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Abstract

Domain Generalization (DG) aims to enable models to generalize to unseen target
domains by learning from multiple source domains. Existing DG methods primar-
ily rely on convolutional neural networks (CNNs), which inherently learn texture
biases due to their limited receptive fields, making them prone to overfitting source
domains. While some works have introduced transformer-based methods (ViTs) for
DG to leverage the global receptive field, these methods incur high computational
costs due to the quadratic complexity of self-attention. Recently, advanced state
space models (SSMs), represented by Mamba, have shown promising results in
supervised learning tasks by achieving linear complexity in sequence length during
training and fast RNN-like computation during inference. Inspired by this, we
investigate the generalization ability of the Mamba model under domain shifts and
find that input-dependent matrices within SSMs could accumulate and amplify
domain-specific features, thus hindering model generalization. To address this
issue, we propose a novel SSM-based architecture with saliency-based token-aware
transformation (namely START), which achieves state-of-the-art (SOTA) perfor-
mances and offers a competitive alternative to CNNs and ViTs. Our START can
selectively perturb and suppress domain-specific features in salient tokens within
the input-dependent matrices of SSMs, thus effectively reducing the discrepancy
between different domains. Extensive experiments on five benchmarks demon-
strate that START outperforms existing SOTA DG methods with efficient linear
complexity. Our code is available at https://github.com/lingeringlight/START.

1 Introduction

Deep learning models have achieved impressive progress in various computer vision tasks over the
past years [1–3]. Such a huge success is mostly based on the independent and identically distributed
(i.i.d.) assumption, i.e., the training and testing data follow the same distribution [4]. However, when
evaluated on test data following different distributions from the training data, these models often
suffer severe performance degradation. This issue, which is known as domain shift [4], has greatly
hindered the applications of deep learning models in the real world.

To improve the generalization of the model under domain shifts, Domain Adaptation (DA) has been
widely studied, which aims to transfer the knowledge learned from labeled source domains to the
unlabeled or partially labeled target domain [5, 6]. However, DA methods cannot guarantee the
performance of the model on unknown target domains that have not been observed during training
[7, 8]. Since the accessibility of the target domain could not always be satisfied in real scenarios,
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Figure 1: Analysis of the input-dependent matrices in SSMs. We investigate domain discrepancy
in the input sequence x, response sequence y, and the input-dependent matrics ∆̃, B, and C. The
results indicate that the input-dependent matrices can accumulate the domain-specific features during
the recurrent process, potentially increasing domain gap. We experiment on PACS [24] with Sketch
as the target domain, analyzing the representations from the last block of VMamba backbone [22].

Domain Generalization (DG) is proposed to develop a domain-generalizable model on unseen target
domains by learning multiple different but related source domains [8, 9].

Most existing DG methods focus on learning domain-invariant representations across source domains,
primarily via domain alignment [10, 11], meta-learning [7, 12], and data augmentation [13, 14].
These methods heavily rely on convolutional neural networks (CNNs), which have limited receptive
fields due to local convolutions. Consequently, the CNN-based methods inevitably tend to learn
local texture information, leading to overfitting to source domains and poor generalization on target
domains[15, 16]. Recent works in DG have introduced Vision Transformers (ViTs) as the backbone
for DG, utilizing the global receptive field of the self-attention mechanism to mitigate local texture
bias [17–19]. However, the complexity of self-attention increases quadratically with input length,
resulting in significant computational overhead for ViTs when modeling long sequences [20, 21].

To address this issue, some pioneers have proposed advanced state space models (SSMs) [20, 22, 23],
represented by Mamba [20], which selectively models token dependencies in input sequences in a
compressed state space. The selective scan mechanism allows Mamba to achieve linear complexity
in sequence length during training and fast RNN-like computation during inference. Despite the
remarkable performance of Mamba-based methods on supervised learning tasks, few existing works
have analyzed the generalization ability of Mamba under domain shift. It remains an open question
whether the Mamba model can achieve excellent performance for DG tasks.

In this paper, we theoretically analyze the generalization error bound of the Mamba model under
domain shifts. We find that the domain distance of features extracted by the model is strongly
related to the input-dependent matrices within the model. These matrices accumulate and amplify
domain-specific features during training, which exacerbates the overfitting issue of the model to
source domains. We empirically measure the distance among source domains within the input
sequence x, the response sequence y, and the input-dependent matrices of the last network layer. As
shown in Fig. 1, we observe that for the baseline model, input-dependent matrices (∆̃, B, and C) are
prone to learning domain-specific features from the input x. Since the output y is calculated by the
recurrent product of x and these matrices, domain-specific features are accumulated and amplified,
causing the model to overfit the source domains. To address this issue, we propose a Generalized State
Space Model with Saliency-driven Token-Aware Transformation (START), which can reduce domain-
specific information in input-dependent matrices during training. Building on the latest Mamba-based
model [22], we develop a strong baseline for DG that outperforms many SOTA DG methods, which
selectively learns global dependencies among tokens with linear complexity in sequence length.
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Moreover, based on theoretical analysis, we design the saliency-driven token-aware transformation
method, which simulates domain shifts during training by selectively introducing style perturbations
to tokens focused on by the input-dependent matrices. START constrain these matrices to learn
domain-invariant features, thus mitigating the overfitting of model on source domains. Experiments
on five datasets prove the effectiveness of our method. Our contributions are summarized as follows:

• We conduct a theoretical investigation into the generalization ability of the Mamba model,
revealing that the input-dependent matrices in Mamba can accumulate domain-specific
features during the recurrent process, thus hindering the model’s generalizability.

• Based on theoretical analysis, we propose a novel SSM-based architecture with saliency-
driven token-aware transformation as a competitive alternative to CNNs and ViTs for DG,
which performs excellent generalization ability with efficient linear complexity.

• For the saliency-driven token-aware transformation, we explore two variants to identify and
perturb salient tokens in feature sequences, effectively reducing domain-specific information
within the input-dependent matrices of Mamba. Our method achieves SOTA performances,
e.g., yielding the best CNN-based method by 5.87% (58.27% vs. 52.40%) on TerraIncognita.

2 Related Works

Domain generalization. Traditional DG methods, primarily based on CNN backbones, can be
broadly classified into three categories: domain alignment, meta-learning, and data augmentation.
Motivated by the learning theory of domain adaptation [4, 25], domain alignment methods seek
to learn domain-invariant representations through adversarial learning [10, 26, 27], causal learning
[28, 29], or feature disentanglement [30, 31]. Another popular way to address DG is meta-learning,
which partitions the training data from multiple source domains into meta-train and meta-test sets to
simulate domain shifts during training [7, 12, 32]. Data augmentation is also an effective method to
enhance model robustness to domain shifts by generating diverse data invariants through adversarial
generation [33, 34], style perturbation [13, 14], and learnable parameters [35, 36]. However, CNN-
based DG methods suffer from the limited receptive field of convolutions, often leading to a texture
bias and overfitting to source domains [15, 37]. To address this, some researchers have introduced
ViT-based methods for DG, which capture global representations by leveraging long-range spatial
dependencies with attention mechanisms [18, 17, 19]. Despite their advantages, ViT-based methods
are computationally intensive due to the quadratic complexity of the self-attention mechanism,
limiting their practical applications [20, 21]. Inspired by the emerging Mamba model [20, 22, 23], we
explore a novel SSM-based architecture for DG that combines strong generalizability with efficient
linear complexity. We theoretically analyze the generalization error bound of Mamba and design
a novel saliency-driven token-aware transformation to suppress domain-specific features in the
input-dependent matrices of Mamba, thereby enhancing the generalization ability of the model.

State space models. Recently, state space models (SSMs) have demonstrated promising performance
across various vision tasks [38–40] for their ability to effectively capture long-range dependencies
while maintaining linear scalability with sequence length. Derived from the classical state space
model [41], the Structured State Space Sequence Model (S4) [42] addresses computational constraints
through novel parameterizations catering to continuous-time, recurrent, and convolutional views of
the state space model. Notably, Mamba [20] has emerged as a standout performer, which integrates
selection mechanism and hardware-aware algorithms into previous works [43–45], thus achieving
linear-time inference and efficient training mechanisms. Based on the success of Mamba, Vision
Mamba (Vim) [23] applies Mamba to ViT architecture, combining bidirectional SSM for data-
dependent global visual context modeling. Meanwhile, VMamba [22] designs a cross-scan module
to bridge the gap between 1D array scanning and 2D plain traversing. Mamba-based architectures
have exhibited superior performance across various supervised vision tasks, including medical image
segmentation [46–48], point cloud analysis [49–51], and remote sensing analysis [52, 53]. However,
few works explore the performance of Mamba under domain shifts for DG. Although DGMamba
[54] has recently introduced a pioneering Mamba-based framework for DG, it lacks a deep analysis
of the generalizability of Mamba. In the paper, we conduct a theoretical analysis of Mamba’s
generalizability, revealing that input-dependent matrices within Mamba could accumulate domain-
specific information, thereby impeding model generalization. Consequently, we propose a generalized
SSM-based architecture for DG, incorporating a non-parametric module to selectively perturb salient
tokens within input-dependent matrices, thus enhancing model generalization to unseen domains.
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3 Method

3.1 Preliminary

State Space Models (SSMs). The SSM is a type of linear time-invariant systems that map input
sequence xt ∈ RL to response sequence yt ∈ RL through a hidden state ht ∈ RN . Mathematically,
this process is formulated as the subsequent linear ordinary differential equations (ODEs): h′t =
Aht + Bxt, yt = Cht, where A ∈ RN×N is the evolution parameter, and B ∈ RN×1, C ∈ RN×1

are the projection parameters. However, the differential equation is hard to solve in the deep learning
setting, thus discrete SSM [55, 44] suggests discretizing the system with a time scale parameter ∆:

Ā = e∆A, B̄ = (∆A)−1(e∆A − I) ·∆B,
ht = Āht−1 + B̄xt, yt = Cht,

(1)

where Ā and B̄ are discrete counterparts of the continuous parameters A and B, and ∆ ∈ R > 0 is
the sampling timescale for the discretization process. Although the discrete SSMs can achieve linear
time complexity, they rely on static parameterization, i.e., Ā, B̄, and C are time-invariant for any
input, inherently limiting their ability to capture sequence context [20]. To address this issue, recently,
[20] proposes Mamba, a selective SSM (S6) that effectively selects relevant context by enabling
dependence of the parameters B ∈ RL×N , C ∈ RL×N , and ∆ ∈ RL×D on the input xt ∈ RL×D:

B = SB(xt), C = SC(xt), ∆ = softplus(S∆(xt)). (2)

SB , SC , S∆ are linear projection layers and softplus(·) = log(1 + exp(·)). The input-dependent
time-variant layers could enhance recurrent layers, making them more expressive and flexible
in capturing complex dependencies [21]. The parameter matrixes can be further expressed as
Ā = [Ā1, · · · , ĀL], B̄ = [B̄1, · · · , B̄L], C = [C1, · · · , CL], where L is the sequence length.
Considering the initial state h0 = 0, Eq. (1) can be unrolled as [21]:

y = αx,


y1
y2
...
yL

 =


C1B̄1 0 · · · 0
C2Ā2B̄2 C2B̄2 · · · 0

...
...

. . . 0

CL
∏L
k=2 ĀkB̄L CL

∏L
k=3 ĀkB̄L · · · CLB̄L



x1
x2
...
xL

 , (3)

where αi,j = Ci
∏i
k=j+1 ĀkB̄j , for 0 ≤ j < i ≤ L, characterizing S6 layer as a data-dependent

self-attention [56]. The attention matrix α is determined by both the input and the parameter matrices.

3.2 Theoretically Analysis for the Generalization Ability of Mamba

Previous DG methods have primarily focused on enhancing the generalizability of CNNs or ViTs, lack-
ing theoretical investigations into the Mamba model. We theoretically explore the generalization error
bound of Mamba, proving that perturbing the domain-specific features within the input-dependent
matrices of Mamba can effectively diminish the upper bound of the model’s generalization risk .

Notations. Given a training set of N source domains DS = {D1
S , D

2
S , · · · , DN

S }, the objective of
DG is to use DS to train a model that is expected to perform well on unseen target domain DT . Let
h : X → Y be a hypothesis from the candidate hypothesis space H, where X and Y denote the
input space and the label space, respectively. Since Mamba learns dependencies among tokens from
continuous sequences, we study its generalizability at the token level. Let ψ(·) be the feature extractor
of h that maps input images into feature space. Following Integral Probability Metrics [57, 58], we
define the token-level Maximum Mean Discrepancy to estimate the gap between different domains.

Definition 1 (Token-level Maximum Mean Discrepancy). Given two different distributions of DS

and DT , let L denote the number of tokens in the response sequence of ψ(·), then we define the
TOken-level Maximum Mean Discrepancy (To-MMD) between ψ(DS) and ψ(DT ) as:

dTo-MMD(DS , DT ) =
1

L

L∑
t=1

sup
ψt∈Ψt

sup
||f ||Fk

≤1

∣∣∣∣∫ fd(ψt(DS)− ψt(DT ))

∣∣∣∣ , (4)

where Ψ represents the hypothesis space for each token, ψt(D) denotes the distribution of the t-th
token for domain D, and Fk is a RKHS with its associated kernel k.
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We here investigate the generalization risk bound of the Mamba model. Theoretically, as in [59, 60],
the risk of the hypothesis h on the domainD is defined as: RD(h) = Ex∼D[L(h(x)−h∗(x))], where
L : Y×Y → R+ is a convex loss-function that measures the distance between h and the true labeling
function h∗. Moreover, following [8, 60], for multiple source domains DS = {D1

S , D
2
S , ..., D

N
S },

the convex hull ΛS is defined as a set of a mixture of source domains, i.e., ΛS = {D̄ : D̄(·) =∑N
n=1 πiD

n
s (·),

∑N
n=1 πn = 1, πn ∈ [0, 1]}. The D̄T ∈ ΛS is defined as the closest domain to the

target domain DT . Based on Eq. (4), the following generalization risk bound can be derived.

Theorem 1 (Generalization Risk Bound). With the previous setting and assumptions, let Di
S and

DT be two sets with M samples independently drawn from Dn
S and DT , respectively. For any

δ ∈ (0, 1) with probablity of at least 1− δ, for all h ∈ H, the following inequality holds:

RDT
(h) ≤

N∑
n=1

πnR
n
DS

(h) + dTo-MMD(DT , D̄T ) + sup
i,j∈[N ]

dTo-MMD(D
i
S , D

j
S) + 2λπ + σ, (5)

where λπ = 1
M (

∑N
n=1 πnEx∼Dn

S
[
√
tr(KDn

S
) + Ex∼DT

[
√
tr(KDT

)]) +
√

log(2/ϵ)
2M , and σ is the

minimum combined error of the ideal hypothesis h∗ on bothDS andDT . Let κT = dTo-MMD(DT , D̄T )

and κS = supi,j∈[N ] dTo-MMD(D
i
S , D

j
S), respectively.

The proof of Theorem 1 is provided in Appendix A.1. The inequality indicates that the generalization
error bound depends on κT denoting the token-level maximum distance between source and target
domains, and κS measuring the maximum pairwise gap among source domains at the token level.
The smaller the two terms, the lower the upper bound of generalization error. Following [25, 58, 61],
we simplify the To-MMD in Eq. (4) by choosing a unit ball in the Fk and using Gaussian kernel with
parameter γ to estimate κT and κS . Let x̄S ∈ RL and x̄T ∈ RL to denote the mean embeddings of
samples from DS and DT , where L represents the token sequence length. We explore a simplified
problem in conjunction with a single S6 layer, i.e., ȳ = αx̄, with α ∈ RL×L being the data-dependent
matric. The domain distance between ȳS and ȳT is formulated as k(ȳS , ȳT ) = exp(−||ȳS−ȳT ||2/γ),
where γ is the kernel parameter. Specifically, for input-dependent matrices B,C,∆, we denote
softmax(S∆(·)) as S̃∆(·). Then, we analyze the impact of these input-dependent matrices on
||ȳS − ȳT ||2, which is applicable to both κT and κS . For the i-th tokens x̄Si and x̄Ti , we define:

dC∆̃Bx(x̄
S
i , x̄

T
i ) = SC(x̄

S
i )S̃∆(x̄

S
i )SB(x̄

S
i )x̄

S
i − SC(x̄

T
i )S̃∆(x̄

T
i )SB(x̄

T
i )x̄

T
i ,

d∆̃(x̄
S
i , x̄

T
i ) = S̃∆(x̄

S
i )− S̃∆(x̄

T
i ).

(6)

With the recurrent property of the S6 layer in Eq. (3), we can derive the following propositions:

Proposion 1 (Accumulation of Domain Discrepancy). Given two distinct domains DS and DT , the
token-level domain distance dTo-MMD(DS , DT ) depends on dC∆̃Bx(x̄

S
i , x̄

T
i ) and d∆̃(x̄

S
i , x̄

T
i ) for the

i-th token. For the entire recurrent process, domain-specific information encoded in S∆, SC , and SB
will accumulate, thereby amplifying domain discrepancy.

Proposion 2 (Mitigating Domain Discrepancy Accumulation). Perturbing domain-specific
features in tokens focused on by S∆, SC , and SB can enhance their learning of domain-invariant
features, thus effectively mitigating the accumulation issue in these input-dependent matrices.

Propositions 1 and 2 are proved in Appendix A.1. Based on the propositions, we develop a saliency-
driven token augmentation method, which perturbs style information within the tokens that the model
focuses on at the sequence level. In this way, our method enhances the extraction of domain-invariant
features by the input-dependent matrices, i.e., S∆, SC , and SB . As presented in Tab. 6, we also
empirically validate the effectiveness of our method in reducing domain discrepancy in these matrices.

3.3 Saliency-driven Token-Aware Transformation for Mamba

To boost the generalization ability of the Mamba model, leveraging the Proposion 1 and Proposion 2,
we propose a novel Saliency-driven Token-AwaRe Transformation paradigm (START in short), which
aims to explicitly suppress domain-related features within the input-dependent matrixes. Unlike
prior methods that perturb entire feature maps at the channel level [13–15], START incorporates a
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Figure 2: Overall Architecture of the Proposed START Framework. The core of the START
framework is the Saliency-driven Token-Aware Transformation, which uses a saliency-driven scheme
to localize tokens targeted by input-dependent matrices, subsequently perturbing domain-specific style
information within these tokens. We designed two variants: START-M, which uses input-dependent
matrices, and START-X, which uses input sequences to compute saliency.

saliency-driven token selection scheme to perturb the prominent regions of input-dependent matrics
S∆, SB , and SC . Based on the attention mechanism outlined in Eq. (3), we propose two variants
to identify and perturb tokens within salient regions, including START-M that determines saliency
using input-dependent matrices, and START-X computing saliency based on input sequences.

START based on input-dependent matrices (START-M). As Proposition 1 reveals, for the i-th
token, the token-level domain gap depends on dC∆̃Bx(x̄

S
i , x̄

T
i ) and d∆̃(x̄

S
i , x̄

T
i ). Specifically, as

presented in Eq. (6), dC∆̃Bx is contingent on SC(xi)S̃∆(xi)SB(xi)xi, which is the response of the
SSM to xi. SC(xi)S̃∆(xi)SB(xi) could be regarded as a self-attention matrix, which implicitly
offers a measure of saliency for a token xi. To this end, we propose START-M, which utilizes the
input-dependent matrices to identify salient tokens. Concretely, given an input sequence {xi}Li=1,
where L denotes the sequence length, we first compute the input-dependent matrices based on Eq. (2).
Then, we calculate the saliency value for each token based on Eq. (6), i.e., for the i-th token xi:

SaliencyM (xi) = SC(xi)softmax(S∆(xi))SB(xi)xi, (7)

Afterward, we generate a binary mask MS ∈ BL with the element being set to 1 if the corresponding
element SaliencyM (xi) is in the top Ptokens percentage elements.

Meanwhile, we synthesize the style-augmented sequence, which is achieved by mixing the mean
and variance of different samples. Following [13, 62], we first compute the style statistics as:

µ(x) = 1
L

∑L
i=1 xi, σ(x) =

√
1
L

∑L
i=1(xi − µ(x))2. Then we randomly select another sample x′

from the current batch, utilizing its statistics to synthesize the stylized version of x:

µ̃ = ϵµ(x) + (1− ϵ)µ(x′), σ̃ = ϵσ(x) + (1− ϵ)σ(x′),

ϵ ∼ Beta(0.1, 0.1), x̃ =
x− µ(x)

σ(x)
· µ̃+ σ̃,

(8)

Finally, with the token-level mask MS , we mix x and x̃ to generate the augmented sequence xaug,
where tokens with maximum saliency are style-augmented, while other tokens remain unchanged:

xaug = MS ⊙ x+ (1−MS)⊙ x̃, (9)

where ⊙ is element-wise multiplication. Note that when Ptoken = 1, START-M degenerates into a
channel-level augmentation, i.e., MixStyle [13]. However, note that style statistics could be one kind
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Table 1: Performance (%) comparisons with the SOTA DG methods on PACS and OfficeHome.

PACS Office-Home

Method Params. Art Cartoon Photo Sketch Avg. Art Clipart Product Real Avg.

CNN: ResNet-50

DeepAll [65] (AAAI’20) 23M 84.70 80.80 97.20 79.30 85.50 61.30 52.40 75.80 76.60 66.50
PCL [66] (CVPR’22) 23M 90.20 83.90 98.10 82.60 88.70 67.30 59.90 78.70 80.70 71.60
EoA [67] (NeurIPS’22) 23M 90.50 83.40 98.00 82.50 88.60 69.10 59.80 79.50 81.50 72.50
EQRM [68] (NeurIPS’22) 23M 86.50 82.10 96.60 80.80 86.50 60.50 56.00 76.10 77.40 67.50
SAGM [69] (CVPR’23) 23M 87.40 80.20 98.00 80.80 86.60 65.40 57.00 78.00 80.00 70.10
iDAG [70] (ICCV’23) 23M 90.80 83.70 98.00 82.70 88.80 68.20 57.90 79.70 81.40 71.80
DomainDrop [60] (ICCV’23) 23M 89.82 84.22 98.02 85.98 89.51 67.33 60.39 79.05 80.22 71.75
CCFP [71] (ICCV’23) 23M 87.50 81.30 96.40 81.40 86.60 63.70 55.50 77.20 79.20 68.90
MADG [72] (NeurIPS’23) 23M 87.80 82.20 97.70 78.30 86.50 67.60 54.10 78.40 80.30 70.10
PGrad [73] (ICLR’23) 23M 87.60 79.10 97.40 76.30 85.10 64.70 56.00 77.40 78.90 69.30
AGFA [74] (ICLR’23) 23M 89.80 85.20 97.60 84.70 89.30 67.50 58.50 79.30 80.70 71.50
GMDG [75] (CVPR’24) 23M 84.70 81.70 97.50 80.50 85.60 68.90 56.20 79.90 82.00 70.70

ViT-based or MLP-like models

MLP-B [76] (NeurIPS’21) 59M 85.00 77.86 94.43 65.72 80.75 63.45 56.31 77.81 79.76 69.33
SDViT [18] (ACCV’22) 22M 87.60 82.40 98.00 77.20 86.30 68.30 56.30 79.50 81.80 71.50
ResMLP-S [77] (TPAMI’22) 40M 85.50 78.63 97.07 72.64 83.46 62.42 51.94 75.40 77.21 66.74
ViP-S [78] (TPAMI’22) 25M 88.09 84.22 98.38 82.41 88.27 69.55 61.51 79.34 83.11 73.38
GMoE-S [19] (ICLR’23) 34M 89.40 83.90 99.10 74.50 86.70 69.30 58.00 79.80 82.60 72.40

SSM-based models

DGMamba [54] (ACM MM’24) 22M 91.30 87.00 99.00 87.30 91.20 76.20 61.80 83.90 86.10 77.00

Strong Baseline [22] 22M 91.55 85.11 99.14 83.97 89.94±0.52 75.06 60.48 84.71 85.45 76.43±0.15

START-M (Ours) 22M 93.29 87.56 99.14 87.07 91.77±0.40 75.15 62.04 85.31 85.84 77.09±0.16

START-X (Ours) 22M 92.76 87.43 99.22 87.46 91.72±0.49 75.48 62.06 85.24 85.47 77.07±0.07

of domain-specific feature, while other forms of domain-specific features may also exist, especially
within the image backgrounds [59, 63]. As a result, directly perturbing the style information of tokens
on the background might activate other forms of domain-related noise, which could still disrupt the
model generalization [64]. To address this issue, our START-M proposes to selectively perturb tokens
with the highest saliency, which are typically associated with foregrounds, thus enhancing the model
learning of domain-invariant information without activating domain-related noise. Ablation study in
Section 4.3 also proves the effectiveness of the saliency-driven selection scheme.

START based on input sequences (START-X). Based on Proposition 2, recalling that ∆, B, and
C are all input-dependent matrices (as in Eq. (2)), we design a simplified variant, namely START-
X, which involves using the activation values of x to approximate the saliency of tokens directly.
Specifically, for the i-th input token xi, we directly compute its saliency value as: SaliencyX(xi) =
xi. With the saliency for each token, we compute the token-level binary mask MS as that of START-
X and employ Eq. (9) to generate the augmented sequences. In practice, we randomly apply our
START method to 50% of the samples in each batch, leaving the remaining samples unperturbed
during each training iteration. Our START method is disabled during inference.

In summary, we theoretically investigate the generalization error boundary of Mamba at the token
level, highlighting that suppressing domain-related information within input-dependent matrices can
effectively reduce the generalization error boundary of the model. Based on the theoretical analysis,
we propose the first saliency-driven token-aware transformation for SSMs, designing two different
variants for identifying and perturbing the tokens focused on by the input-dependent matricesB,C,∆.
In this way, our method can effectively enhance the reliance of the input-dependent matrices on
domain-invariant features and narrow the distance between source and target domains. Notably, our
START introduces no additional parameters or inference time, only involving a few matrix operations
during training, thus achieving similar linear complexity to VMamba as presented in Appendix A.2.

4 Experiments

4.1 Experimental Setup

Datasets. We perform an extensive evaluation on five DG datasets: PACS [24] comprises 9, 991
images of 7 classes from 4 domains: Photo, Art Painting, Cartoon, and Sketch. OfficeHome [79]
includes 15, 588 images of 65 classes from four diverse domains: Artistic, Clipart, Product, and
Real-World, exhibiting a large domain gap. VLCS [80] contains 10, 729 images of 5 categories from
4 domains: Pascal, LabelMe, Caltech, and Sun. TerraIncognita [81] comprises photographs of wild
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Table 2: Performance (%) comparisons with the SOTA DG methods on VLCS and TerraIncognita.

VLCS TerraIncognita

Method Params. Caltech LabelMe SUN PASCAL Avg. L100 L38 L43 L46 Avg.

CNN: ResNet-50

DeepAll [65] (AAAI’20) 23M 97.70 64.30 73.40 74.60 77.50 49.80 42.10 56.90 35.70 46.10
PCL [66] (CVPR’22) 23M 99.00 63.60 73.80 75.60 78.00 58.70 46.30 60.00 43.60 52.10
EoA [67] (NeurIPS’22) 23M 99.10 63.10 75.90 78.30 79.10 57.80 46.50 61.30 43.50 52.30
EQRM [68] (NeurIPS’22) 23M 98.30 63.70 72.60 76.70 77.80 47.90 45.20 59.10 38.80 47.80
SAGM [69] (CVPR’23) 23M 99.00 65.20 75.10 80.70 80.00 54.80 41.40 57.70 41.30 48.80
iDAG [70] (ICCV’23) 23M 98.10 62.70 69.90 77.10 76.90 58.70 35.10 57.50 33.00 46.10
CCFP [71] (ICCV’23) 23M 98.10 64.90 74.50 78.30 78.90 56.40 42.30 58.00 37.50 48.60
PGrad [73] (ICLR’23) 23M 98.30 64.40 74.40 79.90 79.30 51.20 43.40 60.00 41.30 49.00
AGFA [74] (ICLR’23) 23M 99.00 64.50 75.40 78.90 79.50 61.00 46.20 60.30 42.30 52.40
GMDG [75] (CVPR’24) 23M 98.30 65.90 73.40 79.30 79.20 59.80 45.30 57.10 38.20 50.10

ViT-based models

SDViT [18] (ACCV’22) 22M 96.80 64.20 76.20 78.50 78.90 55.90 31.70 52.20 37.40 44.30
GMoE-S [19] (ICLR’23) 34M 96.90 63.20 72.30 79.50 78.00 59.20 34.00 50.70 38.50 45.60

SSM-based models

DGMamba [54] (ACM MM’24) 22M 98.90 64.30 79.20 80.80 80.80 62.70 48.30 61.10 46.40 54.60

Strong Baseline [22] 22M 97.67 64.25 75.81 79.97 79.42±0.25 66.39 47.27 62.42 48.56 56.16±0.41

START-M (Ours) 22M 98.80 66.98 77.18 82.33 81.32±0.33 70.13 49.98 63.02 49.49 58.16±0.79

START-X (Ours) 22M 98.66 66.64 76.97 82.58 81.21±0.28 70.70 49.47 63.96 48.95 58.27±0.75

animals taken by 4 camera-trap domains, with 10 classes and a total of 24, 788 images. DomainNet
[5] is large-scale with 586, 575 images, having 345 classes from 6 domains, i.e., Clipart, Infograph,
Painting, Quickdraw, Real, and Sketch. Results on DomainNet are reported in Appendix A.2.

Implementation details. We closely follow the implementation of VMamba [22] and use the
VMamba-T, which has similar parameters with ResNet-50 (22M vs. 23M), as the backbone. The
backbone is pretrained on the ImageNet [82] for all our experiments. We partition the input image
into 4 × 4 patches without further flattening the patches into a 1D sequence. The network depth
of the VMamba-T backbone is 4 the same as ResNet-50, consisting of 2, 2, 9, and 2 VSS layers,
respectively. The embedding dimensions of blocks in the 4 stages are fixed as [96, 192, 384, 768].
Following existing DG methods [15, 83], we train the model for 50 epochs using AdamW optimizer
and cosine decay schedule, with a batch size of 64, the initial learning rate as 5e − 4, and the
momentum of 0.9. For all experiments, we the ratio Ptoken of augmented tokens to 0.75. We apply
the leave-one-domain-out protocol for all benchmarks, where one domain is used for testing, and the
remaining domains are employed for training. We select the last-epoch model and report the average
accuracy over five runs. All the experiments are run on 4 NVIDIA Teska V100 GPUs.

4.2 Main Results

Evaluation on PACS. We first compare our method with SOTA CNN-based DG methods on
ResNet-50. As shown in Tab. 1, the strong baseline (VMamba) achieves a promising performance,
exceeding ResNet-50 by 4.44% (89.94% vs. 85.50%), which indicates its superiority for DG.
Moreover, we apply our START to the strong baseline and build advanced models, which can achieve
significant improvements without introducing extra parameters. Notably, START-M achieves the
SOTA performance, improving baseline by 1.83% (91.77% vs. 89.94%) and yielding the latest
CNN-based DG method GMDG [75] by 6.17% (91.77% vs. 85.60%). START-X can also improve
the baseline significantly by 1.78% (91.72% vs. 89.94%). Compared with SOTA ViT-based methods,
START-M still performs excellent, yielding GMoE-S [19] by 5.07% (91.77% vs. 86.70%) with small
network sizes (22M vs. 34M). Finally, our methods beat the recent DGMamba [54], exceeding it by
0.57% (91.77% vs. 91.20%) on average, which proves the effectiveness of our method for DG.

Evaluation on OfficeHome. We evaluate the effectiveness of our method on OfficeHome and present
the results in Tab. 1. Our methods achieve significant improvements compared with CNN-based
methods, e.g., START-M outperforms the SOTA method EoA [67] by 4.59% (77.09% vs. 72.50%)
on ResNet-50. Based on the Strong Baseline with high performance, our method can still improve it
by 0.66% (77.09% vs. 76.43%). START-M precedes the best MLP-like model ViP-S [78], which
learns long-range dependencies along height and weight directions, with a large improvement of
4.71% (77.09% vs. 73.38%). The results justify the superiority of START.

Evaluation on VLCS. As presented in Tab. 2, our START achieves the best performance among all
competitors, surpassing the top CNN-based method SAGM [69] by 1.32% (81.32% vs. 80.00%).
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Additionally, our method significantly improves upon the baseline, outperforming the latest Mamba-
based method DGMamba by 0.52% (81.32% vs. 80.80%).

Evaluation on TerraIncognita. As shown in Tab. 2, We observe that the VMamba baseline
significantly outperforms previous methods, achieving a SOTA performance of 56.16%. Based on
the strong baseline, our method can further achieve substantial improvement by 2.11% (58.27% vs.
56.16%), proving that our method effectively suppresses domain-specific features learned by Mamba.

4.3 Ablation Study and Analytical Experiments
Ablation study. We here validate the effectiveness of each operation in START. Specifically, w/o
Saliency Guided denotes random selection of tokens for perturbation within input sequences, while
w/o Token Selection means perturbing the entire input sequences. Tab. 3 presents the results using
VMamba backbone on PACS. Both variants show improvements over the baseline, indicating that
perturbing style information can mitigate overfitting issues. However, as discussed in Section 3.3,

Table 3: Ablation study on the PACS dataset.
Method Art Cartoon Photo Sketch Avg.

Baseline [22] 91.55 85.11 99.14 83.97 89.94±0.52

w/o. Saliency Guided 92.11 86.23 99.10 85.82 90.81±0.24

w/o. Token Selection 92.05 86.55 98.90 86.35 90.94±0.18

START-M (Ours) 93.29 87.56 99.14 87.07 91.77±0.40

START-X (Ours) 92.76 87.43 99.22 87.46 91.72±0.49

w/o Saliency Guided, which randomly
perturbs tokens, fails to provide strong
regularization. Besides, the result of
w/o Token Selection is inferior to our
START, suggesting that perturbing back-
ground tokens could activate other forms
of domain-specific features, potentially
hindering model generalization.

0
Ratio of Perturbed Tokens

89.5

90.0

90.5

91.0

91.5

92.0

A
cc

ur
ac

y 
(%

)

Baseline START-X START-M

10.900.750.600.450.300.15

Figure 3: Sensitivity to Ptoken.

Parameter sensitivity. We explore the sensitivity of our method
to the hyper-parameter Ptoken, the percentage of perturbed tokens
in input sequences. As shown in Fig. 3, START-M consistently
performs well across different Ptoken values, demonstrating its
effectiveness in perturbing domain-specific information in salient
tokens. We notice that START-X, which uses token activation
to approximate saliency, performs similarly to START-M when
Ptoken is high but is less effective at lower Ptoken values. This
indicates differences between attention regions of input-dependent
matrices and input sequences. Both methods achieve the highest
accuracy at Ptoken = 0.75, which is adopted for all experiments.

Table 4: Comparison (%) with other salient feature identi-
fication methods on PACS with VMamba as the backbone.

Method Art Cartoon Photo Sketch Avg.

Baseline [22] 91.55 85.11 99.14 83.97 89.94±0.52

GradCam 92.56 86.99 98.98 84.92 90.86±0.24

Attention Matrix 91.75 86.68 98.88 85.76 90.77±0.30

START-M (Ours) 93.29 87.56 99.14 87.07 91.77±0.40

START-X (Ours) 92.76 87.43 99.22 87.46 91.72±0.49

Comparisons with other feature iden-
tification methods. We provide compar-
isons with the “GradCAM” and “Atten-
tion Matrix” methods. For the “Grad-
CAM” method, we first obtain feature
gradients using backpropagation without
updating, then compute token saliency
and augment salient tokens at each itera-
tion. For the “Attention Matrix” method,
since the Mamba architecture lacks explicit attention matrices, we instead use α in Eq. (3) to calculate
token saliency. As shown in Tab. 4, on the strong baseline, START still performs much better than
these advanced methods, exceeding “GradCAM” by 0.91% (91.77% vs. 90.86%) and “Attention
Matrix” by 1.00% (91.77% vs. 90.77%). It is owing to the ability of START to explicitly suppress
domain-specific features within input-dependent matrixes.

Table 5: Comparisons (%) with SOTA augmentation meth-
ods on PACS with VMamba as the backbone.

Method Art Cartoon Photo Sketch Avg.

Baseline [22] 91.55 85.11 99.14 83.97 89.94±0.52

MixStyle [13] 92.05 86.55 98.90 86.35 90.94±0.18

DSU [14] 92.58 85.91 98.98 85.39 90.71±0.22

ALOFT [15] 93.07 86.04 99.16 85.31 90.89±0.24

START-M (Ours) 93.29 87.56 99.14 87.07 91.77±0.40

START-X (Ours) 92.76 87.43 99.22 87.46 91.72±0.49

Comparisons with other augmentation
methods. We here compare our method
with SOTA DG augmentation methods
on the VMamba backbone, including
MixStyle [13], DSU [14], and ALOFT
[15]. As shown in Tab. 5, all the aug-
mentation methods bring performance
improvements, indicating that increasing
data diversity is beneficial for the gen-
eralization ability of Mamba. Notably,
START outperforms all the SOTA augmentation methods, i.e., yielding a significant margin of 1.06%
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(91.77% vs. 91.72%) from DSU. The results prove the effectiveness of our methods in perturbing
domain-specific features within input-dependent matrices.

Table 6: Domain gaps within input-dependent matrices.

Method ∆̃(↓) B (↓) C (↓) Feat. (↓)
Baseline [22] 1.48 1.52 2.08 2.97

MixStyle [13] 1.73 1.36 1.90 1.91
DSU [14] 1.38 1.28 2.18 1.59
ALOFT [15] 1.37 1.25 2.33 1.67

START-M (Ours) 1.16 0.98 1.80 1.30
START-X (Ours) 1.23 0.91 1.52 1.37

Domain gaps in input-dependent ma-
trices. To verify the effectiveness of our
method in reducing domain gaps within
input-dependent matrices, we compare
domain gaps across different methods
using PACS with VMamba. The ex-
periments focus on the last block of
VMamba, examining the output feature
maps (“Feat.”) and the input-dependent
matrices ∆̃, B, and C of the first SS2D. The results in Tab. 6 align well with theoretical analysis in
Section 3.2, proving that START effectively reduces domain gaps in the input-dependent matrices.

5 Conclusions

In this paper, inspired by the success of Mamba in supervised tasks, we theoretically study the
generalizability of Mamba and find that the input-dependent matrices in Mamba could accumulate
and amplify domain-specific features during training. To address the issue, we propose a generalized
state space model with a saliency-driven token-aware transformation for DG, which can selectively
augment domain-specific features within salient tokens focused on by the input-dependent matrices,
thus helping the model learn domain-invariant features. Our method outperforms SOTA CNN-based
and ViT-based methods by a significant margin with linear complexity and a small-sized network. We
hope our work inspires further research in DG and contributes valuable insights to the community.

6 Acknowledgment

This work was supported by the National Key R&D Program of China (2023ZD0120700,
2023ZD0120701), NSFC Project (62222604, 62206052), China Postdoctoral Science Foundation
(2024M750424), the Fundamental Research Funds for the Central Universities (020214380120),
the State Key Laboratory Fund (ZZKT2024A14), the Postdoctoral Fellowship Program of CPSF
(GZC20240252), and the Jiangsu Funding Program for Excellent Postdoctoral Talent (2024ZB242).

References
[1] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,

Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In ICCV, 2023.

[2] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything:
Unleashing the power of large-scale unlabeled data. In CVPR, 2024.

[3] Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 2023.

[4] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. TKDE, 2009.

[5] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In ICCV, 2019.

[6] M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on: Dynamic
unsupervised domain adaptation by normalization. In CVPR, 2022.

[7] Yang Shu, Zhangjie Cao, Chenyu Wang, Jianmin Wang, and Mingsheng Long. Open domain generalization
with domain-augmented meta-learning. In CVPR, 2021.

[8] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A survey.
TPAMI, 2022.

[9] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng,
and S Yu Philip. Generalizing to unseen domains: A survey on domain generalization. TKDE, 2022.

10



[10] Fu-En Yang, Yuan-Chia Cheng, Zu-Yun Shiau, and Yu-Chiang Frank Wang. Adversarial teacher-student
representation learning for domain generalization. In NeurIPS, 2021.

[11] Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for out-of-
distribution generalization. In ICML, 2022.

[12] Chaoqi Chen, Jiongcheng Li, Xiaoguang Han, Xiaoqing Liu, and Yizhou Yu. Compound domain general-
ization via meta-knowledge encoding. In CVPR, 2022.

[13] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Mixstyle neural networks for domain generalization
and adaptation. IJCV, 2024.

[14] Xiaotong Li, Yongxing Dai, Yixiao Ge, Jun Liu, Ying Shan, and Ling-Yu Duan. Uncertainty modeling for
out-of-distribution generalization. ICLR, 2022.

[15] Jintao Guo, Na Wang, Lei Qi, and Yinghuan Shi. Aloft: A lightweight mlp-like architecture with dynamic
low-frequency transform for domain generalization. In CVPR, 2023.

[16] Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng Li, and Wei Liu. Improving vision transform-
ers by revisiting high-frequency components. In ECCV, 2022.

[17] Zangwei Zheng, Xiangyu Yue, Kai Wang, and Yang You. Prompt vision transformer for domain general-
ization. arXiv preprint arXiv:2208.08914, 2022.

[18] Maryam Sultana, Muzammal Naseer, Muhammad Haris Khan, Salman Khan, and Fahad Shahbaz Khan.
Self-distilled vision transformer for domain generalization. In ACCV, 2022.

[19] Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei Liu. Sparse
mixture-of-experts are domain generalizable learners. In ICLR, 2023.

[20] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

[21] Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models. arXiv preprint
arXiv:2403.01590, 2024.

[22] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and Yunfan
Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024.

[23] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. In ICML, 2024.

[24] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In ICCV, 2017.

[25] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 2010.

[26] Wei Zhu, Le Lu, Jing Xiao, Mei Han, Jiebo Luo, and Adam P Harrison. Localized adversarial domain
generalization. In CVPR, 2022.

[27] Sudao He, Fuyang Chen, and Hongtian Chen. A latent representation generalizing network for domain
generalization in cross-scenario monitoring. TNNLS, 2023.

[28] Fangrui Lv, Jian Liang, Shuang Li, Bin Zang, Chi Harold Liu, Ziteng Wang, and Di Liu. Causality inspired
representation learning for domain generalization. In CVPR, 2022.

[29] Yibo Jiang and Victor Veitch. Invariant and transportable representations for anti-causal domain shifts. In
NeurIPS, 2022.

[30] Hanlin Zhang, Yi-Fan Zhang, Weiyang Liu, Adrian Weller, Bernhard Schölkopf, and Eric P Xing. Towards
principled disentanglement for domain generalization. In CVPR, 2022.

[31] Qiucheng Wu, Yujian Liu, Handong Zhao, Ajinkya Kale, Trung Bui, Tong Yu, Zhe Lin, Yang Zhang, and
Shiyu Chang. Uncovering the disentanglement capability in text-to-image diffusion models. In CVPR,
2023.

[32] Jin Chen, Zhi Gao, Xinxiao Wu, and Jiebo Luo. Meta-causal learning for single domain generalization. In
CVPR, 2023.

11



[33] Qiuhao Zeng, Wei Wang, Fan Zhou, Charles Ling, and Boyu Wang. Foresee what you will learn: data
augmentation for domain generalization in non-stationary environment. In AAAI, 2023.

[34] Qinwei Xu, Ruipeng Zhang, Yi-Yan Wu, Ya Zhang, Ning Liu, and Yanfeng Wang. Simde: A simple
domain expansion approach for single-source domain generalization. In CVPR, 2023.

[35] Yue Wang, Lei Qi, Yinghuan Shi, and Yang Gao. Feature-based style randomization for domain general-
ization. TCSVT, 2022.

[36] Shiqi Lin, Zhizheng Zhang, Zhipeng Huang, Yan Lu, Cuiling Lan, Peng Chu, Quanzeng You, Jiang Wang,
Zicheng Liu, Amey Parulkar, et al. Deep frequency filtering for domain generalization. In CVPR, 2023.

[37] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and mobile-friendly
vision transformer. In ICLR, 2022.

[38] Yubiao Yue and Zhenzhang Li. Medmamba: Vision mamba for medical image classification. arXiv
preprint arXiv:2403.03849, 2024.

[39] Weibin Liao, Yinghao Zhu, Xinyuan Wang, Cehngwei Pan, Yasha Wang, and Liantao Ma. Lightm-unet:
Mamba assists in lightweight unet for medical image segmentation. arXiv preprint arXiv:2403.05246,
2024.

[40] Xuanhua He, Ke Cao, Keyu Yan, Rui Li, Chengjun Xie, Jie Zhang, and Man Zhou. Pan-mamba: Effective
pan-sharpening with state space model. arXiv preprint arXiv:2402.12192, 2024.

[41] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

[42] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state
spaces. In ICLR, 2022.

[43] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization of
diagonal state space models. In NeurIPS, 2022.

[44] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured state
spaces. In NeurIPS, 2022.

[45] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling via
gated state spaces. In ICLR, 2022.

[46] Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhancing long-range dependency for biomedical image
segmentation. arXiv preprint arXiv:2401.04722, 2024.

[47] Jiacheng Ruan and Suncheng Xiang. Vm-unet: Vision mamba unet for medical image segmentation. arXiv
preprint arXiv:2402.02491, 2024.

[48] Ziyang Wang, Jian-Qing Zheng, Yichi Zhang, Ge Cui, and Lei Li. Mamba-unet: Unet-like pure visual
mamba for medical image segmentation. arXiv preprint arXiv:2402.05079, 2024.

[49] Dingkang Liang, Xin Zhou, Xinyu Wang, Xingkui Zhu, Wei Xu, Zhikang Zou, Xiaoqing Ye, and Xiang
Bai. Pointmamba: A simple state space model for point cloud analysis. arXiv preprint arXiv:2402.10739,
2024.

[50] Jiuming Liu, Ruiji Yu, Yian Wang, Yu Zheng, Tianchen Deng, Weicai Ye, and Hesheng Wang. Point
mamba: A novel point cloud backbone based on state space model with octree-based ordering strategy.
arXiv preprint arXiv:2403.06467, 2024.

[51] Tao Zhang, Xiangtai Li, Haobo Yuan, Shunping Ji, and Shuicheng Yan. Point could mamba: Point cloud
learning via state space model. arXiv preprint arXiv:2403.00762, 2024.

[52] Keyan Chen, Bowen Chen, Chenyang Liu, Wenyuan Li, Zhengxia Zou, and Zhenwei Shi. Rsmamba:
Remote sensing image classification with state space model. arXiv preprint arXiv:2403.19654, 2024.

[53] Qinfeng Zhu, Yuanzhi Cai, Yuan Fang, Yihan Yang, Cheng Chen, Lei Fan, and Anh Nguyen. Samba:
Semantic segmentation of remotely sensed images with state space model. arXiv preprint arXiv:2404.01705,
2024.

[54] Shaocong Long, Qianyu Zhou, Xiangtai Li, Xuequan Lu, Chenhao Ying, Yuan Luo, Lizhuang Ma, and
Shuicheng Yan. Dgmamba: Domain generalization via generalized state space model. In ACM MM, 2024.

12



[55] Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with
optimal polynomial projections. In NeurIPS, 2020.

[56] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. In
ICML, 2023.

[57] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via transfer
component analysis. TNN, 2010.

[58] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younès Bennani. A survey on domain
adaptation theory: learning bounds and theoretical guarantees. arXiv preprint arXiv:2004.11829, 2020.

[59] Yu Ding, Lei Wang, Bin Liang, Shuming Liang, Yang Wang, and Fang Chen. Domain generalization by
learning and removing domain-specific features. In NeurIPS, 2022.

[60] Jintao Guo, Lei Qi, and Yinghuan Shi. Domaindrop: Suppressing domain-sensitive channels for domain
generalization. In ICCV, 2023.

[61] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep
adaptation networks. In ICML, 2015.

[62] Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri, Gustavo A Vargas Hakim, David Osowiechi, Ismail Ben
Ayed, and Christian Desrosiers. Tfs-vit: Token-level feature stylization for domain generalization. PR,
2024.

[63] Rang Meng, Xianfeng Li, Weijie Chen, Shicai Yang, Jie Song, Xinchao Wang, Lei Zhang, Mingli Song,
Di Xie, and Shiliang Pu. Attention diversification for domain generalization. In ECCV, 2022.

[64] Chaoqi Chen, Luyao Tang, Feng Liu, Gangming Zhao, Yue Huang, and Yizhou Yu. Mix and reason:
Reasoning over semantic topology with data mixing for domain generalization. In NeurIPS, 2022.

[65] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-adversarial image
generation for domain generalisation. In AAAI, 2020.

[66] Xufeng Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi Sun, Ran Chen, Ruiyu Li, and Bei Yu. Pcl:
Proxy-based contrastive learning for domain generalization. In CVPR, 2022.

[67] Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improving model
selection and boosting performance in domain generalization. In NeurIPS, 2022.

[68] Cian Eastwood, Alexander Robey, Shashank Singh, Julius Von Kügelgen, Hamed Hassani, George J
Pappas, and Bernhard Schölkopf. Probable domain generalization via quantile risk minimization. In
NeurIPS, 2022.

[69] Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-aware gradient matching for domain
generalization. In CVPR, 2023.

[70] Zenan Huang, Haobo Wang, Junbo Zhao, and Nenggan Zheng. idag: Invariant dag searching for domain
generalization. In ICCV, 2023.

[71] Chenming Li, Daoan Zhang, Wenjian Huang, and Jianguo Zhang. Cross contrasting feature perturbation
for domain generalization. In ICCV, 2023.

[72] Aveen Dayal, Vimal KB, Linga Reddy Cenkeramaddi, C Mohan, Abhinav Kumar, and Vineeth N Balasub-
ramanian. Madg: Margin-based adversarial learning for domain generalization. In NeurIPS, 2023.

[73] Zhe Wang, Jake Grigsby, and Yanjun Qi. Pgrad: Learning principal gradients for domain generalization.
In ICLR, 2023.

[74] Minyoung Kim, Da Li, and Timothy Hospedales. Domain generalisation via domain adaptation: An
adversarial fourier amplitude approach. ICLR, 2023.

[75] Zhaorui Tan, Xi Yang, and Kaizhu Huang. Rethinking multi-domain generalization with a general learning
objective. In CVPR, 2024.

[76] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-mlp architecture
for vision. In NeurIPS, 2021.

13



[77] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard Grave,
Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, et al. Resmlp: Feedforward networks
for image classification with data-efficient training. TPAMI, 2022.

[78] Qibin Hou, Zihang Jiang, Li Yuan, Ming-Ming Cheng, Shuicheng Yan, and Jiashi Feng. Vision permutator:
A permutable mlp-like architecture for visual recognition. TPAMI, 2022.

[79] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In CVPR, 2017.

[80] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR, 2011.

[81] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In ECCV, 2018.

[82] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
IJCV, 2015.

[83] Kyungmoon Lee, Sungyeon Kim, and Suha Kwak. Cross-domain ensemble distillation for domain
generalization. In ECCV, 2022.

[84] Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Ré. A kernel theory
of modern data augmentation. In ICML, 2019.

[85] Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. A fourier-based framework for
domain generalization. In CVPR, 2021.

[86] Zhuoxun He, Lingxi Xie, Xin Chen, Ya Zhang, Yanfeng Wang, and Qi Tian. Data augmentation revisited:
Rethinking the distribution gap between clean and augmented data. arXiv preprint arXiv:1909.09148,
2019.

[87] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In ICML, 2021.

[88] Yongming Rao, Wenliang Zhao, Zheng Zhu, Jie Zhou, and Jiwen Lu. Gfnet: Global filter networks for
visual recognition. TPAMI, 2023.

[89] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In ICCV,
2017.

14



A Appendix / supplemental material

A.1 Theoretical Proofs

Lemma 1 [58]. Let F = {f ∈ Hk : ||f ||Hk
≤ 1} denote a function class, where Hk be a

RKHS with its associated kernel k. Let Lh,f : x → L[h(x), f(x)] be a convex loss-function with
a parameter form |h(x) − f(x)|q for some q > 0, and defined ∀h, f ∈ F , L obeys the triangle
inequality. Let S and T be two samples of size M drawn i.i.d from DS and DT , respectively. Then,
with probability of at least 1− δ (δ ∈ (0, 1)) for all h ∈ F , the following holds:

RDT
[h] ≤RDS

[h] + dMMD(DS , DT ) +
2

M
(Ex∼DS

[
√
tr(KDS

)]+

Ex∼DT
[
√
tr(KDT

)]) + 2

√
log( 2σ )

2M
+ σ,

(10)

where dMMD(DS , DT ) = sup||f ||Fk
≤1

∣∣∫ fd(h(DS)− h(DT ))
∣∣, KDS

and KDT
are kernel func-

tions computed on samples from DS and DT , respectively. σ is the combined error of the ideal
hypothesis h∗ on DS and DT .

Theorem 1 (Generalization risk bound). With the previous setting and assumptions, let Di
S and DT

be two sets with M samples independently drawn from Dn
S and DT , respectively. For any δ ∈ (0, 1)

with probablity of at least 1− δ, for all h ∈ H, the following inequality holds:

RDT
(h) ≤

N∑
n=1

πnR
n
DS

(h) + dTo-MMD(DT , D̄T ) + sup
i,j∈[N ]

dTo-MMD(D
i
S , D

j
S) + 2λπ + σ (11)

where λπ = 1
M (

∑N
n=1 πnEx∼Dn

S
[
√
tr(KDn

S
) + Ex∼DT

[
√
tr(KDT

)]) +
√

log(2/ϵ)
2M , and σ is the

minimum combined error of the ideal hypothesis h∗ on bothDS andDT . Let γT = dTo-MMD(DT , D̄T )

and γS = supi,j∈[N ] dTo-MMD(D
i
S , D

j
S), respectively.

Proof. We initially investigate the relationship between the MMD [58] and To-MMD distances based
on Definition 1 (as presented in Eq. (4)). With the feature extractor ψ(·), we have:

dMMD(DS , DT ) = sup
||f ||Fk

≤1

∣∣∣∣∫ fd(ψ(DS)− ψ(DT ))

∣∣∣∣
≤ sup

||f ||Fk
≤1

∣∣∣∣∣
∫
fd(

1

L

L∑
t=1

sup
ψt∈Ψt

(ψt(DS)− ψt(DT )))

∣∣∣∣∣
= dTo-MMD(DS , DT ).

(12)

Then, for a pair of source domain Dn
S and DT , the following inequality holds:

dTo-MMD(D
n
S , DT ) ≤ dTo-MMD(D

n
S , D̄T ) + dTo-MMD(D̄T , DT ), (13)

with which we can derive the weighted sum of To-MMD between source domains and target domain:

N∑
n=1

πndTo-MMD(D
n
S , DT ) ≤

N∑
n=1

πndTo-MMD(D
n
S , D̄T ) + dTo-MMD(D̄T , DT )

≤ sup
i,j∈[N ]

dTo-MMD(D
i
S , D

j
S) + dTo-MMD(D̄T , DT ).

(14)

With the above preparations, we now derive the generalization error bound of the Mamba model on
the unseen target domain. Recalling that Lemma 1 indicates the generalization error bound between
two different distributions, we generalize it to the scenario of multiple source domains:
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RDT
(h) ≤

N∑
n=1

πnR
n
DS

(h) +

N∑
n=1

πndTo-MMD(D
n
S , DT )+

2(
1

M
(

N∑
n=1

πnEx∼Dn
S
[
√
tr(KDn

S
) + Ex∼DT

[
√
tr(KDT

)]) +

√
log(2/ϵ)
2M

) + σ

≤
N∑
n=1

πnR
n
DS

(h) + dTo-MMD(DT , D̄T ) + sup
i,j∈[N ]

dTo-MMD(D
i
S , D

j
S) + 2λπ + σ,

(15)

where λπ = 1
M (

∑N
n=1 πnEx∼Dn

S
[
√
tr(KDn

S
) + Ex∼DT

[
√
tr(KDT

)]) +
√

log(2/ϵ)
2M and σ is the

minimum combined error of the ideal hypothesis h∗ on both DS and DT .

Proposion 1 (Accumulation of Domain Discrepancy). Given two distinct domains DS and DT , the
token-level domain distance dTo-MMD(DS , DT ) depends on dC∆̃Bx(x̄

S
i , x̄

T
i ) and d∆̃(x̄

S
i , x̄

T
i ) for the

i-th token. For the entire recurrent process, domain-specific information encoded in S∆, SC , and SB
will accumulate, thereby amplifying domain discrepancy.

Proof. For simplification, we use x̄S ∈ RL and x̄T ∈ RL to denote the sample mean embeddings
for the DS and DT , respectively. L represents the token sequence length. To investigate the
generalization error boundary of Mamba, we explore a simplified problem in conjunction with a
single S6 layer, i.e., ȳ = αx̄, where α ∈ RL×L is the data-dependent matric. Empirically, based on
Eq. (3) and Eq. (4), we estimate the token-level domain gap using Euclidean distance of ȳS and ȳS ,

||ȳS − ȳT ||2 =

√√√√ L∑
i=1

(ȳSi − ȳTi )
2 =

√√√√√ L∑
i=1

 i∑
j=1

(αsi,j x̄
s
j − αti,j x̄

t
j)

2

(16)

Combined with Eq. (2) and Eq. (3), we represent α as a direct function of the input x̄:

αi,j = SC(x̄i)

exp(

i∑
k=j+1

softmax(S∆(x̄k))A)

 softmax(S∆(x̄j))SB(x̄j) (17)

Since the SSM layer calculates yi based on the continuous subsequence [x̄1, x̄2, · · · , x̄i], we here
analyze the domain gap of the extracted features at the token level, i.e., |ySi − yTi |. Specifically,
assuming that we have calculated |ySi − yTi | = β (1 ≤ i < L), from Eq. (16), we can derive:

|ySi+1 − yTi+1| − |ySi − yTi | = |
i+1∑
j=1

(αSi+1,j x̄
S
j − αTi+1,j x̄

T
j )| − |

i∑
j=1

(αSi,j x̄
S
j − αTi,j x̄

T
j )|

= |
i∑

j=1

[(αSi+1,j − αSi,j)x̄
S
j − (αTi+1,j − αTi,j)x̄

T
j ] + (αSi+1,i+1x̄

S
i+1 − αTi+1,i+1x̄

T
i+1)|

(18)

With the defined α in Eq. (17) and denoting softmax(S∆(·)) as S̃∆(·) for brevity, we can express:

αi+1,j − αi,j =SC(x̄i+1)

exp(

i+1∑
k=j+1

S̃∆(x̄i+1)A)

 S̃∆(x̄j)SB(x̄j)

− SC(x̄i)

exp(

i∑
k=j+1

S̃∆(x̄i)A)

 S̃∆(x̄j)SB(x̄j)

=[
SC(x̄i+1)

SC(x̄i)
exp(S̃∆(x̄i+1)A)− 1] · αi,j

(19)
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Considering that the differences between adjacent tokens are generally small, SC(x̄i+1)/SC(x̄i)
could be approximated to 1. When the dimension of x̄ is relatively large, then for Eq. (19), we have:

αi+1,j − αi,j ≈ S̃∆(x̄i+1)A · αi,j (20)

Then, we substitute Eq. (20) into Eq. (18) to derive the following formula:

|ySi+1 − yTi+1| − |ySi − yTi |

=|
i∑

j=1

[S̃∆(x̄
S
i+1)A · αi,j x̄Sj − S̃∆(x̄

T
i+1)A · αi,j x̄Tj ] + (αSi+1,i+1x̄

S
i+1 − αTi+1,i+1x̄

T
i+1)|

=|
(
S̃∆(x̄

S
i+1)Ay

S
i − S̃∆(x̄

T
i+1)Ay

T
i

)
+
(
αSi+1,i+1x̄

S
i+1 − αTi+1,i+1x̄

T
i+1

)
|

(21)

Finally, recalling that |ySi − yTi | = β, we can express |ySi+1 − yTi+1| as following:

|ySi+1 − yTi+1| =|
(
I + S̃∆(x̄

S
i+1)A

)
β +

(
S̃∆(x̄

S
i+1)− S̃∆(x̄

T
i+1)

)
AyTi

+
(
SC(x̄

S
i+1)S̃∆(x̄

S
i+1)SB(x̄

S
i+1)x̄

S
i+1 − SC(x̄

T
i+1)S̃∆(x̄

T
i+1)SB(x̄

T
i+1)x̄

T
i+1

)
|

(22)

Let dC∆̃Bx̄(x̄
S
i+1, x̄

T
i+1) = SC(x̄

S
i+1)S̃∆(x̄

S
i+1)SB(x̄

S
i+1)x̄

S
i+1−SC(x̄Ti+1)S̃∆(x̄

T
i+1)SB(x̄

T
i+1)x̄

T
i+1,

and d∆̃(x̄
S
i+1, x̄

T
i+1) = S̃∆(x̄

S
i+1)− S̃∆(x̄

T
i+1). Then, the above equation reveals that for the input

tokens x̄Si+1 and x̄Ti+1, the distance between their extracted features, alongside the gap of historical
sequences, primarily depends on dC∆̃Bx(x̄

S
i+1, x̄

T
i+1) and d∆̃(x̄

S
i+1, x̄

T
i+1). Besides, the recurrent

process in Eq. (22) could also lead to the accumulation or even enhancement of domain-specific
information, i.e., if the model extracts domain-related information from the ith token, this part of the
information will be retained in the features extracted by the (i+ 1)-th token. For the whole recurrent
process, domain-related information encoded in S∆, SC , and SB will be accumulated and amplified,
which will increase the discrepancy in the features extracted by the model for different domains, thus
damaging its generalization ability. Therefore, to reduce the domain gap, it is imperative to suppress
domain-specific information learned by S∆, SC , and SB .

Proposion 2 (Mitigating Domain Discrepancy Accumulation). Perturbing domain-specific
features in tokens focused on by S∆, SC , and SB can enhance their learning of domain-invariant
features, thus effectively mitigating the accumulation issue in these input-dependent matrices.

Proof. Recalling that in the Mamba mode, S∆, SC , and SB are all linear projection layers, which
map the input sequence x̄ ∈ RL to the data-dependent matrixes ∆, C, and B, respectively. Hence, we
analyze the influence of tokens in x on these matrixes. Taking the matricB as an example, we explore
the simplified problem with SB(x) =WBx̄, where WB ∈ RL×N and N denotes the dimension of
the hinder state. Inspired by previous works [84, 85], we assume that the input sequence x̄ could be
decomposed to domain-specific features x̄I and domain-specific features x̄S . Then, for the i-th token
x̄i in x̄, the projection matric B could be denoted as:

Bi = SB(x̄i) =WBi x̄i = [W I
Bi
x̄Ii ,W

S
Bi
x̄Si ] (23)

Previous theoretical works [84, 86] have demonstrated that when a subset of features is perturbed, its
variance would be increased, and the model would be regularized to decrease the weights associated
with these features to minimize the prediction loss. Therefore, by perturbing the domain-specific
features xSi , its corresponding weights WS

Bi
would be restricted to 0. Simultaneously, due to minimal

changes in the domain-invariant feature xIi , the learning of its corresponding weightsW I
Bi

is promoted,
thus enhancing SB learning of domain-invariant features.

Furthermore, given the presence of foreground and background in images [54], different tokens
contain varied information. Foreground tokens primarily encode domain-invariant semantic features
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Table 7: Performance (%) comparisons with SOTA DG methods on the DomainNet dataset with
VMamba as the backbone. The best is bolded.

Method Params Clipart Infograph Painting Quickdraw Real Sketch Avg.
CNN: ResNet-50

DeepAll [65] (AAAI’20) 23M 63.00 21.20 50.10 13.90 63.70 52.00 44.00
PCL [66] (CVPR’22) 23M 67.90 24.30 55.30 15.70 66.60 56.40 47.70
EoA [67] (NeurIPS’22) 23M 68.30 23.10 54.50 16.30 66.90 57.00 47.70
EQRM [68] (NeurIPS’22) 23M 56.10 19.60 46.30 12.90 61.10 50.30 41.00
SAGM [69] (CVPR’23) 23M 64.90 21.10 51.50 14.80 64.10 53.60 45.00
iDAG [70] (ICCV’23) 23M 67.90 24.20 55.00 16.40 66.10 56.90 47.70
DomainDrop [60] (ICCV’23) 23M 62.40 21.00 50.50 13.80 64.60 52.40 44.10
CCFP [71] (ICCV’23) 23M 66.40 22.90 54.00 16.20 64.50 56.70 46.80
PGrad [73] (ICLR’23) 23M 57.00 18.20 48.40 13.00 60.90 48.80 41.00
AGFA [74] (ICLR’23) 23M 66.70 22.90 54.00 16.70 65.90 56.30 47.10
GMDG [75] (CVPR’24) 23M 63.40 22.40 51.40 13.40 64.40 52.40 44.60

ViT-based or MLP-like models

DoPrompt [17] (arXiv’22) 86M 67.70 24.60 54.90 17.50 69.60 55.20 48.30
SDViT [18] (ACCV’22) 22M 63.40 22.90 53.70 15.00 67.40 52.60 45.80

SSM-based models

Strong baseline [22] 22M 74.12 28.06 58.26 17.85 70.10 60.33 51.45
START-M (Ours) 22M 75.11 29.41 60.25 19.31 71.05 61.58 52.79
START-X (Ours) 22M 75.28 29.36 60.33 19.55 71.01 61.30 52.81

alongside some domain-specific details. Perturbing the domain-related features in these tokens can
effectively enhance the model’s learning of domain-invariant features. Conversely, background
tokens encompass diverse domain-related spurious features that are challenging to fully extract and
perturb. As a result, perturbing a subset of domain-related features in these tokens may inadvertently
activate other forms of spurious noise, thereby hindering model generalization. To address this issue,
leveraging the hidden attention mechanism of Mamba (as depicted in Eq. (3)), where tokens with
high saliency are more likely to belong to the foreground, we propose to perturb domain-specific
information solely in the tokens focused on by the input-dependent matrices.

A.2 Additional Experiments

Evaluation on DomainNet. We investigate the effectiveness of our method on the large-scale dataset
DomainNet. As shown in Tab. 7, on the challenging benchmark, we find that the strong baseline
VMamba can achieve the promising performance of 51.45%, proving the superiority of Mamba
models on large-scale datasets. Based on the strong baseline, our START can still significantly
improve the performance, exceeding the baseline by 1.35% (52.81% vs 51.45%). Besides, compared
with CNN-based methods, our method can still achieve significant improvements, e.g., outperforming
the latest SOTA method AGFA [74] by 5.71% (52.81% vs 47.10%). Our methods also beat the best
ViT-based method DoPrompt [17], yielding it by a large margin of 4.51% (52.81% vs 48.30%). The
results prove the effectiveness of our method to help the model learn domain-invariant representation.

Ablation studies on larger datasets. We provide the ablation studies on the Officehome and
TerraIncognita datasets. As shown in Tab. 8, our methods perform the best among all variants, e.g.,
on TerraIncognita, our START-X outperforms the variant “w.o. Saliency Guided” by 0.97% (58.27%
vs. 57.30%) and the variant “w.o. Token Selection” by 0.83% (58.27% vs. 57.44%). The results
demonstrate the effectiveness of all modules in our START methods.

Effects on other Mamba-based architectures. To validate the effectiveness of our START on
other Mamba architectures, we conducted experiments on the recent ViM [23], using the ViM-T and
ViM-S models with different network sizes. The experiments were performed on the PACS dataset
with an initial learning rate of 6.25e − 6 and a weight decay of 1e − 8. As shown in Tab. 9, our
method consistently improves performance across the models with different scales, e.g., on ViM-S,
START-X outperformed the baseline by 2.03% (89.41% vs. 87.38%), and on ViM-T, START-X
exceeded the baseline by 1.66% (86.74% vs. 85.08%). These results demonstrate the generalizability
of our method across different Mamba architectures.

Effects on the ViT architecture. Recalling that our method is derived from the theoretical analysis
that input-dependent matrices in Mamba could accumulate domain-related information during training,
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Table 8: Ablation studies on different components of START. The experiments are conducted on
large datasets, including OfficeHome and TerraIncognita, with VMamba as the backbone.

OfficeHome TerraIncognita

Method Art Clipart Product Real Avg. L100 L38 L43 L46 Avg.

Baseline [22] 75.06 60.48 84.71 85.45 76.43±0.15 66.39 47.27 62.42 48.56 56.16±0.41

w/o. Saliency Guided 75.12 61.06 84.91 85.42 76.63±0.17 69.49 49.10 62.70 47.92 57.30±0.07

w/o. Token Selection 75.11 61.77 84.97 85.26 76.78±0.07 68.97 49.19 62.87 48.74 57.44±0.22

START-M (Ours) 75.15 62.04 85.31 85.84 77.09±0.16 70.13 49.98 63.02 49.49 58.16±0.79

START-X (Ours) 75.48 62.06 85.24 85.47 77.07±0.07 70.70 49.47 63.96 48.95 58.27±0.75

Table 9: Effects (%) of our START on the Vim [23] architectures. The experiments are conducted on
the PACS dataset with the ViM-T and ViM-S as the backbone, respectively.

Method Params. Art Cartoon Photo Sketch Avg.

Vim-T [23] 7M 88.59 80.45 98.52 72.74 85.08±0.14

START-Vim-T-M (Ours) 7M 90.01 80.90 98.25 74.22 85.85±0.83

START-Vim-T-X (Ours) 7M 90.97 81.53 98.90 75.57 86.74±0.67

Vim-S [23] 26M 90.86 80.70 99.16 78.81 87.38±0.70

START-Vim-S-M (Ours) 26M 93.77 83.79 99.46 79.45 89.12±0.50

START-Vim-S-X (Ours) 26M 93.98 84.23 99.44 80.00 89.41±0.42

Table 10: Effects (%) of our START on the ViT [87] architecture. The experiments are conducted on
the PACS dataset with the DeiT-Small as the backbone.

Method Params. Art Cartoon Photo Sketch Avg.

DeiT-Small [87] 22M 87.55 82.16 98.45 75.24 85.85±0.30

START-ViT-M (Ours) 22M 88.57 83.22 98.60 77.80 87.05±0.34

START-ViT-X (Ours) 22M 88.72 83.01 98.50 76.78 86.75±0.22

Table 11: Performance (%) of our START under the single-source domain generalization (SDG)
setting. The experiments are conducted on the PACS dataset with VMamba as the backbone.

Method Art Cartoon Photo Sketch Avg.

Strong baseline [22] 75.10 83.29 44.92 74.76 69.52±0.64

START-M (Ours) 78.08 85.44 45.02 78.03 71.64±0.23

START-X (Ours) 79.40 85.66 44.87 76.24 71.54±0.15

our START aims to improve the generalization of the Mamba architecture. Nevertheless, the core
concept, adaptively perturbing salient tokens in input-dependent matrices, is also applicable to ViTs.
Considering that in ViTs, the attention matrix uses query Q and key K, and then multiplied by the
original feature V to obtain the final representation. We develop our START-M to START-ViT-M,
which calculates token saliency from the input-dependent matrices (i.e., Q×KT ), and START-X
to START-ViT-X, which uses the activation value of representation x to approximate saliency. The
experiments are conducted on the representative ViT architecture, i.e., DeiT-Small, with the PACS
dataset. As shown in Tab.10, 1) on the DeiT-Small baseline, our START re-designed for ViTs still
can effectively improve the Baseline by a significant margin, e.g., START-ViT-M outperforms the
baseline by 1.20% (87.05% vs. 85.85%). The results prove the effectiveness of our START’s variants
on ViTs; 2) we notice that the VMamba-T (22M parameters) is a stronger baseline model than the
DeiT-Small (22M parameters), exceeding it by a large margin of 4.09% (89.94% vs. 85.85%). The
results also reveal the advantage of Mamba architecture to learn domain-invariant token dependencies
in compressed state space, and our START can further enhance the generalization ability of Mamba.

Evaluation on single-source domain generalization tasks. We here evaluate our method under
the single-source-domain generalization setting. As shown in Tab. 11, START-M significantly
improves the baseline, outperforming it by 2.12% (71.64% vs. 69.52%). These results prove that our
method enhances model generalization by simulating domain shifts through salience-driven token
transformation, improving performance in both multi-source and single-source DG tasks.
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Table 12: Effectiveness (%) of our START on SOTA augmentation methods. The experiments are
conducted on the PACS dataset with VMamba as the backbone.

Method Art Cartoon Photo Sketch Avg.

Strong baseline [22] 91.55 85.11 99.14 83.97 89.94±0.52

DSU [14] 92.58 85.91 98.98 85.39 90.71±0.22

START-DSU-M (Ours) 92.38 88.18 99.22 86.26 91.51±0.33

START-DSU-X (Ours) 92.84 88.17 99.34 86.18 91.63±0.25

ALOFT [15] 93.07 86.04 99.16 85.31 90.89±0.24

START-ALOFT-M (Ours) 93.07 88.01 99.34 85.72 91.54±0.24

START-ALOFT-X (Ours) 93.12 88.23 99.40 85.65 91.60±0.38

Table 13: Performance (%) of our START in different layers of the network. The experiments are
conducted on the PACS dataset with VMamba as the backbone.

Method Art Cartoon Photo Sketch Avg.

Baseline [22] 91.55 85.11 99.14 83.97 89.94±0.52

START-M (L1&2) 92.85 87.07 98.96 85.36 91.06±0.19

START-M (L3&4) 92.77 86.50 98.66 85.85 90.95±0.22

START-M (L1&2&3&4) 93.29 87.56 99.14 87.07 91.77±0.40

START-X (L1&2) 92.46 86.33 98.96 85.82 90.92±0.20

START-X (L3&4) 92.43 85.54 99.06 86.74 90.94±0.02

START-X (L1&2&3&4) 92.76 87.43 99.22 87.46 91.72±0.49

START-M / X 92.59 87.14 98.88 85.70 91.08±0.29

Effectiveness with other SOTA augmentation methods. In our method, we utilize a statistics-based
style augmentation method to perturb domain-specific information within tokens. We also explore
other SOTA DG augmentation methods for comparison, including the DSU [14] that models the
distribution of statistics across different samples and resample new statistics from the distribution, and
the ALOFT [15] that diversifies the low-frequency spectrum in the frequency domain. These methods
primarily perturb style information at the channel level. As shown in Tab. 12, our method significantly
improves the performance of the SOTA augmentation methods on the VMamba baseline, e.g., our
START-DSU-M achieves a significant improvement over DSU by 0.8% (91.63% vs. 90.71%),
exceeding the baseline by 1.69% (91.63% vs. 89.94%). The above results prove that selective
perturbation of domain-specific features in salient tokens is crucial for enhancing the generalization
capability of Mamba models.

Effects across different stages. Our theoretical analysis examined how domain gaps accumulate
within each SSM layer. Since one layer’s output serves as the next layer’s input, domain-specific
features from earlier stages increase domain gaps in later stages. To address the issue, we applied
START to all layers to reduce domain gaps comprehensively. We also tested START separately in
either shallow or deep layers. As shown in Tab. 13, using START in both shallow and deep layers
simultaneously performs best, aligning with our theoretical analysis. Applying START-M or START-
X randomly across layers also improves performance, though less effectively than using START-M
or START-X alone. This may be because START-M and START-X target different domain-related
information, leading to incomplete suppression when mixed.

Computational efficiency. To evaluate the computational efficiency of our proposed START, we
conduct experiments on the PACS dataset and compare our method with existing CNN-based and
ViT-based methods. Specifically, we compare the number of parameters, floating point operations per
second (FLOPs), the inference times, and the generalization performance of each method. The batch
size for evaluating inference time is set to 64, and the inference time is averaged over 100 experiments.
Since STARR-M and START-X are only activated during training and disabled during inference, they
introduce no additional inference time. As shown in Tab. 14, our method has significantly fewer
FLOPs than ResNet-50 (5.68 vs. 8.26) while outperforming the DeepAll on ResNet-50 (the baseline
that directly trains the model on source domains) by 6.22% (91.77% vs. 85.50%), demonstrating the
superiority of our START.

Visualization explanations. To provide visual evidence of the effectiveness of our START in
suppressing domain-specific features, we use GradCAM [89] to generate attention maps of the last
state space layer for both the baseline (pure VMamba) and our START models. As illustrated in Fig. 4,
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Table 14: Comparison of the computational efficiency of SOTA DG methods and our START on
PACS. The experiments are conducted with 224× 224 image size on one NVIDIA Teska V100 GPU.

Method Backbone Params (M) GFlops (G) Time (ms) Avg. (%)
DeepAll [65] (AAAI’20) ResNet-50 23 8.26 - 85.50
iDAG [70] (ICCV’23) ResNet-50 23 8.00 94 88.80
iDAG [70] (ICCV’23) ResNet-101 41 15.00 495 89.20

GMoE-S [19] (ICLR’23) DeiT-S 34 5.00 136 88.10
GMoE-B [19] (ICLR’23) DeiT-B 133 19.00 361 89.20
ViP [78] (TPAMI’22) ViP-S 25 13.84 - 88.27
GFNet [88] (TPAMI’23) GFNet-H-Ti 13 4.10 - 87.76

DGMamba [54] (ACM MM’24) VMamba-T 31 5.00 233 91.20

Strong Baseline [22] VMamba-T 22 5.68 252 89.94
START-M (Ours) VMamba-T 22 5.68 252 91.77
START-X (Ours) VMamba-T 22 5.68 252 91.72
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Figure 4: Visualization results of our START. The experiments are conducted on the PACS dataset
with the “Art” as the target domain. We visualize the attention maps of the last layer in the VMamba
backbone. For each sample, the first column is the original image, the second column is the attention
map of the baseline (i.e., VMamba), and the third and last columns are the attention maps of our
START-X and START-M, respectively. Our methods help the model learn more domain-invariant
semantic features, e.g., holistic shape structure, than the pure VMamba baseline.

the VMamba baseline tends to focus on specific local patches that encode domain-specific features,
leading to overfitting to source domains. In contrast, our START methods effectively reduce the
model’s focus on domain-specific features, enabling it to capture generalizable global dependencies
of tokens. For instance, in the case of the person image in the Art domain, the baseline focuses on
multiple local regions in both the foreground and the background, making the model sensitive to
domain shifts and likely to misclassify samples. Conversely, our START models mainly focus on the
foreground, specifically the whole face of the person. The results prove the effectiveness of START
in learning comprehensive domain-invariant features, making it a promising method for DG tasks.

Difference from the related work. In essence, our method significantly differs from DGMamba [54]
in their motivations, goals and methods. 1) Different Motivations: DGMamba observes that hidden
states could amplify domain-related information, and proposes a heuristic method to address the
issue. However, it lacks a deep analysis of the phenomenon. Differently, we first theoretically delve
into the generalizability of Mamba, revealing how input-dependent matrices contribute to domain
gap accumulation. Based on the analysis, we developed START to enhance Mamba’s generalization.
2) Different Goals and Methods: DGMamba aims to enforce the model to focus on object tokens,
perturbing object tokens while replacing context tokens. It ignores that object tokens could be
misclassified as context tokens, replacing which would hinder the model from learning semantics.
Inversely, START aims to suppress domain-specific information in tokens focused on input-dependent
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matrixes, perturbing only styles while keeping contents unchanged. Notably, DGMamba uses
the GradCAM [89] for context patch identification, requiring two backpropagations per iteration.
Conversely, our START uses input-dependent matrixes to calculate token saliency during forward
propagation, needing only one backpropagation and thus reducing training time.

A.3 Broader Impact

Our work aims to enhance model generalization and computational efficiency, enabling robust
performance across diverse domains with varying distributions. By mitigating the overfitting issue
on limited source domains and improving performance on unseen target domains, we believe it will
have a positive societal impact.

A.4 Limitations of Our Work

In the paper, we employ style perturbation to perturb domain-specific information within salient
tokens of input sequences. However, there are various forms of domain-specific information in
the images, which could not be completely suppressed by our method. To address this issue, a
potential solution is to design advanced feature disentanglement methods that adaptively distinguish
and perturb domain-specific information. Designing class-aware feature augmentation could also
alleviate the accumulation of domain-related features. We will explore these solutions in future work.
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guidelines for their institution.
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