
Preprint. Work in progress.

FTFT: EFFICIENT AND ROBUST FINE-TUNING BY
TRANSFERRING TRAINING DYNAMICS

Yupei Du, Albert Gatt & Dong Nguyen
Utrecht University
Utrecht, the Netherlands
{y.du,a.gatt,d.p.nguyen}@uu.nl

ABSTRACT

Despite the massive success of fine-tuning large Pre-trained Language Models
(PLMs), they remain susceptible to out-of-distribution and adversarial input. Data
Map (DM) is a simple yet effective dual-model approach that improves the robust-
ness of fine-tuned PLMs. It involves fine-tuning a model on the original training
set (i.e. reference model), selecting a subset of important training examples based
on the training dynamics of the reference model, and fine-tuning the same model
only on these selected examples (i.e. main model). However, this approach re-
quires fine-tuning the same model twice, which is computationally expensive for
large PLMs. In this paper, we show that 1) training dynamics are highly trans-
ferable across model sizes and pre-training methods, and that 2) main models
fine-tuned using DM learn faster than when using conventional Empirical Risk
Minimization (ERM). Building on these observations, we propose a novel fine-
tuning approach based on the DM approach: Fine-Tuning by transFerring Train-
ing dynamics (FTFT). Compared with DM, FTFT uses more efficient reference
models and fewer training steps. FTFT achieves better generalization robustness
than ERM while spending less than half of the training cost.1

1 INTRODUCTION

Current state-of-the-art performance in Natural Language Processing (NLP) is dominated by large,
pretrained language models (PLMs), which are typically fine-tuned for downstream tasks. Scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022) suggest that better downstream performance is
achieved with larger PLMs. However, fine-tuning large PLMs is also more expensive, in terms of
both computational resources and carbon emission (Strubell et al., 2019; Wu et al., 2022).

Moreover, despite impressive progress on regular benchmarks, many studies have shown that fine-
tuned PLMs lack robustness against out-of-distribution (OOD) input. For instance, human annota-
tors can easily exploit the weaknesses of fine-tuned PLMs to trick these models to yield incorrect
predictions, on tasks such as Natural Language Inference (NLI) (Nie et al., 2020) and Hate Speech
Detection (HSD) (Vidgen et al., 2021b).

The problem of robustness can be mitigated using dual-model approaches. With such approaches,
first a reference model is trained to estimate the importance of each training instance, and then a
main model is trained based on the outputs of the reference model (Nam et al., 2020; Utama et al.,
2020; Sanh et al., 2021; Karimi Mahabadi et al., 2020; Zhang et al., 2022; Liu et al., 2021). In
particular, the approach proposed by Swayamdipta et al. (2020) is attractive because it is simple
and consistently improves model performance on OOD test datasets. First, a Data Map (DM)
is constructed, based on the training dynamics (i.e. instance prediction probabilities) from an
initial fine-tuning run of the reference model on the full dataset. This DM then divides training
data into three subsets: ambiguous, hard-to-learn, and easy instances. Finally, the main model
is fine-tuned using only either the ambiguous or the hard-to-learn subset. In Swayamdipta et al.
(2020) the reference model and the main model are the same PLM (e.g., DeBERTaV3Large; He et al.,
2023). However, a major drawback of this approach is that it improves robustness at the expense of
efficiency, because it requires fine-tuning the same model twice.

1Our code will be publicly available on GitHub.

1



Preprint. Work in progress.

We jointly address robustness and efficiency issues without sacrificing the simplicity of the DM
approach, by exploiting the transferability of training dynamics, and make two key contributions.

First, we study the following unexplored question: Are data maps transferable across different model
sizes and pretraining methods? We focus on the novel setting where data maps are created based
on computationally efficient reference models to fine-tune more capable — and often larger — main
models. The motivation is two-fold: first, smaller reference models are more computationally ef-
ficient; second, the more capable a reference model is, the better it is at memorizing training data
quickly (Tirumala et al., 2022; Carlini et al., 2023), making such models less suitable to identify am-
biguous or hard training instances. We make three key observations. First, in most cases, training
dynamics are highly transferable across different model sizes (§4.1) and pretraining methods (§4.2).
For example, one can use DeBERTaV3Large as the main model, but DeBERTaV3Small or ELECTRA
(Clark et al., 2020) as the reference model. Second, the condition for successful transfer is that
reference models should be reasonably strong, in a sense that we also seek to make precise (§4.3).
Crucially, we identify a key property of effective reference models, namely that they typically al-
locate higher ratios of training instances to the easy subset. This observation can help us inspect
whether a reference model would work well without training the main model. Third, the main
model learns faster using the DM approach than with the traditional approach based on Empirical
Risk Minimization (ERM), i.e., good performance is achieved using fewer steps (§5).

Second, building on these findings, we propose Fine-Tuning by transFerring Training dynamics
(FTFT, §5): an efficient fine-tuning approach that leads to improved OOD performance. Compared
to the DM approach, FTFT is more efficient in two ways. First, FTFT uses more efficient reference
models to identify ambiguous training instances. Second, FTFT uses substantially fewer training
steps to train the main model. Experiments on two tasks, NLI and HSD, show that FTFT achieves
better performance on OOD input than ERM, while lowering the training cost by > 2 times.

2 BACKGROUND

Dual-Model Approaches for Robustness Many studies have proposed dual-model approaches
to improve model robustness, without the knowledge of instance group information. Nam et al.
(2020) first train a reference model using generalized cross-entropy loss, and then train a main
model while assigning higher weights to instances that are hard for the reference model. Sanh et al.
(2021) use a Product-of-Expert (PoE) approach, by first training a reference model with limited
capacity to capture dataset biases, and then training the main model to avoid these biases using PoE
loss. Liu et al. (2021) propose the Just-Train-Twice approach (JTT), which involves first training
a weak reference model using heavy regularization and vanilla SGD, and then up-weighing the
training instances that the reference model predicts incorrectly when training the main model. The
DM approach proposed by Swayamdipta et al. (2020) is based on a similar idea, but use training
dynamics instead of correctness to categorize training instances. We discuss this method below.

Data Map Swayamdipta et al. (2020) propose a dual-model approach for improving model robust-
ness. First, a reference model is trained on the full training dataset. Then, a Data Map (DM) is built
based on the observed training dynamics, by tracking the prediction probabilities of the true class
(ptrue) of each training instance across epochs. Using the DM, training instances can be categorized
into three groups: ambiguous (i.e. the standard deviation of ptrue is in the top q% of all training
instances); hard-to-learn (i.e. the mean of ptrue is at the bottom q% of all training instances); and
easy (i.e. neither ambiguous nor hard-to-learn). The threshold q% is fixed and typically set to 33%.
Note that a training instance can be categorized as both hard-to-learn and ambiguous (a low mean
but high standard deviation for ptrue). Finally, the main model is fine-tuned only on the q% most
ambiguous or hard-to-learn data points. Swayamdipta et al. (2020) show that, with a slight loss of
In-Distribution (ID) performance, this approach improves model performance on challenging Out-
Of-Distribution (OOD) datasets. They also observe that training on ambiguous data leads to better
performance than training on hard-to-learn data. We therefore mainly focus on ambiguous data.

Swayamdipta et al. (2020) uses the same PLM as both the reference and the main model. In contrast,
Sar-Shalom & Schwartz (2023) recently showed that a DM constructed by ELECTRALarge can be
used to improve the robustness of DeBERTaV3Large. However, instead of using only the ambiguous
subset, they added k copies of this subset to the original training set. Moreover, they did not investi-

2



Preprint. Work in progress.

gate either DM transfer across model sizes and pretraining methods, or how such transferability can
be exploited to improve efficiency.

Model-Based Data Selection/Reweighing Our work is also connected to studies that have pro-
posed to use a reference model to select or reweigh data and improve ID performance. Chang et al.
(2017) use ptrue variance and proximity to the classification threshold from a reference model to
reweigh training instances; Toneva et al. (2019) calculate the frequency of forgetting events (i.e.
from correct to incorrect prediction), and remove the least forgettable instances; Paul et al. (2021)
instead use error vector norm to estimate the contribution of a training instance.

Previous studies have also explored the use of a smaller reference model to improve efficiency. For
instance, Coleman et al. (2020) use a small model for active learning and core-set selection. Xie
et al. (2023) reweigh domains for language model pretraining, by training a small reference model
to estimate the difficulty of each domain. Building on the previously mentioned lines of research,
we propose Fine-Tuning by transFerring Training dynamics (FTFT), which is more efficient than
the original DM approach, while retaining the advantage of improved robustness.

3 EXPERIMENTAL SETUP

We perform our experiments on two tasks, Natural Language Inference (NLI) and Hate Speech
Detection (HSD). As a baseline, we also experiment with a random DM (i.e., randomly selecting
q% of the training data). Following Swayamdipta et al. (2020), we set q% = 33%.

Data To study model robustness, we include a few challenging OOD test sets for each task, in
addition to the training set and an ID validation set.

For NLI, we use the MultiNLI dataset (Williams et al., 2018) as the train and ID validation set,
because of its diverse composition, covering 10 genres. As OOD test sets, we use two challenging
datasets designed to target weaknesses of models trained on MultiNLI: WANLI (Liu et al., 2022)
and AdversarialNLI (Nie et al., 2020), which consists of three rounds of adversarial data collection.

For HSD, we use CAD (Vidgen et al., 2021a) as the training and ID validation set. CAD consists of
Reddit posts covering diverse topics and writing styles, annotated based on a fine-grained taxonomy.
Following Ramponi & Tonelli (2022), we frame the task as a binary classification task, by marking
identity-related abuse as hateful and other categories as non-hateful. As OOD test sets, we use
DynaHate (Vidgen et al., 2021b), which contains three rounds of adversarial data collection and
perturbations, because it is challenging and aligns with CAD’s hate speech definition.

Models We mainly use DeBERTaV3 (He et al., 2023) and ELECTRA (Clark et al., 2020) in our
experiments, because they offer strong performance and various model sizes. To study the transfer-
ability across different pretraining methods, we also use TinyBERT (Turc et al., 2020), BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019) as reference models.2

Training We train all models for 60k (NLI) steps and 6k (HSD) steps. To inspect the training
dynamics, we checkpoint the model 15 times during training, i.e., every 4k steps for NLI and every
400 steps for HSD. For other hyper-parameters, we use the recommended values from the PLM
papers without further tuning. We use four different random seeds for each run. Full training details
(e.g., optimization, software and hardware) and discussions are included in Appendix A.2.

4 TRANSFERABILITY OF TRAINING DYNAMICS

In this section, we study the transferability of training dynamics in the DM method, i.e., whether
we can use different reference and main models while maintaining the robustness advantage of
the main model. Specifically, we study whether training dynamics are transferable across different
model sizes (§4.1, e.g., from DeBERTaV3Small to DeBERTaV3Large) and pretraining methods (§4.2,
e.g., from ELECTRALarge to DeBERTaV3Large).

2Costs for fine-tuning different PLMs are in Appendix A.1. We report PFLOPs rather than GPU hours
because we noticed occasional low GPU utilization especially when fine-tuning smaller PLMs.

3



Preprint. Work in progress.

DeB
ER

Ta
V30 Sm

all

DeB
ER

Ta
V31 Sm

all

DeB
ER

Ta
V32 Sm

all

DeB
ER

Ta
V33 Sm

all

DeB
ER

Ta
V30 Base

DeB
ER

Ta
V31 Base

DeB
ER

Ta
V32 Base

DeB
ER

Ta
V33 Base

DeB
ER

Ta
V30 Lar

ge

DeB
ER

Ta
V31 Lar

ge

DeB
ER

Ta
V32 Lar

ge

DeB
ER

Ta
V33 Lar

ge

DeBERTaV30
Small

DeBERTaV31
Small

DeBERTaV32
Small

DeBERTaV33
Small

DeBERTaV30
Base

DeBERTaV31
Base

DeBERTaV32
Base

DeBERTaV33
Base

DeBERTaV30
Large

DeBERTaV31
Large

DeBERTaV32
Large

DeBERTaV33
Large

0.6

0.6 0.59

0.61 0.6 0.6

0.58 0.57 0.57 0.58

0.58 0.57 0.57 0.58 0.66

0.58 0.57 0.57 0.58 0.66 0.66

0.58 0.57 0.56 0.58 0.65 0.65 0.65

0.55 0.54 0.53 0.55 0.63 0.63 0.62 0.62

0.55 0.54 0.54 0.55 0.63 0.63 0.62 0.62 0.67

0.54 0.54 0.53 0.54 0.62 0.62 0.62 0.61 0.66 0.66

0.55 0.54 0.53 0.55 0.62 0.62 0.62 0.62 0.67 0.67 0.66 0.54

0.56

0.58

0.60

0.62

0.64

0.66

(a) Consistency across different sizes

0 1 2 3

Epoch

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

Changes of Median of ptrue

Type

Hard-to-Learn

Others

Model

TinyBERT

ELECTRASmall

DeBERTaV3Base

DeBERTaV3Large

(b) Change of median ptrue

Figure 1: Figure 1a: Consistency across different sizes of DeBERTaV3 on NLI. The numbers are the
percentages (0–1) of the ambiguous training instances shared by two models. Training dynamics are
transferable across different sizes: the percentages of shared ambiguous instances between models of
different sizes are only slightly smaller than those between models of different random seeds (shown
as superscript). Figure 1b: Change of median ptrue over different training epochs on MultiNLI.

We focus on these issues for two reasons. First, transferability across model sizes enables using
more efficient (and usually less capable) reference models, which 1) can improve training efficiency,
and 2) makes it easier to identify ambiguous/hard instances, because less capable models are usu-
ally worse at memorizing training instances. Second, transferability across pretraining methods can
help achieve the advantages of using efficient reference models even in cases where more efficient
variants of the main pretraining method are unsuitable or unavailable for the task. Moreover, un-
derstanding transferability can shed light on data importance. If DMs of different reference models
consistently identify the same subset of training instances as ambiguous, it suggests that DMs reveal
intrinsic data characteristics, rather than characteristics that are solely model-dependent.

We define successful transfers as transfers that produce comparable or better OOD performance
than training the main model with ERM. Our results show that training dynamics are transferable 3

with a few exceptions. To understand the conditions for successful transfers, we analyze the failure
cases (§4.3), and find that the DMs of reference models that lead to successful transfers typically
contain more training instances in the easy subset. This finding can serve as a guideline for choosing
reference models without training the main model, which is computationally expensive.

4.1 TRANSFERABILITY ACROSS MODEL SIZES

In this section, we study whether smaller and more efficient models can be used as reference models
for training larger main models (e.g. DeBERTaV3Small as the reference model for DeBERTaV3Large).
Successful transfers of this type enables the use of more efficient reference models.

The results for DeBERTaV3 are shown in Table 1 (NLI) and Table 6 (HSD, Appendix C). We
make three observations. First, using larger main models results in better performance: almost all
methods using DeBERTaV3Large as the main model outperform those using DeBERTaV3Small and
DeBERTaV3Base. Second, consistent with Swayamdipta et al. (2020), ERM achieves the best ID
performance, while DM performs the best on OOD data. Third and most importantly, training
dynamics are transferable across different model sizes: when using DeBERTaV3Large as the main
model, changing the reference model to DeBERTaV3Small or DeBERTaV3Base yields comparable or
even better performance. This observation is consistent with our hypothesis that efficient models are
more sensitive to ambiguous and difficult instances. As a result, they can serve as more effective
reference models compared to larger, more capable models.

To investigate transferability of DMs further, we analyze whether reference models of different
sizes identify similar groups of ambiguous instances. Figure 1a shows the percentage of ambiguous

3To further validate our observations, we include a significance test in Appendix B.

4



Preprint. Work in progress.

Mode Main Model Ref. Model MultiNLI WANLI AdversarialNLI
R1 R2 R3

ERM DeBERTaV3Small - 87.570.08 61.610.12 33.551.23 30.630.89 32.400.77
ERM DeBERTaV3Base - 90.000.12 64.610.28 43.550.68 33.231.08 34.140.40
ERM DeBERTaV3Large - 91.060.08 66.460.33 58.171.50 45.580.64 41.341.12

DM DeBERTaV3Large Random 90.740.14 65.310.78 53.302.33 42.021.36 38.601.17
DM DeBERTaV3Large DeBERTaV3Large 90.750.29 66.330.07 59.750.86 45.601.86 41.940.80

Across different model sizes

DM DeBERTaV3Large DeBERTaV3Small 90.740.21 66.800.61 59.601.14 45.621.12 42.040.66
DM DeBERTaV3Large DeBERTaV3Base 90.510.05 66.610.76 61.421.44 46.730.92 41.580.94

Across different pretraining methods

DM DeBERTaV3Large ELECTRASmall 90.910.14 62.090.48 49.630.70 38.501.19 35.980.75
DM DeBERTaV3Large ELECTRABase 90.630.28 66.580.35 59.771.31 46.250.96 42.290.80
DM DeBERTaV3Large ELECTRALarge 90.800.20 66.421.07 58.953.12 44.582.11 41.521.46
DM DeBERTaV3Large BERTLarge 90.030.17 66.890.61 60.401.25 47.301.15 43.711.26

DM DeBERTaV3Large RoBERTaLarge 90.710.16 66.670.32 58.770.28 46.480.99 41.730.48

Table 1: Transferability across different model sizes and pretraining methods, using DeBERTaV3
as the main model on NLI. We compare the performance (accuracy) of 1) different sizes of
DeBERTaV3 fine-tuned using ERM, and DeBERTaV3Large as the main model, using 2) random
33% training instances, 3) DeBERTaV3Large as reference model (Ref. Model), 4) DeBERTaV3Small
and DeBERTaV3Base as reference models, and 5) different sizes of ELECTRA, BERTLarge and
RoBERTaLarge, as reference models. R1–R3 in AdversarialNLI refer to different rounds of collected
data. Training dynamics are transferrable across different sizes and pretraining methods: construct-
ing DMs using different reference models results in comparable performance.

instances shared by reference models of different sizes or random seeds: the percentages of shared
ambiguous instances between different sizes are only slightly smaller than those between the same
size but different random seeds, providing further evidence for the transferability of DMs.4

4.2 TRANSFERABILITY ACROSS PRETRAINING METHODS

We now study the transferability of training dynamics across different pretraining methods. If these
transfers are successful, we can still exploit efficient DM-based transfer in case there is no smaller
or more efficient version of the main model that suits the downstream task.

The results for DeBERTaV3Large as the main model with different reference models are shown in
Table 1 (NLI) and Table 6 (HSD, Appendix C). Across pre-training methods, training dynamics are
generally transferable: DeBERTaV3Large achieves comparable performance using DMs constructed
by different reference models in most cases. However, there are a few exceptions: when using
ELECTRASmall as the reference model, the performance is clearly worse on the NLI OOD datasets
than when using ERM. We hypothesize that ELECTRASmall is not strong enough for constructing
effective DMs for MultiNLI; we analyze this further in §4.3 below.

4.3 HOW EFFICIENT CAN WE BE?

We have shown that training dynamics are usually transferable across different model sizes and
pretraining methods. We now study the conditions for successful transfers, by zooming in on two
questions: 1) Can we use efficient but weak models as reference models? and 2) What are the
differences between effective and ineffective reference models? Answers to these questions can
guide the selection of efficient yet effective reference models.

Can we use efficient but weak models as reference models? To answer this question, we
compare the performance of a wide range of methods of three types. First, four models
fine-tuned with ERM: the small, base, and large versions of ELECTRA, and TinyBERT. We
use these models because they have clearly different sizes and capabilities (ELECTRALarge >

4The expected shared percentage of random DMs is 0.33, as we select the 33% most ambiguous instances.

5



Preprint. Work in progress.

Mode Main Model Ref. Model MultiNLI WANLI AdversarialNLI
R1 R2 R3

ERM TinyBERT - 67.320.19 43.400.16 23.300.22 28.100.67 30.940.27
ERM ELECTRASmall - 81.980.18 54.110.37 23.380.71 28.570.70 30.250.52
ERM ELECTRABase - 88.530.19 63.060.34 34.581.08 30.730.54 31.291.21
ERM ELECTRALarge - 90.750.19 65.850.41 54.201.13 39.381.17 36.100.38

DM DeBERTaV3Large TinyBERT 89.170.23 60.030.11 41.831.01 34.580.73 34.540.86
DM DeBERTaV3Large ELECTRASmall 90.910.14 62.090.48 49.630.70 38.501.19 35.980.75
DM DeBERTaV3Large ELECTRABase 90.630.28 66.580.35 59.771.31 46.250.96 42.290.80

DM DeBERTaV3Large ELECTRALarge 90.800.20 66.421.07 58.953.12 44.582.11 41.521.46

DM ELECTRALarge ELECTRASmall 90.400.08 61.530.26 45.901.30 36.201.70 31.891.11
DM ELECTRALarge ELECTRABase 89.880.14 66.090.33 54.100.92 40.970.64 37.310.27
DM ELECTRALarge ELECTRALarge 90.330.11 65.370.61 53.731.29 39.672.08 36.170.22

DM ELECTRALarge Random 89.990.07 65.030.22 51.251.30 39.022.16 34.981.21

Table 2: Performance (accuracy) on NLI with ERM and DM using the 33% most ambiguous data
points identified with different reference models. The gray-shaded rows are the 1) unsuccessful
DM transfers and 2) the corresponding reference models used in these transfers. Successful transfer
requires the reference model to be reasonably strong: reference models with clearly worse perfor-
mance lead to degraded OOD performance for the main models.

ELECTRABase > ELECTRASmall > TinyBERT). Second, we use these models as reference models
for DeBERTaV3Large. By using reference models with different capabilities to fine-tune the same
main model, we can inspect the impact of reference model capability on transferability. Third, we
also include the results with ELECTRALarge as the main model, and different sizes of ELECTRA
as reference models. By comparing results with different main models, we can better understand
whether successful transfers originate from the compatibility between reference and main models or
the capability of the reference model itself. Random DM is included as a baseline. The results are
shown in Table 2 (NLI) and and Table 7 (HSD, Appendix C). We make two observations.

First, reference models with very poor ID performance (e.g., TinyBERT and ELECTRASmall) lead
to failed transfers. Generally, for these ineffective reference models, poorer reference models lead
to worse main model OOD performance: reference model TinyBERT show worse main model per-
formance than ELECTRASmall. Moreover, the success of transfers mostly depends on the reference
model rather than the main model: transfers from ELECTRASmall to both models are unsuccessful.

Second, weak reference models do not negatively affect ID performance much. For instance, trans-
fers from ELECTRASmall to DeBERTaV3Large yield the best accuracy on MultiNLI. We suspect the
reason is that weak models usually identify simple training instances as ambiguous data, which are
found sufficient for obtaining satisfactory ID performance (Swayamdipta et al., 2020).

What are the differences between effective and ineffective reference models? To answer this
question, we consider the differences between a weak and a reasonably strong reference model
when categorizing training data into ambiguous, hard-to-learn, and easy subsets. Also, we assume
that instances in our training set exhibit varying levels of difficulty (i.e. simple to difficult).

Assume we have a weak reference model that can fit simple training instances but cannot fit difficult
ones. This weak reference model will therefore assign increasing ptrue to simple training instances
across different epochs, while keeping ptrue for difficult training instances around the values expected
in a random guessing scenario. Thus, ptrue will exhibit high standard deviations on simpler training
instances, which will then be identified as ambiguous data; while more difficult training instances
will have both lower means and standard deviations for ptrue, and therefore be identified as hard-
to-learn data. In contrast, a reasonably capable reference model can fit simple training instances
during the early stage of training, so that these instances have both high means and low standard
deviations for ptrue. Meanwhile, ptrue for difficult instances will gradually increase across epochs,
making these instances yield relatively low means and high standard deviations for ptrue. As a result,
such instances will be identified as both ambiguous and hard-to-learn (i.e. we expect a large overlap
in these subsets). Because we select a fixed percentage q% of instances as ambiguous or hard-to-
learn, this larger overlap means more instances will be identified as easy.

6



Preprint. Work in progress.

1/5 1/3

0.85

0.90

0.95

1.00

WANLI

1/5 1/3

0.8

0.9

1.0

AdversarialNLI-R1

1/5 1/3

0.90

0.95

1.00

AdversarialNLI-R2

1/5 1/3

0.90

0.95

1.00

AdversarialNLI-R3

NLI ERM DM-Small DM-Base DM-Large

Figure 2: Performance on NLI when training the main model (ELECTRALarge) with fewer train-
ing steps. ERM is standard ERM fine-tuning on the full training set. DM-* refers to fine-tuning
ELECTRALarge with the DM approach, using ELECTRA* as the reference model. The X-axis is the
percentile of training steps used, ranging from 1/15 to 7/15 of the total number of training steps. The
Y-axis is the percentage of performance compared with a model trained on the total number of
training steps. Fine-tuning the main model using data maps is much faster than ERM: the models
achieve close-to-100% performance with only 1/3 of the training steps.

We now validate our reasoning. Given a reference model, we first split the training instances into
two subsets based on mean ptrue: hard-to-learn (10% of training instances) and others (the remaining
90%). These two subsets represent difficult and simple instances, and we use a lower q% to make
the difference clearer. Then, for each subset, we calculate the median ptrue in each epoch. We use
median values because they are robust statistics of the central tendency. Figure 1b shows our re-
sults on MultiNLI, using two effective (DeBERTaV3Large and DeBERTaV3Base) and two ineffective
(ELECTRASmall and TinyBERT) reference models. With effective reference models, hard-to-learn
instances are gradually learned during training, while other instances already have high ptrue values
in the first epoch. In contrast, with ineffective reference models, hard-to-learn data instances are not
learned at all, as suggested by their close-to-zero ptrue, while other instances are gradually fitted.

To further validate our reasoning, we compute the percentages of training instances identified as easy
by different reference models (Table 8 in Appendix C): ineffective reference models indeed identify
fewer data points as easy. For example, on NLI with q% = 50%, TinyBERT identifies 20.0% of
the instances as easy, compared to 46.9% by DeBERTaV3Base. Furthermore, the overlap between
hard-to-learn and ambiguous instances in successful transfers is usually very large. For example,
with q% = 50%, all effective reference models identify more than 45% as easy training instances
(the maximum is 50%, when ambiguous and hard-to-learn data align perfectly).

5 TOWARDS EFFICIENT AND ROBUST FINE-TUNING

Given the transferability of training dynamics across model sizes and pretraining methods (§4), we
can improve the efficiency of the DM approach by using more efficient reference models. However,
because we still need to fine-tune the main model using ERM, the DM approach remains less ef-
ficient than just fine-tuning a model with only ERM. In this section, we address this limitation by
showing that with DM we need fewer steps to fine-tune the main model. We therefore propose a
novel approach, Fine-Tuning by transFerring Training dynamics (FTFT), which consistently offers
better efficiency and robustness over ERM.

DM Trains Faster Figure 2 shows the OOD test performance of ELECTRALarge fine-tuned with
fewer steps (i.e. from 1/15 to 7/15 of the total number of training steps) on NLI, compared with the
ERM baseline. The HSD results are in Figure 3 (Appendix C). We show the relative performance
against that achieved with all training steps. We observe that using DM leads to much faster learning
than ERM on all OOD datasets. With DM, only 1/3 of the total number of training steps already
achieves almost 100% performance. This result suggests that we can further improve the efficiency
of the DM method by training with fewer steps, while maintaining its robustness advantage over
ERM. We show the results for DeBERTaV3Large in Appendix C and observe similar trends.

FTFT: Achieving both Efficiency and Robustness FTFT involves two crucial changes to the
DM approach, 1) more efficient PLMs as reference models, and 2) 1/3 of the training steps used

7



Preprint. Work in progress.

Mode Main Model Ref. Model Cost MultiNLI WANLI AdversarialNLI
R1 R2 R3

ERM DeBERTaV3Large - 32.0 91.060.08 66.460.33 58.171.50 45.580.64 41.341.12

DM DeBERTaV3Large DeBERTaV3Large 64.0 90.750.29 66.330.07 59.750.86 45.601.86 41.940.80
JTT DeBERTaV3Large DeBERTaV3Large 64.0 90.800.08 66.060.34 59.521.33 45.571.09 41.830.91
PoE DeBERTaV3Large TinyBERT 32.0 91.020.07 67.160.45 59.801.27 46.450.81 42.710.61

FTFT DeBERTaV3Large DeBERTaV3Small 15.2 90.120.77 66.421.26 60.300.94 45.751.40 43.672.06

FTFT DeBERTaV3Large DeBERTaV3Base 19.7 90.140.41 66.470.79 59.771.76 46.651.86 42.710.96

Mode Main Model Ref. Model CAD DynaHate-Original DynaHate-Perturb
R2 R3 R4 R2 R3 R4

ERM DeBERTaV3Large - 81.690.57 75.441.67 73.320.80 76.121.54 70.621.83 77.410.57 68.891.01

DM DeBERTaV3Large DeBERTaV3Large 81.580.72 79.181.12 76.871.89 77.731.42 73.341.14 76.630.94 67.540.50
JTT DeBERTaV3Large DeBERTaV3Large 81.170.69 75.542.88 72.803.16 76.701.57 72.451.97 76.111.09 67.921.26
PoE DeBERTaV3Large TinyBERT 81.700.76 76.871.19 73.481.29 76.581.25 70.461.37 77.170.61 68.281.09

FTFT DeBERTaV3Large DeBERTaV3Small 80.730.77 78.772.39 77.533.11 79.481.52 76.191.93 77.530.82 69.311.69
FTFT DeBERTaV3Large DeBERTaV3Base 79.761.31 82.052.46 76.772.19 78.621.23 75.222.64 78.431.86 71.003.15

Table 3: Performance of DeBERTaV3 on NLI (top, accuracy) and HSD (bottom, macro-F1) using
different methods. FTFT refers to using the 33% most ambiguous data instances and only training
for 1/3 of the total steps. Cost includes both the reference model and the main model, with the cost
of fine-tuning ELECTRA-Small with ERM as the unit. FTFT yields both better efficiency and better
robustness compared to both ERM fine-tuning and the original DM method. The relative cost for
different approaches for HSD is the same as the ones for NLI.

for ERM. We choose 1/3 because we select 33% of the most ambiguous training instances, and this
choice means we keep the same number of training epochs as ERM. Nevertheless, we recommend
to determine the number of training steps by monitoring model performance. Table 3 summarizes
the performance of FTFT using DeBERTaV3Large as the main model, and DeBERTaV3Small and
DeBERTaV3Base as reference models. We compare FTFT against ERM, DM, JTT (Liu et al., 2021),
and PoE (Sanh et al., 2021). We also show the cost for each method, using the cost of fine-tuning
ELECTRASmall with ERM as unit (the relative cost for HSD is the same as NLI). Note that our cost
calculation considers the training of both the reference model and the main model.

We make two observations. First, FTFT achieves better robustness than other methods, indicated by
its strong performance on most OOD datasets. Second, FTFT enjoys higher efficiency than other
methods. For example, FTFT with DeBERTaV3Base and DeBERTaV3Small as reference models only
cost 19.7 and 15.2 units of computation: they are respectively 1.63 and 2.11 times cheaper than
ERM, and 3.26 and 4.22 times cheaper than DM.

6 CONCLUSION AND LIMITATIONS

Fine-tuned PLMs have been shown to be vulnerable to OOD and adversarial input. The DM ap-
proach can improve model robustness (Swayamdipta et al., 2020); however, it is computationally
expensive. In this paper, we have presented FTFT, a novel approach for fine-tuning PLMs which
yields both better efficiency and better robustness over ERM (§5). FTFT is built on the DM ap-
proach, based on two observations: 1) reference model training dynamics are highly transferable
across different model sizes (§4.1) and pretraining methods (§4.2), and 2) models trained using
DM learn faster than ERM. We have also discussed the conditions for successful FTFT runs (§4.3).
We believe that FTFT will be an important tool for future researchers and practitioners to perform
efficient PLM fine-tuning, especially in situations where robustness is essential.

Our work opens up several directions for future research. First, we have observed that effective
reference models identify more instances as easy. This needs further empirical validation with more
controlled experiments, as well as theoretical understandings of DMs, to identify or eliminate other
potential factors. Second, we have only developed FTFT for classification tasks. Future studies can
extend our work to other tasks, such as generation (e.g., question answering) and unsupervised tasks
(e.g., language modeling), to examine the generalizability of FTFT.

8



Preprint. Work in progress.

REPRODUCIBILITY STATEMENT

We will release our code and data upon publication. Our code is based on open-source libraries and
open datasets, and we will provide instructions for reproducing our results.

REFERENCES

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=TatRHT_1cK.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/2f37d10131f2a483a8dd005b3d14b0d9-Paper.pdf.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: Pre-
training text encoders as discriminators rather than generators. In ICLR, 2020. URL https:
//openreview.net/pdf?id=r1xMH1BtvB.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=HJg2b0VYDr.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTav3: Improving deBERTa using
ELECTRA-style pre-training with gradient-disentangled embedding sharing. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=sE7-XhLxHA.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and James Henderson. End-to-end bias mitigation
by modelling biases in corpora. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 8706–8716, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.769. URL https://aclanthology.org/
2020.acl-main.769.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Can-
wen Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément
Delangue, Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community
library for natural language processing. In Proceedings of the 2021 Conference on Empirical

9

https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://proceedings.neurips.cc/paper_files/paper/2017/file/2f37d10131f2a483a8dd005b3d14b0d9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2f37d10131f2a483a8dd005b3d14b0d9-Paper.pdf
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/forum?id=HJg2b0VYDr
https://openreview.net/forum?id=HJg2b0VYDr
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://aclanthology.org/2020.acl-main.769
https://aclanthology.org/2020.acl-main.769


Preprint. Work in progress.

Methods in Natural Language Processing: System Demonstrations, pp. 175–184, Online and
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
URL https://aclanthology.org/2021.emnlp-demo.21.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and Yejin Choi. WANLI: Worker and AI collabo-
ration for natural language inference dataset creation. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2022, pp. 6826–6847, Abu Dhabi, United Arab Emirates, Decem-
ber 2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022.findings-emnlp.508.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
6781–6792. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
liu21f.html.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of fine-
tuning bert: Misconceptions, explanations, and strong baselines. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
nzpLWnVAyah.

Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure:
Training debiased classifier from biased classifier. In Advances in Neural Information Processing
Systems, 2020.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
sarial NLI: A new benchmark for natural language understanding. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Association for Computational
Linguistics, 2020.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=Uj7pF-D-YvT.

Alan Ramponi and Sara Tonelli. Features or spurious artifacts? data-centric baselines for fair
and robust hate speech detection. In Proceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 3027–3040, Seattle, United States, July 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.naacl-main.221. URL https://aclanthology.org/2022.
naacl-main.221.

Victor Sanh, Thomas Wolf, Yonatan Belinkov, and Alexander M Rush. Learning from others’ mis-
takes: Avoiding dataset biases without modeling them. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Hf3qXoiNkR.

Aviad Sar-Shalom and Roy Schwartz. Curating datasets for better performance with example train-
ing dynamics. In Findings of the Association for Computational Linguistics: ACL 2023, pp.
10597–10608, Toronto, Canada, July 2023. Association for Computational Linguistics. URL
https://aclanthology.org/2023.findings-acl.674.

Thibault Sellam, Steve Yadlowsky, Ian Tenney, Jason Wei, Naomi Saphra, Alexander D’Amour, Tal
Linzen, Jasmijn Bastings, Iulia Raluca Turc, Jacob Eisenstein, Dipanjan Das, and Ellie Pavlick.

10

https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2022.findings-emnlp.508
https://aclanthology.org/2022.findings-emnlp.508
https://proceedings.mlr.press/v139/liu21f.html
https://proceedings.mlr.press/v139/liu21f.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=Uj7pF-D-YvT
https://aclanthology.org/2022.naacl-main.221
https://aclanthology.org/2022.naacl-main.221
https://openreview.net/forum?id=Hf3qXoiNkR
https://aclanthology.org/2023.findings-acl.674


Preprint. Work in progress.

The multiBERTs: BERT reproductions for robustness analysis. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=K0E_
F0gFDgA.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 3645–3650, Florence, Italy, July 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/P19-1355. URL https://aclanthology.org/P19-1355.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
Noah A. Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
training dynamics. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 9275–9293, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.emnlp-main.746. URL https://aclanthology.
org/2020.emnlp-main.746.

Damien Teney, LIN Yong, Seong Joon Oh, and Ehsan Abbasnejad. ID and OOD performance are
sometimes inversely correlated on real-world datasets. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
HZQZli6amV.

Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memoriza-
tion without overfitting: Analyzing the training dynamics of large language models. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
u3vEuRr08MT.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=BJlxm30cKm.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models, 2020. URL https://openreview.
net/forum?id=BJg7x1HFvB.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna Gurevych. Mind the trade-off: Debias-
ing NLU models without degrading the in-distribution performance. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 8717–8729, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.770. URL
https://aclanthology.org/2020.acl-main.770.

Bertie Vidgen, Dong Nguyen, Helen Margetts, Patricia Rossini, and Rebekah Tromble. Introducing
CAD: the contextual abuse dataset. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
2289–2303, Online, June 2021a. Association for Computational Linguistics. doi: 10.18653/v1/
2021.naacl-main.182. URL https://aclanthology.org/2021.naacl-main.182.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and Douwe Kiela. Learning from the worst: Dy-
namically generated datasets to improve online hate detection. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers), pp. 1667–1682, Online, August
2021b. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.132. URL
https://aclanthology.org/2021.acl-long.132.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1101. URL https://aclanthology.
org/N18-1101.

11

https://openreview.net/forum?id=K0E_F0gFDgA
https://openreview.net/forum?id=K0E_F0gFDgA
https://aclanthology.org/P19-1355
https://aclanthology.org/2020.emnlp-main.746
https://aclanthology.org/2020.emnlp-main.746
https://openreview.net/forum?id=HZQZli6amV
https://openreview.net/forum?id=HZQZli6amV
https://openreview.net/forum?id=u3vEuRr08MT
https://openreview.net/forum?id=u3vEuRr08MT
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJg7x1HFvB
https://openreview.net/forum?id=BJg7x1HFvB
https://aclanthology.org/2020.acl-main.770
https://aclanthology.org/2021.naacl-main.182
https://aclanthology.org/2021.acl-long.132
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101


Preprint. Work in progress.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle
Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee,
Hsien-Hsin Lee, Bugra Akyildiz, Maximilian Balandat, Joe Spisak, Ravi Jain, Mike Rabbat, and
Kim Hazelwood. Sustainable ai: Environmental implications, challenges and opportunities. In
D. Marculescu, Y. Chi, and C. Wu (eds.), Proceedings of Machine Learning and Systems, vol-
ume 4, pp. 795–813, 2022. URL https://proceedings.mlsys.org/paper_files/
paper/2022/file/462211f67c7d858f663355eff93b745e-Paper.pdf.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang,
Quoc V. Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. In NeurIPS 2023, 2023.

Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Re. Correct-
n-contrast: a contrastive approach for improving robustness to spurious correlations. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 26484–26516. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/zhang22z.html.

12

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.mlsys.org/paper_files/paper/2022/file/462211f67c7d858f663355eff93b745e-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/462211f67c7d858f663355eff93b745e-Paper.pdf
https://proceedings.mlr.press/v162/zhang22z.html


Preprint. Work in progress.

A TRAINING SPECIFICATIONS

A.1 EXPERIMENTAL SETUP

Optimization For training all models, we use AdamW (Loshchilov & Hutter, 2019) as the opti-
mizer with a batch size of 32. We also use a linear learning rate scheduler with 10% warmup. For
fine-tuning the small and base versions of both DeBERTa-V3 and ELECTRA, as well as TinyBERT,
we use a learning rate of 2e-5. For DeBERTa-V3-Large and ELECTRA-Large, we respectively use
1e-5 and 2e-6 as the learning rates. We also experimented with 1e-5 and 5e-6 for ELECTRA-Large.
However, we observed high ratios of failed runs, i.e., the training fails to converge and produces a
worse than majority class baseline (Mosbach et al., 2021). We therefore follow the suggestions from
Mosbach et al. (2021) to adopt a lower learning rate. We still encountered a few failed runs and we
excluded them in our results. For the PoE baseline, following Sanh et al. (2021), we use a cross
entropy loss weight of 0.3 and a PoE loss weight of 1.0; for the JTT baseline, we used the SGD
optimizer, reduce lr on plateau scheduler, and respectively the third and the fifth epoch5 as
the reference epoch for NLI and HSD. We up-weigh four times for each mispredicted sample.

Number of Training Steps Following Swayamdipta et al. (2020), we train our models on
MultiNLI for approximately five epochs (60,000 steps). Moreover, because we are not aware of
previous studies that use DM on CAD, we follow the recommendation of He et al. (2023) and Clark
et al. (2020) to train our models on CAD for approximately 10 epochs (6,000 steps).

However, in our follow-up experiments, we observe that these previously determined training dura-
tions may not be optimal. In §5 we show that for Empirical Risk Minimization (ERM), training for
20,000 and 2,000 steps led to inferior performance compared to training for 60,000 and 6,000 steps.
However, this comparison overlooks the impact of the learning rate scheduler and warmup phase. In
other words, halting the training at 20000 and 2000 steps differs from conducting the training exclu-
sively for these durations. Specifically, when we limit the training to just 20,000 steps for NLI and
2,000 steps for HSD, the performance of ERM matches that of the longer ERM training periods of
60,000 and 6,000 steps. Nevertheless, our observation that DM learns faster than ERM training still
holds in this experiment: 1) when we train our models with DM/FTFT approaches using different
reference models for a shorter duration of 20,000 and 2,000 steps (limit the training durations instead
of halting), it consistently outperforms those trained with ERM using the same training duration; 2)
when setting the number of training steps to 20,000 steps and 2,000 steps, we observe DM/FTFT
approaches achieve ∼ 100% performance on NLI and HSD with less than 10,000 steps and 1,000
steps. We expect to investigate the optimal number of training steps for FTFT in future work.

Software and Hardware We use Python 3.9 and PyTorch 2.0 for all experiments. For training
PLMs, we use HuggingFace Transformers 4.32 (Wolf et al., 2020), Accelerate 0.22, and Datasets
2.14 (Lhoest et al., 2021). All experiments are performed on one NVIDIA A100 GPU. Training all
models takes approximately seven GPU days.

A.2 COMPARISON OF TRAINING COSTS

We show the training costs for different models of a forward epoch. When taking back-propagation,
optimization, and multiple epochs into consideration, these numbers should scale proportionally.

B SIGNIFICANCE TEST

We conduct significance tests on our results in Table 1 and Table 6. Because we use four random
seeds, common statistical tests do not suit our needs here. We therefore use MultiBootstrap (Sellam

5For NLI, we follow the hyper-parameter choices from Liu et al. (2021). For HSD, we also mostly follow
the NLI hyper-parameters except for reference epoch. We mostly follow previous studies because it is not
clear which objective to use for tuning hyper-parameters for OOD performance, since ID validation dataset
performance does not always correlate positively with OOD performance, and sometimes even show a trade-
off (Teney et al., 2023). We use a slightly later reference epoch for HSD because CAD (HSD train data) is
smaller than MultiNLI (NLI train data), and takes more epochs to train (but fewer number of steps in each
epoch). Slightly later reference epoch therefore could be more appropriate.

13



Preprint. Work in progress.

NLI: MultiNLI HSD: CAD

DeBERTaV3Small 3116.93 312.35
DeBERTaV3Base 6233.34 624.68
DeBERTaV3Large 22160.84 2220.90
ELECTRASmall 694.61 69.98
ELECTRABase 6227.14 627.37
ELECTRALarge 22138.79 2230.50
TinyBERT 28.88 2.91

Table 4: Comparison of training costs, measured in PFLOPs. Here we only calculate the forward
cost for a single epoch.

Task Ref. Model Mean p-value

HSD DeBERTV3-Small 0.06 0.0002
HSD DeBERTV3-Base 0.04 0.0002
HSD DeBERTV3-Large 0.02 0.005
HSD BERT-Large 0.02 0.0168
HSD RoBERTa-Large 0.04 0.0012
HSD ELECTRA-Small 0.04 0.0002
HSD ELECTRA-Base 0.06 0.0002
HSD ELECTRA-Large 0.03 0.0322

Task Ref. Model Mean p-value

NLI DeBERTV3-Small 0.48 0.0578
NLI DeBERTV3-Base 0.65 0.0120
NLI DeBERTV3-Large 0.20 0.2288
NLI BERT-Large 1.09 0.0016
NLI RoBERTa-Large 0.36 0.0916
NLI ELECTRA-Base 0.48 0.0552
NLI ELECTRA-Large -0.03 0.4984

Table 5: MultiBootstrap results when comparing DM with DeBERTaV3Large as the main model
versus ERM, on HSD and NLI. All HSD results and 4 out 7 methods in NLI are either significantly
(p-value < 0.05, in boldface) or marginally significantly (0.05 <= p-value < 0.06, in italics) better
than ERM training.

et al., 2022), which is designed specifically for comparing models that have been trained with differ-
ent random seeds, by generating bootstrap samples from both test instances and random seeds. To
gain a comprehensive overview, we combine all out-of-distribution test data for each task. Specifi-
cally, we use 5000 samples for bootstrapping to compare each DM-based method against ERM. We
observe (Table 5) that all HSD results and 4 out 7 methods in NLI are either significantly (p-value <
0.05, in boldface) or marginally significantly (0.05 <= p-value < 0.06, in italics) better than ERM
training.

C ADDITIONAL RESULTS

1/5 1/3
0.4

0.6

0.8

1.0
R2-Original

1/5 1/3

0.6

0.8

1.0

R3-Original

1/5 1/3
0.4

0.6

0.8

1.0
R4-Original

1/5 1/3
0.4

0.6

0.8

1.0
R2-Perturb

1/5 1/3

0.6

0.8

1.0

R3-Perturb

1/5 1/3

0.6

0.8

1.0

R4-Perturb

HSD ERM DM-Small DM-Base DM-Large

Figure 3: Performance on HSD when training the main model (ELECTRALarge) with fewer train-
ing steps. ERM is standard ERM fine-tuning on the full training set. DM-* refers to fine-tuning
ELECTRALarge with the DM method, using ELECTRA* as the reference model. The X-axis is the
percentile of training steps used, ranging from 1/15 to 7/15 of the total number of training steps. The
Y-axis is the percentage of performance compared with a model trained on the total number of
training steps. Fine-tuning the main model using data maps is much faster than ERM: the models
achieve close-to-100% performance with only 1/3 of the training steps.

14



Preprint. Work in progress.

Mode Main Model Ref. Model CAD DynaHate-Original DynaHate-Perturb
R2 R3 R4 R2 R3 R4

ERM DeBERTaV3Small - 76.570.74 56.895.13 59.293.89 63.480.99 59.552.67 66.591.51 61.481.30
ERM DeBERTaV3Base - 78.640.55 60.532.22 64.280.83 68.892.00 60.811.56 69.481.30 63.122.02
ERM DeBERTaV3Large - 81.690.57 75.441.67 73.320.80 76.121.54 70.621.83 77.410.57 68.891.01

DM DeBERTaV3Large Random 76.220.98 63.382.00 61.593.48 71.212.36 64.051.78 72.101.45 62.882.24
DM DeBERTaV3Large DeBERTaV3Large 81.580.72 79.181.12 76.871.89 77.731.42 73.341.14 76.630.94 67.540.50

Across different model sizes

DM DeBERTaV3Large DeBERTaV3Small 81.150.33 80.683.14 79.560.64 79.861.60 76.470.98 78.030.16 70.320.94
DM DeBERTaV3Large DeBERTaV3Base 80.120.76 80.121.21 76.343.41 78.820.78 74.601.30 77.811.13 68.670.54

Across different pretraining methods

DM DeBERTaV3Large ELECTRASmall 79.740.39 78.092.21 77.402.53 78.750.35 75.261.70 76.790.95 70.050.88
DM DeBERTaV3Large ELECTRABase 80.370.43 81.471.62 78.172.52 78.381.59 76.991.60 78.511.08 71.011.44

DM DeBERTaV3Large ELECTRALarge 79.481.06 76.714.48 75.973.66 78.582.69 73.553.28 77.801.33 69.811.83
DM DeBERTaV3Large BERTLarge 79.951.50 79.103.72 75.871.53 77.640.93 72.941.40 77.090.75 67.471.11
DM DeBERTaV3Large RoBERTaLarge 80.560.60 80.421.26 77.261.87 79.481.58 73.110.68 77.311.20 69.481.06

Table 6: Transferability across different model sizes and pretraining methods, using DeBERTaV3
as the main model on HSD. We compare the performance (accuracy) of 1) different sizes of
DeBERTaV3 fine-tuned using ERM, 2) DeBERTaV3Large as the main model, using a random DM
(random 33% training instances), and DeBERTaV3Large as the reference model (Ref. Model) to
construct a DM (original DM), 3) DeBERTaV3Large as the main model, using DeBERTaV3Small and
DeBERTaV3Base as reference models to construct a DM, 4) DeBERTaV3Large as the main model, us-
ing different sizes of ELECTRA, BERTLarge and RoBERTaLarge, as reference models to construct a
DM. R2–R4 of DynaHate refer to different rounds of collected data. Training dynamics are transfer-
able across different sizes and pretraining methods: Creating DMs using different reference model
sizes and pretraining methods results in comparable performance.

Mode Main Model Ref. Model CAD DynaHate-Original DynaHate-Perturb
R2 R3 R4 R2 R3 R4

ERM TinyBERT - 71.720.41 43.191.91 49.600.37 52.882.61 43.212.53 57.501.18 52.912.48
ERM ELECTRASmall - 74.650.49 48.932.36 56.931.32 58.931.18 55.751.40 61.841.90 59.522.12
ERM ELECTRABase - 76.430.72 62.131.20 60.712.81 61.721.41 55.421.86 64.640.81 62.050.66
ERM ELECTRALarge - 75.813.72 70.0710.64 62.567.90 70.276.12 63.919.13 70.454.66 67.024.76

DM DeBERTaV3Large TinyBERT 78.910.92 71.681.81 71.690.91 76.522.04 71.222.62 75.921.83 68.231.83
DM DeBERTaV3Large ELECTRASmall 79.740.39 78.092.21 77.402.53 78.750.35 75.261.70 76.790.95 70.050.88
DM DeBERTaV3Large ELECTRABase 80.370.43 81.471.62 78.172.52 78.381.59 76.991.60 78.511.08 71.011.44

DM DeBERTaV3Large ELECTRALarge 79.481.06 76.714.48 75.973.66 78.582.69 73.553.28 77.801.33 69.811.83

DM ELECTRALarge ELECTRASmall 76.501.65 75.631.86 67.922.10 74.061.12 68.430.96 71.621.02 67.301.11
DM ELECTRALarge ELECTRABase 75.881.70 75.520.18 65.002.67 72.890.40 67.943.47 70.340.54 67.940.18
DM ELECTRALarge ELECTRALarge 74.732.23 65.257.89 62.785.51 72.451.02 62.926.46 71.171.85 68.232.02

DM ELECTRALarge Random 72.831.70 62.141.51 58.134.41 68.232.82 63.302.84 67.931.02 65.222.13

Table 7: Experiments on HSD to understand the conditions for successful transfer. The table shows
the performance of different models on HSD with conventional fine-tuning (ERM) and DM using the
33% most ambiguous data identified with different reference models. Random in Ref. Model means
randomly selecting 33% of the train data. The rows marked in gray are the results for DM training
where the transfer was not successful, and the corresponding reference models. Successful transfer
requires the reference model to be reasonably strong: reference models of clearly worse performance
lead to degraded OOD performance for the main models. Note that although using TinyBERT and
DeBERTaV3Large respectively as the reference and the main model yields better performance than
ELECTRA, that is due to the better performance of DeBERTaV3Large than ELECTRALarge: it is still
worse than other methods using ELECTRALarge as the main model, especially on OOD test sets.

15



Preprint. Work in progress.

NLI: MultiNLI HSD: CAD
25% 33% 50% 25% 33% 50%

ELECTRASmall 55.91% 47.77% 35.84% 68.72% 62.10% 46.07%
ELECTRABase 69.10% 62.88% 46.62% 73.36% 65.54% 47.56%
ELECTRALarge 66.91% 59.08% 45.00% 67.80% 60.03% 45.01%
DeBERTaV3Small 67.08% 61.31% 46.08% 72.05% 65.00% 47.94%
DeBERTaV3Base 71.39% 64.02% 46.90% 73.20% 65.80% 48.04%
DeBERTaV3Large 72.97% 64.84% 46.97% 74.06% 65.89% 47.72%
TinyBERT 51.29% 38.44% 20.01% 63.58% 54.45% 40.20%

Table 8: Differences between effective and ineffective reference models. We show the percentages
data identified as easy by the data maps of different models; cells marked in gray are the ratios of
easy data identified by ineffective reference models. The column names indicate different thresholds
for q% in the DM method. The key difference between effective and ineffective reference models
lies in the ratio of instances that they identify as easy: compared with other models, fewer data
points are identified as easy by TinyBERT on both tasks, and by ELECTRASmall on NLI.

1/5 1/3

0.94

0.96

0.98

1.00

WANLI

1/5 1/3

0.90

0.95

1.00

AdversarialNLI-R1

1/5 1/3

0.90

0.95

1.00

AdversarialNLI-R2

1/5 1/3

0.95

1.00

AdversarialNLI-R3

NLI ERM DM-Small DM-Base DM-Large

1/5 1/3

0.7

0.8

0.9

1.0

R2-Original

1/5 1/3
0.7

0.8

0.9

1.0

R3-Original

1/5 1/3

0.90

0.95

1.00

R4-Original

1/5 1/3

0.8

0.9

1.0

R2-Perturb

1/5 1/3

0.85

0.90

0.95

1.00

R3-Perturb

1/5 1/3
0.85

0.90

0.95

1.00

1.05
R4-Perturb

HSD ERM DM-Small DM-Base DM-Large

Figure 4: Performance on NLI (top) and HSD (bottom) when training the main model (DeBERTaV3)
with fewer training steps. ERM is standard ERM fine-tuning on the full training set. DM-* refers to
fine-tuning ELECTRALarge with the DM method, using reference model ELECTRA*. The X-axis is
the percentile of full training steps used, ranging from 1/15 to 7/15 of the total number of training
steps. The Y-axis is the percentile of performance compared with the full training steps. Fine-
tuning the main model using data maps is much faster than ERM: the models achieve close-to-100%
performance using only 1/3 of the training steps.

16



Preprint. Work in progress.

Mode Main Model Ref. Model Cost MultiNLI WANLI AdversarialNLI
R1 R2 R3

ERM ELECTRALarge - 32.0 90.750.19 65.850.41 54.201.13 39.381.17 36.100.38
DM ELECTRALarge ELECTRALarge 64.0 90.330.11 65.370.61 53.731.29 39.672.08 36.170.22
FTFT ELECTRALarge ELECTRASmall 11.7 89.461.24 60.870.57 46.051.37 35.821.11 32.600.82
FTFT ELECTRALarge ELECTRABase 19.7 90.060.20 65.850.86 54.701.31 40.230.38 37.581.17

Mode Main Model Ref. Model Cost CAD DynaHate-Original DynaHate-Perturb
R2 R3 R4 R2 R3 R4

ERM ELECTRALarge - 32.0 75.813.72 70.0710.64 62.567.90 70.276.12 63.919.13 70.454.66 67.024.76
DM ELECTRALarge ELECTRALarge 64.0 74.732.23 65.257.89 62.785.51 72.451.02 62.926.46 71.171.85 68.232.02
FTFT ELECTRALarge ELECTRASmall 15.9 75.521.54 73.453.34 66.543.37 73.792.06 67.082.92 72.051.74 68.110.78
FTFT ELECTRALarge ELECTRABase 23.9 77.150.96 74.172.33 65.530.23 73.430.66 68.772.00 70.600.92 68.701.97

Table 9: Comparison between FTFT and ERM/original DM fine-tuning. Performance of ELECTRA
on NLI (top, accuracy) and HSD (bottom, macro-F1). ERM is conventional ERM fine-tuning, and
FTFT refers to using the 33% most ambiguous data identified by different reference models (i.e.,
Ref. Model). Cost refers to the fine-tuning cost, with the cost of fine-tuning ELECTRA-Small with
ERM as the unit. FTFT yields both better efficiency and better robustness compared to both ERM
fine-tuning and the original DM method. For NLI, we only train the main model for 1/3 of the total
steps. For HSD, we observe that ELECTRA converges a bit slower, see Figure 3. We therefore
use 7/15 of the total steps for FTFT to obtain better performance (still less than 1/2). FTFT yields
both better efficiency and better robustness, compared to both ERM fine-tuning and the original DM
method, except for using ELECTRASmall as the reference model on NLI.

17


	Introduction
	Background
	Experimental Setup
	Transferability of Training Dynamics
	Transferability Across Model Sizes
	Transferability Across Pretraining Methods
	How Efficient Can We Be?

	Towards Efficient and Robust Fine-Tuning
	Conclusion and Limitations
	Training Specifications
	Experimental Setup
	Comparison of Training Costs

	Significance Test
	Additional Results

