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ABSTRACT

Graph anomaly detection (GAD) has garnered increasing attention in recent years,
yet remains challenging due to two key factors: (1) label scarcity stemming from
the high cost of annotations and (2) homophily disparity at node and class lev-
els. In this paper, we introduce Anomaly-Aware Pre-Training and Fine-Tuning
(APF), a targeted and effective framework to mitigate the above challenges in
GAD. In the pre-training stage, APF incorporates node-specific subgraphs se-
lected via the Rayleigh Quotient, a label-free anomaly metric, into the learning
objective to enhance anomaly awareness. It further introduces two learnable
spectral polynomial filters to jointly learn dual representations that capture both
general semantics and subtle anomaly cues. During fine-tuning, a gated fusion
mechanism adaptively integrates pre-trained representations across nodes and
dimensions, while an anomaly-aware regularization loss encourages abnormal
nodes to preserve more anomaly-relevant information. Furthermore, we theoret-
ically show that APF tends to achieve linear separability under mild conditions.
Comprehensive experiments on 10 benchmark datasets validate the superior perfor-
mance of APF in comparison to state-of-the-art baselines. The code is available at
https://anonymous.4open.science/r/APF-1537.

1 INTRODUCTION

Graph anomaly detection (GAD) aims to identify a small but significant portion of instances, such as
abnormal nodes, that deviate significantly from the standard, normal, or prevalent patterns within
graph-structured data (Qiao et al., 2025b). The detection of these anomalies is crucial for various
scenarios, such as financial fraud in transaction networks (Cheng et al., 2025), fake news in social
media (Aı̈meur et al., 2023), and sensor faults in IoT networks (Gaddam et al., 2020). Given their
strong ability to model relational structure, graph neural networks (GNNs) have recently emerged as
a leading choice for tackling GAD.

Despite notable progress, most existing GAD methods (Dou et al., 2020; Tang et al., 2022; Zhuo
et al., 2024; Zheng et al., 2025a) are not tailored for label-scarce scenarios, leading to suboptimal
performance in real-world deployments where annotations are costly. Recent semi-supervised
attempts, such as pseudo-labeling (Rizve et al., 2021; Chen et al., 2024b) and synthetic sample
generation (Ma et al., 2024; Qiao et al., 2024), seek to mitigate this but often suffer from instability
due to the inherent uncertainty and confirmation bias that compromise performance (Rizve et al.,
2021). In contrast, the pre-training and fine-tuning paradigm has shown great promise in label-scarce
learning across CV (Chen et al., 2020; Nandam et al., 2025), NLP (Devlin et al., 2019; Shi et al.,
2023), and graph learning (Zhu et al., 2020; Ju et al., 2024). A recent study (Cheng et al., 2024) further
reveals that general-purpose graph pre-training strategies (Veličković et al., 2019; Hou et al., 2022)
can match or even outperform GAD-specific methods under limited supervision. Despite their strong
potential, existing graph pre-training frameworks are primarily designed to extract task-agnostic
semantic knowledge. As such, they fail to address GAD’s unique challenges, falling short in capturing
anomaly-relevant cues and leaving their adaptation to GAD an unsolved yet pressing task.

In GAD, global homophily, the intra-class edge ratio over the entire graph, tends to decrease due to
challenges like camouflage (Dou et al., 2020), making it an intuitive yet common anomaly indicator.
Nonetheless, we highlight that local homophily, the class consistency within each node’s neighbor-
hood, reveals more nuanced disparity patterns, capturing localized yet often overlooked anomaly
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Figure 1: (a), (b): Distribution of local homophily for Weibo and T-Finance. (c), (d): Performance
across local homophily quartiles (Q1 = top 25%, Q4 = bottom 25%) on Weibo and T-Finance.

signals. As illustrated in Figures 1(a) and 1(b), these disparities manifest at two granularities: (1)
node-level disparity represents the high variations in local homophily across individual nodes and (2)
class-level disparity refers to lower local homophily for abnormal nodes. Most existing approaches
are built around global homophily and employ uniform processing schemes, such as edge reweight-
ing (Shi et al., 2022; Gao et al., 2023) or spectral filtering (Tang et al., 2022; Zheng et al., 2025a).
However, such globally uniform designs lack node-adaptive mechanisms necessary to accommodate
the structural diversity of individual nodes, resulting in inconsistent anomaly distinguishability across
nodes in different local homophily groups, as further evidenced in Figures 1(c) and 1(d). These
limitations jointly highlight a critical challenge: How can we devise a GAD-specific pre-training and
fine-tuning framework that effectively mitigates dual-granularity local homophily disparity?

Present Work. To address this challenge, we introduce Anomaly-Aware Pre-Training and Fine-
Tuning (APF), a novel framework designed for GAD under limited supervision, grounded in anomaly-
aware pre-training and granularity-adaptive fine-tuning to handle homophily disparity.

In the context of anomaly-aware pre-training, APF harnesses the Rayleigh Quotient, a label-free
metric for quantifying anomaly degree, to reduce reliance on label-dependent anomaly measures. In
particular, building upon conventional pre-training objectives, we incorporate node-wise subgraphs,
each selected to maximize the Rayleigh Quotient, into the objective to enhance anomaly awareness.
We further adopt learnable spectral polynomial filters to jointly optimize two distinct representations:
one capturing general semantic patterns and the other focusing on subtle anomaly cues. This
dual-objective design effectively captures node-wise structural disparity, offering more informative
initializations for downstream detection tasks.

To enable granularity-adaptive fine-tuning, APF employs a gated fusion network that adaptively
combines pre-trained representations at both the node and dimension levels. An anomaly-aware
regularization loss is further introduced to encourage abnormal nodes to retain more anomaly-
relevant information from pre-trained representations than normal nodes. Together, these components
explicitly address local homophily disparity, by aligning the fine-tuning with the homophily disparity
at node and class levels under label-guided optimization. Theoretical analysis further shows that APF
tends to achieve linear separability across all nodes.

Empirically, extensive experiments on 10 benchmark datasets are conducted to verify the superior
performance of APF, demonstrating its effectiveness against label scarcity.

2 PRELIMINARY

In this section, we briefly introduce notations and key concepts. Detailed preliminaries and related
works are provided in Appendix B and Appendix C, respectively.

Graph Anomaly Detection (GAD). Let G = (V, E ,X) be a graph with n nodes and edges E . Each
node vi has a d-dimensional feature xi, forming the feature matrix X ∈ Rn×d. The adjacency matrix
is A, and D is the diagonal degree matrix. The neighbor set of vi is denoted as Ni. GAD is framed as
a binary classification problem where anomalies are regarded as positive with label 1. Given labeled
nodes VL = Va ∪ Va with labels yL, the goal is to predict ŷU for unlabeled nodes. Real-world
settings typically exhibit extreme label scarcity (|VL| ≪ |V|) and class imbalance (|Va| ≪ |Vn|).
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Local Homophily. Given a node vi, its local homophily hi is defined as the fraction of neighbors
in Ni that share the same label:

hi =
|vj ∈ Ni : yi = yj |

|Ni|
. (1)

We then compute the average local homophily of abnormal and normal nodes, denoted by ha and hn,
respectively, as:

ha =

∑
yi=1 hi∑
yi=1 1

, hn =

∑
yi=0 hi∑
yi=0 1

. (2)

Both metrics are bounded within [0, 1]. Table 4 summarizes the values of ha and hn across datasets,
where ha is consistently lower than hn, highlighting the presence of class-level homophily disparity.

Graph Spectral Filtering. Given the adjacency matrix A, the graph Laplacian is defined as
L = D −A, which is symmetric and positive semi-definite. Their symmetric normalized versions
are noted as Ã = D−1/2AD−1/2 and L̃ = I − D−1/2AD−1/2. It admits eigendecomposition
L̃ = UΛU⊤, where U ∈ Rn×n contains orthonormal eigenvectors (the graph Fourier basis) and
Λ = diag(λ1, · · · , λn) are eigenvalues ordered as 0 = λ1 ≤ · · · ≤ λn ≤ 2 (frequencies). The graph
spectral filtering is then defined as X̂ = Ug(Λ)U⊤X , where g(·) denotes the spectral filter.

3 METHODOLOGY

In this section, we formally introduce our APF framework, a targeted and effective solution tailored
to the unique challenges in GAD. The overall framework is illustrated in Figure 2.

3.1 ANOMALY-AWARE PRE-TRAINING

Label-free Anomaly Indicator. Most existing graph pre-training strategies (Veličković et al., 2019;
Hou et al., 2022; Liu et al., 2024d) are designed to optimize task-agnostic objectives. As a result, the
learned representations primarily encode general semantic knowledge. In contrast, the goal of GAD
is to capture subtle anomaly cues that differentiate minority abnormal instances. However, many of
these cues, such as relation camouflage (Dou et al., 2020), are inherently label-dependent, making
them difficult to capture under the label-free pre-training.

This motivates the incorporation of effective label-free anomaly measures into the learning objective
to guide the representation toward anomaly-aware semantics. Recent findings reveal that the existence
of anomalies induces the ‘right-shift’ phenomenon (Tang et al., 2022; Gao et al., 2023; Dong et al.,
2024), where spectral energy distribution concentrates more on high frequencies. The corresponding
accumulated spectral energy can be quantified by the Rayleigh Quotient (Horn & Johnson, 2012):

RQ(x,L) =
xTLx

xTx
=

∑n
i=1 λix̂

2
i∑n

i=1 x̂
2
i

=

∑
i,j Aij(xj − xi)

2∑n
i=1 x

2
i

, (3)

where x ∈ Rn represents a general graph signal and x̂ = UTx denotes its projection in spectral space.
By definition, Rayleigh Quotient also quantifies global structural diversity, yielding higher values in
the presence of relation camouflage. Crucially, the Rayleigh Quotient measures the inconsistency
between node attributes and the local graph structure (i.e., graph smoothness). A high value indicates
that connected nodes have dissimilar features, which allows RQ to capture both attribute anomalies
(where features deviate from neighbors) and structural anomalies (e.g., camouflaged edges connecting
dissimilar nodes) (Tang et al., 2022). We provide a detailed discussion on how RQ captures these
different anomaly types in Appendix K. The following lemma further illustrates the relationship
between the Rayleigh Quotient and anomaly information.
Lemma 1. The Rayleigh Quotient RQ(x, L), which represents the accumulated spectral energy of a
graph signal, increases monotonically with the anomaly degree. (Tang et al., 2022)

Given this, Rayleigh Quotient stands out as a promising label-free anomaly metric. To guide each
node vi in capturing its potential anomaly cues, we employ MRQSampler (Lin et al., 2024) to extract
its 2-hop subgraph GRQ

i . Each subgraph is selected to maximize the Rayleigh Quotient, thereby
preserving as much structural diversity and anomaly-relevant signal as possible (Lin et al., 2024).
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Figure 2: Overview of our proposed APF.

Dual-filter Encoding. Beyond the learning objective, the architectural modules for encoding
anomaly-relevant information are equally critical. Recent studies highlight that capturing high-
frequency components is essential for modeling heterophilic patterns (Bo et al., 2021; Luan et al.,
2022; Lei et al., 2022). Motivated by this, we complement the conventional low-pass encoder with
an additional high-pass encoder to better capture anomaly cues. This dual-branch design allows us
to simultaneously capture general semantic patterns (via low-pass filters) and subtle anomaly cues
(via high-pass filters), the latter of which are often smoothed out by standard GNNs. We provide
a detailed discussion on the motivation and spectral guarantees of this design in Appendix L. To
facilitate flexible spectral encoding, we adopt the learnable K-order Chebyshev polynomial (He et al.,
2022) and restrict it to fit only low-pass and high-pass filters, denoted by gL(·) and gH(·), following
prior work Chen et al. (2024a):

gL(L̂) =

K∑
k=0

wL
k Tk(L̂), gH(L̂) =

K∑
k=0

wH
k Tk(L̂), (4)

where L̂ = 2L̃/λn − I denotes the scaled Laplacian matrix. The Chebyshev polynomials are
recursively defined as Tk(x) = 2xTk−1(x) − Tk−2(x) with T0(x) = 1 and T1(x) = x. The
coefficients are computed as:

wL
k =

2

M + 1

K∑
i=1

γL
i Tk(ti), w

H
k =

2

M + 1

K∑
i=1

γH
i Tk(ti), (5)

where ti = cos( i+1/2
K+1 π), i = 0, · · · ,K denotes the Chebyshev nodes for TK+1(x). The filter values

γL
m and γH

m is determined by:

γL
k = γ0 −

k∑
j=1

γj , γ
H
k =

k∑
j=0

γj , (6)

where γ = (γ0, · · · , γM ) is the shared learnable parameter with γ0 = γL
0 = γH

0 . As per Chen et al.
(2024a), we have γH

i ≤ γH
i+1 and γL

i ≥ γL
i+1, thus guarantee the high-pass/low-pass property for

gL(·)/gH(·). Given such, our low-pass and high-pass encoders are formulated as:

ZL = fθL

(
gL(L̂)X

)
, ZH = fθH

(
gH(L̂)X

)
, (7)

where ZL,ZH ∈ Rn×e denote the low-pass and high-pass node representations respectively.
fθL(·), fθH (·) represent the learnable MLP for each filter. To ensure consistent scaling for sub-
sequent fusion, both ZL and ZH are standardized with zero mean and unit variance.

Optimization. Unlike conventional objectives that only preserve task-agnostic semantics, our
optimization explicitly integrates anomaly awareness. We build the pre-training framework upon
DGI (Veličković et al., 2019) owing to its efficiency and effectiveness: we retain its standard low-
pass branch to encode generic semantic structure, and further incorporate an anomaly-sensitive
objective that maximizes the mutual information between each node and the summary of its Rayleigh

4
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Quotient-guided subgraph, computed by high-pass encoders. Let Z̃L and Z̃H denote negative
samples generated from randomly shuffled inputs (Veličković et al., 2019). Our pre-training loss is:

Lpt =− 1

n

n∑
i

(
logD

(
ZL

i , s
L
)
+ log

(
1−D

(
Z̃L

i , s
L
)))

− 1

n

n∑
i

(
logD

(
ZH

i , sHi
)
+ log

(
1−D

(
Z̃H

i , sHi

)))
,

(8)

where sL = 1
n

∑n
i=1 Z

L
i is the global semantic summary and sHi = 1

|GRQ
i |

∑
vj∈GRQ

i
ZH

j is the
anomaly-aware summary over the Rayleigh Quotient-based subgraph of node vi. The discriminator
is defined as D(z, s) = σ(z⊤Ws). By jointly optimizing these two complementary objectives,
our framework departs from existing pre-training methods and introduces a principled way to
capture task-agnostic semantic knowledge and node-specific anomaly cues, yielding more informative
representations for downstream anomaly detection.

3.2 GRANULARITY-ADAPTIVE FINE-TUNING

Node- and Dimension-wise Fusion. After pre-training, we aim to develop a node-adaptive fusion
mechanism that selectively combines task-agnostic semantic knowledge (ZL) and node-specific
structural disparities (ZH ) from the frozen pre-trained representations. This fusion is designed to
better respond to local homophily variations across nodes under label-guided learning. Beyond
trivial node-wise fusion, prior studies (Wang & Zhang, 2022; Dong et al., 2021; Zheng et al., 2025b)
highlight that different feature dimensions contribute unequally to downstream tasks, motivating
a dimension-aware fusion design. To this end, we introduce a coefficient matrix C ∈ [0, 1]n×e to
combine ZL and ZH at node and dimension levels:

Z = C ⊙ZL + (1−C)⊙ZH , (9)

where ⊙ denotes the Hadamard product, and Z is the resulting fused representation passed to the
classifier. A naive approach to learn C is treating it as free parameters (Wang & Zhang, 2022), but
this leads to excessive overhead (O(n× e)), inefficient learning under sparse supervision, and neglect
of input semantics. To alleviate this, we introduce a lightweight Gated Fusion Network (GFN) that
generates coefficients based on the input features:

C = σ (XWc + bc) , (10)

where Wc ∈ Rd×e is a learnable matrix and bc ∈ Re is a bias term, σ(·) is sigmoid function. The
advantages of GFN over direct optimization are multifold: (1) GFN reduces the learnable parameter
complexity of C from O(n×e) to O((d+1)×e), where d, e ≪ n; (2) GFN allows sparse supervision
to update the entire coefficient matrix, while direct optimization only affects labeled rows; (3) GFN
leverages raw input features, which encode valuable anomaly-relevant attributes (Tang et al., 2023).

Anomaly-aware Regularization Loss. As indicated by the class-level local homophily disparity,
abnormal nodes tend to camouflage themselves by connecting to normal ones. To account for this
behavior, they should rely less on generic knowledge and be assigned more anomaly-relevant cues
from pre-trained representations during the fusion process. To encourage this class-specific fusion
preference, we introduce a regularization term that guides the optimization of the coefficient matrix
C accordingly. Let ci = 1

e

∑e
j=1 Cij denote the average fusion weight of node vi toward generic

knowledge. We encourage ci to approach a class-specific target: pa ∈ [0, 1] for abnormal nodes and
pn ∈ [0, 1] for normal nodes, with the constraint pa ≤ pn, to mimic the observed class-level disparity.
The regularization loss is formulated as a binary cross-entropy loss:

Lreg =− 1

|VL|
∑

vi∈VL,yi=1

(pa log ci + (1− pa) log(1− ci))

− 1

|VL|
∑

vi∈VL,yi=0

(pn log ci + (1− pn) log(1− ci)) .

(11)

This encourages the model to incorporate class-level fusion bias and enhances its ability to distinguish
anomalies.

5
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Optimization. Given the fused representations Z from Eq. 9, we employ a two-layer MLP to
predict the label ŷi for each labeled node vi. The model is optimized using the standard binary
cross-entropy loss:

Lbce = − 1

|VL|
∑
i∈VL

(yi log ŷi + (1− yi) log(1− ŷi)) . (12)

The overall fine-tuning objective combines the classification loss with the regularization term:

Lft = Lbce + Lreg. (13)

3.3 THEORETICAL INSIGHTS

In this subsection, we provide a theoretical analysis to support our architectural design. Our theoretical
analysis is grounded in the Contextual Stochastic Block Model (Deshpande et al., 2018), a widely
used generative model for attributed graphs (Baranwal et al., 2021; Ma et al., 2022; Mao et al., 2023;
Han et al., 2024). To properly reflect homophily disparity, degree heterogeneity, and class imbalance
in GAD, we first introduce a variant, the Anomalous Stochastic Block Model (ASBM).

Definition 1 (ASBM(na, nn,µ,ν, (p1, q1), (p2, q2),θ)). Let Ca and Cn be the abnormal and nor-
mal node sets with sizes na and nn, respectively; n = na+nn, class priors πa = na/n, πn = 1−πa

with πa ≪ πn. Node features are sampled row-wise as Xa ∼ N (µ, 1
dI) and Xn ∼ N (ν, 1

dI) with
∥µ∥2, ∥ν∥2 ≤ 1, and the full matrix X = [Xa;Xn]. Each node vi has a random variable θi > 0
(collected in θ) as the degree parameter, which controls how many edges it tends to form. Nodes
can follow either a homophilic or heterophilic connectivity pattern: a node in the homophilic set
Ho prefers to connect to nodes of the same class, while a node in the heterophilic set He prefers the
opposite. Accordingly, edges are generated independently as follows:

P(Aij = 1 | yi, yj , hi) = θiθj ×
{
p1 if hi = ho and yi = yj ,
q1 if hi = he and yi ̸= yj ,

p2 if hi = ho and yi = yj ,
q2 if hi = he and yi ̸= yj .

Here yi ∈ {a, n} is the class label and hi ∈ {ho, he} indicates the local pattern (ho-
mophilic/heterophilic) adopted by node vi; p1 > q1 enforces homophily (intra-class edges more
likely), while p2 < q2 enforces heterophily (inter-class edges more likely).

In line with prior analyses (Baranwal et al., 2021), we adopt a linear classifier parameterized by w ∈
Rd and b ∈ R, with predictions ŷ = σ(X̂w + b1) on frozen filtered features X̂ = Ug(Λ)U⊤X ,
optimized by the binary cross-entropy in Eq. 12. The separability of this model under node-adaptive
filtering is characterized by the following theorem:

Theorem 1. For a graph G(V, E ,X) ∼ ASBM(na, nn,µ,ν, (p1, q1), (p2, q2),θ), when low- and
high-pass filters are applied separately to the homophilic and heterophilic node sets Ho,He, there
exist parameters w∗, b∗ such that all nodes are linearly separable with probability 1− od(1).

We present the detailed proof in Appendix E. This theorem theoretically establishes that, under
appropriate conditions, adaptively applying low-pass and high-pass filters to nodes based on local
homophily is possible to achieve linear separability across all nodes.

Our architectural design follows this principle by first extracting candidate representations for each
node via both low-pass and high-pass filters and then employing a gated fusion network to adaptively
combine them. While the theorem assumes an idealized scenario with oracle filter assignments, our
architectural design implements this principle in a data-driven manner. APF first extracts candidate
representations via both low-pass and high-pass filters. Then, instead of hard filter selection, it
employs a Gated Fusion Network to generate soft, continuous coefficients that approximate the
node-wise filter assignment. Guided by class-specific fusion preferences and classification loss, our
model learns to sense local homophily disparity and adjust fusion weights accordingly. This enables
the learned fusion strategy to approximate the node-wise filter assignment in the theorem mimic
the theoretical node-wise filter assignment without requiring all nodes’ pattern labels , allocating
representations based on each node’s local homophily, thereby approaching the theoretical bound of
linear separability and ultimately improving GAD performance.
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4 EXPERIMENTS

In this section, we first evaluate the effectiveness of pre-training for GAD, the overall performance
of our model, and its ability to mitigate homophily disparity (Section 4.2). We then analyze the
contribution of each component and provide visualizations of the learned fusion coefficients (Sec-
tion 4.3). Due to space constraints, additional experimental results, such as efficiency comparison,
hyperparameter analysis, and representation visualization, are presented in Appendix I.

4.1 EXPERIMENTAL SETUP

Datasets and Baselines. We conduct experiments on 10 GADBench (Tang et al., 2023) datasets
spanning diverse domains and scales. We compare with a broad range of baseline methods, including
standard GNNs (Kipf & Welling, 2017; Xu et al., 2019; Veličković et al., 2018; Luan et al., 2022; Bo
et al., 2021; Dong et al., 2021; He et al., 2021), GAD-specific models (Li et al., 2019; Wang et al.,
2021; Liu et al., 2021a; Chai et al., 2022; Tang et al., 2022; Gao et al., 2023; Chen et al., 2024b;
Dong et al., 2025), and graph pre-training approaches (Veličković et al., 2019; Zhu et al., 2020;
Bielak et al., 2022; Hou et al., 2022; Thakoor et al., 2022; Liu et al., 2024c; Chen et al., 2024a). For
detailed dataset statistics, dataset descriptions, and baseline descriptions, please kindly see Table 4,
Appendix H.1, and Appendix H.2, respectively.

Metrics and Implementation Details. Following GADBench (Tang et al., 2023), we use AUPRC,
AUROC, and Rec@K as metrics, with 100 labeled nodes (20 anomalies) per training set. To
strictly align with real-world label scarcity, we follow the semi-supervised setting defined in GAD-
Bench (Tang et al., 2023). Specifically, we standardize the training set to include exactly 100 labeled
nodes (20 anomalies and 80 normal nodes) across all datasets. Thus, the baseline results reported in
this paper correspond to the semi-supervised performance metrics found in the GADBench Appendix
(Table 11). For evaluation, we employ AUPRC, AUROC, and Rec@K. We prioritize AUPRC over the
threshold-dependent F1 score to ensure a robust assessment of precision-recall tradeoffs independent
of decision thresholds, which can be unstable under limited supervision. All experiments are averaged
over 10 random splits provided by GADBench for robustness. Due to space constraints, detailed
evaluation protocols and hyperparameter settings are provided in Appendix H.3 and Appendix H.4, re-
spectively. Our code is available at https://anonymous.4open.science/r/APF-1537.

Table 1: Comparison of AUPRC for each model. ”-” denotes ”out of memory”. The best and
runner-up models are bolded and underlined.

Model Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Avg.

GCN 4.2±0.8 86.0±6.7 32.8±1.2 16.4±2.6 60.5±10.8 43.1±4.6 33.0±3.6 6.1±0.9 2.3±0.2 8.4±3.8 29.3
GIN 4.3±0.6 67.6±7.4 75.4±4.3 23.7±5.4 44.8±7.1 40.1±3.2 31.8±3.2 6.7±1.1 2.0±0.1 6.2±1.7 30.3
GAT 4.7±0.7 73.3±7.3 81.6±1.7 25.0±2.9 28.9±8.6 44.2±6.6 33.0±2.0 7.3±1.2 2.2±0.2 9.2±2.0 30.9
ACM 4.4±0.7 66.0±8.7 54.0±19.0 21.4±2.7 29.2±16.8 63.1±4.8 34.4±3.5 7.2±1.9 2.2±0.4 6.0±1.6 28.8
FAGCN 4.7±0.7 70.1±10.6 77.0±2.3 22.5±2.6 39.8±27.2 43.6±10.6 35.0±4.3 7.3±1.4 2.0±0.3 - -
AdaGNN 4.9±0.8 28.3±2.8 75.7±6.3 22.7±2.1 23.3±7.6 39.2±7.9 32.2±3.9 5.3±0.9 2.1±0.3 4.8±1.1 23.9
BernNet 4.9±0.3 66.6±5.5 81.2±2.4 23.9±2.7 51.8±12.4 40.0±4.1 28.9±3.5 6.7±2.1 2.5±0.2 4.2±1.2 31.1

GAS 4.7±0.7 65.7±8.4 80.7±1.7 21.7±3.3 45.7±13.4 46.0±4.9 31.7±3.0 6.3±2.0 2.5±0.2 8.6±2.4 31.4
DCI 4.3±0.4 76.2±4.3 72.5±7.9 24.0±4.8 51.0±7.2 43.4±4.9 32.1±4.2 6.1±1.3 2.0±0.2 7.4±2.5 31.9
PCGNN 3.4±0.5 69.3±9.7 81.9±1.9 25.0±3.5 58.1±11.3 40.3±6.6 33.9±1.7 6.4±1.8 2.4±0.4 8.0±1.6 32.9
AMNet 4.9±0.4 67.1±5.1 82.4±2.2 23.9±3.5 60.2±8.2 33.3±4.8 28.6±1.5 7.4±1.4 2.2±0.3 3.1±0.3 31.3
BWGNN 4.2±0.7 80.6±4.7 81.7±2.2 23.7±2.9 60.9±13.8 43.4±5.5 35.3±2.2 6.5±1.7 2.1±0.3 15.9±6.2 35.4
GHRN 4.2±0.6 77.0±6.2 80.7±1.7 23.8±2.8 63.4±10.4 44.2±5.7 35.9±2.0 6.5±1.7 2.3±0.3 16.2±4.6 35.4
ConsisGAD 4.5±0.5 64.6±5.5 78.7±5.7 25.9±2.9 79.7±4.7 47.8±8.2 33.7±2.7 7.9±2.4 2.0±0.2 41.3±5.0 38.6
SpaceGNN 4.6±0.5 79.2±2.8 81.1±2.3 25.7±2.4 81.0±3.5 44.1±3.5 33.8±2.5 7.4±1.6 2.0±0.3 59.0±5.7 41.8
XGBGraph 4.1±0.5 75.9±6.2 84.4±1.1 24.8±3.1 78.3±3.1 77.2±3.2 34.1±2.8 7.7±2.1 1.9±0.2 40.6±7.6 42.9

DGI 4.8±0.6 90.8±2.5 46.5±3.7 17.0±1.2 75.0±4.9 45.9±2.5 39.7±0.8 6.4±1.2 2.1±0.2 37.8±6.1 36.6
GRACE 4.7±0.3 90.8±1.8 51.3±4.3 18.2±1.6 79.3±0.7 48.1±3.6 37.4±2.8 8.9±1.7 - - -
G-BT 5.0±0.7 87.5±3.9 38.7±2.2 18.8±1.6 76.8±1.8 45.2±4.4 37.9±2.8 9.1±1.9 2.6±0.3 42.2±7.4 36.4
GraphMAE 4.3±0.1 91.4±2.6 39.4±0.3 17.3±0.1 70.8±4.7 32.7±3.8 36.0±2.1 5.9±0.5 2.1±0.1 42.6±10.5 34.2
BGRL 5.3±0.3 93.6±1.9 43.9±4.6 19.2±1.6 61.7±5.1 47.4±6.0 38.3±3.3 8.4±2.0 2.0±0.2 46.7±8.4 36.6
SSGE 4.8±0.9 87.7±2.6 39.1±2.4 18.8±1.6 77.6±0.9 47.4±3.0 38.2±2.8 8.1±1.1 2.5±0.3 46.4±3.9 37.1
PolyGCL 5.2±0.8 87.3±2.1 79.7±6.6 24.3±2.5 43.3±6.4 50.0±5.2 33.0±1.8 5.7±0.8 2.2±0.3 40.6±7.0 37.1
BWDGI 4.5±0.6 72.5±2.7 79.4±5.7 26.8±2.7 80.0±2.1 44.9±6.5 38.5±3.1 5.0±0.7 2.4±0.2 38.0±5.2 39.2

APF (w/o Lpt) 5.2±0.6 85.8±7.9 82.7±3.0 24.1±2.2 79.4±3.4 55.5±4.9 37.4±1.2 9.4±1.5 2.3±0.2 64.8±10.5 44.7
APF 5.9±0.9 93.9±1.1 83.8±2.9 28.4±1.4 82.5±2.6 67.7±3.4 40.5±2.0 12.3±1.6 2.9±0.2 77.8±5.6 49.6
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4.2 PERFORMANCE COMPARISON

We summarize the performance across AUPRC, AUROC, and Rec@K in Table 1, Table 7, and
Table 8, respectively. For comprehensiveness, DGI and BWDGI represent standard DGI pre-training
with GCN and BWGNN as backbones. In addition, APF (w/o Lpt) is a variant of our method,
skipping pre-training and directly optimizing the learnable spectral filters using Lft.

Effectiveness of Pre-Training. Overall, pre-training methods (from DGI to BWDGI and APF)
achieve competitive or even superior performance compared to GAD-specific models, especially on
Reddit, Weibo, and Tolokers. In particular, DGI, BWDGI, and APF bring AUPRC improvements of
+7.3%, +3.8%, and +4.9% over their respective end-to-end training counterparts (GCN, BWGNN,
and APF (w/o Lpt)). These gains highlight the importance of pre-training in addressing the label
scarcity inherent to GAD, by providing more expressive and transferable initializations.

To further validate the benefits of our pre-training, we also evaluate the learned representations in a
purely unsupervised setting, where they are directly coupled with an anomaly scorer IF (Liu et al.,
2008) without fine-tuning. The results, presented in Appendix I.1, confirm that our pre-training
further enhances unsupervised detection performance, demonstrating its general effectiveness.

Superiority of Our Proposed APF. As observed, APF outperforms both GAD-specific approaches
and graph pre-training methods in most cases. On average, APF achieves gains of +6.7% in AUPRC,
+3.8% in AUROC, and +6.2% in Rec@K. Even without the pre-training, APF (w/o Lpt) surpasses
all baseline methods, including BWGNN and AMNet, which also adopt multi-filter architectures.
This highlights the strength of our fine-tuning module in adaptively emphasizing anomaly-relevant
signals and approximating the theoretical linear separability established in Theorem 1. We note
that APF underperforms XGBGraph on Amazon and Elliptic, likely due to the tabular and highly
heterogeneous node features that favor tree-based models (Grinsztajn et al., 2022; Tang et al., 2023),
as further discussed in Appendix D. Overall, these strong results validate the effectiveness of our
proposed anomaly-aware pre-training and granularity-adaptive fine-tuning framework.

Mitigation of Homophily Disparity. To investigate the ability of our model to mitigate the impact
of local homophily disparity, we conduct a fine-grained performance analysis on abnormal nodes
with varying degrees of local homophily. Specifically, we divide the abnormal nodes in the test
set into four quartiles based on their local homophily scores and compute the model performance

Q1 Q2 Q3 Q4
Local Homophily Quartiles

8

9

10

AU
PR

C

Yelp

Q1 Q2 Q3 Q4
Local Homophily Quartiles

40

60

80

Amazon
AMNet BWGNN ConsisGAD APF

Figure 3: Performance variations across
local homophily quartiles (Q1 = top
25%, Q4 = bottom 25%).

within each group against the remaining normal nodes.
The results are visualized in Figure 1, 3, 13 and 14.
We observe that detection performance typically declines
as local homophily decreases, highlighting the difficulty
of identifying anomalies in heterophilic regions and the
need for node-adaptive mechanisms. APF consistently
achieves stronger performance across all homophily quar-
tiles, demonstrating enhanced robustness to homophily
disparity. Such mitigation mainly stems from our anomaly-
aware pre-training and the adaptive fusion mechanism,
allowing the model to tailor its decision boundary to each
node’s local structural context and mitigating performance
degradation under local homophily disparity.

To provide a more fine-grained view, we further measure
the performance variance across homophily levels by reporting the AUPRC differences between
lower-homophily groups (Q2, Q3, Q4) and the highest-homophily group (Q1). The results in Table 2
show that APF generally yields the smallest or near-smallest performance variance across quartiles.
This indicates that, although performance degradation remains as local homophily decreases, APF
alleviates the disparity more effectively and yields more stable performance under challenging
heterophilic conditions.
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Table 2: AUPRC differences (Q1 - Q*) across local homophily quartiles. Smaller absolute values
indicate lower performance gaps under homophily disparity.

Dataset Weibo T-Finance YelpChi Amazon
Q1-Q2 Q1-Q3 Q1-Q4 Q1-Q2 Q1-Q3 Q1-Q4 Q1-Q2 Q1-Q3 Q1-Q4 Q1-Q2 Q1-Q3 Q1-Q4

AMNet 9.40 32.88 27.32 3.44 30.27 58.66 -0.71 -0.19 0.54 5.42 20.65 47.10
BWGNN 10.73 39.18 44.89 9.47 56.56 86.60 -1.09 -0.94 0.03 8.89 26.14 56.74
ConsisGAD 13.43 43.95 54.96 3.75 25.04 89.25 -1.75 -0.19 -0.06 -3.24 14.63 39.47
APF -1.18 5.72 31.20 2.06 23.36 76.12 -0.50 0.16 0.78 4.18 17.98 45.46

4.3 MODEL ANALYSES

Contribution of Each Component. We perform a comprehensive ablation study to disentangle
the contributions of the major components in both the pre-training and fine-tuning stages of APF. In
the pre-training stage, we design four controlled variants: (i) using only the low-pass filter gL(·), (ii)
using only the high-pass filter gH(·), (iii) removing the Rayleigh Quotient-guided subgraph GRQ by
applying standard DGI on gL(·) and gH(·), and (iv) replacing GRQ with a full k-hop subgraph “✢”.
In the fine-tuning stage, we examine two factors: (i) discarding the anomaly-aware regularization loss
Lreg , and (ii) replacing our node- and dimension-adaptive fusion with mean pooling, concatenation,
or attention-based fusion (Chai et al., 2022).

The results, shown in Table 3, reveal several important findings. (1) Dual-filter necessity. Leveraging
both low- and high-pass filters clearly outperforms using either alone, confirming that semantic
regularities and anomaly-indicative irregularities must be jointly captured for GAD. (2) Power of
GRQ. The Rayleigh Quotient-guided subgraph yields more precise anomaly discrimination than
the full k-hop variant “✢”, highlighting the Rayleigh Quotient as an effective label-free anomaly
indicator. (3) Adaptive fusion advantage. Our node- and dimension-adaptive fusion consistently
surpasses the alternatives, showing the importance of exploiting frequency-selective signals while
adapting to node-specific contexts. (4) Regularization gains. The anomaly-aware regularization
loss Lreg provides additional boosts, aligning representations with class-level fusion bias and further
strengthening anomaly detection.

Table 3: Ablation study on each component of our APF.
Variants Reddit YelpChi Questions DGraph-Fin

gL gH GRQ Lreg Fusion AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC

✓ ✓ ✓ ✓ NDApt 5.9±0.9 66.8±3.9 28.4±1.4 68.2±2.3 12.3±1.6 71.9±2.1 2.9±0.2 72.4±1.3
✓ ✓ ✗ ✓ NDApt 5.3±0.6 66.1±2.0 27.1±1.6 67.6±1.4 10.9±1.8 71.2±2.5 2.6±0.1 71.1±0.5
✓ ✓ ✢ ✓ NDApt 5.5±0.7 66.5±3.8 27.4±2.8 67.3±2.3 10.8±1.6 71.0±2.3 2.7±0.2 71.0±2.2
✓ ✗ ✗ ✗ - 4.9±0.5 65.3±1.7 18.7±1.2 56.5±1.3 11.8±1.2 70.6±1.2 2.5±0.1 71.0±1.0
✗ ✓ ✓ ✗ - 4.5±0.5 60.1±3.0 24.4±2.4 64.0±2.5 6.3±0.7 66.1±3.2 2.6±0.1 71.1±0.5

✓ ✓ ✓ ✗ NDApt 5.3±0.5 64.3±1.7 27.5±1.6 67.4±2.3 11.1±1.6 71.2±2.7 2.8±0.1 71.7±0.4
✓ ✓ ✓ ✗ Mean 5.1±0.6 63.5±2.0 27.6±1.6 67.2±2.1 10.8±1.7 71.0±2.4 2.8±0.1 71.6±0.4
✓ ✓ ✓ ✗ Concat 5.1±0.6 64.6±2.7 27.3±1.9 67.3±2.2 11.1±1.5 68.5±3.2 2.8±0.0 71.5±0.2
✓ ✓ ✓ ✗ Atten. 5.2±0.7 62.8±2.3 26.2±1.6 66.7±1.7 8.3±2.2 67.5±3.5 2.8±0.0 71.7±0.3

Visualization of Fusion Coefficients. To gain visual insights into our node- and dimension-adaptive
fusion, we present heatmaps of the learned fusion coefficients C in Figure 4. For clarity, we focus on
the top 6 dimensions of C for 3 randomly selected abnormal nodes a1, a2, a3 and 3 randomly selected
normal nodes n1, n2, n3. The heatmaps reveal substantial variation across both nodes and dimensions,
confirming the adaptiveness of C. For Amazon, T-Finance, and Tolokers, abnormal nodes generally
have lower coefficients than normal ones, aligning with the intuition that anomalies should rely more
on high-pass (anomaly-sensitive) features, while normal nodes benefit more from low-pass (semantic)
representations. In contrast, Weibo shows similar coefficient distributions between classes, likely due
to the smaller local homophily gap between the two classes. Moreover, the variability of C across
dimensions suggests that APF learns to assign different levels of node-wise and dimension-wise
importance of information from both encoders, enabling more expressive fusion that captures subtle,
localized anomaly-relevant patterns.

Additional Analyses. Due to space limitations, please kindly see the Appendix for extended dis-
cussions. Specifically, we report the model’s time complexity in Appendix G, and present efficiency
analyses regarding training time and memory overhead in Appendix I.3. The effectiveness of our
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Figure 4: Visualization of the learned coefficients for the top 6 dimensions. The nodes a1, a2, a3 are
3 randomly selected abnormal nodes, while n1, n2, n3 are 3 randomly selected normal nodes.

pre-training under a purely unsupervised GAD setting is discussed in Appendix I.1. Moreover,
Appendix I.2 provides visualizations of the learned low-pass, high-pass, and fused node represen-
tations. We also analyze the sensitivity to hyperparameters pa and pn in Appendix I.4, investigate
performance under varying amounts of labeled nodes in Appendix I.5, and include additional figures
and tables complementing the main results. We further re-classify the baselines into supervised, semi-
supervised, and self-supervised categories in Appendix I.8, and compare our two-stage (pre-training
and fine-tuning) approach against a joint learning strategy in Appendix I.9. These analyses jointly
provide a more comprehensive understanding of the proposed framework.

5 CONCLUSION

This paper tackles label scarcity and homophily disparity in GAD by introducing APF. APF first lever-
ages Rayleigh Quotient-guided subgraph sampling and dual spectral filters to capture both semantic
and anomaly-sensitive signals without supervision. During fine-tuning, a node- and dimension-
adaptive fusion mechanism, together with anomaly-aware regularization, enhances the model’s ability
to distinguish abnormal nodes under homophily disparity. Both theoretical analysis and extensive
experiments on 10 benchmark datasets validate the effectiveness of our approach.
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Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? Advances in neural information processing systems, 35:
507–520, 2022.

Haoyu Han, Juanhui Li, Wei Huang, Xianfeng Tang, Hanqing Lu, Chen Luo, Hui Liu, and Jiliang
Tang. Node-wise filtering in graph neural networks: A mixture of experts approach. arXiv preprint
arXiv:2406.03464, 2024.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The elements of statistical learning, 2009.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251,
2021.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. Advances in neural information processing systems, 35:
7264–7276, 2022.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In International Conference on Learning Representations, 2019.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 594–604, 2022.

Xuanwen Huang, Yang Yang, Yang Wang, Chunping Wang, Zhisheng Zhang, Jiarong Xu, Lei Chen,
and Michalis Vazirgiannis. Dgraph: A large-scale financial dataset for graph anomaly detection.
Advances in Neural Information Processing Systems, 2022.

Yihong Huang, Liping Wang, Fan Zhang, and Xuemin Lin. Unsupervised graph outlier detection:
Problem revisit, new insight, and superior method. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE), 2023.

Wei Ju, Siyu Yi, Yifan Wang, Qingqing Long, Junyu Luo, Zhiping Xiao, and Ming Zhang. A survey
of data-efficient graph learning. In Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, IJCAI-24, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Jing Lei and Alessandro Rinaldo. Consistency of spectral clustering in stochastic block models. The
Annals of Statistics, pp. 215–237, 2015.

Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. Evennet: Ignoring odd-hop neigh-
bors improves robustness of graph neural networks. Advances in Neural Information Processing
Systems, 35:4694–4706, 2022.

Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. Spam review detection with graph
convolutional networks. In Proceedings of the 28th ACM international conference on information
and knowledge management, pp. 2703–2711, 2019.

Jinghan Li, Yuan Gao, Jinda Lu, Junfeng Fang, Congcong Wen, Hui Lin, and Xiang Wang. Diff-
GAD: A diffusion-based unsupervised graph anomaly detector. In The Thirteenth International
Conference on Learning Representations, 2025.

Yiqing Lin, Jianheng Tang, Chenyi Zi, H Vicky Zhao, Yuan Yao, and Jia Li. Unigad: Unifying
multi-level graph anomaly detection. Advances in neural information processing systems, 2024.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pp. 413–422. IEEE, 2008.

Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu
Chen, Hao Peng, Kai Shu, et al. Bond: Benchmarking unsupervised outlier node detection on
static attributed graphs. Advances in Neural Information Processing Systems, 2022.

Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: a gnn-based imbalanced learning approach for fraud detection. In Proceedings of the web
conference 2021, pp. 3168–3177, 2021a.

Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection on
attributed networks via contrastive self-supervised learning. IEEE transactions on neural networks
and learning systems, 33(6):2378–2392, 2021b.

Yixin Liu, Shiyuan Li, Yu Zheng, Qingfeng Chen, Chengqi Zhang, and Shirui Pan. Arc: A generalist
graph anomaly detector with in-context learning. Advances in neural information processing
systems, 2024a.

Yunhui Liu, Xinyi Gao, Tieke He, Tao Zheng, Jianhua Zhao, and Hongzhi Yin. Reliable node
similarity matrix guided contrastive graph clustering. IEEE Transactions on Knowledge and Data
Engineering, 2024b.

Yunhui Liu, Tieke He, Tao Zheng, and Jianhua Zhao. Negative-free self-supervised gaussian
embedding of graphs. Neural Networks, 2024c.

Yunhui Liu, Huaisong Zhang, Tieke He, Tao Zheng, and Jianhua Zhao. Bootstrap latents of nodes and
neighbors for graph self-supervised learning. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 76–92. Springer, 2024d.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Xiaoxiao Ma, Ruikun Li, Fanzhen Liu, Kaize Ding, Jian Yang, and Jia Wu. Graph anomaly detection
with few labels: A data-centric approach. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 2153–2164, 2024.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? Advances in
neural information processing systems, 2023.

Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling the evolution
of user expertise through online reviews. In Proceedings of the 22nd international conference on
World Wide Web, pp. 897–908, 2013.

Srinivasa Rao Nandam, Sara Atito, Zhenhua Feng, Josef Kittler, and Muhammed Awais. Investigating
self-supervised methods for label-efficient learning. International Journal of Computer Vision, pp.
1–16, 2025.

Chaoxi Niu, Hezhe Qiao, Changlu Chen, Ling Chen, and Guansong Pang. Zero-shot generalist
graph anomaly detection with unified neighborhood prompts. In Proceedings of the Thirty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI-25, pp. 3226–3234, 2025.

Guansong Pang, Chunhua Shen, Huidong Jin, and Anton Van Den Hengel. Deep weakly-supervised
anomaly detection. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 1795–1807, 2023.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of GNNs under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023.

Hezhe Qiao and Guansong Pang. Truncated affinity maximization: One-class homophily modeling
for graph anomaly detection. Advances in Neural Information Processing Systems, 2023.

Hezhe Qiao, Qingsong Wen, Xiaoli Li, Ee-Peng Lim, and Guansong Pang. Generative semi-
supervised graph anomaly detection. Advances in neural information processing systems, 2024.

Hezhe Qiao, Chaoxi Niu, Ling Chen, and Guansong Pang. Anomalygfm: Graph foundation model
for zero/few-shot anomaly detection. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V. 2, pp. 2326–2337, 2025a.

Hezhe Qiao, Hanghang Tong, Bo An, Irwin King, Charu Aggarwal, and Guansong Pang. Deep graph
anomaly detection: A survey and new perspectives. IEEE Transactions on Knowledge and Data
Engineering, 2025b.

Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review networks
and metadata. In Proceedings of the 21th acm sigkdd international conference on knowledge
discovery and data mining, pp. 985–994, 2015.

Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. In defense of pseudo-
labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning. In
International Conference on Learning Representations, 2021.

Amit Roy, Juan Shu, Olivier Elshocht, Jeroen Smeets, Ruqi Zhang, and Pan Li. GAD-EBM: Graph
anomaly detection using energy-based models. In NeurIPS 2023 Workshop: New Frontiers in
Graph Learning, 2023.

Fengzhao Shi, Yanan Cao, Yanmin Shang, Yuchen Zhou, Chuan Zhou, and Jia Wu. H2-fdetector:
A gnn-based fraud detector with homophilic and heterophilic connections. In Proceedings of the
ACM web conference 2022, pp. 1486–1494, 2022.

Zhengxiang Shi, Francesco Tonolini, Nikolaos Aletras, Emine Yilmaz, Gabriella Kazai, and Yunlong
Jiao. Rethinking semi-supervised learning with language models. In Findings of the Association
for Computational Linguistics: ACL 2023, pp. 5614–5634, 2023.

Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly
detection. In International Conference on Machine Learning, pp. 21076–21089. PMLR, 2022.

Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. Gadbench: Revisiting and bench-
marking supervised graph anomaly detection. Advances in Neural Information Processing Systems,
36:29628–29653, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi
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A USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 Policies on Large Language Model Usage, we disclose that Large
Language Models (LLMs) were employed during the preparation of this manuscript. Specifically,
LLMs were used to (i) check grammar and spelling, (ii) improve clarity and conciseness of sentences,
(iii) format tables for consistency, and (iv) shorten certain passages to reduce redundancy. Importantly,
LLMs were not used to generate research ideas, design experiments, analyze results, or draft new
scientific content. The authors remain fully responsible for all claims, findings, and conclusions
presented in this work.

B DETAILED PRELIMINARIES

Notations. In a general scenario, we are given an attributed graph G = (V, E ,X), where V =
{v1, · · · , vn} is the set of n nodes, E = {eij} is the set of edges, and eij = (vi, vj) represents an
edge between nodes vi and vj . We define A as the corresponding adjacency matrix and D as the
diagonal degree matrix with Dii = di =

∑
j Aij . The neighbor set Ni of each node vi is given

by Ni = {vj : eij ∈ E}. For each node vi, it has a d-dimensional feature vector xi ∈ Rd, and
collectively the features of all nodes are denoted as X = (x1, · · · ,xn)

⊤ ∈ Rn×d.

Graph Anomaly Detection. GAD is formulated as a binary classification problem where anomalies
are regarded as positive with label 1, while normal nodes are negative with label 0. Given VL =
Va ∪ Vn, where Va consists of labeled abnormal nodes and Vn comprises labeled normal nodes,
along with their corresponding labels yL, the goal is to identify the anomalous status ŷU for the
unlabeled nodes VU = V \ VL. Usually, obtaining authentic labels is often costly, we assume that
label information is only available for a small subset of nodes (i.e., |VL| ≪ |V|). Furthermore, there
are usually significantly fewer abnormal nodes than normal nodes (i.e., |Va| ≪ |Vn|).

Graph Spectral Filtering. Given the adjacency matrix A, the graph Laplacian matrix is defined as
L = D −A, which is symmetric and positive semi-definite. Their symmetric normalized versions
are noted as Ã = D−1/2AD−1/2 and L̃ = I −D−1/2AD−1/2. Its eigendecomposition is given
by L̃ = UΛU⊤, where the columns of U ∈ Rn×n are orthonormal eigenvectors (graph Fourier
basis), and Λ = diag(λ1, λ2, · · · , λn) contains the eigenvalues (frequencies), arranged such that
0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Given the graph features X and a filter function g(·), the corresponding
filtered features is thus defined as X̂ = Ug(Λ)U⊤X .

Typically, Ã acts as a low-pass filter with g(λ) = 1− λ, while −Ã and L̃ serve as high-pass filters,
with g(λ) = λ− 1 and g(λ) = λ, respectively. In practice, a self-loop is often added to each node
in the graph (i.e., A = A+ I) to alleviate numerical instabilities and improve performance Kipf &
Welling (2017).

C RELATED WORKS

C.1 GRAPH ANOMALY DETECTION

GNN-based approaches have emerged as a promising paradigm for GAD, due to their strong ability
to capture both complex structural and node attribute patterns in graph data. A comprehensive and
up-to-date survey of deep GAD methods is provided in (Qiao et al., 2025b), while BOND (Liu et al.,
2022) and GADBench (Tang et al., 2023) establish performance benchmarks for unsupervised and
semi-/supervised GAD approaches, respectively.

Unsupervised GAD approaches do not rely on labeled data for training and instead use unsupervised
learning techniques to identify anomaly patterns in graph data. For instance, DOMINANT (Ding
et al., 2019) employs a graph autoencoder to reconstruct both attributes and structure using GNNs.
CoLA (Liu et al., 2021b) explores the consistency between anomalies and their neighbors across
different contrastive views to assess node irregularity. VGOD (Huang et al., 2023) combines variance-
based and attribute reconstruction models to detect anomalies in a balanced manner. TAM (Qiao
& Pang, 2023) introduces local affinity as an anomaly measure, aiming to learn tailored node
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representations for GAD by maximizing the local affinity between nodes and their neighbors. GAD-
EBM (Roy et al., 2023) evaluates the likelihood of normal and anomalous nodes to address GAD
with an energy-based model. DiffGAD (Li et al., 2025) leverages diffusion sampling to infuse the
latent space with discriminative content and introduces a content-preservation mechanism that retains
valuable information across different scales for GAD.

Semi-/supervised GAD approaches assume that labels for some normal and abnormal nodes are
available for training. They aim to assign labels by learning a decision boundary between normal
and abnormal nodes. For example, BWGNN (Tang et al., 2022) uses a Beta graph wavelet to
learn band-pass filters that capture anomaly signals, while DSGAD (Zheng et al., 2025a) extends
BWGNN with dynamic wavelets and feature fusion. AMNet (Chai et al., 2022) employs a restricted
Bernstein polynomial parameterization to approximate filters in multi-frequency groups. CARE-
GNN (Dou et al., 2020), PCGNN (Liu et al., 2021a), and GHRN (Gao et al., 2023) adaptively
prune inter-class edges based on neighbor distributions or the graph spectrum. PMP (Zhuo et al.,
2024) introduces a partitioned message-passing mechanism to handle homophilic and heterophilic
neighbors independently. To address settings with limited labeled data, CGenGA (Ma et al., 2024)
proposes a diffusion-based graph generation method to synthesize additional training nodes, while
ConsisGAD (Chen et al., 2024b) incorporates learnable data augmentation to utilize the abundance
of unlabeled data for consistency training. GGAD (Qiao et al., 2024) introduces a novel semi-
supervised framework using only labeled normal nodes. SpaceGNN Dong et al. (2025) combines
space projection, distance-aware propagation, and ensemble mechanisms across multiple latent spaces
to improve generalization. It is worth noting that some approaches can also address label scarcity by
leveraging auxiliary data, such as cross-network meta-learning (Meta-GDN (Ding et al., 2021b)) or
cross-domain adaptation (Commander (Ding et al., 2021a), ACT (Wang et al., 2023)). In contrast,
our proposed APF targets the single-graph setting where no external auxiliary networks or source
domains are available, relying instead on mining intrinsic anomaly signals from unlabeled nodes
within the target graph.

Additionally, several works have explored GAD within the pre-training and fine-tuning paradigm.
DCI (Wang et al., 2021) decouples representation learning and classification through a cluster-
enhanced self-supervised learning task. Cheng et al. (2024) evaluates the performance of
DGI (Veličković et al., 2019) and GraphMAE (Hou et al., 2022) for GAD, demonstrating the
potential of leveraging graph pre-training to enhance GAD with limited supervision. However, most
existing methods pre-train a uniform global low-pass filter (e.g., GCN (Kipf & Welling, 2017)) and
then fine-tune a classifier on frozen node representations. The homophily disparity in GAD presents
a significant challenge for directly applying these methods. To address this, we propose a pre-training
and fine-tuning framework tailored for GAD.

In addition to the above work, PReNet (Pang et al., 2023) and NSReg (Wang et al., 2025) aim
to identify anomalies whose patterns differ from labeled examples by enforcing strong normality
modeling. GDN-AugAN (Zhou et al., 2023) enhances cross-dataset robustness through augmentation-
based domain generalization. UniGAD (Lin et al., 2024), ARC (Liu et al., 2024a), UNPrompt (Niu
et al., 2025), and AnomalyGFM (Qiao et al., 2025a) have explored foundation models for zero-shot
transferable generalist GAD. While UniGAD (Lin et al., 2024) also employs a Rayleigh Quotient-
based sampler, it uses the sampler as a unification tool to transform node/edge tasks into graph
tasks for multi-level detection. In contrast, APF utilizes the sampler specifically to inject anomaly
awareness during pre-training to address label scarcity in node anomaly detection.

C.2 GRAPH PRE-TRAINING

Graph pre-training has emerged as a promising paradigm for label-efficient learning (Ju et al., 2024).
These methods first learn universal knowledge from unlabeled data using self-supervised objectives,
which are then transferred to tackle specific downstream tasks. Existing pre-training approaches can
be broadly categorized into two groups: contrastive and non-contrastive approaches.

Contrastive approaches typically follow the principle of mutual information maximization (Hjelm
et al., 2019), where the objective functions contrast positive pairs against negative ones. For instance,
DGI (Veličković et al., 2019) and DCI (Wang et al., 2021) focus on representation learning by
maximizing the mutual information between node-level representations and a global summary
representation. GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021), and NS4GC (Liu et al., 2024b)
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learn node representations by pulling together the representations of the same node (positive pairs)
across two augmented views, while pushing apart the representations of different nodes (negative
pairs) across both views.

Non-contrastive approaches, on the other hand, eliminate the need for negative samples. For example,
CCA-SSG (Zhang et al., 2021) and G-BT (Bielak et al., 2022) aim to learn augmentation-invariant
information while introducing feature decorrelation to capture orthogonal features. BGRL (Thakoor
et al., 2022) and BLNN (Liu et al., 2024d) employ asymmetric architectures that learn node repre-
sentations by predicting alternative augmentations of the input graph and maximizing the similarity
between the predictions and their corresponding targets. GraphMAE Hou et al. (2022) focuses on
feature reconstruction using a masking strategy and scaled cosine error. Additionally, SSGE (Liu
et al., 2024c) minimizes the distance between the distribution of learned representations and the
isotropic Gaussian distribution to promote the uniformity of node representations.

However, the methods discussed above rely on low-pass GNN encoders that inherently smooth
neighbor representations, leading to unsatisfactory performance on heterophilic abnormal nodes.
Although a recent work, PolyGCL (Chen et al., 2024a), employs both low- and high-pass encoders, it
combines them using a simple linear strategy to obtain final node representations for fine-tuning. This
approach is less flexible and effective than our proposed node- and dimension-adaptive fine-tuning
strategy, as demonstrated in Theorem 1.

D LIMITATIONS

While APF demonstrates strong performance across a wide range of benchmarks, it exhibits limita-
tions in certain scenarios. Specifically, APF underperforms tree-based models such as XGBGraph on
datasets like Amazon and Elliptic, where node features are highly heterogeneous and dominate over
structural signals. This suggests that in such cases, tree-based models, known for their robustness to
feature heterogeneity, may outperform deep learning-based GNNs Grinsztajn et al. (2022). Future
work could explore hybrid architectures that better integrate rich tabular features with graph topology.

Moreover, although APF is designed as a tailored framework for graph anomaly detection and holds
promise in real-world applications such as financial fraud and cybersecurity, false positives remain a
concern. Misclassifying normal nodes as anomalies may lead to unnecessary disruptions or adverse
consequences for benign users. Addressing such risks requires further research into uncertainty
quantification and trustworthy anomaly detection in graph settings.

E PROOF OF THEOREM 1

Proof. We extend the argument of Baranwal et al. (2021) from a single-pattern CSBM to the mixed-
pattern, degree-corrected, and class-imbalanced ASBM in Definition 1. Throughout the proof, we
make the following standard assumptions:

1. the graph size is relatively large with ω(d log d) ≤ n ≤ O(poly(d));

2. sparsity level obeys p1, q1, p2, q2 = ω(log2 n/n);

3. degree parameters are bounded and centered as θmin ≤ θi ≤ θmax with χ := θmax/θmin =
O(1) and E[θi | zi] = 1 for zi ∈ {a, n};

4. class prior is imbalanced with πa = na/n ≪ πn = 1− πa.

Following Baranwal et al. (2021); Ma et al. (2022); Mao et al. (2023); Han et al. (2024), we adopt
the random-walk operator S = D−1A as a low-pass filter and its negative −S as a high-pass filter.
Concretely, each node vi is assigned a spectral filter function g(·) depending on its pattern: g(λ) = λ
if vi ∈ Ho (homophilic), and g(λ) = −λ if vi ∈ He (heterophilic). This yields the node-adaptive
filtered features X̂ = Ug(Λ)U⊤X .

Concentration under degree correction. Let degree di =
∑

j Aij and recall that, conditional on

(zi, hi), we have E[Aij | zi, zj , hi] = θiθjB
(hi)
zi,zj . Standard Bernstein (Chung & Lu, 2006; Lei &
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Rinaldo, 2015) bounds with bounded θ and ω(log2 n/n) sparsity yield

di = θi n
(
πaβ

(hi)
zi,a + πnβ

(hi)
zi,n

)
(1± o(1)),

where β
(h)
u,v := B

(h)
u,v . Hence for any node vi and any unit vector w,

X̂i = ± 1

di

∑
j

Aij Xj = ±
(
E[X̂i | zi, hi]+ξi

)
,
∣∣⟨ξi,w⟩

∣∣ = O

(√
log n

d di

)
= O

(√
log n

dn θi κi

)
,

with κi := πaβ
(hi)
zi,a + πnβ

(hi)
zi,n . The sign ± corresponds to low- vs. high-pass filtering. Let the

effective average connectivity under imbalance be

κeff := min
{
πap1 + πnq1, πaq1 + πnp1, πap2 + πnq2, πaq2 + πnp2

}
.

Using θi ≥ θmin and κi ≥ κeff , we obtain the uniform deviation bound (Baranwal et al., 2021)∣∣⟨X̂i − E[X̂i | zi, hi],w⟩
∣∣ = O

(√
log n

dnκeff

)
, (14)

matching the CSBM rate up to the effective factor κeff .

Pattern-dependent means after node-adaptive filtering. Condition on zi and hi. A neighboring
node vj belongs to class a with probability proportional to θjβ

(hi)
zi,a and to class n with probability

proportional to θjβ
(hi)
zi,n . By (iii) and bounded heterogeneity χ = O(1), the neighbor-class proportions

concentrate at

ω
(hi)
i,a =

πaβ
(hi)
zi,a

πaβ
(hi)
zi,a + πnβ

(hi)
zi,n

, ω
(hi)
i,n = 1− ω

(hi)
i,a .

Thus the low-pass mean is a degree-normalized mixture

E[SX]i = ω
(hi)
i,a µ+ ω

(hi)
i,n ν (1± o(1)),

while the high-pass mean flips the sign: E[−SX]i = −E[SX]i. Enumerating cases gives, for
hi = o (homophily):

E[X̂i] =

{
πap1µ+πnq1ν
πap1+πnq1

(1± o(1)), zi = a,

πaq1µ+πnp1ν
πaq1+πnp1

(1± o(1)), zi = n,

and for hi = e (heterophily) the same expressions with (p1, q1) replaced by (p2, q2), followed by an
overall sign flip due to the high-pass (−S). Consequently, under the node-adaptive choice (low-pass
on Ho and high-pass on He), all class-wise means align in the same ordering along direction ν − µ:

⟨E[X̂i | zi = a],ν − µ⟩ < ⟨E[X̂i | zi = n],ν − µ⟩,

with a gap proportional to ∆h := |ph−qh|
πaph+πnqh+πaqh+πnph

(here h ∈ {1, 2} indexes (p1, q1) or

(p2, q2)), hence lower bounded by a constant multiple of |ph−qh|
ph+qh

and independent of θ due to the
random-walk normalization.

Prior-aware linear separator and margin. Consider the linear classifier with direction w∗ =
R ν−µ

∥µ−ν∥ and a bias that accounts for the class prior shift

b∗ = −⟨µ+ ν,w∗⟩
2

+ τπ, τπ = R
log(πa/πn)

∥µ− ν∥
.

The additive term τπ is the standard LDA correction under unequal priors with spherical covari-
ances (Hastie et al., 2009). For any vi ∈ Ca, combining Step 2 and Eq 14 gives

⟨X̂i,w
∗⟩+ b∗ = ⟨E[X̂i | zi = a],w∗⟩ − ⟨µ+ ν,w∗⟩

2
+ τπ + ⟨X̂i − E[X̂i],w

∗⟩︸ ︷︷ ︸
fluctuation

= −R

2
Γhi

∥µ− ν∥ (1± o(1)) + τπ + O
(
R
√

logn
dnκeff

)
,
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where Γhi
> 0 depends on the pattern (homophily vs. heterophily) via the mixture coefficients in

Step 2 (and is uniformly bounded away from 0 as |ph − qh| > 0). For i ∈ Cn the sign of the leading
term is positive. Hence, if the feature center distance satisfies

∥µ− ν∥ ≥ C
log n√
dnκeff

for a sufficiently large constant C > 0, the margin term dominates both the stochastic fluctuation

O
(
R
√

logn
dnκeff

)
and the prior correction τπ = O

(
R | log(πa/πn)|/∥µ − ν∥

)
even when πa ≪ πn.

Therefore, according to part 2 of Theorem 1 in Baranwal et al. (2021), sign(⟨X̂i,w
∗⟩+ b∗) equals

the true label for all nodes with probability 1− od(1), by a union bound over vi ∈ V . This establishes
linear separability of node-adaptively filtered features under degree correction and class imbalance,
proving the theorem.

F FORMULATIONS OF FUSION METHODS

Here, we provide the mathematical formulations of the fusion methods described in Section 4.3. These
fusion methods aim to generate overall node representations Z by combining the representations
generated by the low-pass encoder (ZL ∈ Rn×e) and high-pass encoder (ZH ∈ Rn×e).

• The ”Mean” method averages the representations from the low-pass and high-pass encoders,
i.e., Z = 0.5 · (ZL +ZH).

• The ”Concat” method concatenates the representations from the low-pass and high-pass
encoders, i.e., Z = [ZL,ZH ].

• The ”Atten.” method Chai et al. (2022) employs an attention mechanism to learn the weights
αL,αH ∈ [0, 1]n×1 for n nodes, such that Z = αL ·ZL+αH ·ZH . Specifically, for node
vi with ZL

i ,Z
H
i ∈ R1×e, the attention scores are computed as:

ωL
i = q⊤ · tanh

(
WL

Z ZL⊤

i +WL
Xxi

)
,

ωH
i = q⊤ · tanh

(
WH

Z ZH⊤

i +WH
X xi

)
,

(15)

where WL
Z ,WH

Z ∈ Re′×e and WL
X ,WH

X ∈ Re′×d are learnable parameter matrices, and
q ∈ Re′×1 is the shared attention vector. The final attention weights of node vi are obtained
by normalizing the attention values using the softmax function:

αL
i =

exp(ωL
i )

exp(ωL
i ) + exp(ωH

i )
,

αH
i =

exp(ωH
i )

exp(ωL
i ) + exp(ωH

i )
.

(16)

G TIME COMPLEXITY

We analyze the time complexity of our proposed APF framework by dividing the computation into
three stages. Let n and m denote the number of nodes and edges in the graph, respectively, and let K
be the order of the spectral polynomial filters.

Preprocessing. We first extract a Rayleigh Quotient-guided subgraph GRQ
i for each node using

the MRQSampler Lin et al. (2024), which has a total complexity of O(n log n). Since the sampling
for each node is independent, this step can be parallelized to further reduce runtime. Importantly,
this subgraph sampling is performed only once and reused in both training and inference, thereby
introducing minimal overhead.

Pre-training. The coefficients of the polynomial filters in APF can be precomputed in time linear
to K. Given that K-order spectral filters propagate information across K hops, the filtering process
requires O(Km+Kn) time. The loss function Lpt, which operates over all nodes and edges, incurs
an additional O(n + m) cost. The overall time complexity of the pre-training stage is therefore
O((K + 1)(m+ n)), which scales linearly with the graph size and filter order.
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Fine-tuning. The gated fusion network computes adaptive coefficients with complexity O(n), and
the two-layer MLP used for classification adds another O(2n). The anomaly-aware loss Lft involves
only the labeled nodes and thus contributes O(l), where l is the number of labeled nodes. The total
fine-tuning complexity is O(3n+ l).

In summary, the pre-training and fine-tuning phases of APF scale linearly with the graph size. Given
that the subgraph extraction is only performed once and can be computed in parallel, APF exhibits
strong scalability and is well-suited for large-scale graphs. For example, our model can be applied to
datasets like T-Social, which contains over 5.7 million nodes and 73 million edges. We additionally
conduct efficiency comparison in Appendix I.3.

H ADDITIONAL EXPERIMENTAL DETAILS

H.1 DATASETS

Following GADBench Tang et al. (2023), we conduct experiments on 10 real-world datasets span-
ning various scales and domains. Reddit Kumar et al. (2019), Weibo Kumar et al. (2019), Ques-
tions Platonov et al. (2023), and T-Social Tang et al. (2022) focus on detecting anomalous accounts
on social media platforms. Tolokers Platonov et al. (2023), Amazon McAuley & Leskovec (2013),
and YelpChi Rayana & Akoglu (2015) are designed to identify fraudulent workers, reviews, and
reviewers in crowdsourcing or e-commerce platforms. T-Finance Tang et al. (2022), Elliptic Weber
et al. (2019), and DGraph-Fin Huang et al. (2022) target the detection of fraudulent users, illicit
entities, and overdue loans in financial networks. Dataset Statistics are presented in Table 4. Detailed
descriptions of these datasets are as follows.

• Reddit Kumar et al. (2019): This dataset includes a user-subreddit graph, capturing one
month’s worth of posts shared across various subreddits. It includes verified labels for
banned users and focuses on the 1,000 most active subreddits and the 10,000 most engaged
users, resulting in 672,447 interactions. Posts are represented as feature vectors based on
Linguistic Inquiry and Word Count (LIWC) categories.

• Weibo Kumar et al. (2019): This dataset consists of a user-hashtag graph from the Tencent-
Weibo platform, containing 8,405 users and 61,964 hashtags. Suspicious activities are
defined as posting two messages within a specific time frame, such as 60 seconds. Users
engaged in at least five such activities are labeled as ”suspicious,” while others are catego-
rized as ”benign.” The feature vectors are based on the location of posts and bag-of-words
features.

• Amazon McAuley & Leskovec (2013): This dataset focuses on detecting users who are
paid to write fake reviews for products in the Musical Instrument category on Amazon.com.
It contains three types of relationships: U-P-U (users reviewing the same product), U-S-U
(users giving the same star rating within one week), and U-V-U (users with top 5% mutual
review similarities).

• YelpChi Rayana & Akoglu (2015): This dataset aims to identify anomalous reviews on
Yelp.com that unfairly promote or demote products or businesses. It includes three types of
edges: R-U-R (reviews by the same user), R-S-R (reviews for the same product with the
same star rating), and R-T-R (reviews for the same product within the same month).

• T-Finance Tang et al. (2022): This dataset is designed to detect anomalous accounts in
transaction networks. The nodes represent unique anonymized accounts with 10-dimensional
features related to registration days, login activities, and interaction frequency. Edges
represent transactions between accounts, and anomalies are annotated by human experts
based on categories such as fraud, money laundering, and online gambling.

• Elliptic Weber et al. (2019): This dataset includes over 200,000 Bitcoin transactions (nodes),
234,000 directed payment flows (edges), and 166 node features. It maps Bitcoin transactions
to real-world entities, categorizing them as either licit (e.g., exchanges, wallet providers,
miners) or illicit (e.g., scams, malware, terrorist organizations, ransomware, and Ponzi
schemes).

• Tolokers Platonov et al. (2023): This dataset is derived from the Toloka crowdsourcing
platform. Nodes represent workers who have participated in at least one of 13 selected
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Table 4: Dataset statistics including the number of nodes and edges, the node feature dimension, the
ratio of anomalies, the local homophily, the concept of relations, and the type of node features. ha,
and hn represent the average local homophily for abnormal nodes and normal nodes respectively. As
shown, ha is much smaller than hn, highlighting the presence of class-level local homophily disparity.
”Misc.” refers to node features that are a combination of heterogeneous attributes, which may include
categorical, numerical, and temporal information.

Dataset #Nodes #Edges #Feat. Anomaly ha hn Relation Concept Feature Type

Reddit 10,984 168,016 64 3.3% 0.000 0.994 Under Same Post Text Embedding
Weibo 8,405 407,963 400 10.3% 0.858 0.977 Under Same Hashtag Text Embedding
Amazon 11,944 4,398,392 25 9.5% 0.102 0.968 Review Correlation Misc. Information
YelpChi 45,954 3,846,979 32 14.5% 0.195 0.867 Reviewer Interaction Misc. Information
T-Finance 39,357 21,222,543 10 4.6% 0.543 0.976 Transaction Record Misc. Information
Elliptic 203,769 234,355 166 9.8% 0.234 0.985 Payment Flow Misc. Information
Tolokers 11,758 519,000 10 21.8% 0.476 0.679 Work Collaboration Misc. Information
Questions 48,921 153,540 301 3.0% 0.111 0.922 Question Answering Text Embedding
DGraph-Fin 3,700,550 4,300,999 17 1.3% 0.013 0.997 Loan Guarantor Misc. Information
T-Social 5,781,065 73,105,508 10 3.0% 0.174 0.900 Social Friendship Misc. Information

projects. An edge connects two workers if they collaborate on the same task. The goal is
to predict which workers were banned in any of the projects. Node features are based on
worker profiles and task performance.

• Questions Platonov et al. (2023): This dataset is collected from the Yandex Q question-
answering platform. It includes users as nodes, with edges representing answers between
users during a one-year period (September 2021 to August 2022). It focuses on users
interested in the ”medicine” topic. The task is to predict which users remained active by the
end of the period. Node features include the mean of FastText embeddings for words in the
user descriptions, with a binary feature indicating users without descriptions.

• DGraph-Fin Huang et al. (2022): This dataset is a large-scale dynamic graph from the
Finvolution Group representing a financial industry social network. Nodes represent users,
and edges indicate emergency contact relationships. Anomalous nodes correspond to users
exhibiting overdue behaviors. The dataset includes over 3 million nodes, 4 million dynamic
edges, and more than 1 million unbalanced ground-truth anomalies.

• T-Social Tang et al. (2022): This dataset targets anomalous accounts in social networks.
Nodes share the same annotations and features as those in T-Finance, with edges representing
friend relationships maintained for more than three months. Anomalous nodes are annotated
by experts in categories like fraud, money laundering, and online gambling.

H.2 BASELINES

We compare our model with a series of baseline methods, which can be categorized into the fol-
lowing groups: (1) Standard GNN Architectures, including GCN Kipf & Welling (2017), GIN Xu
et al. (2019), GAT Veličković et al. (2018), ACM Luan et al. (2022), FAGCN Bo et al. (2021),
AdaGNN Dong et al. (2021), and BernNet He et al. (2021); (2) GNNs Specialized for GAD, includ-
ing GAS Li et al. (2019), DCI Wang et al. (2021), PCGNN Liu et al. (2021a), AMNet Chai et al.
(2022), BWGNN Tang et al. (2022), GHRN Gao et al. (2023), ConsisGAD Chen et al. (2024b),
SpaceGNN Dong et al. (2025), and XGBGraph Tang et al. (2023); (3) Graph Pre-Training Methods,
including DGI Veličković et al. (2019), GRACE Zhu et al. (2020), G-BT Bielak et al. (2022), Graph-
MAE Hou et al. (2022), BGRL Thakoor et al. (2022), SSGE Liu et al. (2024c), PolyGCL Chen et al.
(2024a), and BWDGI which incorporates BWGNN and DGI. Detailed descriptions of these baselines
are as follows.

H.2.1 STANDARD GNN ARCHITECTURES

• GCN Kipf & Welling (2017) employs a convolutional operation on the graph to propagate
information from each node to its neighboring nodes, enabling the network to learn a
representation for each node based on its local neighborhood.
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Figure 5: Distribution of local homophily across different datasets. GAD graphs display two levels of
local homophily disparity: (1) Different nodes exhibit varying degrees of local homophily (node-level)
and (2) Abnormal nodes tend to show lower local homophily than normal nodes (class-level). On
Reddit, we only plot the distribution of local homophily for normal nodes, since the local homophily
of all abnormal nodes is 0.

• GIN Xu et al. (2019) is designed to capture the structural properties of a graph while
preserving graph isomorphism. Specifically, it generates identical embeddings for graphs
that are structurally identical, regardless of permutations in node labels.

• GAT Veličković et al. (2018) incorporates an attention mechanism, assigning different levels
of importance to nodes during the information aggregation process. This allows the model
to focus on the most relevant nodes within a neighborhood.

• ACM Luan et al. (2022) leverages low-, high, and full-pass spectral filters and an attention-
based mixing mechanism to adaptively extract richer localized information for diverse node
heterophily situations.

• FAGCN Bo et al. (2021) adaptively integrates low-frequency and high-frequency signals
through a self-gating mechanism. This approach enhances the model’s ability to handle both
homophilic and heterophilic networks.

• AdaGNN Dong et al. (2021) leverages an adaptive frequency response filter to capture the
varying importance of different frequency components for node representation learning.
This approach improves the expressiveness of the model and alleviates the over-smoothing
problem.

• BernNet He et al. (2021) provides a robust framework for designing and learning arbitrary
graph spectral filters. It uses an order-K Bernstein polynomial approximation to estimate
filters over the normalized Laplacian spectrum of a graph.

H.2.2 GNNS SPECIALIZED FOR GAD

• GAS Li et al. (2019) is a highly scalable method for detecting spam reviews. It extends
GCN to handle heterogeneous and heterophilic graphs and adapts to the graph structure of
specific GAD applications using the KNN algorithm.

• DCI Wang et al. (2021) reduces inconsistencies between node behavior patterns and label
semantics, and captures intrinsic graph properties within concentrated feature spaces by
clustering the graph into multiple segments.

• PCGNN Liu et al. (2021a) uses a label-balanced sampler to select nodes and edges for
training, ensuring a balanced label distribution in the induced subgraph. Additionally,
it employs a learnable, parameterized distance function to select neighbors, filtering out
redundant links while adding beneficial ones for improved fraud prediction.
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• AMNet Chai et al. (2022) captures both low- and high-frequency signals by stacking
multiple BernNets, adaptively combining signals from different frequency ranges.

• BWGNN Tang et al. (2022) addresses the ”right-shift” phenomenon in graph anomalies,
where spectral energy distribution shifts from low to high frequencies. It uses a Beta kernel
to address high-frequency anomalies through flexible, spatially- and spectrally-localized
band-pass filters.

• GHRN Gao et al. (2023) targets the heterophily problem in the spectral domain for graph
anomaly detection. This method prunes inter-class edges to highlight and delineate the
graph’s high-frequency components.

• ConsisGAD Chen et al. (2024b) focuses on graph anomaly detection with limited supervi-
sion. It incorporates learnable data augmentation to utilize the abundance of unlabeled data
for consistency training.

• SpaceGNN Dong et al. (2025) integrates learnable space projection, distance-aware propa-
gation, and multiple space ensemble modules to leverage the benefits of different spaces
(Euclidean, hyperbolic, and spherical) for node anomaly detection with extremely limited
labels.

• XGBGraph Tang et al. (2023) first aggregates features from neighboring nodes to enhance
the representation of each node, and then uses XGBoost Chen & Guestrin (2016) to classify
nodes as normal or anomalous. This approach leverages the robustness and efficiency of tree
ensembles while incorporating graph structure to improve anomaly detection performance.

H.2.3 GRAPH PRE-TRAINING METHODS

• DGI Veličković et al. (2019) learns representations by maximizing the mutual information
between node representations and a global summary representation.

• GRACE Veličković et al. (2019) learns node representations by pulling together the rep-
resentations of the same node (positive pairs) across two augmented views, while pushing
apart the representations of different nodes (negative pairs) across both views.

• GraphMAE Hou et al. (2022) is a masked graph auto-encoder that focuses on feature
reconstruction using both a masking strategy and scaled cosine error.

• BGRL Thakoor et al. (2022) employs asymmetric architectures to learn node representations
by predicting alternative augmentations of the input graph and maximizing the similarity
between these predictions and their corresponding targets.

• G-BT Bielak et al. (2022) utilizes a cross-correlation-based loss function to reduce redun-
dancy in the learned representations, which enjoys fewer hyperparameters and significantly
reduced computation time.

• SSGE Liu et al. (2024c) minimizes the distance between the distribution of learned rep-
resentations and an isotropic Gaussian distribution, promoting the uniformity of node
representations.

• PolyGCL Chen et al. (2024a) addresses heterophilic challenges in graph pre-training by
using polynomial filters as encoders and incorporating a combined linear objective between
low- and high-frequency components in the spectral domain.

• BWDGI pre-trains the state-of-the-art GAD backbone BWGNN Tang et al. (2022) using
DGI Veličković et al. (2019) as the pretext objective.

H.3 EVALUATION PROTOCOLS

Following GADBench Tang et al. (2023), we evaluate performance using three popular metrics: the
Area Under the Receiver Operating Characteristic Curve (AUROC), the Area Under the Precision-
Recall Curve (AUPRC) calculated via average precision, and the Recall score within the top-K
predictions (Rec@K). Here, K corresponds to the number of anomalies in the test set. We prioritize
these threshold-independent (AUROC, AUPRC) and rank-based (Rec@K) metrics over the F1 score
to avoid the instability associated with selecting decision thresholds under label-scarce conditions.
For all metrics, anomalies are treated as the positive class, with higher scores indicating better
model performance. To closely simulate real-world scenarios with limited supervision, we strictly
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adhere to the semi-supervised setting defined in GADBench. Accordingly, we standardize the
training/validation set across all datasets to include 100 labels — 20 positive (abnormal) and 80
negative (normal) labels Tang et al. (2023). This specific configuration ensures our results are directly
comparable to the semi-supervised benchmarks reported in the GADBench Appendix (Table 11). To
ensure the robustness of our findings, we perform 10 random splits, as provided by GADBench, on
each dataset and report the average performance.

H.4 IMPLEMENTATION DETAILS

We use the implementations of all baseline methods provided by GADBench Tang et al. (2023) or
the respective authors. Our APF model is implemented using PyTorch and the Deep Graph Library
(DGL) Wang et al. (2019). Experiments are conducted on a Linux server equipped with an Intel(R)
Xeon(R) Gold 6248 CPU @ 2.50GHz and a 32GB NVIDIA Tesla V100 GPU.

During the pre-training phase, each model is trained for up to 800 epochs using the Adam opti-
mizer Kingma & Ba (2015), with a patience of 20. Hyperparameters are tuned as follows: filter order
∈ {2, 3}, learning rate ∈ {0.01, 0.001, 0.0001}, representation dimension ∈ {32, 64}, activation
function ∈ {ReLU,ELU,PReLU,Tanh}, and normalization ∈ {none, batch, layer}. For efficiency,
we extract 1-hop subgraphs instead of 2-hop ones on denser or larger datasets Amazon, T-Finance,
and T-Social.

During the fine-tuning phase, a 2-layer MLP classifier is trained for up to 500 epochs using the
Adam optimizer Kingma & Ba (2015), with a learning rate of 0.01 and weight decay selected from
{0.0, 0.01, 0.0001}. The classifier with the highest validation AUROC score is selected for testing.
The hyperparameters pn and pa are varied within the range of 0.0 to 1.0. Regarding the regularization
hyperparameters, while we conduct a full grid search (pn, pa ∈ [0, 1]) for the sensitivity analysis, we
adopt an efficient strategy for practical tuning: we fix pn to a high default value (e.g., 0.9 or 1.0) and
perform a small search for pa (e.g., {0.0, 0.1, 0.2, 0.3, 0.4}), subject to pa ≤ pn. Our implementation
codes are available at https://anonymous.4open.science/r/APF-1537.

I ADDITIONAL EXPERIMENTS

I.1 PRETRAINING-ONLY FOR UNSUPERVISED GAD

To further verify the effectiveness of our pre-training, we also investigate its performance under a
purely unsupervised scenario where no anomaly labels are available. In this case, the pre-training
stage remains unchanged. After obtaining the pre-trained low- and high-pass node representations,
we directly concatenate them and feed the representations into Isolation Forest (IF) (Liu et al., 2008),
a widely used ensemble method for unsupervised anomaly detection, to derive anomaly scores for
each node. This modification enables our framework to operate in a label-free manner, aligning with
common practice in unsupervised GAD.

We follow the evaluation pipeline of the unsupervised GAD benchmark BOND (Liu et al., 2022),
and select the three datasets overlapping with ours: Reddit, Weibo, and DGraph. We include
comparisons with two recent state-of-the-art unsupervised baselines, GAD-EBM (Roy et al., 2023)
and DiffGAD (Li et al., 2025). Table 5 reports AUROC results, where baseline numbers are taken
from the respective papers.

Table 5: Unsupervised GAD results (AUROC %).
Method Reddit Weibo DGraph

GAD-EBM (Roy et al., 2023) 58.5±1.6 93.2±1.8 60.3±2.5
DiffGAD (Li et al., 2025) 56.3±0.1 93.4±0.3 52.4±0.0
IF (raw feats) (Liu et al., 2008) 45.2±1.7 53.5±2.8 60.9±0.7
IF + Our Pre-training 59.9±2.4 93.1±1.8 63.3±0.6
Ours (Semi-supervised) 66.8±3.9 98.8±0.3 72.4±1.3
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From the results, we observe that: (i) pretraining substantially improves the performance of IF, which
alone struggles to capture structural anomalies; (ii) our method surpasses the state-of-the-art DiffGAD
on Reddit and DGraph in the unsupervised setting; (iii) nevertheless, the semi-supervised version of
our full framework still achieves the best performance, indicating that anomaly-aware pretraining
brings general benefits while labels further boost detection accuracy.

Overall, these findings demonstrate that the proposed pre-training not only benefits semi-supervised
settings but also provides clear gains in purely unsupervised anomaly detection, further validating its
general effectiveness.

I.2 VISUALIZATION OF LEARNED REPRESENTATIONS

To provide more intuitive insights into the learned representations, we apply t-SNE to visualize
the distributions of ZL, ZH , and their fused representation Z. As shown in Figure 6, the results
consistently reveal clear patterns: (i) the low-pass representation ZL and the high-pass representation
ZH typically occupy distinct and largely non-overlapping regions in the embedding space, indicating
that they capture complementary signals; (ii) the fused representation Z exhibits partial overlaps
with both ZL and ZH , suggesting that it effectively integrates information from both frequency
domains. These visualizations thus provide direct evidence that the dual-filter encoding indeed
extracts complementary information, and the adaptive fusion mechanism successfully combines them
into more comprehensive node representations.
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ZH

Z

(a) Reddit

ZL

ZH

Z

(b) Weibo

ZL

ZH

Z

(c) Amazon

ZL
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(d) YelpChi
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(e) T-Finance
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Z

(f) Elliptic
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(g) Tolokers

ZL

ZH

Z

(h) Questions

Figure 6: Visualization of the learned representations ZL, ZH , and Z.

I.3 EFFICIENCY COMPARISON.

We evaluate the training time and memory usage of APF on two large-scale datasets, YelpChi and T-
Social, as shown in Table 6. Compared to end-to-end models like GCN, AMNet, and BWGNN, APF
incurs higher computational costs due to its pre-training phase. However, it remains more efficient
than GHRN, which performs fine-grained edge-level operations and thus consumes substantially
more memory, particularly on large graphs. When compared to models specifically designed for
label-scarce settings, e.g., ConsisGAD and SpaceGNN, our method demonstrates lower training
time and comparable or even lower memory usage. Overall, although APF introduces moderate
computational overhead due to its two-stage design, the additional cost is justified by the significant
gains in anomaly detection performance. These results demonstrate that APF is a viable and scalable
solution for real-world, large-scale GAD applications.

I.4 HYPERPARAMETER ANALYSIS

In addition to the adaptive fusion mechanism, our APF further introduces two hyperparameters, pa
and pn, which represent the expected preference for low-pass representations in abnormal and normal
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Table 6: Efficiency comparison in terms of training time and GPU memory.

Model YelpChi T-Social

Time (s) Mem. (MB) Time (s) Mem. (MB)

GCN 1.93 547.73 61.75 13241.26
AMNet 4.09 773.38 213.82 18970.04
BWGNN 2.66 729.17 112.01 16146.46
GHRN 3.22 3360.71 161.00 28080.33
ConsisGAD 89.28 16390.42 1674.87 14145.61
SpaceGNN 13.80 24217.29 1273.43 20518.91
APF 7.89 1370.62 569.35 26351.84

nodes, respectively. To assess their impact on our performance, we vary these hyperparameters from
0.0 to 1.0 in increments of 0.1. The results are presented in Figure 7, 8 and 9. It is observed that
the right half of the heatmap, corresponding to relatively larger pn values, generally outperforms
the left half. This aligns with the understanding that normal nodes benefit more from low-pass
representations for generic knowledge, due to their strong structural consistency with neighbors.
Additionally, the optimal combination of (pa, pn) always appears in the lower-right half of the
heatmap, where pa ≤ pn. This indicates that abnormal nodes are assigned lower pa values, thus
placing greater emphasis on anomaly-indicative components, which better capture their deviation
from the local context. These observations are consistent with the intuition behind our adaptive
fusion design: normal and abnormal nodes require different emphases of knowledge to maximize
discriminability. Overall, pa and pn provide a simple yet effective way that consistently guides APF
toward strong and stable anomaly detection performance with minimal tuning effort.
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Figure 7: How the AUPRC score varies with different values of pa and pn.
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Figure 8: How the AUROC score of APF varies with different values of pa and pn.

I.5 UNDER VARYING SUPERVISION

This section evaluates the performance of APF under varying levels of supervision by modifying the
number of labeled abnormal nodes. Following Tang et al. (2023), the number of labeled normal nodes
is set to four times the number of labeled abnormal nodes. We present the results in terms of AUPRC,
AUROC, and Rec@K in Figures 10, 11, and 12, respectively. As expected, performance generally
improves across all methods as the number of labeled nodes increases. Notably, APF delivers
consistent improvements over baseline pre-training methods and surpasses the state-of-the-art GAD
models, even with only 5 labeled abnormal nodes. This highlights the effectiveness of our approach
in addressing GAD with limited supervision.
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Figure 9: How the Rec@K score of APF varies with different values of pa and pn.
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Figure 10: How the AUPRC score varies with different numbers of labeled anomalies.
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Figure 11: How the AUROC score varies with different numbers of labeled anomalies.

5 10 20 40
# Labeled Anomalies

4

6

8

Re
c@

K

Reddit

5 10 20 40
# Labeled Anomalies

40

50

60

70

80
Amazon

5 10 20 40
# Labeled Anomalies

30

35

40

Tolokers

5 10 20 40
# Labeled Anomalies

7.5

10.0

12.5

15.0

17.5
Questions

BWGNN ConsisGAD DGI G-BT APF

Figure 12: How the Rec@K score varies with different numbers of labeled anomalies.
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I.6 ADDITIONAL RESULTS FOR MODEL COMPARISON.

We provide additional results in terms of AUROC and Rec@K for model comparison in Table 7 and
Table 8, respectively.

Table 7: Comparison of AUROC for each model. ”-” denotes ”out of memory”. The best and
runner-up models are bolded and underlined.

Model Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Avg.

GCN 56.9±5.9 93.5±6.6 82.0±0.3 51.2±3.7 88.3±2.5 86.2±1.9 64.2±4.8 60.0±2.2 66.2±2.5 71.6±10.4 72.0
GIN 60.0±4.1 83.8±8.3 91.6±1.7 62.9±7.3 84.5±4.5 88.2±0.9 66.8±5.2 62.2±2.2 65.7±1.8 70.4±7.4 73.6
GAT 60.5±3.9 86.4±7.7 92.4±1.9 65.6±4.0 85.0±4.5 88.5±2.1 68.1±3.0 62.3±1.4 67.2±1.9 75.4±4.8 75.1
ACM 60.0±4.3 92.5±2.9 81.8±7.9 61.3±3.8 82.2±8.1 90.6±0.8 69.3±4.2 60.8±4.1 67.6±5.3 68.3±4.9 73.4
FAGCN 60.2±4.1 83.4±7.7 90.4±1.9 62.4±2.9 82.6±8.4 86.1±3.0 68.1±6.6 60.8±3.2 63.0±3.7 - -
AdaGNN 62.0±4.7 69.5±4.8 90.8±2.2 63.2±3.1 83.6±2.6 85.1±2.8 63.3±5.3 58.5±4.1 67.6±3.7 64.7±5.6 70.8
BernNet 63.1±1.7 80.1±6.9 92.1±2.4 65.0±3.7 91.2±1.0 87.0±1.7 61.9±5.6 61.8±6.4 69.0±1.4 59.8±6.3 73.1

GAS 60.6±3.0 81.8±7.0 91.6±1.9 61.1±5.2 88.7±1.1 89.0±1.4 62.7±2.8 57.5±4.4 69.9±2.0 72.1±8.8 73.5
DCI 61.0±3.1 89.3±5.3 89.4±3.0 64.1±5.3 88.0±3.2 88.5±1.3 67.6±7.1 62.2±2.5 65.3±2.3 74.2±3.3 75.0
PCGNN 52.8±3.4 83.9±8.1 93.2±1.2 65.1±4.8 92.0±1.1 87.5±1.4 67.4±2.1 59.0±4.0 68.4±4.2 69.1±2.4 73.8
AMNet 62.9±1.8 82.4±4.6 92.8±2.1 64.8±5.2 92.6±0.9 85.4±1.7 61.7±4.1 63.6±2.8 67.1±3.2 53.7±3.4 72.7
BWGNN 57.7±5.0 93.6±4.0 91.8±2.3 64.3±3.4 92.1±2.7 88.7±1.3 68.5±2.7 60.2±8.6 65.5±3.1 77.5±4.3 76.0
GHRN 57.5±4.5 91.6±4.4 90.9±1.9 64.5±3.1 92.6±0.7 89.0±1.3 69.0±2.2 60.5±8.7 67.1±3.0 78.7±3.0 76.1
ConsisGAD 59.6±2.8 85.0±3.7 92.3±2.2 66.1±3.8 94.3±0.8 88.6±1.3 68.5±2.0 65.7±3.9 67.1±3.0 93.1±1.9 78.0
SpaceGNN 62.3±1.9 94.4±0.9 91.1±2.5 66.8±2.8 93.4±1.0 88.5±1.2 68.9±2.6 66.0±1.8 63.9±3.7 94.7±0.7 79.0
XGBGraph 59.2±2.7 96.4±0.7 94.7±0.9 64.0±3.5 94.8±0.6 91.9±1.3 67.5±3.4 61.4±2.9 62.4±4.1 85.2±1.8 77.8

DGI 63.0±3.0 96.7±2.5 87.7±0.7 54.0±1.8 91.8±0.8 86.2±1.4 71.5±0.7 68.7±3.8 64.3±2.2 89.3±1.3 77.3
GRACE 64.5±3.3 97.1±1.9 87.9±0.7 55.5±1.4 93.1±0.3 88.8±1.8 70.6±1.6 68.2±1.7 - - -
G-BT 63.8±4.3 97.3±1.1 84.8±1.6 55.5±1.8 93.0±0.6 88.5±1.2 71.7±1.3 67.0±1.6 69.4±2.5 90.9±1.2 78.2
GraphMAE 61.0±0.5 95.7±2.3 84.2±0.3 55.2±0.3 91.4±0.7 82.5±1.4 66.3±3.0 62.5±1.4 63.7±1.6 89.2±4.5 75.2
BGRL 65.3±2.2 99.0±0.5 84.3±1.0 57.0±1.2 88.0±1.7 88.5±1.7 72.0±1.8 65.7±2.9 64.9±1.6 90.2±1.3 77.5
SSGE 62.2±4.7 95.1±1.6 84.7±2.0 55.7±1.8 92.9±0.7 86.7±1.2 71.9±1.5 65.5±1.5 68.6±2.9 92.3±0.8 77.6
PolyGCL 62.7±3.9 97.4±0.6 93.3±1.3 65.1±4.1 89.3±0.6 87.9±0.9 68.1±1.8 64.8±3.8 67.4±2.0 91.4±1.5 78.7
BWDGI 60.0±3.5 91.4±0.8 94.1±1.6 66.9±2.7 94.0±0.6 87.6±1.5 71.4±1.9 64.0±3.9 69.8±1.8 82.8±2.6 78.2

APF (w/o Lpt) 63.6±2.2 96.3±3.2 92.9±2.9 65.6±3.4 94.2±0.5 90.4±0.7 70.8±1.5 67.2±2.4 69.0±1.6 94.4±1.5 80.4
APF 66.8±3.9 98.8±0.3 94.9±1.1 68.2±2.3 94.8±0.5 91.2±0.9 73.7±1.0 71.9±2.1 72.4±1.3 95.1±1.4 82.8

Table 8: Comparison of Rec@K for each model. ”-” denotes ”out of memory”. The best and
runner-up models are bolded and underlined.

Model Reddit Weibo Amazon Yelp. T-Fin. Ellip. Tolo. Quest. DGraph. T-Social Avg.

GCN 6.2±2.2 79.2±4.3 36.9±2.6 16.9±3.0 60.6±7.6 49.7±4.2 33.4±3.5 9.8±1.2 3.6±0.4 10.2±8.1 30.6
GIN 4.8±1.9 66.5±7.3 70.4±5.7 26.5±6.1 54.4±5.0 47.6±3.1 33.6±3.0 10.3±1.1 2.1±0.5 5.3±2.9 32.2
GAT 6.5±2.3 70.2±4.6 77.1±1.7 28.1±3.4 36.2±10.3 51.4±5.8 35.1±1.8 10.9±0.9 3.1±0.7 11.6±3.0 33.0
ACM 5.4±1.8 70.7±9.5 56.1±14.2 23.9±3.8 37.2±19.3 60.2±3.3 35.8±4.2 11.4±2.6 1.9±0.7 8.1±1.8 31.1
FAGCN 7.2±1.9 67.8±8.1 71.7±3.1 25.0±2.8 39.6±30.3 48.5±11.3 35.6±3.7 12.3±2.3 2.5±0.8 - -
AdaGNN 6.3±2.2 38.3±3.7 74.2±4.0 25.6±2.4 31.3±11.3 46.3±7.4 33.6±3.7 10.0±2.4 1.1±0.4 7.9±2.7 27.5
BernNet 6.4±1.5 60.9±4.6 77.2±2.1 26.8±3.1 60.5±11.1 47.0±4.5 30.1±3.8 10.3±2.7 3.8±0.6 3.3±2.8 32.6

GAS 6.6±2.5 62.0±6.9 77.4±1.7 24.6±4.1 54.2±9.5 51.9±5.2 33.0±3.9 9.1±2.9 3.4±0.4 11.5±4.6 33.4
DCI 4.5±1.4 68.5±3.5 68.3±7.2 26.8±5.3 58.5±6.3 50.0±3.8 33.5±5.6 9.9±1.9 2.3±0.7 6.3±6.8 32.9
PCGNN 3.0±2.1 65.1±6.6 78.0±1.5 27.8±3.8 63.9±6.3 46.5±7.3 34.3±1.6 10.1±3.9 3.7±1.0 13.5±3.1 34.6
AMNet 6.8±1.5 62.1±4.4 77.8±2.3 26.6±4.3 65.7±6.3 37.8±6.7 30.5±1.9 12.7±2.6 2.6±0.8 1.6±0.5 32.4
BWGNN 6.0±1.4 75.1±3.5 77.7±1.6 26.4±3.2 64.9±11.7 49.7±6.1 35.5±3.1 10.9±3.2 3.1±0.8 24.3±7.4 37.4
GHRN 6.3±1.5 72.4±2.6 77.7±1.3 26.9±3.1 67.7±4.3 50.8±4.8 36.1±3.1 11.1±3.4 3.4±0.7 24.6±7.0 37.7
ConsisGAD 6.3±2.5 58.6±4.6 77.5±2.8 28.7±3.2 76.5±4.2 50.8±7.8 34.8±2.3 12.8±3.1 1.8±0.5 48.5±4.6 39.6
SpaceGNN 6.0±2.0 72.2±3.9 76.8±2.0 28.9±2.4 76.6±3.7 48.6±4.9 35.4±2.5 11.5±2.2 2.3±0.8 63.3±4.0 42.2
XGBGraph 4.9±1.9 68.9±5.7 78.2±1.5 26.8±3.0 72.4±3.8 68.9±3.7 36.6±3.0 10.6±2.9 2.5±0.7 43.0±7.6 41.3

DGI 6.5±1.3 85.5±2.1 49.2±2.2 18.8±1.2 71.7±4.8 48.0±2.1 39.1±1.1 9.8±2.8 3.1±0.7 43.2±4.3 37.5
GRACE 5.6±2.6 85.6±2.5 51.8±4.5 20.4±1.4 74.8±1.1 52.4±3.7 38.4±2.0 13.0±1.9 - - -
G-BT 6.8±1.7 85.1±3.6 46.3±3.4 20.6±1.5 74.0±1.9 50.7±3.7 38.3±2.8 12.0±3.4 3.8±0.6 46.2±6.0 38.4
GraphMAE 4.7±0.5 86.8±2.4 47.6±1.1 20.2±0.2 67.4±4.7 37.9±3.6 37.1±2.0 9.6±2.1 3.5±0.4 44.8±10.6 36.0
BGRL 7.4±1.1 90.3±1.1 45.3±3.7 21.6±1.5 59.2±3.4 51.0±4.7 38.2±3.1 11.5±3.6 2.7±0.6 47.1±5.2 37.4
SSGE 6.4±2.2 81.0±2.2 45.1±3.9 20.6±1.8 74.7±0.9 51.6±2.8 38.3±2.7 11.4±1.6 3.6±0.8 49.5±3.2 38.2
PolyGCL 7.4±2.5 81.7±2.9 72.5±7.5 27.5±2.9 50.4±3.8 55.0±2.5 35.6±1.8 9.0±2.4 1.9±0.7 44.7±5.1 38.6
BWDGI 6.2±1.7 64.5±1.7 72.2±7.7 29.8±2.9 75.6±2.7 50.3±5.4 39.5±2.5 7.5±1.5 3.1±0.6 43.3±3.8 39.2

APF (w/o Lpt) 7.6±1.2 80.8±7.7 77.4±2.4 27.2±2.5 74.8±3.8 57.8±2.7 38.3±1.6 13.6±1.5 3.0±0.6 69.7±8.2 45.0
APF 8.8±1.6 88.7±2.4 78.5±4.2 31.4±1.6 78.9±1.3 62.1±2.1 40.8±1.7 16.5±0.9 4.2±0.7 74.1±5.4 48.4
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I.7 ADDITIONAL FIGURES FOR HOMOPHILY DISPARITY.

We provide additional figures in terms of AUROC and Rec@K for homophily disparity in Figure 13
and Figure 14, respectively.

Q1 Q2 Q3 Q4
Local Homophily Quartiles

70

80

90

100

AU
RO

C

Weibo

Q1 Q2 Q3 Q4
Local Homophily Quartiles

80

85

90

95

100 Amazon

Q1 Q2 Q3 Q4
Local Homophily Quartiles

80

90

100
T-Finance

Q1 Q2 Q3 Q4
Local Homophily Quartiles

66

68

70

72

YelpChi
AMNet BWGNN ConsisGAD APF

Figure 13: Performance across local homophily quartiles (Q1 = top 25%, Q4 = bottom 25%).
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Figure 14: Performance across local homophily quartiles (Q1 = top 25%, Q4 = bottom 25%).

I.8 PERFORMANCE ANALYSIS BY SUPERVISION PARADIGM

To clarify performance differences and better position our method within the landscape of GAD
approaches, we provide an additional analysis categorizing baseline methods by the type of anomaly
information used. While our main text categorizes models by architecture (e.g., Standard GNNs vs.
Specialized GAD models), here we classify them based on their reliance on supervision, particularly
under the label-scarce setting (100 labeled nodes) used in our experiments:

• Supervised Models: These models are trained directly using the available labeled anomalies.
This category includes standard GNNs (e.g., GCN, GAT, ACM) and supervised GAD-
specific models (e.g., GAS, PCGNN, AMNet, BWGNN, GHRN).

• Semi-supervised Models: These are specialized subclasses of supervised methods de-
signed to effectively leverage limited anomaly labels. This category includes ConsisGAD,
SpaceGNN, and XGBGraph.

• Self-supervised Models: These models adopt a two-stage paradigm: first pre-training
on unlabeled data to learn general representations, followed by fine-tuning with labeled
anomalies. This category includes general graph pre-training methods (e.g., DGI, DCI,
GraphMAE, SSGE, PolyGCL, BWDGI) and our proposed APF.

Table 9 summarizes the performance of the top-3 models from each category alongside APF. This
categorization yields two critical observations regarding label scarcity in GAD:

1. Potential of Pre-training: In this realistic label-scarce scenario, general-purpose self-
supervised models (e.g., BWDGI, SSGE) are competitive with, and often outperform, the
best specialized supervised GAD models (e.g., GHRN, BWGNN). For instance, BWDGI
achieves an average AUPRC of 39.2% compared to GHRN’s 35.4%. This confirms the
advantage of the pre-training paradigm in extracting transferable knowledge from abundant
unlabeled data when supervision is limited.
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Table 9: Comparison of top-performing models across different supervision paradigms. Results
are averaged across all 10 datasets. Our proposed APF (Self-supervised) demonstrates superior
performance compared to the best models in Supervised and Semi-supervised categories.

Category Model Avg. AUPRC Avg. AUROC Avg. Rec@K

Supervised
PCGNN 32.9 73.8 34.6
BWGNN 35.4 76.0 37.4
GHRN 35.4 76.1 37.7

Semi-supervised
ConsisGAD 38.6 78.0 39.6
SpaceGNN 41.8 79.0 42.2
XGBGraph 42.9 77.8 41.3

Self-supervised

SSGE 37.1 77.6 38.2
PolyGCL 37.1 78.7 38.6
BWDGI 39.2 78.2 39.2
APF (Ours) 49.6 82.8 48.4

2. Effectiveness of Anomaly-Aware Design: While general self-supervised models show
promise, our proposed APF significantly outperforms them, as well as the strongest semi-
supervised baselines. APF achieves an average AUPRC of 49.6%, surpassing the best
semi-supervised model (XGBGraph, 42.9%) by 6.7% and the best baseline self-supervised
model (BWDGI, 39.2%) by 10.4%. This validates our core motivation: while the pre-training
paradigm is beneficial, a general-purpose objective is insufficient. A framework specifically
tailored to capture anomaly-aware signals, as APF does via the Rayleigh Quotient and
dual-filter encoding, is essential for maximizing performance in GAD.

I.9 COMPARISON WITH JOINT LEARNING STRATEGY

To justify our design choice of a two-stage framework (pre-training followed by fine-tuning), we
compare our proposed method against a joint learning strategy. We define the two strategies as
follows:

• Two-stage (Ours): The model is first trained with the unsupervised pre-training objective.
The resulting representations are then frozen or used as initialization for fine-tuning with the
supervised binary classification loss.

• Joint Learning: The model is trained end-to-end by simultaneously optimizing both
the supervised classification loss and the unsupervised pre-training loss (i.e., Ltotal =
Lsup + λLunsup).

We applied these strategies to standard baselines (GCN and BWGNN, using DGI as the auxiliary
unsupervised objective) as well as to our APF framework. Table 10 presents the AUPRC performance
across four representative datasets.

Table 10: Performance comparison (AUPRC %) between Supervised-only, Joint Learning, and
Two-stage strategies. The two-stage paradigm consistently outperforms joint learning, with APF
achieving the best overall results.

Model Training Strategy Reddit YelpChi Tolokers DGraph-Fin

GCN
Supervised-only 4.2 ± 0.8 16.4 ± 2.6 33.0 ± 3.6 2.3 ± 0.2
Joint Learning (w/ DGI) 4.4 ± 1.0 18.2 ± 2.3 38.0 ± 3.4 2.3 ± 1.4
Two-stage (w/ DGI) 4.8 ± 0.6 17.0 ± 1.2 39.7 ± 0.8 2.1 ± 0.2

BWGNN
Supervised-only 4.2 ± 0.7 23.7 ± 2.9 35.3 ± 2.2 2.1 ± 0.3
Joint Learning (w/ DGI) 4.3 ± 0.6 26.8 ± 4.1 38.2 ± 3.4 2.3 ± 0.2
Two-stage (w/ DGI) 4.5 ± 0.6 26.8 ± 2.7 38.5 ± 3.1 2.4 ± 0.2

APF
Supervised-only (w/o Lpt) 5.2 ± 0.6 24.1 ± 2.2 37.4 ± 1.2 2.3 ± 0.2
Joint Learning 5.5 ± 0.7 28.0 ± 1.8 39.6 ± 2.2 2.7 ± 0.3
Two-stage (Ours) 5.9 ± 0.9 28.4 ± 1.4 40.5 ± 2.0 2.9 ± 0.2
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The results yield two critical insights:

1. Benefits of Unsupervised Signals: Consistent with our hypothesis, incorporating unsu-
pervised objectives (whether via joint learning or two-stage training) generally improves
performance over purely supervised baselines. For example, GCN with Joint Learning
improves upon the supervised GCN on Reddit and YelpChi.

2. Superiority of Two-Stage Learning: In nearly all cases, the two-stage paradigm out-
performs the joint learning strategy. This trend is particularly pronounced in APF, where
the two-stage approach achieves the highest performance across all datasets. We attribute
this to the potential conflict between the unsupervised pre-training objective and the su-
pervised classification loss when optimized simultaneously, which may lead to suboptimal
representations. This observation aligns with prior findings in GAD literature (Wang et al.,
2021), which suggest that decoupling representation learning from classification often yields
superior detection performance.

J DISCUSSION ON THEORETICAL ASSUMPTIONS AND APPLICABILITY

In Section 3.3, we establish the linear separability of anomalies under node-adaptive filtering using
the Anomalous Stochastic Block Model (ASBM). We acknowledge that this theoretical model relies
on certain idealizations compared to the deployed APF architecture. Here, we clarify the scope of
these assumptions and their connection to the practical implementation.

Gaussian Feature Assumption. Our theoretical analysis assumes Gaussian-distributed node features
to ensure analytical tractability and derive closed-form separability conditions. This assumption is
standard in theoretical analyses of GNNs and GAD to isolate the effects of structural properties like
homophily (Baranwal et al., 2021; Ma et al., 2022; Mao et al., 2023; Han et al., 2024). While real-
world datasets such as YelpChi and T-Finance contain heterogeneous or categorical features (Tang
et al., 2022), the ASBM serves as a simplified “sandbox” to demonstrate the efficacy of node-adaptive
low-/high-pass filtering under homophily disparity. Our empirical results on these non-Gaussian
datasets (Table 1) suggest that the architectural insights derived from this Gaussian setting are robust
and transferable to more complex, real-world distributions.

Oracle Patterns vs. Data-Driven Fusion. Theorem 1 assumes an idealized scenario where node
homophily patterns are known, allowing for the precise assignment of low-pass or high-pass filters.
In practice, APF replaces this oracle assignment with the Gated Fusion Network (GFN) and anomaly-
aware regularization. Specifically, the GFN generates continuous coefficients C to create a soft,
learnable relaxation of the hard filter assignment used in the theorem. The regularization loss Lreg

further encourages the model to mimic the theoretical ideal by guiding abnormal nodes to rely more
on the anomaly-sensitive (high-pass) branch. Visualizations of the learned coefficients (Figure 4)
confirm that APF successfully approximates this ideal allocation in a data-driven manner.

Linear vs. Deep Architectures. Finally, while the theorem proves the existence of a linear separator
on frozen filtered features, APF employs learnable polynomial filters and MLP encoders. The
theoretical result is intended to provide a conceptual justification for the core mechanism of APF: the
node-specific combination of low-pass and high-pass information. By proving that a linear classifier
suffices under ideal filtering, we motivate the design of APF, which employs a more expressive
parameterized implementation to learn these optimal filters and fusion strategies.

K ANALYSIS OF RAYLEIGH QUOTIENT ON DIFFERENT ANOMALY TYPES

To further justify our use of the Rayleigh Quotient (RQ) as a label-free anomaly indicator, we analyze
its sensitivity to different graph anomaly types. The “right-shift” phenomenon, where spectral energy
concentrates on high frequencies, is a fundamental indicator of anomaly degree (Tang et al., 2022).
Here, we clarify how this phenomenon captures both attribute anomalies and structural anomalies
through the lens of graph signal smoothness.

The Rayleigh Quotient is defined as RQ(x,L) = x⊤Lx
x⊤x

(Tang et al., 2022). The numerator,
x⊤Lx =

∑
i,j Aij(xi − xj)

2, quantifies the “smoothness” or consistency of the node attributes x
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with respect to the graph structure L. A higher RQ value indicates a “right-shift” in spectral energy,
signifying a high level of inconsistency. Both primary anomaly types contribute to this inconsistency:

• Abnormal Node Attributes: In this scenario, a node vi possesses feature values xi that
deviate significantly from the distribution of its neighbors xj . This creates a large feature
difference (xi−xj)

2 across edges connected to vi. Consequently, the term x⊤Lx increases,
resulting in a higher Rayleigh Quotient and a shift toward high-frequency spectral energy.
This aligns with the theoretical analysis of Gaussian anomalies provided by Tang et al.
(2022).

• Abnormal Edge Connections (Structural Anomalies): This scenario typically involves
“camouflaged” anomalies, where an abnormal node intentionally connects to benign (normal)
nodes to evade detection (Tang et al., 2022). While the node’s features might appear valid in
isolation, the connection creates an edge between dissimilar classes (anomalous vs. normal).
Because the features of the anomalous node are inherently different from those of the
normal community it has invaded, the term (xi − xj)

2 along these spurious edges becomes
large. This breakage of homophily similarly increases the x⊤Lx term, manifesting as a
“right-shift” in the spectrum.

Both attribute and structural anomalies fundamentally break the smoothness assumption of the
graph signal, leading to a higher concentration of spectral energy in the high-frequency domain.
This universality makes the Rayleigh Quotient a robust, unified, and label-free metric for our pre-
training stage, allowing APF to effectively target node-specific subgraphs that exhibit feature-structure
mismatches regardless of the anomaly’s origin.

L DETAILS OF DUAL-FILTER ENCODING

In this section, we elaborate on the design rationale and implementation details of the Dual-filter
Encoding module introduced in Section 3.1.

Motivation. The core motivation behind our dual-filter design stems from the inherent complexity of
the GAD task, which requires the simultaneous extraction of two distinct types of information:

• General Semantic Patterns: These represent the “normality” of the graph, where connected
nodes typically share similar features (homophily). Such patterns are concentrated in the
low-frequency range of the graph spectrum and are well-modeled by conventional low-pass
filters used in standard GNNs.

• Subtle Anomaly Cues: Anomalies often manifest as high-frequency signals, characterized
by abrupt changes in features across edges (heterophily) or structural inconsistencies. Re-
lying solely on low-pass filters tends to smooth out these critical high-frequency signals,
making anomalies indistinguishable from normal nodes.

To address this, APF complements the low-pass encoder with an explicit high-pass encoder. This
ensures that while ZL captures the general semantic structure, ZH preserves the subtle anomaly cues,
providing a comprehensive basis for the subsequent fusion module.

Spectral Guarantees. To implement these filters efficiently while retaining flexibility, we utilize the
learnable Chebyshev polynomial approximation restricted by specific constraints on the coefficients.
As defined in Eq. 7, the filter values are derived from a shared parameter vector γ via cumulative
summation: γL

k = γ0 −
∑k

j=1 γj and γH
k =

∑k
j=0 γj .

This construction provides a theoretical guarantee on the spectral behavior of the filters. As demon-
strated in prior work (Chen et al., 2024a), this formulation enforces the monotonicity of the filter
response values at the Chebyshev nodes:

γL
i ≥ γL

i+1, γH
i ≤ γH

i+1. (17)

These inequalities ensure that gL(·) consistently attenuates high frequencies (low-pass property)
while gH(·) amplifies them (high-pass property), preventing the optimization process from collapsing
into arbitrary or redundant filter shapes.
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