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Abstract

We present CURATE, an algorithm for automatic curriculum learning for rein-
forcement learning agents to solve a difficult target task distribution with sparse
rewards. Initially, due to fundamental exploration challenges without informed
priors or specialized algorithms, agents may be unable to consistently receive
rewards, leading to inefficient learning. Through “exploration by exploitation,”
CURATE dynamically scales the task difficulty to match the agent’s current com-
petence. By exploiting its current capabilities that were learned in easier tasks, the
agent improves its exploration in more difficult tasks. While training the agent,
CURATE conducts policy search in the curriculum space to learn a task distribution
for the agent corresponding to the easiest tasks that the agent has not yet solved.
As the agent’s mastery grows, the learned curriculum adapts correspondingly in
an approximately easiest-to-hardest fashion, efficiently culminating in an agent
that can solve the target tasks. Our experiments demonstrate that the curricula
learned by CURATE achieve greater sample efficiency for solving the target tasks
than state-of-the-art algorithms and most baselines. Although a hand-designed
curriculum was more performant for one-dimensional curricula, CURATE excels
in two-dimensional curricula where the optimal task sequencing is not obvious.

1 Introduction

The advent of reinforcement learning (RL) [1, 2] with deep neural networks [3, 4] has ushered
in a promising era of impressive milestones in sequential decision making for deep RL [5–12].
Yet, without models, inductive biases, expert trajectories, or dense rewards, model-free deep RL
algorithms are markedly sample inefficient due to fundamental challenges with exploration. Initially,
the RL agent’s actions are essentially random, requiring many interactions with the environment
before the agent can learn useful behaviors that accrue rewards. However, agent learning can be
structured through curriculum learning [13], which specifies how training data should be sequenced
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in order to achieve two broad aims [14]: to guide training (i.e., increase learning sample efficiency)
and to denoise training (i.e., improve learning robustness and generalization through focus on high-
confidence training data regimes). Indeed, the effectiveness of introducing concepts in an orderly,
structured fashion also has support from cognitive neuroscience [15] and effective pedagogy such as
problem-based learning and assisted discovery learning [16–19], where knowledge arises from both
learner self-discovery of innovations and timely instructor interventions.

For reinforcement learning, the advantages of improving sample efficiency, generalization, and
exploration through a curriculum are generally recognized [20–22]. Indeed, achieving the goal of
automatic curriculum learning — automatically learning the optimal curricula for any domain —
would have far-reaching implications for the field of reinforcement learning, leading to the de facto
standard for training RL agents and the significant impact it would entail. However, an automated
way of selecting the curriculum remains an open problem, as previous literature suggests that, in
the words of Bengio et al. [13], “some curriculum strategies work better than others.” Insight from
evolutionary algorithms for open-ended learning [23, 24] suggest that innovations can arise in a
nonlinear, spontaneous fashion. Conversely, for reformulating single-task RL as multi-task RL with
a one-dimensional curriculum, it has been argued that solving tasks in an easy-to-hard fashion is
optimal [25], but it is unclear how this insight extends to multiple dimensions. Therefore, it is not
generally obvious in what sequence the tasks should be visited for a curriculum. In light of these
questions, curricula are often constructed manually by human designers in an ad hoc fashion, leading
to hand curricula that are tailor-made for specific domains but do not generalize to others.

To answer these questions, we introduce CURATE (Curriculum Agent for Targeted Exploration,
Fig. 2), an automatic curriculum learning algorithm for training a model-free, on-policy reinforcement
learning agent to solve a difficult target task distribution with sparse rewards. Critically, CURATE
is designed for multidimensional task spaces that do not need to be continuous. Our approach
overcomes fundamental exploration challenges by conducting exploration by exploitation, as coined
by Leibo et al. [26]. Specifically, CURATE adapts the difficulty of the training tasks to the agent’s
current capabilities, or competence, through curriculum policy search. Initially, the agent has not
learned useful behaviors, so relatively easier tasks ensure that random exploration is (relatively more)
viable. Then, as the agent’s competence grows, more difficult training tasks are selected to match the
current capabilities of the agent. In other words, the agent improves its ability to explore in more
challenging tasks by exploiting its current capabilities that were gained from previous easier tasks.
In this way, CURATE trains an RL agent through an approximately easiest-to-hardest progression,
quickly training the agent to complete the target task distribution at the end of the curriculum.

2 Related work

Curriculum Learning for Reinforcement Learning As formalized by Bengio et al. [13], cur-
riculum learning concerns how to meaningfully organize data for training machine learning models,
including those used for reinforcement learning. In this section, we identify a few relevant works in
curriculum learning for RL; please refer to Narvekar et al. [20], Portelas et al. [21], and Parker-Holder
et al. [22] for comprehensive surveys. Graves et al. [27] introduce a general curriculum learning
method based on a nonstationary multi-armed bandit algorithm. Wang et al. [23, 24] show that curric-
ula can emerge from co-evolving environments and agents. Portelas et al. [28] introduce ALP-GMM,
a Gaussian mixture model in the parameter space of the environment, where the curriculum is driven
by absolute learning progress. Algorithms from the Unsupervised Environment Design [29] and Dual
Curriculum Design [30] frameworks yield implicit curricula that emerge from unsupervised learning.
For the case of reinforcement learning, Li et al. [25] proposed that, under certain assumptions, solving
tasks from easiest to hardest is optimal. Our algorithm, CURATE, is most similar to Portelas et
al. [28] and Li et al. [25]. CURATE also maintains a distribution within the environment parameter
space similar to ALP-GMM [28], but the curricula learned by CURATE are driven by seeking out the
easiest set of tasks that are not yet solved, leading to an approximately easiest-to-hardest curriculum
that is similar to Li et al. [25] to maximize learning at the frontier of agent capability.

Unsupervised Environment Design and Dual Curriculum Design First introduced by Dennis
et al. [29], the Unsupervised Environment Design (UED) paradigm provides a framework wherein
parameters of an underspecified environment are varied by a teacher to produce distributions over
environments for a student learner. This paradigm can support various teaching modes, such as
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domain randomization, minimax regret, or a “environment-generating adversary” [29] in the PAIRED
algorithm. Jiang et al. [30] unifies the UED framework with prior work in replaying experiences
with Prioritized Level Replay (PLR) [31] to form the Dual Curriculum Design (DCD) framework,
wherein the student learns from either an environment-generating teacher (as in UED) or a teacher
that selects past experiences to replay (as in PLR). In so doing, Jiang et al. introduced REPAIRED
(replay-augmented PAIRED) and an extension of PLR, Robust PLR (also stylized as PLR⊥), in which
gradient updates only occur on replayed levels. Later, Parker-Holder et al. [32] introduced ACCEL,
an evolutionary-based algorithm that randomly mutates levels starting from environments of minimal
complexity. Other UED algorithms include MAESTRO [33], the work of Mediratta et al. [34] to
stabilize PAIRED, and ReMiDi [35]. Our algorithm, CURATE, can be placed within the UED and
DCD frameworks by functioning as a teacher that designs levels that are at the leading edge of the
student’s competence as determined by feedback from the student through sample-based evaluations.

3 Preliminaries

3.1 Underspecified POMDPs

The agent learns within an Underspecified Partially Observable Markov Decision Processs (UP-
OMDP) framework as introduced by Dennis et al. [29]. The UPOMDP defines a distribution of
Partially Observable Markov Decision Process (POMDP) tasks [36, 37] as determined by the selection
of environment parameters. The UPOMDP is defined as follows:

M = ⟨A, O,Θ,SM, TM, IM,RM, γ⟩ (1)

where a ∈ A is a set of actions, o ∈ O is a set of observations, θ ∈ Θ is a set of environment
parameters, and γ is a discount factor for future rewards. The remainder of the UPOMDP tuple
is defined with respect to the chosen environment parameters θ and are thus superscripted byM.
Therefore, for the POMDPMθ specified by θ, s ∈ SM : S ×Θ is a set of states from state space
S that are not observable to the agent, TM : S × A × Θ → S defines the transition function,
IM : S ×Θ→ O is the observation (i.e., introspection) function, and R ∈ RM : S ×Θ→ R is the
reward function. A task is considered solved if its reward exceeds a solved threshold RS . Through
reinforcement learning, the agent learns a policy π(a|o) from maximizing the objective J(π), the
expected sum of discounted rewards over trajectories τ with maximum timesteps T :

J(π) = E
τ∼π

[

T∑
i=0

γiRi] (2)

Assumptions In principle, the generality of the UPOMDP framework allows a temporally-varying
trajectory of environment parameters to be specified, but in practice, we are primarily concerned with
environment parameters that only specify the construction of the initial scene via the underspecified
state space SM. In this view, our use of UPOMDPs is conceptually similar to Contextual MDPs [38–
40]. For this work, we also assume that the environment parameter space Θ is disentangled, i.e., each
dimension controls a single factor of variation.

3.2 Curriculum learning within UPOMDPs

Our problem addresses automatic curriculum learning within a UPOMDP for solving a particular
target task distribution that is initially challenging or impossible for the agent to complete. Under the
assumption that the environment parameters Θ are disentangled, curriculum learning can be conducted
within the axes of generalization of the UPOMDP’s curriculum space, i.e., the space of environment
parameters Θ. In this work, tasks are ordered by difficulty within the axes of generalization, so that
increasing θ generally yields more difficult tasks. Although these assumptions on the structure of
the curriculum space are strong, they permit systematic evaluation of different curriculum learning
algorithms in this work. The easiest tasks occur at min(Θ), and the hardest tasks occur at max(Θ).
Specifically, the target task distribution is defined by environment parameters θt = max(Θ), and the
POMDP that specifies this target task is thereforeMθt . The time-varying sequence of tasks that
arises from a curriculum learning algorithm is called a curriculum C.
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4 Methodology

The goal of CURATE is to automatically learn a curriculum C for training a control policy π to
complete a difficult target task distribution Mθt . To do this, CURATE conducts policy search
using sample-based evaluations to determine a curriculum policy that shapes the distribution of
tasks used for training the agent. The curriculum policy πc(θ;µθ,Σθ) is represented by a Gaussian
distribution over environment parameters θ with mean µθ and covariance Σθ. The training procedure
is summarized in Sec. 4.1. Section 4.2 describes the curriculum update step, UPDATECURRICULUM.

4.1 Training RL policies with curriculum learning

This section summarizes the procedure for training the RL agent as described in Alg. 1 (App. A.2).
This training procedure is designed to close the RL training loop around the target task distribution
Mθt , such that RL training ends with only the minimum number of frames needed to solveMθt .
First, the control policy π is initialized randomly. Then, the curriculum policy πc is initialized by the
Gaussian distribution that approximates a uniform distribution over the curriculum space. Thereafter,
the curriculum policy is updated prior to training with the (initially random) control policy π via
UPDATECURRICULUM (Sec. 4.2). For each iteration in the training loop, tasks are sampled from the
curriculum policy πc by first sampling environment parameters θi, which are in turn transformed into
tasks. Then, a trajectory dataset D is generated with mean training reward RD from rollouts of π in
the sampled tasks. Next, π is updated by the reinforcement learning algorithm by performing gradient
updates of policy parameters using the dataset D. Although in principle any on-policy reinforcement
learning algorithm could be used, we use Proximal Policy Optimization (PPO) [41]. Following the
policy update, the curriculum policy πc is updated via UPDATECURRICULUM if the training reward
RD meets or exceeds the task solved threshold RS . This trigger indicates that the agent has mastered
proficiency in its current training distribution and is ready for more challenging tasks. Curriculum
learning can also be triggered if a maximum number of timesteps since the last curriculum update
has been reached. This prevents training stagnation if the current tasks are too difficult for the agent.
Finally, the agent is evaluated on the target task distributionMθt to obtain a task evaluation reward
Rt. We typically conduct stochastic, rather than deterministic, policy evaluation. If the agent solves
the target task (Rt ≥ RS), then training concludes successfully. Otherwise, training continues while
the number of maximum training frames has not been reached.

4.2 Updating the curriculum using curriculum policy search

This section summarizes UPDATECURRICULUM, the curriculum update procedure that is fully
described in Alg. 2 (App. A.2). UPDATECURRICULUM is a nonlinear optimization within environ-
mental parameter space to learn πc by optimizing the curriculum objective J(πc):

J(πc) = E
θj∼πc,Mθj

∼θj ,Rj∼Mθj
(τ∼π)

[νj ], νj =
Rj

RS
1Rj<RS

− λθ||θj ||2 (3)

whereMθj is a task distribution sampled from πc via parameters θj , Rj is the reward obtained by
evaluating π onMθj , νj is the curriculum reward, and λθ is a regularization hyperparameter.

This method conducts sample-based evaluations to probe the current proficiency of the agent in a
sample-efficient manner without exhaustive search of the curriculum space. First, the initial parameter
distribution for the curriculum policy πc is provided as (µθ,Σθ). Then, for each of Nr rounds, the
agent draws Ns parameter samples from the curriculum policy parameter distribution (µθ,Σθ). For
each parameter sample θj , the corresponding taskMθj is generated, and the agent is evaluated on this
task to yield reward Rj . However, this reward is not used directly for the curriculum learning reward
νj . Instead, it is assessed whether it meets or exceeds the threshold RS , i.e., the task is solved. If so,
the agent receives zero curriculum reward for this task, as the agent has mastered this task. Otherwise,
the curriculum reward is first assessed as Rj/RS . This reward signal induces the agent towards the
easiest (i.e., highest return) tasks that have not yet been solved. Thereafter, the curriculum learning
reward is regularized by λθ||θj ||2 to become νj . This regularization addresses cases where samples
consistently return zero reward (e.g., at the beginning of training, all tasks may be too difficult),
leading to a small bias towards easier levels. Then, the parameter samples θj and curriculum reward
νj are appended to buffers. These buffers are used by Relative Entropy Policy Search [42] to yield
an updated Gaussian distribution that maximizes the curriculum reward, subject to an information
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(a) MiniGrid MultiRoom (b) Procgen Leaper (c) Procgen Climber (d) Procgen BossFight

Figure 1: The experimental domains investigated in our work. MiniGrid MultiRoom (a) a 1-
dimensional curriculum space with field-of-view state and direction observations. Leaper (b),
Climber (c), and BossFight (d) have 2-dimensional curriculum spaces with image observations.

Table 1: Description of each curriculum axis for each domain.
Domain MultiRoom Leaper Climber BossFight
Θ1 Num. rooms (1-4) Num. road lanes (0-3) Num. platforms (1-10) Round health (1-9)
Θ2 n/a Num. water lanes (0-3) Enemy prob. % (0-20) Num. rounds (1-5)

loss bound based on Kullback-Leibler divergence [43]. Lastly, the continuous curriculum parameters
(µθ,Σθ) are discretized to yield the updated curriculum policy πc. This process repeats iteratively
Nr times before returning πc at the conclusion of the curriculum update.

5 Experimental results

In this section, we evaluate CURATE against a variety of curriculum baselines for training RL agents
to complete the most difficult tasks within each experimental domain. Specifically, we seek to answer
two research questions. First, when compared to a variety of curriculum strategies, such as implicit
and explicit curricula, how does CURATE compare when considering a one-dimensional curriculum
space with a limited observation space (Q1)? Second, how does CURATE perform against curriculum
baselines in two-dimensional curriculum spaces with high-dimensional observations (Q2)?

Experimental domains Figure 1 provides an overview of the experimental domains. All domains
use discrete control and discrete environment parameters, varying by the dimensionality of the
curriculum space and the observations. Table 1 describes the domain curriculum spaces. More
information about the experimental details can be found in Sec. A.3.

MiniGrid MultiRoom [44] is a one-dimensional curriculum space that is explored for question Q1.
The specific domain is a reimplementation of MultiRoom-Random-N4 [31], except with the typical
MiniGrid observation space of field-of-view state and agent direction.

The Procgen Curriculum Suite (Leaper, Climber, BossFight) contains two-dimensional curriculum
spaces with image observations for question Q2. The three games in the suite are adaptations of
the same games first introduced by Cobbe et al. [45] to structure the levels within each game into a
curriculum space and allow for changing the initial state based on the environment parameters. For
this work, we use the easy distribution mode for all three games.

Training and test procedure All approaches use PPO [41] with the Adam optimizer [46] for
training the control policy π. The optimizer runs continuously and is not reset during training. After
every control policy update, the agent is evaluated on the target task distributionMθt . If the return
achieved in the target task meets or exceeds RS , training concludes. Otherwise, training continues up
to a predetermined maximum allowable frames.

Baselines We assess CURATE against a variety of baselines, which can be broadly categorized into
either explicit or implicit curriculum learning algorithms. Explicit curricula structure the sequencing
of training tasks externally, often with knowledge of the environment parameters. In contrast, implicit
curricula emerge through self-discovery by interacting with the tasks based on learning objectives
that do not necessarily access the environment parameters or other task-based schedules.
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Table 2: Statistics for sample efficiency for MiniGrid MultiRoom in terms of frames required to
either solveMθt or the maximum allowable frames (50 million). C. Type stands for curriculum type.
10 trials are evaluated for each approach. Mean Frames are shown with ± one standard deviation.
Median Frames are shown with ± one interquartile range (IQR). Trials that do not solve the task still
count towards summary statistics and are assessed the maximum allowable frames.

Approach C. Type Success Rate Mean Frames (×106) Median Frames (×106)
CURATE (ours) Explicit 100% 6.114 ± 1.551 5.737 ± 2.006

PLR⊥ Implicit 100% 18.280 ± 1.994 18.156 ± 3.190
ACCEL Implicit 90% 36.905 ± 7.609 34.265 ± 12.490

Dom. Rand. Random 100% 9.418 ± 1.806 9.136 ± 2.447
Hand Curr. Explicit 100% 4.750 ± 0.608 4.663 ± 0.726

Target None 0% 50.000 ± 0.000 50.000 ± 0.000

1. Robust PLR [30] (PLR⊥). This implicit baseline, which focuses on student replay of levels,
extends PLR [31] by only updating the agent on replayed levels.

2. ACCEL [30]. This implicit baseline randomly mutates levels replayed by the student and
starts from the easiest set of tasks.

3. Domain randomization (DR). This baseline represents a random curriculum.

4. Hand curriculum (HC). This explicit baseline represents a hand-designed, easiest-to-hardest
curriculum without domain expertise. HC is generated algorithmically to optimally approxi-
mate the straightest path through the curriculum space. For less complex domains, HC can
also be considered a pseudo-oracle and an approximation of ground truth.

5. Target (NC). This baseline represents only training on the target tasks without a curriculum.

5.1 Q1: One-dimensional curricula: MiniGrid MultiRoom

MiniGrid MultiRoom requires the agent to master grid-based navigation within the MiniGrid do-
main [44]. In this domain, tasks consist of mazes composed of random numbers of rooms linked to-
gether, from 1 room to 4 rooms. Each task is specified by the environmental parameter θ ∈ {1, 2, 3, 4}
that specifies the number of rooms. The agent must navigate from the starting room to the goal, which
is always contained in the last room. Therefore, the target task distributionMθt requires the agent to
solve a distribution of mazes with 4 rooms. MultiRoom is a sparse reward domain; the agent receives
a time-discounted reward only upon solving a task. The task solved threshold RS is 0.7.

Results Results for MiniGrid MultiRoom are shown in Tab. 2, which provides the summary
statistics for each approach. Please see App. A.4 for more results, including a visualization of
summary statistics (Fig. 4) and representative curricula for each approach (Fig. 5).

In general, we see that CURATE outperforms all approaches except for HC, which can be viewed
as a ground truth curriculum in this domain. The performance gap between CURATE and the UED
algorithms, PLR⊥ and ACCEL, is relatively large. Although these algorithms yield a greater increase
in training agent return, the increase in target task return is gradual. The implicit currricula that are
learned appear to stagnate and reach equilibrium after the training return can no longer be maximized.
DR provides a stronger performance than the UED algorithms, as random curriculum exploration is
viable given the relatively bounded nature of Θ in this domain. Lastly, NC represents the performance
without using a curriculum. Overall, performance is markedly poor: no trials were successful. The
target task distribution is too difficult to solve directly due to the exploration problem that uninformed
agents face when initially solving a task. CURATE addresses this exploration problem by dynamically
changing the task to be simpler, leading to success early that can be bootstrapped into solving harder
tasks.

5.2 Q2: Two-dimensional curricula: Procgen Curriculum Suite

The Procgen Curriculum Suite presents more challenging domains for curriculum learning. Curricu-
lum spaces are two-dimensional, and the agent receives an image-based observation of the game.
The target task distributionMθt for each Procgen game are as follows: for Leaper, tasks with 3 road
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Table 3: Results for the Procgen Curriculum Suite in terms of frames required to either solveMθt
or the maximum allowable frames. C. Type stands for curriculum type. 1 trial is evaluated for each
approach. Frames are listed in (×106). For Success, ✓ meansMθt was solved, and X otherwise.

Leaper Climber BossFight

Approach C. Type Frames Success Frames Success Frames Success
CURATE (ours) Explicit 9.372 ✓ 22.544 ✓ 40.108 ✓

PLR⊥ Implicit 99.975 X 99.942 X 99.877 X
ACCEL Implicit 99.975 X 99.877 X 99.615 X

Dom. Rand. Random 17.629 ✓ 32.113 ✓ 64.225 ✓
Hand Curr. Explicit 12.354 ✓ 24.707 ✓ 53.740 ✓

Target None 99.975 X 23.855 ✓ 86.770 ✓

lanes and 3 water lanes; for Climber, tasks with 10 platforms and 20% enemy spawn probability; and
for BossFight, tasks with 9 health per round and 5 rounds. The task solved threshold RS is either 8
(Leaper) or 10 (Climber, BossFight). Leaper is a sparse reward domain, where the agent receives 10
reward only when solving a task. In contrast, Climber and BossFight are less sparse, offering small
rewards throughout the task in addition to a larger reward when the task is solved.

Results Results for the Procgen Curriculum Suite are presented in Tab. 3. For visualizations, please
see App. A.5. In these more complex domains, we see that CURATE significantly outperforms DR,
PLR⊥, and ACCEL. Importantly, CURATE is also now more performant than HC. We hypothesize
that the larger-dimensional curriculum space offers opportunities for CURATE to forge the path of
least learning through the curriculum based on the agent’s competence, whereas HC is based on
curriculum-agnostic heuristics and may not be optimal. We see that NC is unsuccessful for Leaper,
but is viable for Climber and BossFight due to these games having less sparse rewards. Nevertheless,
we see that CURATE usually offers greater sample efficiency than not using a curriculum, although
the difference is small with Climber. Although our Procgen experiments are only for one trial, we
believe that our results present a compelling proof-of-concept that warrants further study.

6 Conclusion

We present CURATE, an automatic curriculum learning approach for training a model-free, on-policy
reinforcement learning agent to complete a difficult target task distribution with sparse rewards.
CURATE navigates a curriculum through policy search in the curriculum space to establish the best
task distribution that matches the agent’s current competence. In so doing, CURATE’s “exploration
by exploitation” approach addresses fundamental exploration challenges by dynamically scaling
the difficulty of the training task distribution. Moreover, CURATE is effective in multidimensional,
discontinuous curriculum spaces. Initial results demonstrate that CURATE outperforms recent state-
of-the-art Unsupervised Environment Design algorithms and most curriculum learning baselines.
Although a hand curriculum was slightly more performant in a one-dimensional curriculum for
grid-based navigation, CURATE outperforms hand curricula in higher-dimensional curriculum spaces
with selected Procgen games. These higher-dimensional spaces showcase CURATE’s ability to learn
curricula where the best task sequencing is not obvious to specify a priori.

Limitations Although CURATE offers promising performance for automatically learning curricula,
it is important to note CURATE’s assumptions. CURATE requires that the curriculum space is
defined, accessible, and structured in difficulty order along certain axes of task variation. These
assumptions permit the curriculum policy search that powers CURATE. CURATE also assumes that
task evaluations are not limited (e.g., if the target task distribution can only be attempted once).

Future work We will explore avenues to address CURATE’s assumptions and assess CURATE
against more algorithms, such as ALP-GMM [28], PAIRED [29], and Random Network Distilla-
tion [47]. We will also evaluate CURATE on continuous control domains, such as robotic control.
We are also interested in how cognitive psychology insights into how humans approach curriculum
learning [48–50] can inform extensions for CURATE, as well as how lessons learned from CURATE
can inform new algorithms for Unsupervised Environment Design.
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A Appendix

A.1 Intuition for CURATE

Figure 2 illustrates the intuition behind CURATE.

Figure 2: The CURATE algorithm automatically learns a curriculum for training a RL agent to
complete a target task distribution that is initially too difficult for the agent. CURATE sequences the
RL agent’s training data by altering the difficulty of the training task distribution. The RL agent’s
current capability, or competence, is a measure of its performance in relatively more difficult tasks. In
this visualization, the tasks offered by CURATE are initially too difficult, leading to a simplification
of tasks. Once the RL agent begins solving these simple tasks, CURATE dynamically adjusts the
training data accordingly to offer harder tasks. Finally, the agent solves the target task distribution at
the end, indicating that training can conclude. Scenes are from the MiniGrid MultiRoom domain
(Sec. 5.1).

A.2 CURATE algorithms

Algorithm 1 describes the training procedure used to train RL agents in this work. Algorithm 2
describes the policy search procedure that CURATE uses to learn the curriculum policy πc during
training.

A.3 Experimental Details

Implementation Our work is implemented within the Dual Curriculum Design (DCD) code-
base [30].1 We use the official implementations of PLR⊥ and ACCEL as provided in this codebase.

Task solved threshold The task solved threshold RS indicates when a task has been solved based
on its reward. An agent that receives a reward of at least RS on a task is said to have solved a task.
This threshold is used to determine when training is no longer needed in a few ways in this work:

1. When the evaluation reward obtained on the target task distribution meets or exceeds RS ,
the RL training procedure concludes.

2. CURATE uses RS to calculate the rewards ν used for the curriculum policy, which favors
learning the set of easiest tasks not yet solved.

3. RS is used by the hand curriculum baseline to indicate when it is time to advance to the next
set of tasks in the curriculum.

1https://github.com/facebookresearch/dcd
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Algorithm 1: CURATE: CURRICULUM AGENT FOR TARGETED EXPLORATION

Input: target taskMθt , task solved threshold RS , maximum number of training frames fmax,
number of parallelized workers Nv , curriculum advancement on solve ∆µθ, curriculum
covariance for update Σθu , maximum frames between curriculum updates ∆fsync

Initialize: training indicator train← True, target task solved indicator converged← False,
number of training frames f ← 0, control policy π ← INITIALIZERANDOMPOLICY(),
curriculum policy and parameters
πc, µθ,Σθ ← INITIALIZERANDOMCURRICULUMPOLICY(), previous curriculum update
frame fprev ← 0

// Initial curriculum policy update
πc, µθ,Σθ ← UPDATECURRICULUM(πc, µθ,Σθ, π)
while train do

// Sample tasks from the curriculum
Mθc ← ∅
for i = 1 to Nv do

θi ∼ πc

Mθi ← TASKGENERATOR(θi)

Mθc

+←Mθi
end
// Collect experience
D, RD ← ROLLOUTAGENTONPARALLELTASKS(π,Mθc)
// Update policy
π ← UPDATEAGENT(π,D)
f = f + NUMFRAMES(D)
// Update curriculum policy
if RD ≥ RS then

πc, µθ,Σθ ← UPDATECURRICULUM(πc, µθ +∆µθ,Σθu , π)
fprev ← f

else if (f − fprev) ≥ ∆fsync then
πc, µθ,Σθ ← UPDATECURRICULUM(πc, µθ,Σθu , π)
fprev ← f

// Evaluate agent on target task
Rt ← EVALUATEAGENT(π,Mθt)
// Determine whether to continue training
if Rt ≥ RS then

train← False
converged← True

if f ≥ fmax then
train← False

end

Result: control policy π, target task solved indicator converged, number of frames f
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Algorithm 2: UPDATECURRICULUM: Curriculum Update for CURATE
Input: curriculum policy πc, initial curriculum policy mean µθ0 , initial curriculum policy

covariance Σθ0 , control policy π, task solved threshold RS , parameter regularization λθ,
number of rounds Nr, samples per round Ns, relative entropy bound ϵ, minimum
temperature η

Initialize: µθ ← µθ0 , Σθ ← Σθ0

for i = 1 to Nr do
// Reset buffers
θeval ← ∅
νeval ← ∅
for j = 1 to Ns do

// Sample task
θj ∼ N (µθ,Σθ)
Mθj ← TASKGENERATOR(θj)
// Evaluate agent on sampled task
Rj ← EVALUATEAGENT(π,Mθj )
// Determine reward for curriculum learning
if Rj < RS then

νj,init ← Rj/RS

else
νj,init ← 0

νj = νj,init − λθ||θj ||2
// Append to buffers

θeval
+← θj

νeval
+← νj

end
// Run REPS and update curriculum policy
µθ,Σθ ← REPSUPDATE(θeval,νeval, ϵ, η)
πc ← DISCRETIZEGAUSSIAN(µθ,Σθ)

end

Result: updated curriculum policy πc, updated curriculum policy mean µθ, updated curriculum
policy covariance Σθ

We assume that RS is provided as part of the task definition. In practice, we train an RL agent using
a random curriculum (i.e., domain randomization) to obtain what the maximum achievable reward in
the target task distribution is. Then, we set RS slightly below that value.

A.3.1 MiniGrid MultiRoom Navigation

MultiRoom is a one-dimensional curriculum space, where the curriculum axis θ1 = [1, 4] controls
the number of rooms in a maze.

A.3.2 Procgen Curriculum Suite

We use the easy distribution mode of Procgen to avoid extra computational resources that would be
required for the hard distribution mode. Generally, the target task distribution for each game contains
the hardest levels that would be obtained in each game under the easy distribution mode. In other
words, no level is harder than what would have been possible to experience when randomly sampling
levels from Procgen.

In our work, each game is adapted such that each level can be changed by specifying causal interven-
tions in the environment parameters to change the initial level state. For example, the intervention
do(θ1 = 1, θ2 = 3) on level seed 0 in Leaper would yield the same level as without interventions,
except with 1 road lane and 3 water lanes. Please refer to Fig. 3 for a visualized example. Note that
for Leaper, intervention on these parameters may change other aspects of the initial state, such as
the initial placement of cars and logs. Therefore, for Leaper, partial entanglement exists between
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(a) (R0, W0) (b) (R0, W1) (c) (R0, W2) (d) (R0, W3)

(e) (R1, W0) (f) (R1, W1) (g) (R1, W2) (h) (R1, W3)

(i) (R2, W0) (j) (R2, W1) (k) (R2, W2) (l) (R2, W3)

(m) (R3, W0) (n) (R3, W1) (o) (R3, W2) (p) (R3, W3)

Figure 3: Example of variations in initial scenes for Leaper based on selection of environment
parameters. Each figure represents an example task within the task distribution corresponding to the
chosen environment parameters. For example, (h) represents a task with θ1 = 1 road lane and θ2 = 3
water lanes. All scenes are based on level seed 0.

Θ and other variables in the environment. However, for Climber and BossFight, Θ is completely
disentangled from the rest of the level generation process.

We implement our extensions of Procgen within the Procgen fork used by Jiang et al. [31]2

Leaper The curriculum axes specify the number of road lanes (θ1 = [0, 3]) and number of water
lanes (θ2 = [0, 3]).

2https://github.com/minqi/procgen

14

https://github.com/minqi/procgen


Figure 4: Median statistics for sample efficiency for MiniGrid MultiRoom. The approach success
rate is displayed beneath each approach’s name. D. Rand stands for Domain Randomization. Hand
Curr. stands for Hand Curriculum. All trials for Target yielded the maximum allowable frames (50
million) with a 0% success rate.

Climber The curriculum axes are defined as the number of platforms (θ1 = [1, 10]) and percentage
of an enemy spawning at each platform (θ2 = [0, 20]).

BossFight The curriculum axes control the number of health points of the boss per round (θ1 =
[9, 5]) and the total number of rounds (θ2 = [1, 5]).

A.3.3 Hyperparameters

Table 4 presents the experimental hyperparameters. For MiniGrid MultiRoom, we generally use
the hyperparameters from Jiang et al. [30] for their MiniGrid experiments, except with 16 parallel
environments instead of 32 to run experiments with less computational resources. The PPO rollout
length was chosen as 192 to fit at least two episodes of duration 80 into the rollout. For Procgen, we
generally use the same hyperparameters as the Procgen experiments in Jiang et al. [31] for the easy
distribution. However, we use the episode length as defined by each game, and set the PPO rollout
length to the nearest power of two. Then, we select minibatches per epoch such that each minibatch
has 2048 samples, the same as in Jiang et al. [31].

For PLR⊥, we generally use the same hyperparameters as Jiang et al. [30] for MultiRoom and Jiang
et al. [31] for Procgen. Our ACCEL hyperparameters come from Jiang et al. [30].

A.4 Supplemental results for MiniGrid MultiRoom

Figure 4 visualizes the summary statistics first described in Tab. 2. Figure 5 presents a representative
curricula and training/target learning curves for each approach.

A.5 Supplemental results for Procgen Curriculum Suite

This section visualizes each approach’s learning curves and curricula for Leaper (Figs. 6–7), Climber
(Figs. 8–9), and BossFight (Figs. 10–11),
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(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Hand Curriculum (f) Target

Figure 5: Representative curriculum learning time histories for each approach. Each time history
shows the trial that is closest to the median performance of all 10 trials for each approach. The top
figure shows the time history of the return, shown for the training environments and the target task.
The bottom figure shows the time history of the curriculum, with time average discretization of 10
updates to better show long-term trends.
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(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Hand Curriculum (f) Target

Figure 6: Curriculum learning time histories for each approach in Leaper. The top figure shows the
time history of the return, shown for the training environments and the target task. The bottom figures
show the time history of the curriculum, with time average discretization of 10 updates to better show
long-term trends.
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(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Hand Curriculum (f) Target

Figure 7: Curriculum for each approach in Leaper, with time average discretization of 10 updates to
better show long-term trends. Note that the colorbar for each figure has a different maximum value.
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(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Hand Curriculum (f) Target

Figure 8: Curriculum learning time histories for each approach in Climber. The top figure shows
the time history of the return, shown for the training environments and the target task. The bottom
figures show the time history of the curriculum, with time average discretization of 10 updates to
better show long-term trends.
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(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Hand Curriculum (f) Target

Figure 9: Curriculum for each approach in Climber, with time average discretization of 10 updates to
better show long-term trends. Note that the colorbar for each figure has a different maximum value.
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(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Hand Curriculum (f) Target

Figure 10: Curriculum learning time histories for each approach in BossFight. The top figure shows
the time history of the return, shown for the training environments and the target task. The bottom
figures show the time history of the curriculum, with time average discretization of 10 updates to
better show long-term trends.
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(a) CURATE (b) PLR⊥

(c) ACCEL (d) Domain Randomization

(e) Hand Curriculum (f) Target

Figure 11: Curriculum for each approach in BossFight, with time average discretization of 10 updates
to better show long-term trends. Note that the colorbar for each figure has a different maximum value.
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Table 4: Hyperparameters used for experiments. Note that for CURATE, Nr and λθ can take different
values depending on whether it is the initial curriculum update or not.

Hyperparameter MultiRoom Leaper Climber BossFight
Discount factor γ 0.995 0.999 0.999 0.999

λGAE 0.95 0.95 0.95 0.95
Rollout length 192 512 1024 4096

Epochs 5 3 3 3
Minibatches per epoch 1 16 32 128

Clip range 0.2 0.2 0.2 0.2
Number of parallel environments Nv 16 64 64 64

Return normalization no yes yes yes
Entropy bonus coefficient 0.0 0.01 0.01 0.01

Value loss coefficient 0.5 0.5 0.5 0.5
Max gradient norm 0.5 0.5 0.5 0.5
Adam learning rate 0.0001 0.0005 0.0005 0.0005

Adam ϵ 0.00001 0.00001 0.00001 0.00001
Recurrent agent yes no no no

Action space dimensionality |A| 7 15 15 15
Episode length 80 500 1000 4000

Reward threshold RS 0.7 8.0 10.0 10.0
Min. number of target episodes per evaluation 128 64 64 64

Curriculum space dimensionality |Θ| 1 2 2 2
Curriculum space for Θ1 [1, 4] [0, 3] [1, 10] [1, 9]
Curriculum space for Θ2 n/a [0, 3] [0, 20] [1, 5]

Replay rate 0.5 0.5 0.5 0.5
PLR prioritization rank rank rank rank

Temperature, β 0.3 0.1 0.1 0.1
Staleness coefficient, ρ 0.3 0.1 0.1 0.1

Replay buffer size 4000 4000 4000 4000
Edit rate 1.0 1.0 1.0 1.0

Replay rate 0.8 0.8 0.8 0.8
Number of edits 3 3 3 3

Edit method random random random random
Levels edited easy easy easy easy

Number rounds Nr 2/2 4/2 4/2 4/2
Samples per round Ns 8 16 16 16

Regularization hyperparameter λθ 0.0125/0.0125 0.024/0.0 0.005/0.0 0.01/0.0
REPS relative entropy bound ϵ 0.75 0.75 0.75 0.75
REPS minimum temperature η 0.05 0.05 0.05 0.05
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