively.

Exp FG CLIP-Img DINO-Img Full Seen Unseen

1 31.39 31.13 32.41
2

√
31.77 31.39 33.31

3
√

32.00 31.88 32.45
4

√
31.97 31.98 31.92

5
√ √

31.67 31.28 33.21
6

√ √
32.02 32.00 32.09

7
√ √

32.26 31.95 33.50
8

√ √ √
33.08 32.86 33.98

benefit of fusing more prior knowledge learned from different large-
scale pre-trained models.

Number of generated features. As shown in Table 4a, we in-
vestigate the influence of varying the number of generated features
on the HOIGen model. Specifically, we generate 𝑁𝑏𝑠 features for
each sample in the batch. In this way, the total of samples in each
training batch becomes (𝑁𝑏𝑠 + 1) × 𝑏𝑎𝑡𝑐ℎ − 𝑠𝑖𝑧𝑒 . We see that, the
unseen accuracy yields improvement along with the addition of
generated features, suggesting a positive impact on unseen cate-
gories. However, as more generated features are integrated, the Full
and Seen performance gradually declines. The main reason is that
the feature distributions of real data becomes disrupted, when more
and more generated features dominate the feature space. Finally,
we choose 𝑁𝑏𝑠 = 1 in the experiments.

Construction of prototype bank. This experiment is to vali-
date the construction of our generative prototype bank. In Table 4b,
we compare several construction methods, including using realistic
features alone (‘R’), adding realistic and generated features (‘R+G’),
concatenating realistic and generated features (‘R ⊕ G’), and using
generated features alone (‘G’). Experimental results demonstrate
that after adding generated features, the performance of the net-
work increases significantly. This may be because the generated
features contain unseen sample features, making the generative
prototype bank richer. As for the reason why using only generated
features as a prototype bank performs best, it can be considered
that the fusion of both realistic and generated features may lead to
the confusion in the feature distribution.

Size of generative prototype bank. This experiment aims to
study the impact of the size 𝑁𝑠𝑖𝑧𝑒 of generative prototype bank. As
shown in Table 4c, the highest scores occurs when 𝑁𝑠𝑖𝑧𝑒 = 2. When
we expand the bank size further (i.e. 3 and 4), the performance
witnesses a decline on all the three metrics. The main reason might
be the noisy prototypes involved in the bank. Fortunately, we can
control the size to avoid this problem effectively.

5.4 Qualitative Results
In addition to quantitative results above, we further elaborate
some qualitative results as shown in Fig. 5. We observe the fol-
lowing: (1) Our method demonstrates effectiveness in identifying

2024-04-12 15:34. Page 7 of 1–10.
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Table 4: Ablative experiments for (a) number of generated features, (b) different prototype bank construction, and (c) prototype
bank size. 𝑁𝑏𝑠 represents the number of synthetic features for each sample in the batch, 𝑁𝑠𝑖𝑧𝑒 indicates the number of samples
in the prototype bank per HOI. ‘𝑅’ and ‘𝐺 ’ is short for realistic and generated features, respectively . All the results are evaluated
on HICO-DET under the NF-UC setting.

(a) Number of generated features.

𝑁𝑏𝑠 Full Seen Unseen

1 33.08 32.86 33.98
2 32.56 32.19 34.06
3 31.77 31.17 34.16
4 31.54 30.99 33.71

(b) Different prototype bank construction.

Construction Full Seen Unseen

𝑅 32.28 32.02 33.33
𝑅 +𝐺 32.39 32.07 33.66
𝑅 ⊕ 𝐺 32.59 32.41 33.30
𝐺 33.08 32.86 33.98

(c) Prototype bank size.

𝑁𝑠𝑖𝑧𝑒 Full Seen Unseen

1 32.25 31.97 33.37
2 33.08 32.86 33.98
3 32.07 31.60 33.95
4 32.26 31.95 33.50

Ground Truth:
<wash,bus>
Prediction:
<wash,bus>

Ground Truth:
<carry/eat/hold,hot dog>

Prediction:
<carry/eat/hold,hot dog>

橙色的代表罕见类，绿色代表unseen，蓝色代表seen，红色表示分错

Ground Truth:
<sit on/drive,bus>

Prediction:
<sit on/drive,bus>

Ground Truth:
<stand on/ride/jump/hold/wear,snowboard>

Prediction:
<stand on/ride/jump/hold/wear,snowboard>

Ground Truth:
<hold/drink with,bottle>

Prediction:
<hold/drink with,bottle>

Ground Truth:
<smell/eat/hold,broccoli>

Prediction:
<smell/eat/hold,broccoli>

Ground Truth:
<read/type on,laptop>

Prediction:
<read/type on/open,laptop>

Ground Truth:
<hold/throw,frisbee>

Prediction:
<hold/spin,frisbee>

Figure 6: Visualization of detection results. Correctly classified seen and unseen category are marked in blue and green
respectively, rare category classification results are marked in orange, and incorrect recognition results are marked in red.
Images sampled from HICO-DET dataset and visualized under NF-UC setting.

samples of rare categories within the dataset. For example <per-
son,wash,bus> and <person,smell,broccoli>, they are rare HOI com-
binations, especially <person, smell,broccoli> is easily confused
with <person,eat,broccoli>. (2) Even in the multi-label scenario, our
method exhibits notable discriminative capability towards unseen
categories. In particular for the second image in the first row con-
taining five HOIs , four of which belong to the unseen categories,
our method recognizes them accurately. (3) Some semantically sim-
ilar actions may lead to recognition errors, such as <person, throw,
frisbee> and <person, spin, frisbee>. However, other semantically
similar actions can still be accurately recognized, such as <person,
hold, hot dog> and <person, carry, hot dog>. The majority of these
human-object pairs are accurately recognized by our method.

6 CONCLUSION
We have proposed HOIGen, a pioneering method for zero-shot
HOI detection that harnesses the capabilities of CLIP for feature

generation. By fully leveraging the generated synthetic features,
our approach effectively captures the feature distributions in the
dataset, facilitating robust performance in zero-shot HOI detec-
tion scenarios across both seen and unseen categories of HOI. The
generated features are fed into a generative prototype bank for
computing pairwise HOI scores. Remarkably, we do not use any
external data or model since the generated model is also trained on
the same training dataset. Besides, the image-wise HOI recognition
branch is responsible for extracting global features by combining
CLIP and DINO encoders, thereby constructing a multi-knowledge
prototype bank for image-wise HOI scores. Finally, the scores from
the two branches are fused together to predict the HOI category.
Extensive experiments conducted on the HICO-DET benchmark
validate the effectiveness of HOIGen. In future work, it is promising
to generate more diversified visual features aligning better with
the distributions of realistic features.
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