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Abstract

This study introduces an approach to optimize001
Parameter Efficient Fine Tuning (PEFT) for002
Pretrained Language Models (PLMs) by im-003
plementing a Shared Low Rank Adaptation004
(ShareLoRA). By strategically deploying005
ShareLoRA across different layers and adapt-006
ing it for the Query, Key, and Value compo-007
nents of self-attention layers, we achieve a sub-008
stantial reduction in the number of training009
parameters and memory usage. Importantly,010
ShareLoRA not only maintains model perfor-011
mance but also exhibits robustness in both clas-012
sification and generation tasks across a vari-013
ety of models, including RoBERTa, GPT-2,014
LLaMA and LLaMA2. It demonstrates su-015
perior transfer learning capabilities compared016
to standard LoRA applications and mitigates017
overfitting by sharing weights across layers.018
Our findings affirm that ShareLoRA effectively019
boosts parameter efficiency while ensuring scal-020
able and high-quality performance across dif-021
ferent language model architectures.022

1 Introduction023

As Pretrained Language Models (PLMs) have024

gained prominence (Devlin et al., 2019; Liu et al.,025

2019; Radford et al., 2019; Raffel et al., 2020),026

researchers are increasingly focused on optimiz-027

ing the utilization of these models’ pre-trained028

weights. Traditional fine-tuning, which involves029

adjusting all parameters of a PLM for a specific030

dataset or task, is often resource-intensive and time-031

consuming, especially given the massive scale of032

large language models (LLMs) (Brown and et.al,033

2020; Kaplan et al., 2020; Hoffmann and et.al,034

2022; et.al, 2022; Zhang et al., 2022; et.al, 2023b).035

Parameter-Efficient Fine-Tuning (PEFT) has036

proven to be an effective strategy for mitigating037

the challenges associated with extensive parame-038

ter adjustments. By modifying only a select sub-039

set of a model’s parameters, PEFT enables cost-040

effective adaptation to domain-specific tasks while041

preserving performance levels comparable to those 042

achieved with full fine-tuning (Houlsby et al., 2019; 043

Li and Liang, 2021a; Lin et al., 2020; Lei et al., 044

2023; He et al., 2022, 2023; Mahabadi et al., 2021). 045

Techniques like Low-Rank Adaptation (LoRA) (Hu 046

et al., 2021) stand out within PEFT by demonstrat- 047

ing that models fine-tuned with a reduced param- 048

eter set can match the performance of those fine- 049

tuned with full parameters, effectively bridging the 050

gap in efficiency and efficacy. 051

Given the impressive performance of LoRA, nu- 052

merous subsequent studies have aimed to enhance 053

its efficiency, mainly by reducing the number of 054

trainable parameters to minimize the memory foot- 055

print during the fine-tuning process. However, sig- 056

nificantly lowering the trainable parameters can 057

lead to slow convergence, while insufficient reduc- 058

tions may encourage the model to easily overfit. 059

Therefore, we pose the question: Is there a PEFT 060

approach that effectively balances trainable pa- 061

rameter selection, minimizes the memory footprint 062

required for model parameters, and maintains the 063

model’s adaptability? 064

To address this issue, we introduce ShareLoRA, 065

an efficient and straightforward PEFT method that 066

effectively balances trainable parameter selection 067

while optimizing the model’s adaptability and min- 068

imizing memory requirements. Our approach lever- 069

ages the observation that low-rank weight matrices 070

A and B do not need to be uniquely configured 071

across layers to achieve optimal PEFT performance 072

in PLMs. Instead, we propose sharing either ma- 073

trix A or B across all layers while maintaining its 074

counterpart as distinct in each layer. This strategy 075

meets several key objectives: 1) Sharing a low-rank 076

matrix across layers significantly reduces the num- 077

ber of trainable parameters and cuts down on the 078

memory footprint needed for model finetuning; 2) 079

Keeping the shared matrix trainable preserves the 080

model’s adaptability; 3) The updated weights for 081

each component that LoRA applies remain unique 082
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yet share a common base.083

In our experiments, we demonstrate the benefits of084

ShareLoRA under three configurations: 1) sharing085

across all layers, and 2) sharing the Query, Key,086

and Value components of the self-attention lay-087

ers in PLMs. 3) sharing the down-projection, up-088

projection, or both in LoRA. The results show that089

ShareLoRA not only preserves model performance090

but also shows robustness in a variety of tasks, both091

in classification and generation, across multiple092

models including RoBERTa, GPT-2, and LLaMA.093

This method exhibits enhanced transfer learning094

capabilities compared to traditional LoRA applica-095

tions and effectively prevents overfitting by shar-096

ing weights across layers. Our findings prove that097

ShareLoRA significantly improves parameter effi-098

ciency while maintaining scalable and high-quality099

performance across diverse language model archi-100

tectures.101

2 Related Work102

Parameter Efficient Fine-tuning. PLMs are103

trained on large datasets to develop broad linguistic104

representations (Devlin et al., 2019; Liu et al., 2019;105

Raffel et al., 2020), but often fall short in special-106

ized tasks due to a lack of domain knowledge. Tra-107

ditional approaches involve fully fine-tuning PLMs108

to enhance domain-specific performance (Xu and109

Wang, 2023; Xie et al., 2020; Dabre et al., 2019).110

However, with the increasing size of PLMs (Work-111

shop et al., 2023; et.al, 2023b,a; Zhang et al., 2022),112

this method becomes too resource-heavy. As an113

alternative, Parameter Efficient Fine-tuning (PEFT)114

provides an efficient way to maintain performance115

with less computational expense.116

PEFT methods have become crucial for adapt-117

ing large-scale pre-trained models to specific tasks118

without extensively overhauling their parameters.119

This approach conserves computational resources120

and boosts efficiency. For example, Prefix tun-121

ing (Li and Liang, 2021a) adds parameters to the122

hidden states across layers, subtly influencing the123

model’s behavior without changing its underlying124

architecture, Prompt tuning (Lester et al., 2021)125

alters prompts and updates only the associated pa-126

rameters, focusing on specific areas of model per-127

formance, and BitFit (Zaken et al., 2022) updates128

only the biases within the model, resulting in mini-129

mal yet effective modifications.130

One notable PEFT technique is Low-Rank Adap-131

tation (LoRA) (Hu et al., 2021), which achieves132

efficient fine-tuning by incorporating a low-rank 133

matrix adaptation mechanism alongside the exist- 134

ing weights of linear layers, thereby reducing mem- 135

ory overhead while preserving the effectiveness of 136

the fine-tuning process. The modified output Y is 137

computed as follows: 138

Y ← XW + αXAB (1) 139

where W represents the original pre-trained 140

weights of dimensions din×dout, with din being the 141

dimension of the input to the layer, and dout being 142

the dimension of the output. The input tensor X 143

has dimensions b× s× din and the output tensor Y 144

has dimensions b× s× dout, where b and s denote 145

the batch size and sequence length, respectively. 146

The adaptation is facilitated by matrices A and 147

B, where A ∈ Rdin×r projects the input dimension 148

down to a lower rank r, and B ∈ Rr×dout projects 149

it back up, effectively creating a bottleneck that 150

captures the most significant transformations. The 151

hyperparameter α, typically set inversely propor- 152

tional to the rank r, scales the impact of this low- 153

rank update on the output. 154

Recent enhancements to LoRA have signifi- 155

cantly broadened its capabilities. For instance, 156

QLoRA (Dettmers et al., 2023) optimizes LoRA 157

for the fine-tuning of quantized models, thereby 158

increasing efficiency. ReLoRA (Lialin et al., 159

2023) incorporates a warm-up strategy during pre- 160

training to boost adaptability. LoraHub (Huang 161

et al., 2024) streamlines the process by automating 162

the creation of custom LoRA modules for specific 163

tasks. Additionally, GLoRA (Chavan et al., 2023) 164

introduces a prompt module that fine-tunes weights 165

and biases, enhancing performance across a variety 166

of applications. 167

Despite these advancements, LoRA still faces 168

significant memory overhead due to the high acti- 169

vation memory usage in LoRA layers during the 170

fine-tuning phase. To address this issue, LoRA- 171

FA (Zhang et al., 2023) strategically freezes the 172

low-rank A matrix and updates only the B ma- 173

trix. This approach significantly reduces the num- 174

ber of trainable parameters and activation mem- 175

ory, thus enhancing the efficiency of fine-tuning 176

large language models without substantially im- 177

pacting performance. However, LoRA-FA does 178

not adequately decrease the total number of param- 179

eters that need to be stored, presenting a consid- 180

erable challenge in contexts where computational 181

resources and storage are constrained. Addition- 182

ally, by freezing the A matrix, LoRA-FA limits 183
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Figure 1: Overview of ShareLoRA: The implementation of ShareA, ShareB, and ShareAB across all layers (left),
including ShareA applied across self-attention layers (right).

the model’s capacity to adapt and learn from new184

data during fine-tuning. This rigidity can hinder the185

model’s performance, particularly in complex or186

domain-specific tasks. Compared with LoRA-FA,187

our approach ShareLoRA offers a more dynamic188

and flexible strategy by allowing either matrix A189

or B, or both, to be shared across different lay-190

ers. This method not only preserves the model’s191

adaptability but also further reduces the memory192

requirements. We will show the details of it in the193

following paragraphs.194

3 Approach195

In this section, we provide a detailed description of196

our proposed PEFT approach ShareLoRA, as illus-197

trated in Figure1. ShareLoRA facilitates flexible198

configurations through two primary dimensions: 1)199

the choice of sharing between the matrices A, B,200

or both A and B (ShareA, ShareB, and ShareAB),201

and 2) the scope of sharing, which can be across202

different layers such as self-attention layers. This203

framework allows for a variety of combinations,204

enabling tailored adaptation of low-rank models to205

specific tasks.206

ShareA Configuration In the ShareA configu-207

ration, the low-rank matrix A is uniformly shared208

across all layers, with each layer employing its own209

unique matrix Bi. The formula for weight adapta-210

tion in each layer i can be expanded to detail the211

influence on model transformation:212

∆Wi = αABi = α

r∑
k=1

A:,kBk,:,i (2)213

where A:,k represents the k-th column of A, and214

Bk,:,i is the k-th row of matrix Bi. This equation215

shows that each layer’s weight change, ∆Wi, is a216

linear combination of the columns of A weighted217

by the corresponding elements of Bi. This shared 218

projection-down matrix A reduces the dimensional- 219

ity uniformly across all layers, thereby minimizing 220

redundancy in learning and memory usage while 221

enabling tailored output transformations through 222

layer-specific matrices Bi. 223

ShareB Configuration In the ShareB configura- 224

tion, matrix B is uniformly shared across all layers, 225

while each layer employs its own unique matrix Ai. 226

The weight adjustment for each layer is expressed 227

as: 228

∆Wi = αAiB = α

r∑
k=1

Ai,:,kBk,: (3) 229

where Ai,:,k denotes the k-th column of matrix Ai 230

for layer i, and Bk,: represents the k-th row of the 231

shared matrix B. Here, the uniform projection-up 232

matrix B ensures consistent expansion of the trans- 233

formed data back to the output dimension across 234

all layers, while the distinct Ai matrices allow for 235

adaptation to the specific input characteristics of 236

each layer. 237

ShareAB Configuration When both matrices A 238

and B are shared across all layers, the change in 239

weights is simplified, leading to substantial param- 240

eter reduction: 241

∆W = αAB = α

r∑
k=1

A:,kBk,: (4) 242

where both A:,k and Bk,: are shared across all lay- 243

ers. This configuration significantly reduces the 244

model complexity by eliminating the need for dis- 245

tinct matrices in each layer, thus reducing memory 246

requirements and computational overhead. The en- 247

tire model operates under a uniform transformation 248

schema, which simplifies training and storage but 249

requires careful calibration of the initial values and 250
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ongoing adjustments during fine-tuning to preserve251

model effectiveness across diverse tasks.252

Sharing Across Self-Attention Layers In the253

ShareA configuration of ShareLoRA applied to254

PLMs across all self-attention layers, the matrices255

AQ, AK , and AV are shared. These matrices are256

responsible for reducing the dimensionality of the257

inputs for Queries (Q), Keys (K), and Values (V)258

respectively, we term it as ShareAqkv in the follow-259

ing paragraphs. The process for each component260

in the i-th self-attention layer is formalized as fol-261

lows:262

Qi = XiAQBQi (5)263

Ki = XiAKBKi (6)264

Vi = XiAV BVi (7)265

Attention(Qi,Ki, Vi) = softmax

(
QiK

T
i√

dKi

)
Vi,

(8)

266

where Xi denotes the input to the i-th self-attention267

layer. Each matrix AQ, AK , and AV facilitates a268

consistent reduction in input dimensions across all269

layers, which simplifies the model architecture by270

maintaining a uniform approach to processing the271

foundational aspects of self-attention. The unique272

matrices BQi , BKi , and BVi for each component273

allow for tailored transformations that meet the274

specific needs of each self-attention layer.275

4 Experiments276

In our study, we conduct a comprehensive evalua-277

tion of the downstream performance of ShareLoRA278

across several series models, including RoBERTa279

(Liu et al., 2019) and GPT-2 (Radford et al., 2019).280

We benchmark these results against other estab-281

lished approaches such as LoRA (Hu et al., 2021),282

LoRA-FA (Zhang et al., 2023), on NLU and NLG283

tasks. Additionally, we extend the application of284

ShareLoRA to large-scale model in both LLaMA285

(et.al, 2023b) and LLaMA2 (et.al, 2023a) archi-286

tectures, particularly in few-shot, zero-shot scenar-287

ios. Furthermore, our experiments cover a range288

of model sizes, from 7 billion to 13 billion parame-289

ters, and included both quantized and unquantized290

model variants. All tests were performed on the291

Nvidia A6000 and RTX 3090 GPUs.292

4.1 Datasets293

The experiment datasets are primarily divided into294

three categories: Natural Language Understanding295

(NLU), Natural Language Generation (NLG) and 296

few-shot tasks, using the same configuration and 297

datasets as LoRA (Hu et al., 2021) and (Dettmers 298

et al., 2023). 299

For NLU, we employ the GLUE benchmark (Wang 300

et al., 2019), which includes MNLI, SST-2, MRPC, 301

CoLA, QNLI, QQP, RTE, and STS-B tasks. No- 302

tably, for MRPC, RTE, and STS-B tasks, we ini- 303

tialize the LoRA modules with the trained MNLI 304

checkpoint as (Hu et al., 2021) demonstrated. For 305

NLG, we replicate experiments similar to those of 306

LoRA using the E2E challenge dataset (Novikova 307

et al., 2017), following the same experimental 308

setup. 309

Additionally, we expand our experiments to few- 310

shot and zero-shot tasks on larger models, demon- 311

strating our approach’s adaptability. Following the 312

configuration outlined in (Dettmers et al., 2023), 313

we employ Alpaca (Taori et al., 2023) for LoRA 314

and ShareLoRA, using the MMLU benchmark 315

(Hendrycks et al., 2021) for evaluation. Some 316

other benchmarks like ARC (Chollet, 2019), Hel- 317

laswrag (Zellers et al., 2019) and GSM8K (Cobbe 318

et al., 2021) are used for comparison of model 319

adaptability. All experimental setups are consistent 320

with those described studies and demonstration of 321

their repositories, based on the best of our knowl- 322

edge. 323

4.2 Baselines 324

Full Fine-Tuning (FT) is a commonly used ap- 325

proach for model adaptation involving with updat- 326

ing all model’s parameters. 327

LoRA (Hu et al., 2021) is a technique that intro- 328

duces a pair of rank decomposition trainable ma- 329

trices alongside existing weight matrices in neural 330

networks. 331

Bitfit is a technique studied by (Zaken et al., 2022) 332

for updating only a select small subset of biases 333

parameters, to improve performance on new tasks 334

while freezing all other pre-trained weights. 335

PreLayer/Prefix (Li and Liang, 2021b) is a 336

parameter-efficient technique for customizing large 337

language models by learning specific activations 338

after each Transformer layer for designated prefix 339

tokens, while the main model parameters remain 340

unchanged. 341

Adapter as introduced by (Houlsby et al., 2019), in- 342

volves inserting adapter layers between neural mod- 343

ules such as the self-attention and MLP modules, 344

enhancing model flexibility without extensive mod- 345
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Method # Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

Rb (FT)* 125.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
Rb (BitFit)* 0.1M 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
Rb (AdptD)* 0.3M 87.1±.0 94.2±.1 88.5±1.1 60.8±.4 93.1±.1 90.2±00 71.5±2.7 89.7±.3 84.4
Rb (AdptD)* 0.9M 87.3±.1 94.7±.3 88.4±.1 62.6±.9 93.0±.2 90.6±.0 75.9±2.2 90.3±.1 85.4
Rb (Prefix)* 0.36M 85.21 93.81 87.25 59.31 90.77 87.75 54.51 88.48 80.9
Rb (IA3)* 0.06M 83.95 93.92 87.00 59.58 90.88 87.99 71.12 90.30 83.1
Rb (DoRA)* 0.3M 87.5 95.0 89.7 64.9 92.9 90.6 79.2 91.3 86.4
Rb (LoRA)* 0.3M 87.5±.3 95.1±.2 89.7±.7 63.4±1.2 93.3±.3 90.8±.1 86.6±.7 91.5±.2 87.2
Rb (L-FA)* 0.15M 86.8 94.8 90 63.6 92.5 90.1 67.9 89.6 84.4
Rb (ShareA) 0.16M 87.3±.2 95.0±.3 89.9±.8 63.8±1.1 92.8±.18 90.3±.05 87.1±.5 91.4±.1 87.2

Rl (FT)* 335.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
Rl (LoRA)* 0.8M 90.6±.2 96.2±.5 90.9±1.2 68.2±1.9 94.9±.3 91.6±.1 87.4±1.1 92.6±.2 89.0
Rl (L-FA)* 0.4M 90.1 96 90 68 94.4 91.1 86.1 92 88.5
Rl (ShareA) 0.4M 90.7±.1 96.1±.1 91.1±.8 67.7±1.5 95.1±.1 91.3±.1 90.3±.3 92.5±.1 89.3

Rl (Prefix)* 0.9M 89.30 95.76 88.24 59.01 93.32 88.88 74.01 90.92 84.9
Rl (IA3)* 0.18M 88.63 94.61 86.52 61.15 94.25 89.45 81.23 92.22 86.0
Rl (LoRA)† 0.8M 90.6±.2 96.2±.5 90.2±1.0 68.2±1.9 94.8±.3 91.6±.2 85.2±1.1 92.3±.5 88.6
Rl (ShareAB)† 0.03M 90.2±.1 95.9±.3 89.7±1.0 62.3±.9 94.6±.1 89.7±.1 83.0±0.8 90.3±.2 87.0
Rl (ShareB)† 0.4M 90.4±.1 96.0±.3 90.4±.4 65.8±.8 94.6±.1 91.0±.1 84.1±1.2 91.4±.2 88.0
Rl (ShareA)† 0.4M 90.7±.1 96.1±.1 90.0±.5 67.7±1.5 95.0±.1 91.3±.1 85.9±.8 91.8±.2 88.6

Table 1: RoBERTabase and RoBERTalarge with different adaptation methods on the GLUE benchmark. ∗ indicates
numbers published in prior works. † indicates runs configured in a setup similar to (Houlsby et al., 2019) and (Hu
et al., 2021) for a fair comparison.

ifications. AdapterL (Lin et al., 2020) introduce346

adapters only after the MLP module followed by a347

LayerNorm, with AdapterD (Rücklé et al., 2021)348

increases efficiency by omitting some adapter lay-349

ers.350

IA3 (Liu et al., 2022) is a PEFT approach that en-351

hances model performance by scaling activations352

with learned vectors.353

DoRA (Mao et al., 2024) introduces a method for354

decomposing layers into single-rank structures that355

can be dynamically pruned during training.356

LoRA-FA (Zhang et al., 2023) is a memory-357

efficient approach to fine-tuning large language358

models by reducing the activation memory re-359

quired.360

QLoRA (Dettmers et al., 2023) utilizes a frozen,361

4-bit quantized pretrained model and LoRA for362

efficient gradient propagation.363

5 Main Results364

5.1 GLUE Benchmark365

ShareA outperforms LoRA variants. In Ta-366

ble1, we present the performance metrics for differ-367

ent versions of ShareLoRA—ShareA, ShareB, and368

ShareAB—alongside a baseline comparison with369

previously published work using RoBERTa-base370

and RoBERTa-large models.371

For the RoBERTa-base model, ShareA demon-372

strates its strengths on datasets such as MRPC, 373

CoLA, and RTE, where we notice performance im- 374

provements between 0.2% to 0.5%. This enhance- 375

ment is noteworthy especially, under the same train- 376

ing specifications (Hu et al., 2021), these datasets 377

have reached full convergence and are prone to 378

overfitting. 379

ShareA is adaptable and robust. In tasks such 380

as MRPC, RTE, and STS-B, both ShareLoRA and 381

LoRA utilize the best MNLI checkpoint derived 382

from multiple seeds and applies these checkpoints 383

effectively on other tasks, demonstrating superior 384

adaptability and performance enhancement com- 385

pared to using LoRA alone once convergence is 386

achieved. This adaptability highlights the poten- 387

tial of ShareLoRA in generalizing well across con- 388

verged datasets. 389

ShareLoRA also has a marginal decline in perfor- 390

mance as observed on the MNLI, QNLI, and QQP 391

datasets compared to LoRA in Table1. Due to the 392

large size of datasets, both LoRA and ShareLoRA 393

are not fully converged under the configurations 394

as described in (Hu et al., 2021). However, it is 395

crucial to highlight that even with the reduced per- 396

formance on MNLI checkpoint, the adaptive tasks 397

such as MRPC and RTE, still show better perfor- 398

mance, underscoring the robustness of ShareLoRA, 399

effectively preventing overfitting and optimizing 400
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Method # Params BLUE NIST MET ROUGE-L CIDEr

GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2 M (AdapterL)* 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2 M (AdapterL)* 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M 69.5±.7 8.74±.08 46.56±.2 71.51±.3 2.50±.01

GPT-2 M (ShareB) 0.20M 67.1±.7 8.55±.09 45.12±.4 69.45±.6 2.37±.01

GPT-2 M (ShareA) 0.20M 69.7±.4 8.75±.05 46.60±.1 71.63±.1 2.51±.01

GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdapterL)* 0.88M 69.1 8.68 46.3 71.4 2.49
GPT-2 L (AdapterL)* 23.00M 68.9 8.70 46.1 71.3 2.45
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.3 71.7 2.47
GPT-2 L (LoRA) 0.77M 69.8±.4 8.80±.04 46.69±.1 71.71±.3 2.52±.01

GPT-2 L (ShareB) 0.39M 69.7±.2 8.80±.01 46.17±.3 70.94±.5 2.49±.02

GPT-2 L (ShareA) 0.39M 70.0±.1 8.83±.03 46.60±.1 71.74±.1 2.52±.02

Table 2: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG Challenge. For all
metrics, higher is better. LoRA ShareA outperforms several baselines with comparable or fewer trainable parameters.
* indicates numbers published in prior works.

performance outcomes.401

ShareA outperforms ShareB. Experiments con-402

ducted with the RoBERTa-large model on ShareA,403

ShareB, and ShareAB reveal that ShareA gener-404

ally outperforms ShareB in various tasks and both405

ShareA and ShareB show superior results over406

ShareAB. Compared to LoRA, ShareA demon-407

strates increased stability with less fluctuation in408

the confidence intervals across the majority of tasks409

in Table1, emphasizing ShareLoRA’s advantage in410

providing consistent and reliable performance en-411

hancements.412

Parameter Efficiency of ShareLoRA Addition-413

ally, our shared approach significantly reduces414

the number of trainable parameters compared to415

LoRA and other approaches. Employing a similar416

number of trainable parameters as LoRA-FA, but417

ShareLoRA achieves enhanced performance across418

all datasets.419

Overall, the distinct advantages of ShareLoRA, par-420

ticularly in terms of its efficiency, robustness, and421

adaptability to different NLU tasks leading to su-422

perior performance. ShareLoRA produces a com-423

pelling balance between performance and compu-424

tational efficiency.425

5.2 E2E Challenge426

ShareA outperforms LoRA in NLG. In Table2,427

we utilize the configuration previously outlined in428

(Hu et al., 2021) with GPT-2 medium and large429

for E2E NLG tasks, showcasing the superiority of430

ShareLoRA in generative tasks. Our results indi-431

cate that ShareLoRA achieves a consistent perfor- 432

mance improvement over LoRA across all evalu- 433

ated metrics for the GPT-M model. When employ- 434

ing the GPT-large model, ShareLoRA demonstrates 435

slightly better performance than LoRA, given that 436

ShareLoRA utilizes only half the training param- 437

eters of LoRA, achieving a performance improve- 438

ment of 0.1% to 0.2% over LoRA. 439

LoRA B is more important than A. Further- 440

more, both LoRA and ShareA outperform ShareB 441

in generative tasks across all metrics. Within 442

the LoRA framework, the significance of the up- 443

projection matrix B is evident as it crucially aug- 444

ments the dimensionality of the low-rank represen- 445

tation. The strategic choice to share component A 446

rather than B in ShareLoRA proves advantageous, 447

as it expansion the intermediate dimension is more 448

important and difficult than squeezing the high di- 449

mension features in complex generation tasks. 450

5.3 LLaMA on MMLU 451

ShareA and ShareAqkv outperform LoRA. In 452

Table3, the scalability and efficacy of ShareA 453

are assessed by examining its performance on 454

larger models ranging from 7B to 13B parame- 455

ters. Through fine-tuning on the Alpaca dataset 456

and employing the 5-shot MMLU benchmark as 457

specified by (Dettmers et al., 2023), ShareA demon- 458

strates notable enhancements in generative capabil- 459

ities compared to GPT-2 and RoBERTa.Focusing 460

exclusively on ShareA rather than ShareB, the re- 461

sults from different linear components indicate that 462
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Method # Params MMLU Method # Params MMLU

LLaMA 7B * 6738.4M 35.1 LLaMA 13B * 13015M 46.9
LLaMA 7B (LoRA)* 159.9M 40.67 LLaMA 13B (LoRA)* 250.3M 47.49
LLaMA 7B (LoRA) 159.9M 41.65±1.0 LLaMA 13B (LoRA) 250.3M 47.60±1.4

LLaMA 7B (ShareAqkv) 135.5M 41.01±0.8 LLaMA 13B (ShareAqkv) 212.0M 48.76±0.7

LLaMA 7B (ShareA) 89.3M 40.93±0.5 LLaMA 13B (ShareA) 139.1M 48.15±0.5

LLaMA2 7B * 6898.3M 45.7 LLaMA2 13B * 13266M 53.8
LLaMA2 7B (LoRA) 159.9M 47.47±1.1 LLaMA2 13B (LoRA) 250.3M 55.31±0.2

LLaMA2 7B (ShareAqkv) 135.5M 47.88±0.1 LLaMA2 13B (ShareAqkv) 212.0M 55.66±0.1

LLaMA2 7B (ShareA) 89.3M 48.19±0.4 LLaMA2 13B (ShareA) 139.1M 55.53±0.3

Table 3: LLaMA and LLaMA2, ranging from 7B to 13B, are fine-tuned using different sharing approaches on
the Alpaca datasets and evaluated on the MMLU 5 shot benchmark. The configuration runs is based on the setup
described in (Dettmers et al., 2023).* indicates numbers published in prior works, reported by (Xu et al., 2023).

LLaMA models, particularly the 13B and both the463

7B and 13B versions of LLaMA2, outperform stan-464

dard LoRA with improvements of approximately465

1.1%, 0.7%, and 0.4%, respectively. Moreover,466

ShareAqkv further improves performance by 0.6%467

for the LLaMA 13B model over ShareA, while468

ShareA outperforms ShareAqkv by 0.3% for the469

LLaMA2 7B model. The closely matched perfor-470

mance between ShareAqkv and ShareA across other471

models suggests a high convergence and potential472

overfitting risks, as discussed in Appendix 5.3 and473

Figure4, with the LLaMA 7B model showing sta-474

ble yet under-converged performance according to475

prior research (Xu et al., 2023).476

Memory Footprint Consumption In the con-477

text of smaller models like RoBERTa and GPT-2,478

ShareA yields minimal parameter savings, which is479

negligible given modern GPU capacities. However,480

with larger models like LLaMA, ShareA demon-481

strates more substantial reductions. Specifically,482

the LLaMA 7B and 13B models cut down approxi-483

mately 60 million and 110 million trainable param-484

eters, respectively, when compared to the LoRA485

architecture. This leads to substantial efficiency486

gains, reducing both computational footprint and487

disk storage needs. As depicted in Figure2 in the488

Appendix, ShareA achieves a memory footprint489

reduction of 1.8GB and approximately a 2% in-490

crease in training speed, while ShareAB can save491

around 4GB with 4% training speed up. The con-492

fidence intervals in Table3 illustrate that ShareA493

not only improves performance but also increases494

robustness over standard LoRA, underscoring the495

practical advantages of ShareLoRA in LLMs.496

5.4 Zero Shot of ShareA 497

The effectiveness of ShareA in enhancing gen- 498

erative capabilities is evaluated using both zero- 499

shot and five-shot settings on the lm-eval-harness 500

leaderboard (Gao et al., 2023), focusing on tasks 501

like MMLU, ARC Challenge, Hellaswarg, and 502

GSM8K. Results highlight ShareA’s strength in 503

zero-shot learning across various LoRA-configured 504

tasks. ShareA particularly improving performance 505

on domain-specific tasks such as GSM8K that in- 506

volve mathematical reasoning. This demonstrates 507

ShareA’s robust adaptability and superior perfor- 508

mance compared to other models, including the 509

LLaMA 7B, which, despite its strong performance 510

in MMLU as discussed in section 5.3, shows lim- 511

ited adaptability in varied tasks like ARC (c) and 512

GSM8K. Overall, ShareA’s consistency across dif- 513

ferent domains underscores its effectiveness. 514

5.5 Quantized ShareLoRA 515

The detailed experiments conducted on training 516

QLoRA for Quantized LLaMA models demon- 517

strate that the QShareA method exhibits better 518

performance compared to QLoRA in general, as 519

shown in the Table5. Despite a reduction in the 520

number of training parameters, both QShareA and 521

QShareAqkv maintain robust and stable in the per- 522

formance. 523

Even though, the original weight is quantized and 524

the number of training parameter is further re- 525

duced, the performance is not compromised for 526

both QShareA and QShareAqkv. It reveals that 527

the quantization strategies effectively combined 528

with our shared approach without sacrificing out- 529

put quality. 530
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Method MMLU ARC (c) Hellaswarg GSM8K

LLaMA 7B (LoRA) 41.28 48.49 76.74 2.43
LLaMA 7B (ShareA) 40.67 48.82 76.67 3.16
LLaMA 13B (LoRA) 45.02 51.34 79.46 5.79
LLaMA 13B (ShareA) 46.04 51.19 79.53 6.17

LLaMA2 7B (LoRA) 45.68 49.60 77.14 3.21
LLaMA2 7B (ShareA) 47.09 50.14 76.77 6.06
LLaMA2 13B (LoRA) 53.21 51.28 76.59 12.33
LLaMA2 13B (ShareA) 53.70 52.48 79.43 14.99

Table 4: Selected the optimal checkpoint based on performance in the five-shot MMLU and evaluated using a
zero-shot on MMLU, ARC Challenge, and Hellaswarg, along with a five-shot on GSM8K using the lm-eval-harness
leaderboard (Gao et al., 2023).

Method # Params MMLU (5) Method # Params MMLU (5)

LLaMA 7B (QLoRA)* 79.9M 38.8 LLaMA 13B (QLoRA)* 125.2M 47.8
LLaMA 7B (QLoRA)* 79.9M 39.96 LLaMA 13B (QLoRA)* 125.2M 47.29
LLaMA 7B (QLoRA) 79.9M 40.63± 0.9 LLaMA 13B (QLoRA) 125.2M 47.13± 0.9
LLaMA 7B (QShareAqkv) 67.7M 40.63± 0.5 LLaMA 13B (QShareAqkv) 106.0M 47.36± 0.7
LLaMA 7B (QShareA) 44.6M 41.11± 0.2 LLaMA 13B (QShareA) 69.5M 47.17± 0.8

Table 5: The performance comparison of LLaMA 7B and 13B with QLoRA and QShareA under the same
configuration of (Dettmers et al., 2023), ∗ is similar experiment results collected from prior work (Xu et al., 2023)

6 Analysis531

6.1 Sharing Attention QKV or Sharing All532

The distinction between sharing the self-attention533

mechanism and all linear modules exists on MLP534

components like gates and up/down projections,535

which are suitable for LoRA techniques despite536

being non-square matrices. This leads to a dis-537

crepancy in trainable parameters between LoRA’s538

A and B. The strategic choice involves deciding539

whether to uniformly share weights across all lay-540

ers (ShareA) or selectively share them, such as only541

for the down projection (ShareAB) while maintain-542

ing unique weights for other components like the543

up projection and gates. Preliminary results in544

Appendix Figure 4 suggest that selective sharing,545

particularly of the QKV matrices in Shareqkv, pro-546

vides an effective balance by aligning closely with547

both ShareA and LoRA , potentially mitigating548

overfitting risks.549

6.2 Singular Value Decomposition across550

Layers551

As shown in the Figure 6 in Appendix, we ap-552

ply Singular Value Decomposition (SVD) to the553

LLaMA 13B both LoRA and ShareA weights. The554

singular value distributions for the LLaMA 13B555

model’s LoRA and ShareA weights reveals distinct556

patterns in their decay rates across layers. The557

LoRA weights exhibit a sharp decrease in singular 558

values, indicating a concentration of information in 559

a few dominant components, which might lead to 560

specialization and potential overfitting. In contrast, 561

the ShareA weights show a smoother and more 562

gradual decrease, suggesting a more balanced dis- 563

tribution of information among components. This 564

balanced distribution likely enhances the ShareA 565

model’s adaptability and generalization capability 566

across different tasks. 567

7 Conclusion 568

In this paper, we introduce ShareLoRA, a modifica- 569

tion of the LoRA architecture that shares either the 570

up or down projection across different layers. The 571

ShareA variant significantly reduces the number of 572

trainable parameters by about half relative to the 573

original LoRA and shows improved performance 574

on fully converged datasets. Through extensive 575

experimentation with NLU, NLG, and zero-shot 576

tasks on models varying from millions to billions 577

of parameters, ShareA provides an optimal balance 578

between computational efficiency and robust per- 579

formance. By sharing all linear components or fo- 580

cusing solely on self-attention mechanisms, ShareA 581

potentially reduces overfitting risks while main- 582

taining high adaptability and effectiveness across 583

various domains. 584
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8 Limitation585

The limitations of ShareLoRA are primarily in586

its convergence speed and practical applications.587

ShareAB and ShareB tend to converge more slowly588

compared to LoRA, though ShareA shows a con-589

vergence rate that is largely competitive with LoRA590

on smaller datasets, with only a slight lag on larger591

datasets. This indicates that ShareA is quite adept592

at easily converged datasets and effectively mitigat-593

ing near-overfitting scenarios.594

Regarding the practical application of GPUs,595

ShareLoRA introduces some complexities in the596

parallel training process on multiple GPUs. This597

is primarily due to the need for consistent synchro-598

nization of the Shared Module, once it is replicated599

across various GPUs at every computational step.600
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Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.726
2017. The e2e dataset: New challenges for end-to-727
end generation.728

Alec Radford, Jeff Wu, Rewon Child, David Luan,729
Dario Amodei, and Ilya Sutskever. 2019. Language730
models are unsupervised multitask learners.731

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-732
ine Lee, Sharan Narang, Michael Matena, Yanqi733
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the734
limits of transfer learning with a unified text-to-text735
transformer. Journal of Machine Learning Research,736
21(140):1–67.737

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman738
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna739
Gurevych. 2021. Adapterdrop: On the efficiency740
of adapters in transformers.741

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 742
Dubois, Xuechen Li, Carlos Guestrin, Percy 743
Liang, and Tatsunori B. Hashimoto. 2023. Stan- 744
ford alpaca: An instruction-following llama 745
model. https://github.com/tatsu-lab/ 746
stanford_alpaca. 747

Alex Wang, Amanpreet Singh, Julian Michael, Felix 748
Hill, Omer Levy, and Samuel R. Bowman. 2019. 749
Glue: A multi-task benchmark and analysis platform 750
for natural language understanding. 751

BigScience Workshop, :, Teven Le Scao, and An- 752
gela Fan et.al. 2023. Bloom: A 176b-parameter 753
open-access multilingual language model. 754

Yuqing Xie, Wei Yang, Luchen Tan, Kun Xiong, 755
Nicholas Jing Yuan, Baoxing Huai, Ming Li, and 756
Jimmy Lin. 2020. Distant supervision for multi-stage 757
fine-tuning in retrieval-based question answering. In 758
Proceedings of The Web Conference 2020, WWW 759
’20, page 2934–2940, New York, NY, USA. Associa- 760
tion for Computing Machinery. 761

Lingling Xu and Weiming Wang. 2023. Improving 762
aspect-based sentiment analysis with contrastive 763
learning. Natural Language Processing Journal, 764
3:100009. 765

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui 766
Tao, and Fu Lee Wang. 2023. Parameter-efficient 767
fine-tuning methods for pretrained language models: 768
A critical review and assessment. 769

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 770
2022. Bitfit: Simple parameter-efficient fine-tuning 771
for transformer-based masked language-models. 772

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 773
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 774
machine really finish your sentence? In Proceedings 775
of the 57th Annual Meeting of the Association for 776
Computational Linguistics. 777

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen 778
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient 779
low-rank adaptation for large language models fine- 780
tuning. 781

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 782
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 783
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi- 784
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel 785
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu 786
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre- 787
trained transformer language models. 788

10

https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2010.11918
http://arxiv.org/abs/2010.11918
http://arxiv.org/abs/2010.11918
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068


A Hyperparameters789
M

em
or

y 
(M

B
)

35000

37500

40000

42500

45000

ShareAB LoRA-FA ShareA LoRA

Peak Memory Consumption

Figure 2: Peak Memory Consumption required for train-
ing LLaMA 13B

In our study, we limits the extent of hyperparam-790

eter optimization in order to maintain consistency791

with prior research (Hu et al., 2021; Dettmers et al.,792

2023; Mahabadi et al., 2021; Gao et al., 2023), fa-793

cilitating a direct comparison. Furthermore, we794

aims to investigate the behaviors of underfitting795

and overfitting across different scenarios using the796

LoRA and ShareLoRA approaches applied to vari-797

ous model size.798

Specifically, under the current training setup,799

both LoRA and ShareLoRA exhibit signs of non-800

convergence when applied to the LLaMA 7B801

model. On the other hand, LoRA demonstrates802

clear overfitting when used with the LLaMA2 13B803

model, suggesting that the model training has gone804

beyond the point of optimal generalization.805

For the models LLaMA 13B and LLaMA 2 7B,806

their performances are comparable. Both models807

reach a point of convergence and display fluctua-808

tions around this state, indicating that they are fully809

trained. It helps us understand the differing impacts810

of LoRA and ShareLoRA on these models under a811

set of reasonable training configurations.812

The hyperparameter setting for RoBERTa is in813

Table 7 and for LLaMA are in Table 8 and 9. The814

number of trainable parameters in Table 5, should815

remain consistent between QLoRA and LoRA for816

LLaMA 7B and 13B in Table 3, as both models817

utilize BFloat16. However, the reduced number of818

trainable parameters is influenced by the implemen-819

tation described in (Dettmers et al., 2023), which820

reduces the trainable parameters by half when quan-821

tizing to 4 bits. This is also reported the same by822

(Xu et al., 2023), and we maintain this parameter823

count to ensure consistency.824

We conducted five experiments with Roberta and825

GPT-2, and three experiments for all tasks related 826

to LLaMA using different seeds. The results pre- 827

sented are all averages. 828

B LLaMA Performance Analysis 829

In Figures 3 and 4 , we present the Dev Set per- 830

formance changes for both LLaMA and LLaMA2 831

models, ranging from 7B to 13B, to observe the 832

differences in performance over steps. The results 833

demonstrate that ShareA and ShareAqkv configu- 834

rations offer several advantages over their counter- 835

parts, as discussed in Section 6.1. 836

For both the 7B and 13B models, ShareA and 837

ShareAqkv configurations maintain higher average 838

accuracy compared to the traditional LoRA setup. 839

Specifically, ShareA demonstrates consistent per- 840

formance improvements, particularly in the stabil- 841

ity of accuracy over different steps. This indicates 842

that ShareA is more robust and less prone to fluctu- 843

ations compared to LoRA. 844

The analysis in Figure 3 further enriches our re- 845

sults by incorporating confidence intervals which 846

map the performance stability of LoRA, QLoRA, 847

ShareA, and QShareA. From these plots, it is ev- 848

ident that while LoRA occasionally outperforms 849

QLoRA, the overall performance trends of LoRA 850

and QLoRA are closely aligned in LLaMA 7B. In 851

particular, for the LLaMA 13B, the performance 852

of ShareA and QShareA after 5000 steps is com- 853

pletely superior than LoRA and QLoRA. It is cru- 854

cial to highlight that both LoRA and QLoRA dis- 855

play larger fluctuations in performance compared 856

to ShareA and QShareA, underscoring a potentially 857

greater variability in model outcomes across differ- 858

ent experimental seeds. 859

C Convergence Analysis 860

In Figure 5, we analyze the convergence trends 861

across both the MNLI and CoLA datasets for the 862

RoBERTa-large model, demonstrating differing be- 863

haviors among the sharing strategies and others. 864

Notably, while ShareA begins with slightly lower 865

performance compared to LoRA, it progressively 866

matches LoRA’s accuracy on the MNLI dataset. 867

ShareB and ShareAB, in contrast, consistently un- 868

derperform relative to both LoRA and ShareA. This 869

pattern is similarly observed with the CoLA dataset, 870

where ShareA’s performance is robust, closely com- 871

peting with LoRA. Both ShareB and ShareAB are 872

worse than LoRA alone. 873

11



LLaMA 7B LLaMA 13B

LLaMA 7B LLaMA 13B

Steps Steps

Steps Steps

Figure 3: LLaMA 7B & 13B on LoRA / ShareA (upper) and on QLoRA / QShareA (down) MMLU Dev Performance
with the standard deviation error distribution of different seeds

Figure 4: Average Performance Plot for Various LLaMA Models on the Alpaca-MMLU Dev Dataset

At the same time, LoRA-FA only reaches per-874 formance levels comparable to ShareB, lagging 875
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Figure 5: Convergence Performance for MNLI and CoLA datasets

behind both ShareA and LoRA. This suggests876

that ShareA not only sustains competitive conver-877

gence capabilities but also outperforms LoRA-FA878

in terms of robustness and eventual alignment with879

LoRA’s top performance.880

In term of training loss, all models exhibit a sim-881

ilar declining trend over the training epochs. How-882

ever, ShareA distinguishes itself by slightly lagging883

behind LoRA initially in terms of speed of con-884

vergence but substantial surpassing both ShareB885

and LoRA-FA overall. This differential suggests886

that ShareA offers a balanced approach, effectively887

managing a slower initial convergence for consis-888

tent long-term gains.889
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Figure 6: Distribution of Singular Values for LLaMA 13B: SVD Decomposition Analysis of LoRA (left) and
ShareA (right) across All Layers.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

Batch Size (per device) 16 16 16 32 32 16 32 16
# Epochs 30 60 30 80 25 25 80 40

RoBERTa base Learning Rate 5E-04 5E-04 4E-04 4E-04 4E-04 5E-04 5E-04 4E-04
ShareLoRA LoRA Config. rq = rv = 8

LoRA α 8
Max Seq. Len. 512
seed 0,1,2,3,4

Batch Size (per device) 4
# Epochs 10 10 20 20 10 20 20 10

RoBERTa large Learning Rate 3E-04 4E-04 3E-04 2E-04 2E-04 3E-04 4E-04 2E-04
ShareLoRA † LoRA Config. rq = rv = 8

LoRA α 8
Max Seq. Len. 512
seed 0,1,2,3,4

Table 6: Configuration and training details for RoBERTa base LoRA on different datasets.

Dataset E2E Challege

Optimizer AdamW
Weight Decay 0.01
Dropout Prob 0.1

Batch Size (per device) 8
# Epochs 5

Warmup Steps 500
Learning Rate Schedule Linear

Label Smooth 0.1
Learning Rate 0.002

Adaptation rq = rv = 4

LoRA α 32
Beam Size. 10

Length Penalty 0.9
no repeat ngram size 4

Table 7: Configuration and training details for GPT-2 LoRA on E2E Challenge
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Parameters Batch size LR Steps Source Length Target Length LoRA r LoRA α

7B 16 2e-4 10000 384 128 64 16
13B 16 2e-4 10000 384 128 64 16

Table 8: Training hyperparameters for LLaMA and QLLaMA.

Parameters MMLU Source Length Temperature Top P Beam size

7B 2048 0.7 0.9 1
13B 2048 0.7 0.9 1

Table 9: Evaluation hyperparameters for LLaMA and QLLaMA.
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