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Abstract001

In the realm of image captioning (IC), learning002
sentence pattern and semantics plays a crucial003
role. The reason why this aspect has not re-004
ceived enough attention before is that the pre-005
vailing IC models utilize the autoregressive IC006
(AR-IC) paradigm which operates in a word-007
by-word manner. In this paradigm, coherence008
and fluency with the previous text are priori-009
tized during word generation, without special010
considerations for the sentence pattern. While011
effective, the AR-IC approaches pose inher-012
ent challenges for real-time applications due013
to their time-consuming nature during infer-014
ence. Unlike the AR-IC counterparts, non-015
autoregressive IC (NAR-IC) models necessi-016
tate simultaneous inference of all words in a017
caption. However, the existing NAR-IC mod-018
els have been met with the hurdle of reduced019
effectiveness in comparison to their autoregres-020
sive counterparts. It is largely because they021
follow the AR-IC approach, neglecting the in-022
fluence of patterns and semantics on NAR-IC.023
Considering that the dependency on preceding024
and following words is eliminated during NAR-025
IC generation, it becomes crucial to consider026
the sentence pattern to guide word generation.027
In this paper, we reconsider the impact of sen-028
tence patterns and semantics in NAR-IC train-029
ing. We delve into NAR-IC and provide tips030
and tricks for training NAR-IC models, which031
include knowledge distillation, label selection,032
image pre-fusion, and NAR+AR enhancement.033
By meticulously examining the impact of these034
components on model performance, we achieve035
the state-of-the-art performance with a single-036
step generation. This paper aims to provide037
valuable strategies for those aiming to advance038
NAR-IC models. Our code is provided in Sup-039
plementary materials.040

1 Introduction041

Image captioning (IC) has received substantial at-042

tention in recent years, which aims to provide de-043

scriptive narratives for input images. Autoregres-044

sive IC (AR-IC) models, which generate captions 045

word-by-word, have been a prominent approach in 046

this domain (Vinyals et al., 2015; Xu et al., 2015; 047

Jiang et al., 2018). Nevertheless, AR-IC models 048

face a significant constraint related to both training 049

and inference speed. As depicted in Figure 1 (a), 050

AR-IC employ masked sentences to replicate the 051

current state of the sentence and predict the next 052

word. This limitation becomes more pronounced 053

when considering resource-constrained devices or 054

real-time applications (Gu and Tan, 2022). After 055

the introduction of Transformers (Vaswani et al., 056

2017), the parallelism they offer provides an op- 057

portunity to represent a departure from the conven- 058

tional word-by-word generation pattern, which is 059

non-autoregressive IC (NAR-IC). However, the si- 060

multaneous generation of all words in the sentence 061

leads to issues such as word repetition and sentence 062

disorder (Ran et al., 2021; Gu and Kong, 2020; 063

Xiao et al., 2023). Two solutions have emerged to 064

address this issue. One involves increasing the num- 065

ber of iterations, such as through the refinement of 066

generated captions (Lee et al., 2018; Ghazvinine- 067

jad et al., 2019; Fei et al., 2023), and diffusion 068

models (Zhu et al., 2022; Luo et al., 2023), as 069

Figure 1 (b) shows. However, the refinement or 070

diffusion process is inherently iterative and non- 071

parallelizable, which poses an efficiency challenge 072

when improving the caption quality. To alleviate 073

this limitation, recent researchers focus on elevat- 074

ing caption quality while simultaneously preserv- 075

ing efficiency, especially within a single-step gen- 076

eration (Guo et al., 2020; Yu et al., 2023). As is 077

shown in Figure 1 (d), these NAR-IC methods with 078

a single inference rely solely on the input image. 079

However, due to the nature of IC, the output se- 080

quence is sequential while the input image is not. 081

Aligning the non-sequential image patches with the 082

sequential words is challenging. 083

Researchers in cognitive science (Hale et al., 084

2018; Ryskin and Nieuwland, 2023) provide inter- 085
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Figure 1: Comparison of AR-IC and NAR-IC models,
where panel (a) represents an AR-IC model, and three
different types of NAR-IC models in panels (b), (c), and
(d). The red line represents the iteration in inference.

esting findings that humans prioritize considering086

the sentence structure when producing sentences.087

It differs from the traditional word-by-word ap-088

proach of AR-IC methods, but shares similarities089

with the NAR-IC generation (Yang et al., 2019;090

Fisch et al., 2020). Inspired by this insight, the091

process of NAR-IC can primarily focus on explor-092

ing the sentence pattern and subsequently filling093

in the semantics into this sentence pattern. From094

the perspective of sentence composition, the sen-095

tence pattern comprises sequential features, and the096

semantics emerge once these sequential features097

are decoupled, e.g., after determining the sentence098

pattern “ Sb. do Sth. at Sw.”, the model only needs099

to find useful information from the image to fill in100

the placeholders these “some”.101

To summarize the temporal information into a102

sentence pattern, the majority of current NAR-IC103

models utilize knowledge distillation (Guo et al.,104

2020; Yu et al., 2023) from AR-IC models. The105

sentences generated by AR-IC models instruct the106

NAR-IC model to follow their patterns, as depicted107

in Figure 1 (c). However, knowledge distillation108

presents two primary drawbacks. Firstly, it requires109

an additional training phase for a strong AR-IC110

model to generate advanced labels. Secondly, due111

to the performance constraints of the AR-IC model,112

the labels derived from knowledge distillation may113

not consistently be accurate.114

In this paper, we explore the solutions for learn-115

ing patterns and semantics. Specifically, label se-116

lection serves as an alternative to knowledge dis-117

tillation for learning the sentence pattern. It in-118

volves selecting optimal image-caption pairs from119

the ground-truth annotations. The most advantage120

of label selection over knowledge distillation is that121

the labels distilled by AR-IC may not always be 122

consistent with the image. Additionally, it does 123

not necessitate the additional training of a strong 124

AR-IC model. Instead, it only requires a weak AR- 125

IC model or independent evaluation metrics (e.g., 126

CLIP score (Hessel et al., 2021)) to select labels 127

with proper patterns from the ground-truth anno- 128

tations, thereby simplifying the training process. 129

It significantly reduces the difficulty of NAR-IC 130

training, as it reduces the dependency between con- 131

textual words and focuses on extracting effective 132

information from the image. Regarding the seman- 133

tic part, given that it has decoupled the temporal 134

nature of the sentence, it becomes crucial to extract 135

effective information from the image. Therefore, 136

an image pre-fusion module is proposed to fuse the 137

image feature into the decoder. It allows more im- 138

age information to be mapped to the corresponding 139

part of the generated sentence. Besides, we intro- 140

duce a unified architecture to train in a NAR+AR 141

paradigm, which allows NAR-IC to learn more 142

structure modalities and semantics from the AR-IC 143

training. In detail, NAR-IC is first trained to enable 144

the model to learn specific patterns and overcome 145

the temporal dependencies. Following this, AR-IC 146

is integrated into the unified architecture to further 147

improve the word semantics in NAR-IC and boost 148

the performance. 149

In summary, our research has yielded useful 150

strategies for enhancing the effectiveness of the 151

NAR-IC model. The key findings from our study, 152

along with detailed results available in Table 1, are 153

as follows: 154

• Knowledge Distillation: Employing knowledge 155

distillation techniques to transfer knowledge 156

from well-performing AR-IC models to boost 157

the performance of the NAR-IC model; 158

• Effective Label Selection: Leveraging the out- 159

comes of existing caption models to select proper 160

patterns from the ground-truth annotations, thus 161

the preferred image-caption pairs are obtained; 162

• Image pre-fusion in Decoder: Enhancing the 163

connection between images and captions by in- 164

corporating image features into the decoder; 165

• NAR+AR Training Enhancement: Implement- 166

ing a NAR+AR training approach within a shared 167

architecture to further improve the performance. 168

Through the application of these techniques, our ap- 169

proach attains state-of-the-art performance among 170
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NAR-IC models in a single-step inference, all while171

maintaining the efficiency characteristic of NAR-172

IC. The addition of these strategies does not bring173

additional computation in inference process. While174

some of these methods have demonstrated effec-175

tiveness in prior work, we have conducted com-176

prehensive analyses and experiments to thoroughly177

explore their impact.178

2 Related Works179

2.1 Image captioning (IC)180

The combination of CNNs for image feature extrac-181

tion and RNNs for language modeling, introduced182

by Vinyals et al. (Vinyals et al., 2015), has paved183

the way for end-to-end trainable models capable184

of generating coherent and contextually relevant185

captions. Within this architecture, Xu et al. (Xu186

et al., 2015) proposed the attention mechanisms,187

enabling models to focus on different regions of188

an image while generating captions. Anderson et189

al. (Anderson et al., 2018) proposed Up-Down190

model which employed a bottom-up mechanism191

to align the object regions to the generated words.192

In recent years, the advent of Transformer-based193

models (Vaswani et al., 2017) has reshaped the194

landscape of IC (Huang et al., 2019; Li et al., 2019;195

Wang et al., 2022; Zhou et al., 2020). For exam-196

ple, Wang et al. (Wang et al., 2022) applied Swin197

Transformer (Liu et al., 2021) for both image en-198

coder and language decoder, benefiting from its199

unified architecture. The availability of large-scale200

pre-trained models (Li et al., 2020; Zhang et al.,201

2021; Li et al., 2022, 2023) has also benefited IC202

as a downstream task, leading to improvements in203

caption quality. However, it is noteworthy that the204

aforementioned models typically follow the AR ap-205

proach for caption generation, which necessitates206

substantial computational resources and introduces207

latency for both training and inference.208

2.2 Non-autoregressive (NAR) decoding209

Unlike AR decoding, which generates text word by210

word, NAR models produce the entire sequence in211

a single inference, making it more efficient during212

inference. As far as we know, Gu et al. (Gu et al.,213

2018) were among the first to introduce NAR text214

generation using Transformer-based architectures,215

allowing for parallel decoding of text sequences.216

While NAR text generation holds promise for ef-217

ficient text production, challenges remain, for ex-218

ample, under or over generation, incoherent sen-219

tences (Gu and Tan, 2022). Attempts have been 220

made to overcome these issues. For example, Fer- 221

tility predictor (Ran et al., 2021; Gu et al., 2018) 222

was proposed to predict the length of the generated 223

sentences. Continuous VAEs (Shu et al., 2020) 224

trained a Gaussian prior on each words. Other ap- 225

proaches involve SemiAR, generating text phrase 226

by phrase (Lample et al., 2018; Qi et al., 2020). 227

However, this approach still represents a trade-off 228

between time efficiency and performance. 229

Recent research has explored NAR image cap- 230

tioning models (Gao et al., 2019; Fei, 2019; Zhu 231

et al., 2022; Yu et al., 2023; Guo et al., 2020; Deng 232

et al., 2020). For example, Gao et al. (Gao et al., 233

2019) introduced NAR to image captioning pre- 234

dicting masked words in parallel. Zhu et al. (Zhu 235

et al., 2022) introduced discrete diffusion into NAR- 236

IC, which achieved excellent results. However, 237

because the diffusion model requires multiple re- 238

finements, it does not offer an advantage in terms 239

of efficiency. To further accelerate the inference 240

speed, efforts were made to improve the perfor- 241

mance of a single-inference NAR-IC model. Guo 242

et al. (Guo et al., 2020) introduced reinforcement 243

learning and sequence-level knowledge distillation. 244

On the other hand, Liu et al. (Yu et al., 2023) 245

used the image feature as a decoder input, which 246

significantly improved the quality of NAR output 247

in a single inference. 248

Despite the promise of NAR-IC, generating a 249

high-quality caption with higher time efficiency, 250

especially in a single-step inference, remains a 251

challenge. Furthermore, effectively utilizing high- 252

performance AR pre-trained models within the 253

NAR framework is a crucial aspect of this endeavor. 254

3 Methods 255

Given an image I , the caption Y is generated by a 256

captioning model with its parameters θ. This cap- 257

tion can be decomposed into the sentence pattern 258

part Yp and the semantics part Ys, respectively: 259

p(Y |I; θ) = p(Yp|I; θ)p(Ys|I; θ), (1) 260

where Yp and Ys are assumed to be conditionally 261

independent. 262

3.1 Knowledge distillation & Label selection 263

Take MSCOCO (Lin et al., 2014) for example, each 264

image is associated with five human-annotated cap- 265

tions. By observing these captions, we find that 266

they exhibit various sentence patterns in describing 267
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Figure 2: The architecture of our NAR-IC model. In this illustration, “Emb” and “Emb−1” denote the word
embedding function and its inverse function. “NE” and “ND” refer to the number of encoder and decoder layers,
respectively. “feat_dim” represents the feature dimension, and “d” is the embedding size of our model. The black
dotted line indicates that it only takes effect in AR training mode. The red dotted line denotes two alternative
approaches for choosing labels: either through knowledge distillation (approach 1) or label selection (approach 2).

the same image. Besides, previous works and our268

experiments have demonstrated that randomly se-269

lected sentences exhibit diverse patterns, which are270

not beneficial for NAR (Guo et al., 2020; Yu et al.,271

2023; Deng et al., 2020). Since the sentence struc-272

ture generated by the AR-IC models is relatively273

uniform, previous NAR-IC models have adopted274

knowledge distillation.275

However, the NAR-IC model implemented276

through knowledge distillation heavily relies on277

the quality of the AR-IC model. Thus, we pro-278

pose an alternative approach for knowledge distilla-279

tion: label selection, which obtains high-quality280

annotations from the ground-truth labels. This281

method involves selecting labels from the ground-282

truth annotations based on their similarity to the283

AR-IC-generated results. To be specific, it employs284

a pre-trained AR-IC model to generate sentences285

corresponding to the images. Subsequently, a com-286

parison is made between the sentences generated287

by the AR-IC model and the existing MSCOCO288

annotations. The labels with the highest similarity289

metrics are selected to create the training set. Addi-290

tionally, we investigate the use of other individual291

evaluation metrics, such as the CLIP score (Hessel292

et al., 2021), to assess the quality of these labels.293

As Figure 2 shows, knowledge distillation and label294

selection act as mutual substitutes.295

3.2 Image Pre-fusion 296

Since sequential pattern Yp is decoupled, enhanc- 297
ing the connection between images and generated 298
sentences becomes essential to learning the seman- 299
tic part Ys in Eq. (1). To achieve this, we employ 300
a linear layer L to map image features onto the 301
sentence, enabling the model to more effectively 302
extract relevant information from the image: 303

V̂D = LN(L(VE) + MHA(L(VE), VT , VT )), (2) 304

where VE and VT represents the embedding vec- 305

tors of the image and the vocabulary, “MHA” de- 306

notes the multi-head attention (Vaswani et al., 307

2017), “LN” represents the layernorm layer. It 308

pre-fuses the image features as an integral part of 309

the input of the decoder. 310

Unlike the conventional approach of initializing 311

the decoder with a sentence replete with [MASK] 312

tokens, this modified decoder initialization method 313

leverages the image features through an MHA 314

mechanism. The subsequent stages closely resem- 315

ble typical encoder-decoder models, commencing 316

with self-attention on the input of the decoder, fol- 317

lowed by cross-attention with the image feature: 318

Self_ATT: VD = LN(V̂D + MHA(V̂D, V̂D, V̂D));

Cross_ATT: V̂S = LN(VD + MHA(VD, VE , VE)),

VS = LN(V̂S + FFN(V̂S)),

(3) 319

where “FFN” represents the feed-forward layer. 320

Consequently, the conditional probabilities of the 321

sentence are calculated as: 322

p(Y ) = LP (VS), (4) 323
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where “LP ” denotes the linear projection function,324

responsible for mapping the feature to the distribu-325

tion of word sequences. Therefore, this modified326

NAR-IC decoder architecture seamlessly integrates327

image features into the sentence generation process,328

enhancing contextual dependencies and improving329

language fluency. Thus, the image features are330

fused into Ys before cross-attention calculation.331

3.3 NAR+AR enhancement332

In the context of the model architecture outlined in333

Section 3.2, the NAR-IC model exhibits limitations334

in terms of contextual dependencies, resulting in335

issues related to language fluency. In an effort336

to bridge the gap between AR-IC and NAR-IC337

models while maintaining a unified architecture, a338

modification is proposed to Eq. (2):339

V̂ ′
D = LN(VE + MHA(VE , VT , VT ) + V0), (5)340

where V0 represents the feature embedding corre-341

sponding to the last state of the sentence. Dur-342

ing the training process in NAR mode, V0 remains343

consistently set to zero, ensuring that the training344

regimen remains unaffected by this modification.345

Conversely, during training in AR mode, the inclu-346

sion of the previous state of the sentence is taken347

into account through V0. You can refer to Figure 2348

for the architecture of our model.349

By alternating training the NAR and AR modes,350

structured semantics are implicitly transferred to351

the NAR models. This approach allows for a seam-352

less transition between AR and NAR paradigms353

within a unified architecture, fostering an improved354

capacity to capture context and enhance the fluency355

of generated language. This bridging mechanism356

thus paves the way for a more versatile and context-357

aware image captioning model.358

4 Experiments359

4.1 Implementation360

Following the previous IC models (Anderson et al.,361

2018; Huang et al., 2019; Wang et al., 2022; Yu362

et al., 2023), our model is trained and evaluated on363

the MSCOCO dataset (Lin et al., 2014), which con-364

tains 123,287 images (113,278/5000/5000 for train-365

ing/validation/testing in Karpathy split (Karpathy366

and Fei-Fei, 2015)). Each image has 5 correspond-367

ing annotations. Consistent with the most IC mod-368

els, our vocabulary contains 9487 common words.369

We set the maximum sentence length L to 16, the370

embedding size of the model d to 512, the number 371

of the encoder and decoder layers NE and ND to 372

3, and the number of Transformer heads h to 8. 373

We apply four widely used metrics to evaluate the 374

quality of the generated captions: BLEU (Papineni 375

et al., 2002), METEOR (Agarwal and Lavie, 2007), 376

ROUGE-L (ROUGE, 2004), and CIDEr (Vedan- 377

tam et al., 2015), abbreviated as B, M, R, and C, 378

respectively. More training details are listed in 379

Supplementary materials. 380

4.2 Ablation Studies 381

In Table 1, we present the results of our exten- 382

sive ablation experiments conducted to validate the 383

effectiveness of the strategies discussed. Addition- 384

ally, the results for AR models, denoted as A1 and 385

A2, are included to provide a comprehensive basis 386

for comparison. 387

The effect of image pre-fusion. The results of 388

D1-D4 underscore the importance of incorporating 389

image features as an integral component of the de- 390

coder within a single inference. This modification 391

significantly influences the quality of the generated 392

captions. 393

The effect of label selection. Notably, under the 394

Transformer (L1) and Swin (L2) architectures, the 395

random selection of MSCOCO labels yields re- 396

sults slightly better than using the entire set of 397

labels on AR-IC models. This observation sug- 398

gests that learning certain sentence pattern within 399

the MSCOCO dataset might be conducive for effec- 400

tively training Transformer-based image captioning 401

models. Consequently, the exploration of meth- 402

ods for selecting relevant and informative labels in 403

a NAR-IC model is warranted. Furthermore, by 404

comparing the results of L5-L8, we observe that 405

using CIDEr (L8) and ROUGE (L7) metrics leads 406

to better performance. Additionally, introducing 407

individual metrics such as the CLIP (Hessel et al., 408

2021) score (L9), is also proved to be effective. Our 409

experiments highlight the significant influence of 410

different evaluation metrics on the overall model 411

performance, underscoring the importance of se- 412

lecting and utilizing appropriate metrics for label 413

selection in NAR-IC training. We further explore 414

which AR-IC pre-trained model achieves the high- 415

est performance. Regardless of whether the classic 416

Transformer architecture (L7-L9) or Swin (L10- 417

L12) is employed, the results are remarkably simi- 418

lar because the labels obtained are almost the same 419

after label selection. This finding also indicates that 420

the Transformer-based models, irrespective of their 421
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Table 1: The performances of the ablation models on Karpathy test split.

No.
Models Metrics

AR Arch. Distil. Lbl Sel. Img pre-fusion B@1 B@4 M R C
AR Baseline
A1 ! Transformer # # # 76.1 33.5 27.8 56.1 114.7
A2 ! Swin # # # 77.1 47.1 28.5 57.5 120.6
Image pre-fusion
D1 # Transformer Transformer # # 49.9 4.8 15.3 29.9 40.0
D2 # Swin Swin # # 50.2 4.8 15.5 32.0 40.9
D3 # Transformer # CLIP score # 50.0 4.3 15.5 29.9 40.3
D4 # Swin # CLIP score # 50.3 4.9 15.5 30.4 40.1
Label Selection
L1 ! Transformer # Random # 76.9 34.5 28.0 56.7 116.4
L2 ! Swin # Random # 77.4 36.8 28.6 57.4 121.5
L3 # Transformer # Random ! 48.5 12.4 17.8 46.7 60.1
L4 # Transformer # Loss ! 79.1 36.0 28.2 57.0 120.3
L5 # Transformer # BLEU ! 71.4 24.9 23.5 51.9 86.1
L6 # Transformer # METEOR ! 70.2 25.2 23.2 52.3 87.1
L7 # Transformer # ROUGE ! 79.6 37.1 27.9 57.6 122.9
L8 # Transformer # CIDEr ! 79.8 36.9 28.1 57.8 121.5
L9 # Transformer # CLIP score ! 79.9 37.1 28.1 57.9 123.3
L10 # Swin # CIDEr ! 79.8 36.9 28.1 57.8 121.5
L11 # Swin # ROUGE ! 79.9 37.0 28.1 57.8 122.0
L12 # Swin # CLIP score ! 79.9 37.1 28.1 57.9 123.3
Knowledge Distillation
K1 ! Transformer Swin # # 79.9 37.1 28.0 57.9 123.3
K2 ! Swin VinVL # # 81.1 39.6 29.4 59.0 132.2
K3 # Transformer Transformer # ! 76.4 34.9 27.9 56.2 115.7
K4 # Transformer Swin # ! 79.9 37.1 28.0 57.9 123.3
K5 # Transformer VinVL # ! 79.8 37.0 28.0 57.8 122.5
K6 # Swin Transformer # ! 76.3 34.9 27.9 56.2 115.6
K7 # Swin Swin # ! 79.5 36.5 27.8 57.7 122.4
K8 # Swin VinVL # ! 79.5 37.7 28.2 57.8 123.3
NAR+AR Enhancement
N1 # Swin # CLIP score ! 79.2 36.0 27.8 57.4 119.2
N2 NAR+AR Swin # CLIP score ! 79.6 36.5 28.0 57.7 121.2
N3 AR+NAR Swin # CLIP score ! 72.5 28.4 25.4 47.6 100.0
N4 NAR+Mixed(Ours) Swin # CLIP score ! 79.9 37.3 28.2 58.1 123.7

specific architecture, exhibit a tendency to gener-422

ate captions with similar sentence structures. After423

comparing the results of the models under cross424

entropy loss, we observe that our NAR-IC model425

with label selection by CLIP score (L9 and L12)426

and ROUGE (L7 and L11) has higher performance427

than the AR-IC models (L1 and L2). Therefore,428

utilizing a relatively weak AR-IC model to select429

valuable labels from ground-truth annotations has430

been proven effective, in the absence of a high-431

quality AR-IC pre-trained model.432

The effect of knowledge distillation. An impor-433

tant insight emerges when we compare the results434

of label selection and knowledge distillation. This435

comparison leads to the formulation of an effective436

training strategy, that is: when a high-quality AR-437

IC model, such as Swin (Liu et al., 2021; Wang438

et al., 2022) and VinVL (Zhang et al., 2021) based 439

AR-IC models, is available, applying knowledge 440

distillation proves to be a more effective and effi- 441

cient strategy. The results of K4 and K5 suggest 442

that they leverage the knowledge and competence 443

of the pre-trained AR-IC model to enhance the per- 444

formance of the NAR-IC model. Conversely, em- 445

ploying knowledge distillation becomes a less fa- 446

vorable strategy when the pre-trained AR-IC model 447

is relatively weak, such as the classic Transformer 448

structure (K3). It ensures that the labels chosen for 449

training are more representative and beneficial for 450

the non-autoregressive model, compensating for 451

the potential limitations of the AR-IC model. Be- 452

sides, an intriguing observation emerges from our 453

study regarding knowledge distillation. It appears 454

that knowledge distillation is not overly sensitive 455
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Table 2: Comparison with the SOTA image captioning
methods.

Model B@1 B@4 M R C SpeedUp
AR-IC Models

AR 76.9 34.5 28.0 56.7 116.4 1.0×
AR(RL) 80.3 38.4 29.0 58.7 128.8 1.0×

PureT (Wang et al., 2022) 77.3 37.0 28.6 57.4 121.4 4.3×
PureT (Wang et al., 2022)(RL) 82.1 40.9 30.2 60.1 138.2 4.3×

SemiAR-IC Models
PNAIC (Fei, 2021) 79.9 37.5 28.2 58.0 125.2 6.9×

SATIC (Zhou et al., 2021) 80.6 37.6 28.3 58.1 126.2 6.3×
SAIC (Yan et al., 2021) 80.3 38.4 29.0 58.2 127.1 4.1×

NAR-IC Models
MNAIC (Gao et al., 2019) 75.4 30.9 27.5 55.6 108.1 3.6×

FNAIC (Fei, 2019) - 36.2 27.1 55.3 115.7 8.2×
LaBert (Deng et al., 2020) 77.4 35.0 27.9 57.0 116.8 9.3×

CMAL-COCO (Guo et al., 2020) 60.7 15.9 18.2 45.9 60.6 13.9×
CMAL-KD (Guo et al., 2020) 78.5 35.3 27.3 56.9 115.5 13.9×
CMAL (Guo et al., 2020) (RL) 80.3 37.3 28.3 58.0 124.0 13.9×

EENAIC-COCO (Yu et al., 2023) 60.2 16.0 17.7 45.5 60.1 37.0×
EENAIC-KD (Yu et al., 2023) 79.7 36.9 27.9 58.0 122.6 37.0×

Ours-KD 79.9 37.3 28.2 58.1 123.7 37.0×
Ours-COCO 80.0 37.2 28.3 58.2 123.6 37.0×

Ours-KD (RL) 80.1 37.3 28.2 58.3 123.9 37.0×
Ours-COCO (RL) 80.3 36.8 28.2 58.3 125.2 37.0×

to the architectural consistency between the teacher456

model and the student model. Instead, the critical457

factor influencing the effectiveness of knowledge458

distillation is the quality of the teacher model. In459

other words, while having consistent architectures460

between the teacher and student models can be ben-461

eficial, it is not a strict requirement. What truly462

matters is the capability and performance of the463

teacher model. For example, despite K4 employing464

a unified Swin structure in both the teacher and465

student model, it fails to surpass the performance466

of K5, which utilizes VinVL as the teacher model467

and Swin as the student model.468

The effect of NAR+AR enhancement. The re-469

sults indicate that training the NAR model initially470

and subsequently adding AR training (cf. Eq. (5))471

leads to the best overall performance (N4). More-472

over, when AR training is conducted first (N3), the473

model acquires an understanding of the temporal474

dependencies that are inherent in the autoregres-475

sive generation process. However, when the train-476

ing shifts to NAR mode, it becomes challenging477

for the model to break free from these learned de-478

pendencies. As a consequence, this results in a479

performance drop in the NAR mode.480

4.3 Comparisons with SOTA481

In Table 2, we present performance comparisons482

of our best model with existing methods, including483

MNAIC (Gao et al., 2019), FNAIC (Fei, 2019),484

Labert (Deng et al., 2020), CMAL (Guo et al.,485

2020), and EENAIC (Yu et al., 2023). It is im-486

portant to note that MNAIC (Gao et al., 2019),487

FNAIC (Fei, 2019), and Labert (Deng et al.,488

2020) adopt refinement strategies, which entail489

a more time-consuming inference process. On 490

the other hand, CMAL (Guo et al., 2020) and 491

EENAIC (Yu et al., 2023), like our model, gen- 492

erate captions within a single inference step, em- 493

phasizing efficiency. We present two sets of re- 494

sults: “COCO” where we exclusively utilize se- 495

lected MSCOCO (Lin et al., 2014) annotations dur- 496

ing training (corresponding to L12 in Table 1), and 497

“KD” which signifies the usage of knowledge distil- 498

lation (corresponding to K8 in Table 1). Addition- 499

ally, we list some AR-IC and SemiAR-IC models 500

for reference. 501

We observe that our model achieves the best 502

performance among the NAR models. Besides, 503

we deliver a substantial improvement in inference 504

speed, approximately three times faster. Moreover, 505

the enhancement of “Ours-KD” after reinforcement 506

learning (RL) training is not as pronounced as that 507

seen in “Ours-COCO”. The primary reason is that 508

the labels used in knowledge distillation are ob- 509

tained by the pre-trained AR-IC+RL model. In ad- 510

dition, we compare the results of the models using 511

annotations only from MSCOCO (Lin et al., 2014). 512

Unlike knowledge distillation, which requires a 513

strong AR-IC model to instruct the NAR-IC model, 514

our approach employs a weaker AR-IC model with 515

a CIDEr of 116.4 to select preferred image-caption 516

pairs, ultimately achieving a CIDEr of 123.5. Be- 517

sides, we observe that methods like CMAL (Guo 518

et al., 2020) and EENAIC (Yu et al., 2023) fail 519

to deliver satisfactory results without knowledge 520

distillation. It indicates the broader applicability 521

and effectiveness of our method. Additionally, 522

it is noteworthy that “Ours-COCO” demonstrates 523

comparable performance to “Ours-KD” even with- 524

out knowledge distillation. “Ours-COCO” entirely 525

eliminates the influence of knowledge distillation 526

and RL training, resulting in a CIDEr score of 527

123.6. This score is 0.4 lower than CMAL (Guo 528

et al., 2020) with RL training and 8.1 higher than 529

CMAL without RL. 530

The results from the MSCOCO online test are 531

also presented in Table 3, where “*” denotes our 532

unofficial submission. Our model attains a com- 533

parable performance to early AR-IC methods like 534

SCST (Rennie et al., 2017) and Up-Down (Ander- 535

son et al., 2018). This suggests that our NAR-IC 536

model holds the potential to replace the early AR 537

models in terms of performance, all while offer- 538

ing a significant advantage in terms of inference 539

speed. When compared with the models under the 540

cross entropy loss, our method (“Ours-COCO”) 541
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Table 3: The scores on the MSCOCO online test server.

Models
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40
AR-IC models
SCST(RL) (Rennie et al., 2017) 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Up-Down(RL) (Anderson et al., 2018) 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
AoANet(RL) (Huang et al., 2019) 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
PureT(XE)* (Wang et al., 2022) 75.8 93.9 59.1 86.3 45.0 76.0 34.1 41.4 27.7 37.6 55.7 71.7 111.3 114.7
PureT(RL) (Wang et al., 2022) 82.8 96.5 68.1 91.8 53.6 83.9 41.4 74.1 30.1 39.9 60.4 75.9 136.0 138.3
SemiAR-IC models
PNAIC (Fei, 2021) 80.1 94.4 64.0 88.1 49.2 78.5 36.9 68.2 27.8 36.4 57.6 72.2 121.6 122.0
NAR-IC models
CMAL(RL) (Guo et al., 2020) 79.8 94.3 63.8 87.2 48.8 77.2 36.8 66.1 27.9 36.4 57.6 72.0 119.3 121.2
EENAIC* (Yu et al., 2023) 79.0 93.8 62.5 85.6 47.5 75.0 35.6 63.9 27.6 36.2 57.1 71.4 115.4 117.5
Ours-KD 79.3 93.9 62.9 86.1 47.9 75.8 35.9 64.8 27.8 36.3 57.3 71.6 116.8 118.8
Ours-COCO 79.2 93.9 62.9 86.2 47.8 76.0 35.9 65.0 27.8 36.5 57.3 71.9 116.7 118.9
Ours-KD(RL) 79.3 94.1 63.3 86.9 48.8 76.4 36.2 65.8 27.9 36.9 57.6 71.9 116.9 118.9
Ours-COCO(RL) 80.0 94.6 63.6 87.5 49.9 79.9 37.8 67.1 28.2 37.3 58.0 72.5 119.5 122.4

achieves 116.8/118.8 on CIDEr c5/c40, which out-542

performs the AR-IC method PureT(XE). Further-543

more, when contrasted with models incorporat-544

ing RL training, “Ours-COCO” attains the highest545

performance among the NAR-IC methods and is546

comparable to the SemiAR (semi-autoregressive)547

method PNAIC (Fei, 2021). In comparison to548

the AR-IC methods, we exhibit the closest per-549

formance and significantly faster inference speeds.550

GT: A group of people that are at the 
beach

AR-IC: A group of people standing on 
the beach with surfboards

Ours: A group of people standing on 
the beach holding surfboards

GT: There are many crates filled with 
fruits and vegetable

AR-IC: A bunch of boxes of fruit on 
display at a market

Ours: A bunch of boxes of fruits on 
display at a market

GT: A white plate with a cut in half 
sandwich

AR-IC: A sandwich on a plate with  a 
desk in front of it

Ours: A sandwich on a white plate on a 
desk

(a)

(b)

(c)

GT: A male skateboarder in a gray shirt 
is doing a trick

AR-IC: A boy doing a trick on a 
skateboarder at a skate park

Ours: A man doing a trick on a 
skateboard at a skate park

(d)

Figure 3: Examples of the Ground-truth captions (GT),
generated captions by AR-IC and our model.551

4.4 Qualitative Results552

The qualitative results are shown in Figure 3. In the553

first scenario, as depicted in Figures 3 (a), (b), and554

(c), our NAR-IC model inherits valuable insights555

from the AR-IC model. Notably, this highlights 556

the advantage of our NAR-IC model in terms of in- 557

ference speed, as it can achieve comparable results 558

without the sequential word-by-word generation 559

characteristic of AR-IC models. In the second sce- 560

nario, exemplified in Figure 3 (d), the results of the 561

AR-IC model exhibit inaccuracies in the descrip- 562

tion, such as the imprecise usage of “in front of”. 563

When the AR-IC model predicts the wrong word 564

“in” instead of “on”, it tends to subsequently predict 565

“front of”, diverging from the ground truth. In this 566

case, our NAR-IC model outperforms the AR-IC 567

model, providing descriptions that better align with 568

the ground truth. This demonstrates the potential 569

of the NAR-IC models in producing more accurate 570

and contextually relevant captions, in addition to 571

their remarkable inference speed. 572

5 Conclusions 573

This paper delve into the crucial components of the 574

NAR-IC model, including image pre-fusion, knowl- 575

edge distillation, label selection, and training poli- 576

cies. We analyze the respective significance and ef- 577

fectiveness of each of these components. These ob- 578

servations highlight the strengths and weaknesses 579

of both NAR-IC and AR-IC models. Leveraging 580

these insights, our NAR-IC method demonstrates 581

the potential to combine the efficiency and quality 582

advantages of both paradigms. Our findings under- 583

score the significance of a thoughtful label selection 584

strategy for NAR-IC models and the utilization of 585

existing AR-IC models. The comprehensive exper- 586

iments we conduct and the careful exploration of 587

various design choices make a substantial contribu- 588

tion to the field, serving as a strong foundation for 589

future research. 590
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6 Limitations591

One limitation lies in the fact that, despite signif-592

icantly accelerating the speed of inference, our593

proposed NAR-IC method still lacks significant594

advantages over traditional AR-IC during the train-595

ing phase. Besides, our method is proved efficient596

and effective on MSCOCO dataset. However, the597

MSCOCO dataset consists of accurately labeled598

images. Our method requires prior denoising when599

applying on the dataset with noise. Further studies600

will aim to train NAR on noisy datasets and expand601

the training scale.602
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A Supplementary materials830

A.1 Code831

Our code is uploaded via an anonymous832

link: “https://anonymous.4open.science/r/NAR-IC-833

ARR24”.834

A.2 Preliminary for AR and NAR835

The conditional probabilities of the generated cap-836
tion Y are defined as:837

p(Y |I; θ) =
{ ∏|Y |

i=1 p (yi|y1, ..., yi−1, I; θ) , AR;∏|Y |
i=1 p (yi|I; θ) , NAR.

(6)838

AR models generate the subsequent word yi based839

on the previous context y1, ..., yi−1. It determines840

that the inference process is not parallelizable. Un-841

like AR, NAR eliminates sequential dependencies,842

and the generated sentence depends solely on the843

image. When yi and y1 : yi−1 are independent, the844

conditional probabilities are degenerated and this845

inference process is parallelizable.846

A.3 Experimental settings847

Consistent with the most IC models, we convert all848

the captions to lowercase and remove words that oc-849

cur fewer than 6 times. The remaining 9487 words850

constitute our vocabulary. We set the maximum851

sentence length L to 16, the embedding size of the852

model d to 512, the number of the encoder and853

decoder layers NE and ND to 3, and the number of854

Transformer heads h to 8. The image feature (n×n,855

feat_dim) is extracted by the pre-trained ViT/Swin856

Transformer, shaped as (16× 16, 1024)/(12× 12,857

1536). We employ the Adam optimizer (Kingma 858

and Ba, 2014) with a warm-up period of 10,000 859

iterations. The batch size is set to 256, and the 860

learning rate is initialized at 5× 10−3. The learn- 861

ing rate undergoes decay by a factor of 0.8 every 3 862

epochs. 863

The total training epochs are set to 200 under 864

cross-entropy loss. It is trained on 4 NVIDIA V100 865

GPUs, and the whole training process takes about 866

80 GPU hours. Here we provide more details about 867

the settings about the NAR+AR, AR+NAR, and 868

NAR+Mixed in Table 1. In the NAR+AR mode, 869

we train NAR for 100 epochs first, followed by 870

training AR for another 100 epochs. Conversely, in 871

the AR+NAR mode, we train AR for 100 epochs 872

initially, followed by NAR for another 100 epochs. 873

In the NAR+Mixed approach, we train NAR for 874

100 epochs initially. Subsequently, we alternate 875

between training AR and NAR for 10 epochs each 876

until the total epoch count reaches 200. Additional 877

20 epochs for RL training is applied for fair com- 878

parison (only used in Table 2 and Table 3). The 879

“Reduce-On-Plateau” strategy is applied with a de- 880

cay rate of 0.5 and patience of 3. 881

A.4 Qualitative Results 882

Besides, we provide some examples of the 883

CIDEr (Vedantam et al., 2015), ROUGE (ROUGE, 884

2004), and CLIP (Xu, 2022) scores for label selec- 885

tion from MSCOCO (Lin et al., 2014) and knowl- 886

edge distillation, as illustrated in Figure 4. Upon 887

observing these examples, it is evident that the re- 888

sults of CIDEr and ROUGE selection are generally 889

consistent. In Figure 4 (a), we choose the third 890

annotation through CIDEr and ROUGE, while opt- 891

ing for the fourth annotation based on its CLIP 892

score. While in Figure 4 (b), the first/fifth/forth 893

annotations are selected by CIDEr/ROUGE/CLIP 894

score,respectively. Figures 4 (c) and (d) present 895

a situation where the AR-IC model predicts the 896

ground-truth labels correctly. Although the label 897

predicted by the AR-IC model is not entirely iden- 898

tical to the ground-truth in Figures 4 (e), they have 899

almost the same sentence structure and content. 900

Furthermore, annotations with higher CIDEr and 901

ROUGE scores tend to exhibit a mid-to-high CLIP 902

score. This observation also provides additional 903

verification that some annotations from MSCOCO 904

may have certain sentence pattern that are not well- 905

suited for NAR-IC training. For example, the first, 906

second, and fifth annotations in Figure 4 (a) are 907

deemed poor under all three evaluation metrics. 908
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   AIC Model: 

two zebras standing outside grazing on some grass

two zebras walking through a grassy field

two zebras grazing in grass lands in front of a building

zebras standing around a tree eating some grass

two zebras grazing in the grass beside a large tree root

MSCOCO annotations CIDEr CLIP scoreROUGE

326.4 63.368.8

93.83 60.223.8

437.3 61.268.8

142.1 67.051.2

210.1 63.1247.6

two zebras grazing in the grass in a field - 58.1-

   AIC Model: 

two baseball players and an umpire get into the game

a man pitching a baseball during a baseball game

a man throws a baseball on a baseball diamond

an image of a professional baseball game being played

a baseball player on the field in the motion of throwing the ball

MSCOCO annotations CIDEr CLIP scoreROUGE

179.3 57.444.0

26.2 52.322.2

26.2 63.010.4

86.4 71.633.3

85.3 57.444.4

a baseball player throwing a ball on a field - 56.8-

   AIC Model: 

two sheep stand next to a fence on grass

heavily woolen sheep standing near orange netting in grassy field

a herd of sheep standing on a lush green field

a group of sheep standing in the grass

MSCOCO annotations CIDEr CLIP scoreROUGE

63.2 54.132.7

80.0 64.332.7

115.1 67.323.3

227.9 58.743.6

1000.0 64.9100.0

a group of sheep standing in the grass - 64.9-

there are three she eps standing together on the grass

   AIC Model: 

a woman in a wet suit glides in on her surfboard in front of some gentle waves

a person riding a surf board on a body of water

a woman riding a wave on top of a surfboard

a person surfing in shallow waves near the shore

MSCOCO annotations CIDEr CLIP scoreROUGE

50.0 63.148.0

54.3 55.845.5

55.5 61.343.0

621.7 55.476.9

5.6 59.730.6

a woman riding a wave on a surfboard in the ocean - 55.4-

there is a woman in a wetsuit in the water

( d )

( a )

( b )

( c )

   AIC Model: 

a train on the tracks at a train station

a train traveling down train tracks during the day

two trains on tracks very close to each other

the back of a train going down the tracks

MSCOCO annotations CIDEr CLIP scoreROUGE

168.5 29.733.3

156.8 42.733.3

1000.0 47.0100.0

48.2 52.422.2

145.6 52.944.4

a train on the tracks at a train station - 47.0-

a train traveling down train tracks next to trees

( e )

Figure 4: Examples of the CIDEr, ROUGE, and CLIP score in label selection and knowledge distillation.
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