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Abstract

In the realm of image captioning (IC), learning
sentence pattern and semantics plays a crucial
role. The reason why this aspect has not re-
ceived enough attention before is that the pre-
vailing IC models utilize the autoregressive IC
(AR-IC) paradigm which operates in a word-
by-word manner. In this paradigm, coherence
and fluency with the previous text are priori-
tized during word generation, without special
considerations for the sentence pattern. While
effective, the AR-IC approaches pose inher-
ent challenges for real-time applications due
to their time-consuming nature during infer-
ence. Unlike the AR-IC counterparts, non-
autoregressive IC (NAR-IC) models necessi-
tate simultaneous inference of all words in a
caption. However, the existing NAR-IC mod-
els have been met with the hurdle of reduced
effectiveness in comparison to their autoregres-
sive counterparts. It is largely because they
follow the AR-IC approach, neglecting the in-
fluence of patterns and semantics on NAR-IC.
Considering that the dependency on preceding
and following words is eliminated during NAR-
IC generation, it becomes crucial to consider
the sentence pattern to guide word generation.
In this paper, we reconsider the impact of sen-
tence patterns and semantics in NAR-IC train-
ing. We delve into NAR-IC and provide tips
and tricks for training NAR-IC models, which
include knowledge distillation, label selection,
image pre-fusion, and NAR+AR enhancement.
By meticulously examining the impact of these
components on model performance, we achieve
the state-of-the-art performance with a single-
step generation. This paper aims to provide
valuable strategies for those aiming to advance
NAR-IC models. Our code is provided in Sup-
plementary materials.

1 Introduction

Image captioning (IC) has received substantial at-
tention in recent years, which aims to provide de-
scriptive narratives for input images. Autoregres-

sive IC (AR-IC) models, which generate captions
word-by-word, have been a prominent approach in
this domain (Vinyals et al., 2015; Xu et al., 2015;
Jiang et al., 2018). Nevertheless, AR-IC models
face a significant constraint related to both training
and inference speed. As depicted in Figure 1 (a),
AR-IC employ masked sentences to replicate the
current state of the sentence and predict the next
word. This limitation becomes more pronounced
when considering resource-constrained devices or
real-time applications (Gu and Tan, 2022). After
the introduction of Transformers (Vaswani et al.,
2017), the parallelism they offer provides an op-
portunity to represent a departure from the conven-
tional word-by-word generation pattern, which is
non-autoregressive IC (NAR-IC). However, the si-
multaneous generation of all words in the sentence
leads to issues such as word repetition and sentence
disorder (Ran et al., 2021; Gu and Kong, 2020;
Xiao et al., 2023). Two solutions have emerged to
address this issue. One involves increasing the num-
ber of iterations, such as through the refinement of
generated captions (Lee et al., 2018; Ghazvinine-
jad et al., 2019; Fei et al., 2023), and diffusion
models (Zhu et al., 2022; Luo et al., 2023), as
Figure 1 (b) shows. However, the refinement or
diffusion process is inherently iterative and non-
parallelizable, which poses an efficiency challenge
when improving the caption quality. To alleviate
this limitation, recent researchers focus on elevat-
ing caption quality while simultaneously preserv-
ing efficiency, especially within a single-step gen-
eration (Guo et al., 2020; Yu et al., 2023). As is
shown in Figure 1 (d), these NAR-IC methods with
a single inference rely solely on the input image.
However, due to the nature of IC, the output se-
quence is sequential while the input image is not.
Aligning the non-sequential image patches with the
sequential words is challenging.

Researchers in cognitive science (Hale et al.,
2018; Ryskin and Nieuwland, 2023) provide inter-
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Figure 1: Comparison of AR-IC and NAR-IC models,
where panel (a) represents an AR-IC model, and three
different types of NAR-IC models in panels (b), (c), and
(d). The red line represents the iteration in inference.

esting findings that humans prioritize considering
the sentence structure when producing sentences.
It differs from the traditional word-by-word ap-
proach of AR-IC methods, but shares similarities
with the NAR-IC generation (Yang et al., 2019;
Fisch et al., 2020). Inspired by this insight, the
process of NAR-IC can primarily focus on explor-
ing the sentence pattern and subsequently filling
in the semantics into this sentence pattern. From
the perspective of sentence composition, the sen-
tence pattern comprises sequential features, and the
semantics emerge once these sequential features
are decoupled, e.g., after determining the sentence
pattern ““ Sb. do Sth. at Sw.”, the model only needs
to find useful information from the image to fill in
the placeholders these “some”.

To summarize the temporal information into a
sentence pattern, the majority of current NAR-IC
models utilize knowledge distillation (Guo et al.,
2020; Yu et al., 2023) from AR-IC models. The
sentences generated by AR-IC models instruct the
NAR-IC model to follow their patterns, as depicted
in Figure 1 (¢). However, knowledge distillation
presents two primary drawbacks. Firstly, it requires
an additional training phase for a strong AR-IC
model to generate advanced labels. Secondly, due
to the performance constraints of the AR-IC model,
the labels derived from knowledge distillation may
not consistently be accurate.

In this paper, we explore the solutions for learn-
ing patterns and semantics. Specifically, label se-
lection serves as an alternative to knowledge dis-
tillation for learning the sentence pattern. It in-
volves selecting optimal image-caption pairs from
the ground-truth annotations. The most advantage
of label selection over knowledge distillation is that

the labels distilled by AR-IC may not always be
consistent with the image. Additionally, it does
not necessitate the additional training of a strong
AR-IC model. Instead, it only requires a weak AR-
IC model or independent evaluation metrics (e.g.,
CLIP score (Hessel et al., 2021)) to select labels
with proper patterns from the ground-truth anno-
tations, thereby simplifying the training process.
It significantly reduces the difficulty of NAR-IC
training, as it reduces the dependency between con-
textual words and focuses on extracting effective
information from the image. Regarding the seman-
tic part, given that it has decoupled the temporal
nature of the sentence, it becomes crucial to extract
effective information from the image. Therefore,
an image pre-fusion module is proposed to fuse the
image feature into the decoder. It allows more im-
age information to be mapped to the corresponding
part of the generated sentence. Besides, we intro-
duce a unified architecture to train in a NAR+AR
paradigm, which allows NAR-IC to learn more
structure modalities and semantics from the AR-IC
training. In detail, NAR-IC is first trained to enable
the model to learn specific patterns and overcome
the temporal dependencies. Following this, AR-IC
is integrated into the unified architecture to further
improve the word semantics in NAR-IC and boost
the performance.

In summary, our research has yielded useful
strategies for enhancing the effectiveness of the
NAR-IC model. The key findings from our study,
along with detailed results available in Table 1, are
as follows:

* Knowledge Distillation: Employing knowledge
distillation techniques to transfer knowledge
from well-performing AR-IC models to boost
the performance of the NAR-IC model;

 Effective Label Selection: Leveraging the out-
comes of existing caption models to select proper
patterns from the ground-truth annotations, thus
the preferred image-caption pairs are obtained;

e Image pre-fusion in Decoder: Enhancing the
connection between images and captions by in-
corporating image features into the decoder;

* NAR+AR Training Enhancement: Implement-
ing a NAR+AR training approach within a shared
architecture to further improve the performance.

Through the application of these techniques, our ap-
proach attains state-of-the-art performance among



NAR-IC models in a single-step inference, all while
maintaining the efficiency characteristic of NAR-
IC. The addition of these strategies does not bring
additional computation in inference process. While
some of these methods have demonstrated effec-
tiveness in prior work, we have conducted com-
prehensive analyses and experiments to thoroughly
explore their impact.

2 Related Works

2.1 Image captioning (IC)

The combination of CNNs for image feature extrac-
tion and RNNs for language modeling, introduced
by Vinyals ef al. (Vinyals et al., 2015), has paved
the way for end-to-end trainable models capable
of generating coherent and contextually relevant
captions. Within this architecture, Xu et al. (Xu
et al., 2015) proposed the attention mechanisms,
enabling models to focus on different regions of
an image while generating captions. Anderson et
al. (Anderson et al., 2018) proposed Up-Down
model which employed a bottom-up mechanism
to align the object regions to the generated words.
In recent years, the advent of Transformer-based
models (Vaswani et al., 2017) has reshaped the
landscape of IC (Huang et al., 2019; Li et al., 2019;
Wang et al., 2022; Zhou et al., 2020). For exam-
ple, Wang ef al. (Wang et al., 2022) applied Swin
Transformer (Liu et al., 2021) for both image en-
coder and language decoder, benefiting from its
unified architecture. The availability of large-scale
pre-trained models (Li et al., 2020; Zhang et al.,
2021; Li et al., 2022, 2023) has also benefited IC
as a downstream task, leading to improvements in
caption quality. However, it is noteworthy that the
aforementioned models typically follow the AR ap-
proach for caption generation, which necessitates
substantial computational resources and introduces
latency for both training and inference.

2.2 Non-autoregressive (NAR) decoding

Unlike AR decoding, which generates text word by
word, NAR models produce the entire sequence in
a single inference, making it more efficient during
inference. As far as we know, Gu et al. (Guetal.,
2018) were among the first to introduce NAR text
generation using Transformer-based architectures,
allowing for parallel decoding of text sequences.
While NAR text generation holds promise for ef-
ficient text production, challenges remain, for ex-
ample, under or over generation, incoherent sen-

tences (Gu and Tan, 2022). Attempts have been
made to overcome these issues. For example, Fer-
tility predictor (Ran et al., 2021; Gu et al., 2018)
was proposed to predict the length of the generated
sentences. Continuous VAEs (Shu et al., 2020)
trained a Gaussian prior on each words. Other ap-
proaches involve SemiAR, generating text phrase
by phrase (Lample et al., 2018; Qi et al., 2020).
However, this approach still represents a trade-off
between time efficiency and performance.

Recent research has explored NAR image cap-
tioning models (Gao et al., 2019; Fei, 2019; Zhu
et al., 2022; Yu et al., 2023; Guo et al., 2020; Deng
et al., 2020). For example, Gao et al. (Gao et al.,
2019) introduced NAR to image captioning pre-
dicting masked words in parallel. Zhu ef al. (Zhu
etal., 2022) introduced discrete diffusion into NAR-
IC, which achieved excellent results. However,
because the diffusion model requires multiple re-
finements, it does not offer an advantage in terms
of efficiency. To further accelerate the inference
speed, efforts were made to improve the perfor-
mance of a single-inference NAR-IC model. Guo
et al. (Guo et al., 2020) introduced reinforcement
learning and sequence-level knowledge distillation.
On the other hand, Liu et al. (Yu et al., 2023)
used the image feature as a decoder input, which
significantly improved the quality of NAR output
in a single inference.

Despite the promise of NAR-IC, generating a
high-quality caption with higher time efficiency,
especially in a single-step inference, remains a
challenge. Furthermore, effectively utilizing high-
performance AR pre-trained models within the
NAR framework is a crucial aspect of this endeavor.

3 Methods

Given an image [, the caption Y is generated by a
captioning model with its parameters . This cap-
tion can be decomposed into the sentence pattern
part Y}, and the semantics part Yy, respectively:

p(Y|I;0) = p(Yp|L;0)p(Ys|1;0), (1)

where Y), and Y are assumed to be conditionally
independent.

3.1 Knowledge distillation & Label selection

Take MSCOCO (Lin et al., 2014) for example, each
image is associated with five human-annotated cap-
tions. By observing these captions, we find that
they exhibit various sentence patterns in describing
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Figure 2: The architecture of our NAR-IC model. In this illustration, “Emb” and “Emb~1” denote the word
embedding function and its inverse function. “Ng” and “Np” refer to the number of encoder and decoder layers,
respectively. “feat_dim” represents the feature dimension, and “d” is the embedding size of our model. The black
dotted line indicates that it only takes effect in AR training mode. The red dotted line denotes two alternative
approaches for choosing labels: either through knowledge distillation (approach 1) or label selection (approach 2).

the same image. Besides, previous works and our
experiments have demonstrated that randomly se-
lected sentences exhibit diverse patterns, which are
not beneficial for NAR (Guo et al., 2020; Yu et al.,
2023; Deng et al., 2020). Since the sentence struc-
ture generated by the AR-IC models is relatively
uniform, previous NAR-IC models have adopted
knowledge distillation.

However, the NAR-IC model implemented
through knowledge distillation heavily relies on
the quality of the AR-IC model. Thus, we pro-
pose an alternative approach for knowledge distilla-
tion: label selection, which obtains high-quality
annotations from the ground-truth labels. This
method involves selecting labels from the ground-
truth annotations based on their similarity to the
AR-IC-generated results. To be specific, it employs
a pre-trained AR-IC model to generate sentences
corresponding to the images. Subsequently, a com-
parison is made between the sentences generated
by the AR-IC model and the existing MSCOCO
annotations. The labels with the highest similarity
metrics are selected to create the training set. Addi-
tionally, we investigate the use of other individual
evaluation metrics, such as the CLIP score (Hessel
et al., 2021), to assess the quality of these labels.
As Figure 2 shows, knowledge distillation and label
selection act as mutual substitutes.

3.2 Image Pre-fusion

Since sequential pattern Y}, is decoupled, enhanc-

ing the connection between images and generated
sentences becomes essential to learning the seman-
tic part Y in Eq. (1). To achieve this, we employ
a linear layer £q to map image features onto the
sentence, enabling the model to more effectively
extract relevant information from the image:

Vp = LN(L(Vg) + MHA(L(VE), Vi, Vr)),  (2)

where Vg and V7 represents the embedding vec-

tors of the image and the vocabulary, “MHA” de-
notes the multi-head attention (Vaswani et al.,
2017), “LN” represents the layernorm layer. It
pre-fuses the image features as an integral part of
the input of the decoder.

Unlike the conventional approach of initializing
the decoder with a sentence replete with [MASK]
tokens, this modified decoder initialization method
leverages the image features through an MHA
mechanism. The subsequent stages closely resem-
ble typical encoder-decoder models, commencing
with self-attention on the input of the decoder, fol-
lowed by cross-attention with the image feature:

Self ATT: Vp = LN(Vp + MHA(Vp, Vp, Vp));
Cross_ATT: Vs = LN(Vp + MHA (Vp, Vi, Vi), (3)
Vs = LN(Vs + FFN(Vs)),
where “FFN” represents the feed-forward layer.

Consequently, the conditional probabilities of the
sentence are calculated as:



where “L P’ denotes the linear projection function,
responsible for mapping the feature to the distribu-
tion of word sequences. Therefore, this modified
NAR-IC decoder architecture seamlessly integrates
image features into the sentence generation process,
enhancing contextual dependencies and improving
language fluency. Thus, the image features are
fused into Y, before cross-attention calculation.

3.3 NAR+AR enhancement

In the context of the model architecture outlined in
Section 3.2, the NAR-IC model exhibits limitations
in terms of contextual dependencies, resulting in
issues related to language fluency. In an effort
to bridge the gap between AR-IC and NAR-IC
models while maintaining a unified architecture, a
modification is proposed to Eq. (2):

V], = LN(Vg + MHA(Vg, Ve, Vo) + Vo), (5

where V) represents the feature embedding corre-
sponding to the last state of the sentence. Dur-
ing the training process in NAR mode, 1} remains
consistently set to zero, ensuring that the training
regimen remains unaffected by this modification.
Conversely, during training in AR mode, the inclu-
sion of the previous state of the sentence is taken
into account through Vj. You can refer to Figure 2
for the architecture of our model.

By alternating training the NAR and AR modes,
structured semantics are implicitly transferred to
the NAR models. This approach allows for a seam-
less transition between AR and NAR paradigms
within a unified architecture, fostering an improved
capacity to capture context and enhance the fluency
of generated language. This bridging mechanism
thus paves the way for a more versatile and context-
aware image captioning model.

4 Experiments

4.1 Implementation

Following the previous IC models (Anderson et al.,
2018; Huang et al., 2019; Wang et al., 2022; Yu
et al., 2023), our model is trained and evaluated on
the MSCOCO dataset (Lin et al., 2014), which con-
tains 123,287 images (113,278/5000/5000 for train-
ing/validation/testing in Karpathy split (Karpathy
and Fei-Fei, 2015)). Each image has 5 correspond-
ing annotations. Consistent with the most IC mod-
els, our vocabulary contains 9487 common words.
We set the maximum sentence length L to 16, the

embedding size of the model d to 512, the number
of the encoder and decoder layers Ng and Np to
3, and the number of Transformer heads h to 8.
We apply four widely used metrics to evaluate the
quality of the generated captions: BLEU (Papineni
et al., 2002), METEOR (Agarwal and Lavie, 2007),
ROUGE-L (ROUGE, 2004), and CIDEr (Vedan-
tam et al., 2015), abbreviated as B, M, R, and C,
respectively. More training details are listed in
Supplementary materials.

4.2 Ablation Studies

In Table 1, we present the results of our exten-
sive ablation experiments conducted to validate the
effectiveness of the strategies discussed. Addition-
ally, the results for AR models, denoted as Al and
A2, are included to provide a comprehensive basis
for comparison.

The effect of image pre-fusion. The results of
D1-D4 underscore the importance of incorporating
image features as an integral component of the de-
coder within a single inference. This modification
significantly influences the quality of the generated
captions.

The effect of label selection. Notably, under the
Transformer (L1) and Swin (L2) architectures, the
random selection of MSCOCO labels yields re-
sults slightly better than using the entire set of
labels on AR-IC models. This observation sug-
gests that learning certain sentence pattern within
the MSCOCO dataset might be conducive for effec-
tively training Transformer-based image captioning
models. Consequently, the exploration of meth-
ods for selecting relevant and informative labels in
a NAR-IC model is warranted. Furthermore, by
comparing the results of L5-L8, we observe that
using CIDEr (L8) and ROUGE (L7) metrics leads
to better performance. Additionally, introducing
individual metrics such as the CLIP (Hessel et al.,
2021) score (L9), is also proved to be effective. Our
experiments highlight the significant influence of
different evaluation metrics on the overall model
performance, underscoring the importance of se-
lecting and utilizing appropriate metrics for label
selection in NAR-IC training. We further explore
which AR-IC pre-trained model achieves the high-
est performance. Regardless of whether the classic
Transformer architecture (L7-L9) or Swin (L10-
L12) is employed, the results are remarkably simi-
lar because the labels obtained are almost the same
after label selection. This finding also indicates that
the Transformer-based models, irrespective of their



Table 1: The performances of the ablation models on Karpathy test split.

No. Models Metrics

AR Arch. Distil. Lbl Sel. Img pre-fusion | B@l B@4 M R C
AR Baseline
Al v Transformer X X X 76.1 335 278 56.1 1147
A2 v Swin X X X 771 471 285 575 1206
Image pre-fusion
D1 X Transformer Transformer X X 499 48 153 299 40.0
D2 X Swin Swin X X 502 48 155 320 409
D3 X Transformer X CLIP score X 500 43 155 299 403
D4 X Swin X CLIP score X 503 49 155 304 40.1
Label Selection
L1 v Transformer X Random X 769 345 280 567 1164
L2 v Swin X Random X 774 368 286 574 1215
L3 X Transformer X Random v 485 124 178 46.7 60.1
L4 X Transformer X Loss v 79.1 360 282 570 1203
L5 X Transformer X BLEU v 714 249 235 519 86.1
L6 X Transformer X METEOR v 702 252 232 523 87.1
L7 X Transformer X ROUGE v 796 37.1 279 576 1229
LS X Transformer X CIDEr v 798 369 28.1 57.8 1215
L9 X Transformer X CLIP score v 799 371 28.1 579 1233
L10 X Swin X CIDEr v 798 369 28.1 57.8 1215
L11 X Swin X ROUGE v 799 370 281 57.8 1220
L12 X Swin X CLIP score v 799 371 28.1 579 1233
Knowledge Distillation
K1 v Transformer Swin X X 799 37.1 28.0 579 1233
K2 v Swin VinVL X X 81.1 396 294 59.0 1322
K3 X Transformer Transformer X v 764 349 279 562 1157
K4 X Transformer Swin X v 79.9 37.1 280 579 1233
K5 X Transformer  VinVL X v 79.8 370 280 57.8 1225
K6 X Swin Transformer X v 763 349 279 562 1156
K7 X Swin Swin X v 795 365 278 577 1224
KS X Swin VinVL X v 795 377 282 578 1233
NAR+AR Enhancement
N1 X Swin X CLIP score v 792 360 278 574 1192
N2 NAR+AR Swin X CLIP score v 79.6 365 280 577 1212
N3 AR+NAR Swin X CLIP score v 725 284 254 476 100.0
N4 | NAR+Mixed(Ours) Swin X CLIP score v 79.9 373 282 58.1 1237

specific architecture, exhibit a tendency to gener-
ate captions with similar sentence structures. After
comparing the results of the models under cross
entropy loss, we observe that our NAR-IC model
with label selection by CLIP score (L9 and L.12)
and ROUGE (L7 and L11) has higher performance
than the AR-IC models (L1 and L2). Therefore,
utilizing a relatively weak AR-IC model to select
valuable labels from ground-truth annotations has
been proven effective, in the absence of a high-
quality AR-IC pre-trained model.

The effect of knowledge distillation. An impor-
tant insight emerges when we compare the results
of label selection and knowledge distillation. This
comparison leads to the formulation of an effective
training strategy, that is: when a high-quality AR-
IC model, such as Swin (Liu et al., 2021; Wang

et al., 2022) and VinVL (Zhang et al., 2021) based
AR-IC models, is available, applying knowledge
distillation proves to be a more effective and effi-
cient strategy. The results of K4 and K5 suggest
that they leverage the knowledge and competence
of the pre-trained AR-IC model to enhance the per-
formance of the NAR-IC model. Conversely, em-
ploying knowledge distillation becomes a less fa-
vorable strategy when the pre-trained AR-IC model
is relatively weak, such as the classic Transformer
structure (K3). It ensures that the labels chosen for
training are more representative and beneficial for
the non-autoregressive model, compensating for
the potential limitations of the AR-IC model. Be-
sides, an intriguing observation emerges from our
study regarding knowledge distillation. It appears
that knowledge distillation is not overly sensitive



Table 2: Comparison with the SOTA image captioning
methods.

Model B@l B@4 M R C SpeedUp
AR-IC Models
AR 769 345 280 567 1164 | 1.0x
AR(RL) 803 384 29.0 58.7 1288 | 1.0x
PureT (Wang et al., 2022) 773 370 286 574 1214 |4.3x

PureT (Wang et al., 2022)(RL) | 82.1 409 302 60.1 1382 | 4.3x
SemiAR-IC Models

PNAIC (Fei, 2021) 799 375 282 580 1252 |6.9x
SATIC (Zhou et al., 2021) 80.6 37.6 283 58.1 1262 63x
SAIC (Yan et al., 2021) 80.3 384 29.0 582 127.1 |4.1x
NAR-IC Models
MNAIC (Gao et al., 2019) 754 309 275 55.6 108.1 | 3.6x
FNAIC (Fei, 2019) - 362 27.1 553 1157 | 8.2x
LaBert (Deng et al., 2020) 774 350 279 57.0 116.8 | 9.3x

CMAL-COCO (Guo et al., 2020) | 60.7 159 182 459 60.6 | 13.9x
CMAL-KD (Guo et al., 2020) 785 353 273 569 115.5 | 13.9x
CMAL (Guo et al., 2020) (RL) | 80.3 373 283 58.0 124.0 | 13.9x

EENAIC-COCO (Yuetal.,2023) | 602 160 17.7 455 60.1 | 37.0x
EENAIC-KD (Yuetal,, 2023) | 79.7 369 279 580 122.6|37.0x

Ours-KD 79.9 373 282 58.1 123.7|37.0x
Ours-COCO 80.0 372 283 582 123.6 | 37.0x
Ours-KD (RL) 80.1 373 282 583 1239 |37.0x
Ours-COCO (RL) 80.3 368 282 583 1252 |37.0x

to the architectural consistency between the teacher
model and the student model. Instead, the critical
factor influencing the effectiveness of knowledge
distillation is the quality of the teacher model. In
other words, while having consistent architectures
between the teacher and student models can be ben-
eficial, it is not a strict requirement. What truly
matters is the capability and performance of the
teacher model. For example, despite K4 employing
a unified Swin structure in both the teacher and
student model, it fails to surpass the performance
of K5, which utilizes VinVL as the teacher model
and Swin as the student model.

The effect of NAR+AR enhancement. The re-
sults indicate that training the NAR model initially
and subsequently adding AR training (cf. Eq. (5))
leads to the best overall performance (N4). More-
over, when AR training is conducted first (N3), the
model acquires an understanding of the temporal
dependencies that are inherent in the autoregres-
sive generation process. However, when the train-
ing shifts to NAR mode, it becomes challenging
for the model to break free from these learned de-
pendencies. As a consequence, this results in a
performance drop in the NAR mode.

4.3 Comparisons with SOTA

In Table 2, we present performance comparisons
of our best model with existing methods, including
MNAIC (Gao et al., 2019), FNAIC (Fei, 2019),
Labert (Deng et al., 2020), CMAL (Guo et al.,
2020), and EENAIC (Yu et al., 2023). It is im-
portant to note that MNAIC (Gao et al., 2019),
FNAIC (Fei, 2019), and Labert (Deng et al.,
2020) adopt refinement strategies, which entail

a more time-consuming inference process. On
the other hand, CMAL (Guo et al., 2020) and
EENAIC (Yu et al., 2023), like our model, gen-
erate captions within a single inference step, em-
phasizing efficiency. We present two sets of re-
sults: “COCO” where we exclusively utilize se-
lected MSCOCO (Lin et al., 2014) annotations dur-
ing training (corresponding to L12 in Table 1), and
“KD” which signifies the usage of knowledge distil-
lation (corresponding to K8 in Table 1). Addition-
ally, we list some AR-IC and SemiAR-IC models
for reference.

We observe that our model achieves the best
performance among the NAR models. Besides,
we deliver a substantial improvement in inference
speed, approximately three times faster. Moreover,
the enhancement of “Ours-KD” after reinforcement
learning (RL) training is not as pronounced as that
seen in “Ours-COCQO”. The primary reason is that
the labels used in knowledge distillation are ob-
tained by the pre-trained AR-IC+RL model. In ad-
dition, we compare the results of the models using
annotations only from MSCOCO (Lin et al., 2014).
Unlike knowledge distillation, which requires a
strong AR-IC model to instruct the NAR-IC model,
our approach employs a weaker AR-IC model with
a CIDEr of 116.4 to select preferred image-caption
pairs, ultimately achieving a CIDEr of 123.5. Be-
sides, we observe that methods like CMAL (Guo
et al., 2020) and EENAIC (Yu et al., 2023) fail
to deliver satisfactory results without knowledge
distillation. It indicates the broader applicability
and effectiveness of our method. Additionally,
it is noteworthy that “Ours-COCQO” demonstrates
comparable performance to “Ours-KD” even with-
out knowledge distillation. “Ours-COCQO” entirely
eliminates the influence of knowledge distillation
and RL training, resulting in a CIDEr score of
123.6. This score is 0.4 lower than CMAL (Guo
et al., 2020) with RL training and 8.1 higher than
CMAL without RL.

The results from the MSCOCO online test are
also presented in Table 3, where “*” denotes our
unofficial submission. Our model attains a com-
parable performance to early AR-IC methods like
SCST (Rennie et al., 2017) and Up-Down (Ander-
son et al., 2018). This suggests that our NAR-IC
model holds the potential to replace the early AR
models in terms of performance, all while offer-
ing a significant advantage in terms of inference
speed. When compared with the models under the
cross entropy loss, our method (“Ours-COCO”)



Table 3: The scores on the MSCOCO online test server.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 ¢S5 c40 ¢S5 c40 5 c40 c5 c40 c5 c40 c5 c40
AR-IC models
SCST(RL) (Rennie et al., 2017) 78.1 937 619 86.0 47.0 759 352 645 270 355 563 707 1147 116.7
Up-Down(RL) (Anderson et al., 2018) 80.2 952 64.1 88.8 49.1 794 369 685 27.6 367 571 724 1179 1205
AoANet(RL) (Huang et al., 2019) 81.0 950 658 89.6 514 813 394 71.2 29.1 385 589 745 1269 129.6
PureT(XE)* (Wang et al., 2022) 75.8 939 59.1 863 450 760 34.1 414 277 37.6 557 717 1113 1147
PureT(RL) (Wang et al., 2022) 828 96.5 68.1 91.8 53.6 839 414 741 30.1 399 604 759 136.0 1383
SemiAR-IC models
PNAIC (Fei, 2021) 80.1 944 640 88.1 492 785 369 682 278 364 576 722 121.6 1220
NAR-IC models
CMAL(RL) (Guo et al., 2020) 79.8 943 638 872 488 772 368 66.1 279 364 576 720 1193 121.2
EENAIC* (Yu et al., 2023) 79.0 93.8 625 856 475 750 356 639 276 362 57.1 714 1154 1175
Ours-KD 79.3 939 629 86.1 479 758 359 648 278 363 573 71.6 1168 118.8
Ours-COCO 79.2 939 629 862 478 760 359 650 278 365 573 719 1167 118.9
Ours-KD(RL) 79.3 941 633 869 488 764 362 658 279 369 576 719 1169 118.9
Ours-COCO(RL) 80.0 946 63.6 875 499 799 37.8 67.1 282 373 580 725 1195 1224

achieves 116.8/118.8 on CIDEr ¢5/c40, which out-
performs the AR-IC method PureT(XE). Further-
more, when contrasted with models incorporat-
ing RL training, “Ours-COCQO” attains the highest
performance among the NAR-IC methods and is
comparable to the SemiAR (semi-autoregressive)
method PNAIC (Fei, 2021). In comparison to
the AR-IC methods, we exhibit the closest per-
formance and significantly faster inference speeds.

GT: There are many crates filled with
fruits and vegetable

AR-IC: A bunch of boxes of fruit on
display at a market

Ours: A bunch of boxes of fruits on
(a) display at a market

GT: A group of people that are at the
beach

AR-IC: A group of people standing on
the beach with surfboards

Ours: A group of people standing on
(b) the beach holding surfboards

GT: A male skateboarder in a gray shirt
is doing a trick

AR-IC: A boy doing a trick on a
skateboarder at a skate park

Ours: A man doing a trick on a
(c) skateboard at a skate park

GT: A white plate with a cut in half
sandwich

AR-IC: A sandwich on a plate with a
desk in front of it

Ours: A sandwich on a white plate ona
(d) desk

Figure 3: Examples of the Ground-truth captions (GT),
generated captions by AR-IC and our model.

4.4 Qualitative Results

The qualitative results are shown in Figure 3. In the
first scenario, as depicted in Figures 3 (a), (b), and
(c), our NAR-IC model inherits valuable insights

from the AR-IC model. Notably, this highlights
the advantage of our NAR-IC model in terms of in-
ference speed, as it can achieve comparable results
without the sequential word-by-word generation
characteristic of AR-IC models. In the second sce-
nario, exemplified in Figure 3 (d), the results of the
AR-IC model exhibit inaccuracies in the descrip-
tion, such as the imprecise usage of “in front of™.
When the AR-IC model predicts the wrong word
“in” instead of “on”, it tends to subsequently predict
“front of”, diverging from the ground truth. In this
case, our NAR-IC model outperforms the AR-IC
model, providing descriptions that better align with
the ground truth. This demonstrates the potential
of the NAR-IC models in producing more accurate
and contextually relevant captions, in addition to
their remarkable inference speed.

5 Conclusions

This paper delve into the crucial components of the
NAR-IC model, including image pre-fusion, knowl-
edge distillation, label selection, and training poli-
cies. We analyze the respective significance and ef-
fectiveness of each of these components. These ob-
servations highlight the strengths and weaknesses
of both NAR-IC and AR-IC models. Leveraging
these insights, our NAR-IC method demonstrates
the potential to combine the efficiency and quality
advantages of both paradigms. Our findings under-
score the significance of a thoughtful label selection
strategy for NAR-IC models and the utilization of
existing AR-IC models. The comprehensive exper-
iments we conduct and the careful exploration of
various design choices make a substantial contribu-
tion to the field, serving as a strong foundation for
future research.



6 Limitations

One limitation lies in the fact that, despite signif-
icantly accelerating the speed of inference, our
proposed NAR-IC method still lacks significant
advantages over traditional AR-IC during the train-
ing phase. Besides, our method is proved efficient
and effective on MSCOCO dataset. However, the
MSCOCO dataset consists of accurately labeled
images. Our method requires prior denoising when
applying on the dataset with noise. Further studies
will aim to train NAR on noisy datasets and expand
the training scale.
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A Supplementary materials

A.1 Code

Our code is uploaded via an anonymous
link: “https://anonymous.4open.science/r/NAR-IC-
ARR24”.

A.2 Preliminary for AR and NAR

The conditional probabilities of the generated cap-
tion Y are defined as:

1Y) p (wilyss s yio1, 1;0),  AR;
1Y p(yil156), NAR.
(6)
AR models generate the subsequent word y; based
on the previous context y, ..., ¥;—1. It determines
that the inference process is not parallelizable. Un-
like AR, NAR eliminates sequential dependencies,
and the generated sentence depends solely on the
image. When y; and y; : y;—1 are independent, the
conditional probabilities are degenerated and this
inference process is parallelizable.

pvirio) - {

A.3 Experimental settings

Consistent with the most IC models, we convert all
the captions to lowercase and remove words that oc-
cur fewer than 6 times. The remaining 9487 words
constitute our vocabulary. We set the maximum
sentence length L to 16, the embedding size of the
model d to 512, the number of the encoder and
decoder layers Ng and Np to 3, and the number of
Transformer heads h to 8. The image feature (n xn,
feat_dim) is extracted by the pre-trained ViT/Swin
Transformer, shaped as (16 x 16, 1024)/(12 x 12,
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1536). We employ the Adam optimizer (Kingma
and Ba, 2014) with a warm-up period of 10,000
iterations. The batch size is set to 256, and the
learning rate is initialized at 5 x 1073, The learn-
ing rate undergoes decay by a factor of 0.8 every 3
epochs.

The total training epochs are set to 200 under
cross-entropy loss. It is trained on 4 NVIDIA V100
GPUgs, and the whole training process takes about
80 GPU hours. Here we provide more details about
the settings about the NAR+AR, AR+NAR, and
NAR+Mixed in Table 1. In the NAR+AR mode,
we train NAR for 100 epochs first, followed by
training AR for another 100 epochs. Conversely, in
the AR+NAR mode, we train AR for 100 epochs
initially, followed by NAR for another 100 epochs.
In the NAR+Mixed approach, we train NAR for
100 epochs initially. Subsequently, we alternate
between training AR and NAR for 10 epochs each
until the total epoch count reaches 200. Additional
20 epochs for RL training is applied for fair com-
parison (only used in Table 2 and Table 3). The
“Reduce-On-Plateau” strategy is applied with a de-
cay rate of 0.5 and patience of 3.

A.4 Qualitative Results

Besides, we provide some examples of the
CIDEr (Vedantam et al., 2015), ROUGE (ROUGE,
2004), and CLIP (Xu, 2022) scores for label selec-
tion from MSCOCO (Lin et al., 2014) and knowl-
edge distillation, as illustrated in Figure 4. Upon
observing these examples, it is evident that the re-
sults of CIDEr and ROUGE selection are generally
consistent. In Figure 4 (a), we choose the third
annotation through CIDEr and ROUGE, while opt-
ing for the fourth annotation based on its CLIP
score. While in Figure 4 (b), the first/fifth/forth
annotations are selected by CIDEr/ROUGE/CLIP
score,respectively. Figures 4 (c) and (d) present
a situation where the AR-IC model predicts the
ground-truth labels correctly. Although the label
predicted by the AR-IC model is not entirely iden-
tical to the ground-truth in Figures 4 (e), they have
almost the same sentence structure and content.
Furthermore, annotations with higher CIDEr and
ROUGE scores tend to exhibit a mid-to-high CLIP
score. This observation also provides additional
verification that some annotations from MSCOCO
may have certain sentence pattern that are not well-
suited for NAR-IC training. For example, the first,
second, and fifth annotations in Figure 4 (a) are
deemed poor under all three evaluation metrics.



MSCOCO annotations oner moe | oLIp score
two zebras standing outside grazing on some grass 26.4 .8 6.3
two zebras walking through a grassy field 93.83 238 60.2
two zebras grazing in grass lands in front of a building 437.3 6.8 6.2
zebras standing around a tree eating some grass 1421 5.2 67.0
two zebras grazing in the grass beside a large tree root 210.1 4.6 6.12
two zebras grazing in the grass in a field ) | - | - | 581 |
MSCOCO annotations cinkr Rke | P acore
aman throws a ona i 179.3 4.0 57.4
a man pitching a baseball during a baseball game 2.2 2.2 52.3
two baseball players and an umpire get into the game 2.2 10.4 6.0
an image of a professional baseball game being played 86.4 3.3 7.6
a baseball player on the field in the motion of throwing the ball 8.3 4.4 57.4
a baseball player throwing a ball on a field J | - | - | 56.8 |

MSCOCO annotations e woe | P score
there are three she eps standing together on the grass 63.2 2.7 54.1
heavily woolen sheep standing near orange netting in grassy field 80.0 2.7 64.3
two sheep stand next to a fence on grass 15.1 23.3 67.3
a herd of sheep standing on a lush green field 2219 4.6 8.7
a group of sheep standing in the grass 1000, 0 1000 6409
a group of sheep standing in the grass ) | - | - | 4.9 |

MSCOCO annotations oot R [ cLIp soore
a train traveling down train tracks next to trees 168.5 33.3 2.7
a train traveling down train tracks during the day 156.8 3.3 2.7
a train on the tracks at a train station 1000.0 100.0 4.0
two trains on tracks very close to each other 48.2 22.2 52.4
the back of a train going down the tracks 145.6 44.4 52.9

AIC Model: atrain on the tracks at a train station ) | - | - | a0 |

MSCOCO annotati Gier ROvGE CLIP score
there is a woman in a wetsuit in the water 50.0 48.0 .1
a person riding a surf board on a body of water 54.3 455 §5.8
awoman in a wet suit glides in on her surfboard in front of some gentle waves 8.5 430 61.3
awoman riding a wave on top of a surfboard 621.7 76.9 .4
a person surfing in shallow waves near the shore 5.6 .6 5.7

AIC Mode awoman riding a wave on a surfboard in the ocean ) | - | - | 55.4 |

Figure 4: Examples of the CIDEr, ROUGE, and CLIP score in label selection and knowledge distillation.
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