ShareLLoRA: Parameter Efficient and Robust Large Language Model
Fine-tuning via Shared Low-Rank Adaptation

Anonymous ACL submission

Abstract

This study introduces an approach to optimize
Parameter Efficient Fine Tuning (PEFT) for
Pretrained Language Models (PLMs) by im-
plementing a Shared Low Rank Adaptation
(ShareLoRA). By strategically deploying
ShareLoRA across different layers and adapt-
ing it for the Query, Key, and Value compo-
nents of self-attention layers, we achieve a sub-
stantial reduction in the number of training
parameters and memory usage. Importantly,
ShareLoRA not only maintains model perfor-
mance but also exhibits robustness in both clas-
sification and generation tasks across a vari-
ety of models, including RoBERTa, GPT-2,
LLaMA and LLaMA2. It demonstrates su-
perior transfer learning capabilities compared
to standard LoRA applications and mitigates
overfitting by sharing weights across layers.
Our findings affirm that ShareLoRA effectively
boosts parameter efficiency while ensuring scal-
able and high-quality performance across dif-
ferent language model architectures.

1 Introduction

As Pretrained Language Models (PLMs) have
gained prominence (Devlin et al., 2019; Liu et al.,
2019; Radford et al., 2019; Raffel et al., 2020),
researchers are increasingly focused on optimiz-
ing the utilization of these models’ pre-trained
weights. Traditional fine-tuning, which involves
adjusting all parameters of a PLM for a specific
dataset or task, is often resource-intensive and time-
consuming, especially given the massive scale of
large language models (LLMs) (Brown and et.al,
2020; Kaplan et al., 2020; Hoffmann and et.al,
2022; et.al, 2022; Zhang et al., 2022; et.al, 2023b).
Parameter-Efficient Fine-Tuning (PEFT) has
proven to be an effective strategy for mitigating
the challenges associated with extensive parame-
ter adjustments. By modifying only a select sub-
set of a model’s parameters, PEFT enables cost-
effective adaptation to domain-specific tasks while

preserving performance levels comparable to those
achieved with full fine-tuning (Houlsby et al., 2019;
Li and Liang, 2021a; Lin et al., 2020; Lei et al.,
2023; He et al., 2022, 2023; Mahabadi et al., 2021).
Techniques like Low-Rank Adaptation (LoRA) (Hu
et al., 2021) stand out within PEFT by demonstrat-
ing that models fine-tuned with a reduced param-
eter set can match the performance of those fine-
tuned with full parameters, effectively bridging the
gap in efficiency and efficacy.

Given the impressive performance of LoRA, nu-
merous subsequent studies have aimed to enhance
its efficiency, mainly by reducing the number of
trainable parameters to minimize the memory foot-
print during the fine-tuning process. However, sig-
nificantly lowering the trainable parameters can
lead to slow convergence, while insufficient reduc-
tions may encourage the model to easily overfit.
Therefore, we pose the question: Is there a PEFT
approach that effectively balances trainable pa-
rameter selection, minimizes the memory footprint
required for model parameters, and maintains the
model’s adaptability?

To address this issue, we introduce ShareLoRA,
an efficient and straightforward PEFT method that
effectively balances trainable parameter selection
while optimizing the model’s adaptability and min-
imizing memory requirements. Our approach lever-
ages the observation that low-rank weight matrices
A and B do not need to be uniquely configured
across layers to achieve optimal PEFT performance
in PLMs. Instead, we propose sharing either ma-
trix A or B across all layers while maintaining its
counterpart as distinct in each layer. This strategy
meets several key objectives: 1) Sharing a low-rank
matrix across layers significantly reduces the num-
ber of trainable parameters and cuts down on the
memory footprint needed for model finetuning; 2)
Keeping the shared matrix trainable preserves the
model’s adaptability; 3) The updated weights for
each component that LoRA applies remain unique

yet share a common base.

In our experiments, we demonstrate the benefits of
ShareL.oRA under three configurations: 1) sharing
across all layers, and 2) sharing the Query, Key,
and Value components of the self-attention lay-
ers in PLMs. 3) sharing the down-projection, up-
projection, or both in LoRA. The results show that
ShareLoRA not only preserves model performance
but also shows robustness in a variety of tasks, both
in classification and generation, across multiple
models including RoBERTa, GPT-2, and LLaMA.
This method exhibits enhanced transfer learning
capabilities compared to traditional LoRA applica-
tions and effectively prevents overfitting by shar-
ing weights across layers. Our findings prove that
ShareLLoRA significantly improves parameter effi-
ciency while maintaining scalable and high-quality
performance across diverse language model archi-
tectures.

2 Related Work

Parameter Efficient Fine-tuning. PLMs are
trained on large datasets to develop broad linguistic
representations (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020), but often fall short in special-
ized tasks due to a lack of domain knowledge. Tra-
ditional approaches involve fully fine-tuning PLMs
to enhance domain-specific performance (Xu and
Wang, 2023; Xie et al., 2020; Dabre et al., 2019).
However, with the increasing size of PLMs (Work-
shop et al., 2023; et.al, 2023b,a; Zhang et al., 2022),
this method becomes too resource-heavy. As an
alternative, Parameter Efficient Fine-tuning (PEFT)
provides an efficient way to maintain performance
with less computational expense.

PEFT methods have become crucial for adapt-
ing large-scale pre-trained models to specific tasks
without extensively overhauling their parameters.
This approach conserves computational resources
and boosts efficiency. For example, Prefix tun-
ing (Li and Liang, 2021a) adds parameters to the
hidden states across layers, subtly influencing the
model’s behavior without changing its underlying
architecture, Prompt tuning (Lester et al., 2021)
alters prompts and updates only the associated pa-
rameters, focusing on specific areas of model per-
formance, and BitFit (Zaken et al., 2022) updates
only the biases within the model, resulting in mini-
mal yet effective modifications.

One notable PEFT technique is Low-Rank Adap-
tation (LoRA) (Hu et al., 2021), which achieves

efficient fine-tuning by incorporating a low-rank
matrix adaptation mechanism alongside the exist-
ing weights of linear layers, thereby reducing mem-
ory overhead while preserving the effectiveness of
the fine-tuning process. The modified output Y is
computed as follows:

Y « XW 4+ aXAB (1)

where W represents the original pre-trained
weights of dimensions dj, X doy, With dj, being the
dimension of the input to the layer, and dq, being
the dimension of the output. The input tensor X
has dimensions b X s X dj, and the output tensor ¥’
has dimensions b X s X dou, Where b and s denote
the batch size and sequence length, respectively.

The adaptation is facilitated by matrices A and
B, where A € R% " projects the input dimension
down to a lower rank 7, and B € R"*%u projects
it back up, effectively creating a bottleneck that
captures the most significant transformations. The
hyperparameter «, typically set inversely propor-
tional to the rank 7, scales the impact of this low-
rank update on the output.

Recent enhancements to LoRA have signifi-
cantly broadened its capabilities. For instance,
QLoRA (Dettmers et al., 2023) optimizes LoRA
for the fine-tuning of quantized models, thereby
increasing efficiency. ReLoRA (Lialin et al.,
2023) incorporates a warm-up strategy during pre-
training to boost adaptability. LoraHub (Huang
et al., 2024) streamlines the process by automating
the creation of custom LoRA modules for specific
tasks. Additionally, GLoRA (Chavan et al., 2023)
introduces a prompt module that fine-tunes weights
and biases, enhancing performance across a variety
of applications.

Despite these advancements, LoRA still faces
significant memory overhead due to the high acti-
vation memory usage in LoRA layers during the
fine-tuning phase. To address this issue, LoRA-
FA (Zhang et al., 2023) strategically freezes the
low-rank A matrix and updates only the B ma-
trix. This approach significantly reduces the num-
ber of trainable parameters and activation mem-
ory, thus enhancing the efficiency of fine-tuning
large language models without substantially im-
pacting performance. However, LoRA-FA does
not adequately decrease the total number of param-
eters that need to be stored, presenting a consid-
erable challenge in contexts where computational
resources and storage are constrained. Addition-
ally, by freezing the A matrix, LoORA-FA limits

) (2 (=
) () X
ER AN e

ShareA ShareB ShareAB

Frozen

j |:| Trainable
B |:| Trainable & Sharing

W R

/éhared A
Tj

Query Key Value

Figure 1: Overview of ShareLoRA: The implementation of ShareA, ShareB, and ShareAB across all layers (left),
including ShareA applied across self-attention layers (right).

the model’s capacity to adapt and learn from new
data during fine-tuning. This rigidity can hinder the
model’s performance, particularly in complex or
domain-specific tasks. Compared with LoRA-FA,
our approach ShareLoRA offers a more dynamic
and flexible strategy by allowing either matrix A
or B, or both, to be shared across different lay-
ers. This method not only preserves the model’s
adaptability but also further reduces the memory
requirements. We will show the details of it in the
following paragraphs.

3 Approach

In this section, we provide a detailed description of
our proposed PEFT approach ShareLoRA, as illus-
trated in Figurel. ShareLoRA facilitates flexible
configurations through two primary dimensions: 1)
the choice of sharing between the matrices A, B,
or both A and B (ShareA, ShareB, and ShareAB),
and 2) the scope of sharing, which can be across
different layers such as self-attention layers. This
framework allows for a variety of combinations,
enabling tailored adaptation of low-rank models to
specific tasks.

ShareA Configuration In the ShareA configu-
ration, the low-rank matrix A is uniformly shared
across all layers, with each layer employing its own
unique matrix B;. The formula for weight adapta-
tion in each layer ¢ can be expanded to detail the
influence on model transformation:

AW, = aAB; = « Z A. 1By)
k=1

where A. . represents the k-th column of A, and
By, . ; is the k-th row of matrix B;. This equation
shows that each layer’s weight change, AW, is a
linear combination of the columns of A weighted

by the corresponding elements of B;. This shared
projection-down matrix A reduces the dimensional-
ity uniformly across all layers, thereby minimizing
redundancy in learning and memory usage while
enabling tailored output transformations through
layer-specific matrices B;.

ShareB Configuration In the ShareB configura-
tion, matrix B is uniformly shared across all layers,
while each layer employs its own unique matrix A;.
The weight adjustment for each layer is expressed
as:

-
AWi = OéAiB =« Z Az‘,:,kBk,: (3)
k=1
where A; . ;, denotes the k-th column of matrix A;
for layer ¢, and By, . represents the k-th row of the
shared matrix B. Here, the uniform projection-up
matrix B ensures consistent expansion of the trans-
formed data back to the output dimension across
all layers, while the distinct A; matrices allow for
adaptation to the specific input characteristics of
each layer.

ShareAB Configuration When both matrices A
and B are shared across all layers, the change in
weights is simplified, leading to substantial param-
eter reduction:

AW = aAB = « Z A, 1By, 4)
k=1

where both A. ;, and By, . are shared across all lay-
ers. This configuration significantly reduces the
model complexity by eliminating the need for dis-
tinct matrices in each layer, thus reducing memory
requirements and computational overhead. The en-
tire model operates under a uniform transformation
schema, which simplifies training and storage but
requires careful calibration of the initial values and

ongoing adjustments during fine-tuning to preserve
model effectiveness across diverse tasks.

Sharing Across Self-Attention Layers In the
ShareA configuration of ShareLoRA applied to
PLMs across all self-attention layers, the matrices
Ag, Ak, and Ay are shared. These matrices are
responsible for reducing the dimensionality of the
inputs for Queries (Q), Keys (K), and Values (V)
respectively, we term it as ShareA 1, in the follow-
ing paragraphs. The process for each component
in the ¢-th self-attention layer is formalized as fol-
lows:

Qi = X;AgBg, 5
K; = X; Ak By, (6)
Vi = X; Ay By, (7N

NZ

KT
Attention(Q;, K;, V;) = softmax (QZ L) Vi,

®)

where X; denotes the input to the i-th self-attention
layer. Each matrix Ag, Ak, and Ay facilitates a
consistent reduction in input dimensions across all
layers, which simplifies the model architecture by
maintaining a uniform approach to processing the
foundational aspects of self-attention. The unique
matrices Bg,, B,, and By, for each component
allow for tailored transformations that meet the
specific needs of each self-attention layer.

4 Experiments

In our study, we conduct a comprehensive evalua-
tion of the downstream performance of ShareLoRA
across several series models, including RoOBERTa
(Liu et al., 2019) and GPT-2 (Radford et al., 2019).
We benchmark these results against other estab-
lished approaches such as LoRA (Hu et al., 2021),
LoRA-FA (Zhang et al., 2023), on NLU and NLG
tasks. Additionally, we extend the application of
SharelLoRA to large-scale model in both LLaMA
(et.al, 2023b) and LLaMAZ2 (et.al, 2023a) archi-
tectures, particularly in few-shot, zero-shot scenar-
10s. Furthermore, our experiments cover a range
of model sizes, from 7 billion to 13 billion parame-
ters, and included both quantized and unquantized
model variants. All tests were performed on the
Nvidia A6000 and RTX 3090 GPUs.

4.1 Datasets

The experiment datasets are primarily divided into
three categories: Natural Language Understanding

(NLU), Natural Language Generation (NLG) and
few-shot tasks, using the same configuration and
datasets as LoRA (Hu et al., 2021) and (Dettmers
et al., 2023).

For NLU, we employ the GLUE benchmark (Wang
et al., 2019), which includes MNLI, SST-2, MRPC,
CoLA, QNLI, QQP, RTE, and STS-B tasks. No-
tably, for MRPC, RTE, and STS-B tasks, we ini-
tialize the LORA modules with the trained MNLI
checkpoint as (Hu et al., 2021) demonstrated. For
NLG, we replicate experiments similar to those of
LoRA using the E2E challenge dataset (Novikova
et al., 2017), following the same experimental
setup.

Additionally, we expand our experiments to few-
shot and zero-shot tasks on larger models, demon-
strating our approach’s adaptability. Following the
configuration outlined in (Dettmers et al., 2023),
we employ Alpaca (Taori et al., 2023) for LoRA
and ShareLoRA, using the MMLU benchmark
(Hendrycks et al., 2021) for evaluation. Some
other benchmarks like ARC (Chollet, 2019), Hel-
laswrag (Zellers et al., 2019) and GSM8K (Cobbe
et al., 2021) are used for comparison of model
adaptability. All experimental setups are consistent
with those described studies and demonstration of
their repositories, based on the best of our knowl-
edge.

4.2 Baselines

Full Fine-Tuning (FT) is a commonly used ap-
proach for model adaptation involving with updat-
ing all model’s parameters.

LoRA (Hu et al., 2021) is a technique that intro-
duces a pair of rank decomposition trainable ma-
trices alongside existing weight matrices in neural
networks.

Bitfit is a technique studied by (Zaken et al., 2022)
for updating only a select small subset of biases
parameters, to improve performance on new tasks
while freezing all other pre-trained weights.
PreLayer/Prefix (Li and Liang, 2021b) is a
parameter-efficient technique for customizing large
language models by learning specific activations
after each Transformer layer for designated prefix
tokens, while the main model parameters remain
unchanged.

Adapter as introduced by (Houlsby et al., 2019), in-
volves inserting adapter layers between neural mod-
ules such as the self-attention and MLP modules,
enhancing model flexibility without extensive mod-

Method ‘ # Params | MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
Ry, (FT)* 125.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
Ry, (BitFit)* 0.1M 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
Ry, (AdptP)* 0.3M 87.1+0 94241 885411 60814 93141 902490 715407 89.7+3 844
Ry, (AdptP)* 0.9M 87341 94.7r3 88441 62619 93.0+2 90.6+0 759122 90311 854
Ry, (Prefix)* 0.36M 85.21 93.81 87.25 59.31 90.77 87.75 54.51 88.48 80.9
Ry, (IA3)* 0.06M 83.95 93.92 87.00 59.58 90.88 87.99 71.12 90.30 83.1
Ry, (DoRA)* 0.3M 87.5 95.0 89.7 64.9 92.9 90.6 79.2 91.3 86.4
Ry (LoRA)* 0.3M 87513 95112 89717 634112 93313 90.8.; 86.647 91.5.o 87.2
Ry, (L-FA)* 0.15M 86.8 94.8 90 63.6 92.5 90.1 67.9 89.6 84.4
Rb (ShareA) 0.16M 87.3i'2 95~0i.3 89~9;t.8 63‘8i1,1 92~8j:.18 90~3:t.05 87.1i,5 91‘4i.1 87.2
R (FT)* 335.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9
R, (LoRA)* 0.8M 90.612 96215 909115 682119 949.5 91647 87.4i1; 92612 89.0
R; (L-FA)* 0.4M 90.1 96 90 68 94.4 91.1 86.1 92 88.5
R1 (ShareA) 0.4M 90~7i.1 96.1i‘1 91~1i.8 67.7i1,5 95.1;{;1 91~3i.1 90~3i.3 92~5i.1 89.3
R; (Prefix)* 0.9M 89.30 95.76 88.24 59.01 93.32 88.88 74.01 90.92 849
R; (IA3)* 0.18M 88.63 94.61 86.52 61.15 94.25 89.45 81.23 92.22 86.0
R] (LORA)T 0.8M 90.612 96.2:{:‘5 90.211'0 68.2:‘:1‘9 94.8:{:'3 91.6:{:.2 85.2:‘:11 92.3:‘:‘5 88.6
R; (ShareAB)f 0.03M 90.211 95943 89.71109 62319 94.64 1 89.711 83.0108 90312 870
R1 (ShareB)T 0.4M 90-4i.l 96.0i_3 90~4:t.4 65.81_8 94.6j:_1 91~0:t.1 84.1i1_2 91-4i.2 88.0
R; (ShareA)T 0.4M 90.711 96.1+7 90.015 67.7415 95.0+1 91.3+; 85918 91.8:2 88.6

Table 1: RoBERTay4,. and RoOBERTa;,4. With different adaptation methods on the GLUE benchmark. * indicates
numbers published in prior works. T indicates runs configured in a setup similar to (Houlsby et al., 2019) and (Hu

et al., 2021) for a fair comparison.

ifications. AdapterL (Lin et al., 2020) introduce
adapters only after the MLLP module followed by a
LayerNorm, with AdapterD (Riicklé et al., 2021)
increases efficiency by omitting some adapter lay-
ers.

IA? (Liu et al., 2022) is a PEFT approach that en-
hances model performance by scaling activations
with learned vectors.

DoRA (Mao et al., 2024) introduces a method for
decomposing layers into single-rank structures that
can be dynamically pruned during training.
LoRA-FA (Zhang et al., 2023) is a memory-
efficient approach to fine-tuning large language
models by reducing the activation memory re-
quired.

QLoRA (Dettmers et al., 2023) utilizes a frozen,
4-bit quantized pretrained model and LoRA for
efficient gradient propagation.

5 Main Results
5.1 GLUE Benchmark

ShareA outperforms LoRA variants. In Ta-
blel, we present the performance metrics for differ-
ent versions of ShareLoRA—ShareA, ShareB, and
ShareAB—alongside a baseline comparison with
previously published work using RoBERTa-base
and RoBERTa-large models.

For the RoBERTa-base model, ShareA demon-

strates its strengths on datasets such as MRPC,
CoLA, and RTE, where we notice performance im-
provements between 0.2% to 0.5%. This enhance-
ment is noteworthy especially, under the same train-
ing specifications (Hu et al., 2021), these datasets
have reached full convergence and are prone to
overfitting.

ShareA is adaptable and robust. In tasks such
as MRPC, RTE, and STS-B, both ShareLoRA and
LoRA utilize the best MNLI checkpoint derived
from multiple seeds and applies these checkpoints
effectively on other tasks, demonstrating superior
adaptability and performance enhancement com-
pared to using LoRA alone once convergence is
achieved. This adaptability highlights the poten-
tial of ShareLoRA in generalizing well across con-
verged datasets.

ShareLLoRA also has a marginal decline in perfor-
mance as observed on the MNLI, QNLI, and QQP
datasets compared to LoRA in Tablel. Due to the
large size of datasets, both LoRA and ShareLoRA
are not fully converged under the configurations
as described in (Hu et al., 2021). However, it is
crucial to highlight that even with the reduced per-
formance on MNLI checkpoint, the adaptive tasks
such as MRPC and RTE, still show better perfor-
mance, underscoring the robustness of ShareLoRA,
effectively preventing overfitting and optimizing

Method ‘ # Params | BLUE NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2 M (AdapterL)* 0.37M 66.3 8.41 45.0 69.8 2.40
GPT-2 M (AdapterL)* 11.09M 68.9 8.71 46.1 71.3 2.47
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M 69.547 8.744098 46.564 9 71.514+ 3 2.504 01
GPT-2 M (ShareB) 0.20M 67.147 8554099 451244 69.454 ¢ 2.37+01
GPT-2 M (ShareA) 0.20M 69.7L4 8.75105 46.60. 1 71.63+1 251401
GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 2.45
GPT-2 L (AdapterL)* 0.88M 69.1 8.68 46.3 71.4 2.49
GPT-2 L (AdapterL)* 23.00M 68.9 8.70 46.1 71.3 2.45
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.3 71.7 2.47
GPT-2 L (LoRA) 0.77M 69.844 8.80194 46.69. 7 71.714+ 3 2.521 01
GPT-2L (ShareB) 0.39M 69.7:5:,2 8.80:‘:.01 46417:|:,3 70494:|:,5 2.49:5:_02
GPT-2 L (ShareA) 0.39M 70.0L1 8.83103 46.604; 71.744 1 2.524 092

Table 2: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG Challenge. For all
metrics, higher is better. LORA ShareA outperforms several baselines with comparable or fewer trainable parameters.

* indicates numbers published in prior works.

performance outcomes.

ShareA outperforms ShareB. Experiments con-
ducted with the RoOBERTa-large model on ShareA,
ShareB, and ShareAB reveal that ShareA gener-
ally outperforms ShareB in various tasks and both
ShareA and ShareB show superior results over
ShareAB. Compared to LoRA, ShareA demon-
strates increased stability with less fluctuation in
the confidence intervals across the majority of tasks
in Tablel, emphasizing ShareLoRA’s advantage in
providing consistent and reliable performance en-
hancements.

Parameter Efficiency of ShareLoRA Addition-
ally, our shared approach significantly reduces
the number of trainable parameters compared to
LoRA and other approaches. Employing a similar
number of trainable parameters as LoRA-FA, but
ShareLoRA achieves enhanced performance across
all datasets.

Overall, the distinct advantages of ShareLoRA, par-
ticularly in terms of its efficiency, robustness, and
adaptability to different NLU tasks leading to su-
perior performance. ShareLoRA produces a com-
pelling balance between performance and compu-
tational efficiency.

5.2 E2E Challenge

ShareA outperforms LoRA in NLG. In Table2,
we utilize the configuration previously outlined in
(Hu et al., 2021) with GPT-2 medium and large
for E2E NLG tasks, showcasing the superiority of
SharelLoRA in generative tasks. Our results indi-

cate that ShareLoRA achieves a consistent perfor-
mance improvement over LoORA across all evalu-
ated metrics for the GPT-M model. When employ-
ing the GPT-large model, ShareLoRA demonstrates
slightly better performance than LoRA, given that
ShareL.oRA utilizes only half the training param-
eters of LoORA, achieving a performance improve-
ment of 0.1% to 0.2% over LoRA.

LoRA B is more important than A. Further-
more, both LoORA and ShareA outperform ShareB
in generative tasks across all metrics. Within
the LoRA framework, the significance of the up-
projection matrix B is evident as it crucially aug-
ments the dimensionality of the low-rank represen-
tation. The strategic choice to share component A
rather than B in ShareLoRA proves advantageous,
as it expansion the intermediate dimension is more
important and difficult than squeezing the high di-
mension features in complex generation tasks.

5.3 LLaMA on MMLU

ShareA and ShareA ., outperform LoRA. In
Table3, the scalability and efficacy of ShareA
are assessed by examining its performance on
larger models ranging from 7B to 13B parame-
ters. Through fine-tuning on the Alpaca dataset
and employing the 5-shot MMLU benchmark as
specified by (Dettmers et al., 2023), Share A demon-
strates notable enhancements in generative capabil-
ities compared to GPT-2 and RoBERTa.Focusing
exclusively on ShareA rather than ShareB, the re-
sults from different linear components indicate that

Method | #Params | MMLU || Method | #Params | MMLU
LLaMA 7B * 6738.4M 35.1 LLaMA 13B * 13015M 46.9
LLaMA 7B (LoRA)* 159.9M 40.67 LLaMA 13B (LoRA)* 250.3M 47.49
LLaMA 7B (LoRA) 159.9M | 41.65.1¢ || LLaMA 13B (LoRA) 250.3M | 47.60114
LLaMA 7B (ShareAg,) | 1355M | 41.01408 | LLaMA 13B (ShareAg,) | 212.0M | 48.76.407
LLaMA 7B (ShareA) 89.3M 40.93405 || LLaMA 13B (ShareA) 139.1M 48.1540.5
LLaMA2 7B * 6898.3M 45.7 LLaMA2 13B * 13266M 53.8
LLaMA2 7B (LoRA) 159.9M 4747111 || LLaMA2 13B (LoRA) 250.3M 55.3140.2
LLaMA2 7B (ShareAy,) | 135.5M 47.8840.1 || LLaMA2 13B (ShareAy,) | 212.0M | 55.6640.1
LLaMA2 7B (ShareA) 89.3M 48.19.0.4 || LLaMA2 13B (ShareA) 139.1M 55.5310.3

Table 3: LLaMA and LLaMAZ2, ranging from 7B to 13B, are fine-tuned using different sharing approaches on
the Alpaca datasets and evaluated on the MMLU 5 shot benchmark. The configuration runs is based on the setup
described in (Dettmers et al., 2023).* indicates numbers published in prior works, reported by (Xu et al., 2023).

LLaMA models, particularly the 13B and both the
7B and 13B versions of LLaMA?2, outperform stan-
dard LoRA with improvements of approximately
1.1%, 0.7%, and 0.4%, respectively. Moreover,
ShareA 41, further improves performance by 0.6%
for the LLaMA 13B model over ShareA, while
ShareA outperforms ShareA;, by 0.3% for the
LLaMAZ2 7B model. The closely matched perfor-
mance between ShareA ., and ShareA across other
models suggests a high convergence and potential
overfitting risks, as discussed in Appendix 5.3 and
Figure4, with the LLaMA 7B model showing sta-
ble yet under-converged performance according to
prior research (Xu et al., 2023).

Memory Footprint Consumption In the con-
text of smaller models like RoBERTa and GPT-2,
ShareA yields minimal parameter savings, which is
negligible given modern GPU capacities. Howeyver,
with larger models like LLaMA, ShareA demon-
strates more substantial reductions. Specifically,
the LLaMA 7B and 13B models cut down approxi-
mately 60 million and 110 million trainable param-
eters, respectively, when compared to the LoRA
architecture. This leads to substantial efficiency
gains, reducing both computational footprint and
disk storage needs. As depicted in Figure2 in the
Appendix, ShareA achieves a memory footprint
reduction of 1.8GB and approximately a 2% in-
crease in training speed, while ShareAB can save
around 4GB with 4% training speed up. The con-
fidence intervals in Table3 illustrate that ShareA
not only improves performance but also increases
robustness over standard LoRA, underscoring the
practical advantages of ShareLoRA in LLMs.

5.4 Zero Shot of ShareA

The effectiveness of ShareA in enhancing gen-
erative capabilities is evaluated using both zero-
shot and five-shot settings on the Im-eval-harness
leaderboard (Gao et al., 2023), focusing on tasks
like MMLU, ARC Challenge, Hellaswarg, and
GSMSK. Results highlight ShareA’s strength in
zero-shot learning across various LoRA-configured
tasks. ShareA particularly improving performance
on domain-specific tasks such as GSM8K that in-
volve mathematical reasoning. This demonstrates
ShareA’s robust adaptability and superior perfor-
mance compared to other models, including the
LLaMA 7B, which, despite its strong performance
in MMLU as discussed in section 5.3, shows lim-
ited adaptability in varied tasks like ARC (c) and
GSMSK. Overall, ShareA’s consistency across dif-
ferent domains underscores its effectiveness.

5.5 Quantized ShareLoRA

The detailed experiments conducted on training
QLoRA for Quantized LLaMA models demon-
strate that the QShareA method exhibits better
performance compared to QLoRA in general, as
shown in the Table5. Despite a reduction in the
number of training parameters, both QShareA and
QShareA 1, maintain robust and stable in the per-
formance.

Even though, the original weight is quantized and
the number of training parameter is further re-
duced, the performance is not compromised for
both QShareA and QShareA,. It reveals that
the quantization strategies effectively combined
with our shared approach without sacrificing out-
put quality.

Method

| MMLU ARC (¢) Hellaswarg GSMSK

LLaMA 7B (LoRA) 41.28 48.49 76.74 243
LLaMA 7B (ShareA) 40.67 48.82 76.67 3.16
LLaMA 13B (LoRA) 45.02 51.34 79.46 5.79
LLaMA 13B (ShareA) 46.04 51.19 79.53 6.17
LLaMA2 7B (LoRA) 45.68 49.60 77.14 3.21
LLaMA?2 7B (ShareA) 47.09 50.14 76.77 6.06
LLaMA?2 13B (LoRA) 53.21 51.28 76.59 12.33
LLaMA?2 13B (ShareA) | 53.70 52.48 79.43 14.99

Table 4: Selected the optimal checkpoint based on performance in the five-shot MMLU and evaluated using a
zero-shot on MMLU, ARC Challenge, and Hellaswarg, along with a five-shot on GSM8K using the Im-eval-harness

leaderboard (Gao et al., 2023).

| #Params | MMLU (5)

Method | #Params | MMLU (5) || Method
LLaMA 7B (QLoRA)* 79.9M 38.8

LLaMA 7B (QLoRA)* 79.9M 39.96

LLaMA 7B (QLoRA) 799M | 40.63+0.9

LLaMA 7B (QShareAg,) | 67.7M | 40.63£0.5

LLaMA 7B (QShareA) 446M | 41.114+0.2

LLaMA 13B (QLoRA)* 125.2M 47.8
LLaMA 13B (QLoRA)* 125.2M 47.29
LLaMA 13B (QLoRA) 125.2M 47.13+£0.9
LLaMA 13B (QShareAy,) | 106.0M | 47.36 +0.7
LLaMA 13B (QShareA) 69.5M 47.17+0.8

Table 5: The performance comparison of LLaMA 7B and 13B with QLoRA and QShareA under the same
configuration of (Dettmers et al., 2023), * is similar experiment results collected from prior work (Xu et al., 2023)

6 Analysis
6.1 Sharing Attention QKYV or Sharing All

The distinction between sharing the self-attention
mechanism and all linear modules exists on MLP
components like gates and up/down projections,
which are suitable for LoRA techniques despite
being non-square matrices. This leads to a dis-
crepancy in trainable parameters between LoRA’s
A and B. The strategic choice involves deciding
whether to uniformly share weights across all lay-
ers (ShareA) or selectively share them, such as only
for the down projection (ShareAB) while maintain-
ing unique weights for other components like the
up projection and gates. Preliminary results in
Appendix Figure 4 suggest that selective sharing,
particularly of the QKV matrices in Sharey,,, pro-
vides an effective balance by aligning closely with
both ShareA and LoRA , potentially mitigating
overfitting risks.

6.2 Singular Value Decomposition across
Layers

As shown in the Figure 6 in Appendix, we ap-
ply Singular Value Decomposition (SVD) to the
LLaMA 13B both LoRA and ShareA weights. The
singular value distributions for the LLaMA 13B
model’s LoRA and ShareA weights reveals distinct
patterns in their decay rates across layers. The

LoRA weights exhibit a sharp decrease in singular
values, indicating a concentration of information in
a few dominant components, which might lead to
specialization and potential overfitting. In contrast,
the ShareA weights show a smoother and more
gradual decrease, suggesting a more balanced dis-
tribution of information among components. This
balanced distribution likely enhances the Share A
model’s adaptability and generalization capability
across different tasks.

7 Conclusion

In this paper, we introduce ShareLoRA, a modifica-
tion of the LoRA architecture that shares either the
up or down projection across different layers. The
ShareA variant significantly reduces the number of
trainable parameters by about half relative to the
original LoRA and shows improved performance
on fully converged datasets. Through extensive
experimentation with NLU, NLG, and zero-shot
tasks on models varying from millions to billions
of parameters, ShareA provides an optimal balance
between computational efficiency and robust per-
formance. By sharing all linear components or fo-
cusing solely on self-attention mechanisms, ShareA
potentially reduces overfitting risks while main-
taining high adaptability and effectiveness across
various domains.

8 Limitation

The limitations of ShareLoRA are primarily in
its convergence speed and practical applications.
ShareAB and ShareB tend to converge more slowly
compared to LoRA, though ShareA shows a con-
vergence rate that is largely competitive with LoORA
on smaller datasets, with only a slight lag on larger
datasets. This indicates that ShareA is quite adept
at easily converged datasets and effectively mitigat-
ing near-overfitting scenarios.

Regarding the practical application of GPUs,
ShareLoRA introduces some complexities in the
parallel training process on multiple GPUs. This
is primarily due to the need for consistent synchro-
nization of the Shared Module, once it is replicated
across various GPUs at every computational step.

References

Tom B. Brown and Benjamin Mann et.al. 2020. Lan-
guage models are few-shot learners.

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing,
and Zhiqgiang Shen. 2023. One-for-all: Generalized
lora for parameter-efficient fine-tuning.

Frangois Chollet. 2019. On the measure of intelligence.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Raj Dabre, Atsushi Fujita, and Chenhui Chu. 2019.
Exploiting multilingualism through multistage fine-
tuning for low-resource neural machine translation.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP), pages 1410—
1416, Hong Kong, China. Association for Computa-
tional Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-

ing.

Chowdhery et.al. 2022. Palm: Scaling language model-
ing with pathways.

Touvron et.al. 2023a. Llama 2: Open foundation and
fine-tuned chat models.

Touvron et.al. 2023b. Llama: Open and efficient foun-
dation language models.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.

Shwai He, Run-Ze Fan, Liang Ding, Li Shen, Tianyi
Zhou, and Dacheng Tao. 2023. Mera: Merging pre-
trained adapters for few-shot learning.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing.

Jordan Hoffmann and Sebastian Borgeaud et.al. 2022.
Training compute-optimal large language models.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2024. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua
Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vin-
cent Y Zhao, Yuexin Wu, Bo Li, Yu Zhang, and Ming-
Wei Chang. 2023. Conditional adapters: Parameter-
efficient transfer learning with fast inference. In
Thirty-seventh Conference on Neural Information
Processing Systems.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2306.07967
http://arxiv.org/abs/2306.07967
http://arxiv.org/abs/2306.07967
http://arxiv.org/abs/1911.01547
https://doi.org/10.18653/v1/D19-1146
https://doi.org/10.18653/v1/D19-1146
https://doi.org/10.18653/v1/D19-1146
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2308.15982
http://arxiv.org/abs/2308.15982
http://arxiv.org/abs/2308.15982
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2203.15556
https://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2307.13269
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=IyYyKov0Aj
https://openreview.net/forum?id=IyYyKov0Aj
https://openreview.net/forum?id=IyYyKov0Aj
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243

pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021a. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021b. Prefix-tuning:
Optimizing continuous prompts for generation.

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-
atira, and Anna Rumshisky. 2023. Relora: High-rank
training through low-rank updates.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2020. Exploring versatile generative language model
via parameter-efficient transfer learning.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-

vances in Neural Information Processing Systems,
35:1950-1965.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks.

Yulong Mao, Kaiyu Huang, Changhao Guan, Ganglin
Bao, Fengran Mo, and Jinan Xu. 2024. Dora: En-
hancing parameter-efficient fine-tuning with dynamic
rank distribution. arXiv preprint arXiv:2405.17357.

Jekaterina Novikova, Ondiej Dusek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers.

10

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stan-
ford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding.

BigScience Workshop, :, Teven Le Scao, and An-
gela Fan et.al. 2023. Bloom: A 176b-parameter
open-access multilingual language model.

Yuqing Xie, Wei Yang, Luchen Tan, Kun Xiong,
Nicholas Jing Yuan, Baoxing Huai, Ming Li, and
Jimmy Lin. 2020. Distant supervision for multi-stage
fine-tuning in retrieval-based question answering. In
Proceedings of The Web Conference 2020, WWW
’20, page 2934-2940, New York, NY, USA. Associa-
tion for Computing Machinery.

Lingling Xu and Weiming Wang. 2023. Improving
aspect-based sentiment analysis with contrastive
learning. Natural Language Processing Journal,
3:1000009.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language models:
A critical review and assessment.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2307.05695
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/2004.03829
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/2106.04489
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
http://arxiv.org/abs/1706.09254
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2010.11918
http://arxiv.org/abs/2010.11918
http://arxiv.org/abs/2010.11918
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1145/3366423.3380060
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
https://doi.org/10.1016/j.nlp.2023.100009
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2308.03303
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

A Hyperparameters

Peak Memory Consumption

ShareAB LoRA-FA ShareA LoRA

45000

42500

40000

Memory (MB)

37500

35000

Figure 2: Peak Memory Consumption required for train-
ing LLaMA 13B

In our study, we limits the extent of hyperparam-
eter optimization in order to maintain consistency
with prior research (Hu et al., 2021; Dettmers et al.,
2023; Mahabadi et al., 2021; Gao et al., 2023), fa-
cilitating a direct comparison. Furthermore, we
aims to investigate the behaviors of underfitting
and overfitting across different scenarios using the
LoRA and ShareLLoRA approaches applied to vari-
ous model size.

Specifically, under the current training setup,
both LoRA and ShareL.LoRA exhibit signs of non-
convergence when applied to the LLaMA 7B
model. On the other hand, LoRA demonstrates
clear overfitting when used with the LLaMA?2 13B
model, suggesting that the model training has gone
beyond the point of optimal generalization.

For the models LLaMA 13B and LLaMA 2 7B,
their performances are comparable. Both models
reach a point of convergence and display fluctua-
tions around this state, indicating that they are fully
trained. It helps us understand the differing impacts
of LoRA and ShareLoRA on these models under a
set of reasonable training configurations.

The hyperparameter setting for RoOBERTa is in
Table 7 and for LLaMA are in Table 8 and 9. The
number of trainable parameters in Table 5, should
remain consistent between QLoRA and LoRA for
LLaMA 7B and 13B in Table 3, as both models
utilize BFloat16. However, the reduced number of
trainable parameters is influenced by the implemen-
tation described in (Dettmers et al., 2023), which
reduces the trainable parameters by half when quan-
tizing to 4 bits. This is also reported the same by
(Xu et al., 2023), and we maintain this parameter
count to ensure consistency.

We conducted five experiments with Roberta and

11

GPT-2, and three experiments for all tasks related
to LLaMA using different seeds. The results pre-
sented are all averages.

B LLaMA Performance Analysis

In Figures 3 and 4 , we present the Dev Set per-
formance changes for both LLaMA and LLaMA2
models, ranging from 7B to 13B, to observe the
differences in performance over steps. The results
demonstrate that ShareA and ShareA ;;,, configu-
rations offer several advantages over their counter-
parts, as discussed in Section 6.1.

For both the 7B and 13B models, ShareA and
ShareA i, configurations maintain higher average
accuracy compared to the traditional LoRA setup.
Specifically, ShareA demonstrates consistent per-
formance improvements, particularly in the stabil-
ity of accuracy over different steps. This indicates
that ShareA is more robust and less prone to fluctu-
ations compared to LoRA.

The analysis in Figure 3 further enriches our re-
sults by incorporating confidence intervals which
map the performance stability of LoORA, QLoRA,
ShareA, and QShareA. From these plots, it is ev-
ident that while LoRA occasionally outperforms
QLoRA, the overall performance trends of LoORA
and QLoRA are closely aligned in LLaMA 7B. In
particular, for the LLaMA 13B, the performance
of ShareA and QShareA after 5000 steps is com-
pletely superior than LoRA and QLoRA. It is cru-
cial to highlight that both LoRA and QLoRA dis-
play larger fluctuations in performance compared
to ShareA and QShareA, underscoring a potentially
greater variability in model outcomes across differ-
ent experimental seeds.

C Convergence Analysis

In Figure 5, we analyze the convergence trends
across both the MNLI and CoL A datasets for the
RoBERTa-large model, demonstrating differing be-
haviors among the sharing strategies and others.
Notably, while ShareA begins with slightly lower
performance compared to LoRA, it progressively
matches LoRA’s accuracy on the MNLI dataset.
ShareB and ShareAB, in contrast, consistently un-
derperform relative to both LoRA and ShareA. This
pattern is similarly observed with the CoLLA dataset,
where ShareA’s performance is robust, closely com-
peting with LoRA. Both ShareB and ShareAB are
worse than LoRA alone.

LLaMA 7B

Accuracy

0.35

1000 2000 3000 4000 5000 6000 7000

Steps

LLaMA 7B

Accuracy

1000 2000 3000 4000 5000 6000 7000

Steps

Accuracy

8000 9000 10000

Accuracy

8000 9000 10000

0.475

047

0.465

0.46

1000

0.485

0.475

047

0.465

0.46

0.455
1000

LLaMA 13B

LoRA
ShareA

2000 3000 4000 5000 6000 7000 8000 9000 10000

Steps

LLaMA 13B

QLoRA
QShareA

2000 3000 4000 5000 6000 7000 8000 9000 10000

Steps

Figure 3: LLaMA 7B & 13B on LoRA / ShareA (upper) and on QLoRA / QShareA (down) MMLU Dev Performance
with the standard deviation error distribution of different seeds

MMLU Dev Accuracy for Llama 7B-Alpaca (LoRA, ShareLoRA)

MMLU Dev Accuracy for Llama 13B-Alpaca (LoRA, ShareLoRA)

0.42 0.51
0.41 Z 0.50+
0.40 0.49+
> >
@ 0.39 E 0.48 \]
> 3
&Lﬁ 0.38 ;d 0.47 1
0.37 —— LoRA 0.46 1 —— LoRA
0.36 ShareA QKV 0.45/ ShareA QKV
—— ShareA —— ShareA
0.35 v ; v v . 0.44 ! ! | : :
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Steps Steps
MMLU Dev Accuracy for Llama2 7B-Alpaca (LoRA, ShareLoRA) MMLU Dev Accuracy for Llama2 13B-Alpaca (LoRA, ShareLoRA)
0.50 0.58
—— LoRA
0.57 1 ShareA QKV
0.48 —— ShareA
0.567
9 3z
£ 0.46 AP £ 055
> U 5 U.oo7
2 —
g g =
0.54 1
0.44 — LoRA
ShareA QKV 0531
—— ShareA
0.42 v y y " ! 0.52 y y V " i
2000 4000 6000 8000 10000 ' 2000 4000 6000 8000 10000
Steps Steps

Figure 4: Average Performance Plot for Various LLaMA Models on the Alpaca-MMLU Dev Dataset

At the same time, LoRA-FA only reaches per-

12

formance levels comparable to ShareB, lagging

Convergence Peformance for Roberta-large on MNLI

/\/Sha;

0.910

0.905 -

0.900 -

Accuracy
o
co
o
w

0.890 -

ShareB
0.885 | —— ShareAB
—— LoRA-FA
0.880 — . . : ‘ :
0 1 2 3 4 5 6 7 8 9
Epochs
MNLI Training Loss
—— LoRA
1.0 —— ShareA
—— ShareB
0.8 —— ShareAB
@ —— LoRA-FA
So06
0.4
0.2
0 20000 40000 60000 80000 100000 120000
Steps
MNLI Testing Loss
0.31
0.30
% 0.29 —
—— LoRA
028 —— ShareA
. —— ShareB
—— ShareAB
0271 i ‘ : ‘
0 2 6 8

EpE)chs

Accuracy

4
o
o

0.40 -
0.35 4

0.30

0.6

0.2

Convergence Peformance for Roberta-large on ColLA

° e o o
O T
nw o O o

LoRA
ShareA
ShareB
ShareAB
LoRA-FA

012 3456 7 8 9 1011121314151617 18 19

Epochs

ColLA Training Loss

LoRA

ShareA
ShareB
ShareAB
LoRA-FA

« A
AU

3000 4000 5000

Steps

0 1000 2000

CoLA Testing Loss

o0 25 5.0 75 10.0 125

Epochs

Figure 5: Convergence Performance for MNLI and CoL A datasets

behind both ShareA and LoRA. This suggests
that ShareA not only sustains competitive conver-
gence capabilities but also outperforms LoRA-FA
in terms of robustness and eventual alignment with
LoRA’s top performance.

In term of training loss, all models exhibit a sim-
ilar declining trend over the training epochs. How-
ever, ShareA distinguishes itself by slightly lagging
behind LoRA initially in terms of speed of con-
vergence but substantial surpassing both ShareB
and LoRA-FA overall. This differential suggests
that ShareA offers a balanced approach, effectively
managing a slower initial convergence for consis-
tent long-term gains.

13

Num of Layers

3836343230282624222018161412108 6 4 2 O

02 46 81012141618202224262830323436384042444648505254 56586062
sorted singular

Sorted singular

i i 0.6
]]
E E 0.4
]] 0.3
: :
; ; 0.1
7\ 7|

02 46 8101214161820222426283032343638404244 46485052 5456586062

Figure 6: Distribution of Singular Values for LLaMA 13B: SVD Decomposition Analysis of LoRA (left) and

ShareA (right) across All Layers.

Method Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B
Optimizer AdamW
‘Warmup Ratio 0.06
LR Schedule Linear
Batch Size (per device) 16 16 16 32 32 16 32 16
Epochs 30 60 30 80 25 25 80 40
RoBERTa base Learning Rate SE-04 5E-04 4E-04 4E-04 4E-04 5E-04 5E-04 4E-04
ShareLoRA LoRA Config. Tq =Ty =38
LoRA « 8
Max Seq. Len. 512
seed 0,1,2,34
Batch Size (per device) 4
Epochs 10 10 20 20 10 20 20 10
RoBERTa large Learning Rate 3E-04 4E-04 3E-04 2E-04 2E-04 3E-04 4E-04 2E-04
ShareLoRA 1 LoRA Config. Tq =Ty =38
LoRA « 8
Max Seq. Len. 512
seed 0,1,2,34

Table 6: Configuration and training details for ROBERTa base LoRA on different datasets.

Dataset E2E Challege
Optimizer AdamW
Weight Decay 0.01
Dropout Prob 0.1
Batch Size (per device) 8
Epochs 5
Warmup Steps 500
Learning Rate Schedule Linear
Label Smooth 0.1
Learning Rate 0.002
Adaptation Tq =Ty =4
LoRA « 32
Beam Size. 10
Length Penalty 0.9
no repeat ngram size 4

Table 7: Configuration and training details for GPT-2 LoRA on E2E Challenge

14

Parameters Batchsize LR Steps Source Length Target Length LoRAr LoRA «
7B 16 2e-4 10000 384 128 64 16
13B 16 2e-4 10000 384 128 64 16

Table 8: Training hyperparameters for LLaMA and QLLaMA.

Parameters MMLU Source Length Temperature Top P Beam size

7B 2048 0.7 0.9 1
13B 2048 0.7 0.9 1

Table 9: Evaluation hyperparameters for LLaMA and QLLaMA.

15

