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Abstract

Pretrained foundation models (FMs) have exhibited extraordinary in-context learning per-
formance, allowing zero-shot (or few-shot) generalization to new environments/tasks not en-
countered during the pretraining. In the case of reinforcement learning (RL), in-context RL
(ICRL) emerges when pretraining FMs on decision-making problems in an autoregressive-
supervised manner. Nevertheless, the current state-of-the-art ICRL algorithms, such as
Algorithm Distillation, Decision Pretrained Transformer and Decision Importance Trans-
former, impose stringent requirements on the pretraining dataset concerning the behavior
(source) policies, context information, and action labels, etc. Notably, these algorithms
either demand optimal policies or require varying degrees of well-trained behavior policies
for all pretraining environments. This significantly hinders the application of ICRL to real-
world scenarios, where acquiring optimal or well-trained policies for a substantial volume of
real-world training environments can be prohibitively expensive or even intractable. To over-
come this challenge, we introduce a novel approach, termed State-Action Distillation (SAD),
that allows to generate an effective pretraining dataset guided solely by random policies. In
particular, SAD selects query states and corresponding action labels by distilling the out-
standing state-action pairs from the entire state and action spaces by using random policies
within a trust horizon, and then inherits the classical autoregressive-supervised mechanism
during the pretraining. To the best of our knowledge, this is the first work that enables ef-
fective ICRL under (e.g., uniform) random policies and random contexts. We also establish
the quantitative analysis of the trustworthiness as well as the performance guarantees of our
SAD approach. Moreover, our empirical results across multiple popular ICRL benchmark
environments demonstrate that, on average, SAD outperforms the best baseline by 236.3%
in the offline evaluation and by 135.2% in the online evaluation.

1 Introduction

Pretrained foundation models (FMs) have demonstrated promising performance across a wide variety of
domains in artificial intelligence including natural language processing (NLP) (Devlin, 2018; Radford, 2018;
Radford et al., 2019; Brown, 2020), computer vision (CV) (Yuan et al., 2021; Sammani et al., 2022; Ma et al.,
2023; Chen et al., 2024b), and sequential decision-making (Chen et al., 2021; Janner et al., 2021; Xu et al.,
2022b; Yang et al., 2023; Light et al., 2024a;b). This success is attributed to FMs’ impressive capability of
in-context learning (Dong et al., 2022; Li et al., 2023; Wei et al., 2023; Wies et al., 2024) which refers to the
ability to infer and understand the new (unseen) tasks provided with the context information (or prompt) and
without model parameters updates. Recently, in-context reinforcement learning (ICRL) (Laskin et al., 2022;
Grigsby et al., 2023; Lin et al., 2023; Sinii et al., 2023; Zisman et al., 2023; Lee et al., 2024; Lu et al., 2024;
Wang et al., 2024; Dong et al., 2024) has emerged when FMs are pretrained on sequential decision-making
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problems. Whereas FMs use texts as the context/prompt in NLP, ICRL treats the state-action-reward tuples
as the contextual information for decision-making.

However, the current state-of-the-art (SOTA) ICRL algorithms impose strict requirements on the pretraining
datasets. More specifically, Algorithm Distillation (AD) (Laskin et al., 2022) requires the context to contain
the complete learning history (from the initial policy to the final-trained policy) of the source (or behavior) RL
algorithm for all pretraining environments. In addition, AD requires environments to have short episodes,
allowing the context to capture cross-episodic information. This enables AD to learn the improvement
operator of the source RL algorithm. Conversely, Decision Pretrained Transformer (DPT) (Lee et al., 2024)
partially relaxes the requirement on the context, permitting it to be gathered by random policies and without
needing to adhere to the transition dynamics. Nevertheless, DPT necessitates the optimal policy to label
an optimal action for any randomly sampled query state across all pretraining environments. To explore
the feasibility of ICRL in the absence of optimal policies, Decision Importance Transformer (DIT) (Dong
et al., 2024) proposes to leverage the observed state-action pairs in the context data as query states and
corresponding action labels. Each state-action pair within the context is assigned a weight in the training
process. This weight is proportional to the return-to-go of the pair. Thus, DIT prioritizes the training on
high-return pairs. Despite not demanding optimal policies, DIT still requires a substantial context dataset
to comprehensively cover all state-action pairs from the state and action spaces. Furthermore, DIT still
mandates that more than 30% of the context data comes from well-trained policies to ensure the coverage
of good action labels, and the context should originate from a complete episode.

Notably, acquiring either optimal policies or well-trained policies across a multitude of pretraining environ-
ments in real-world scenarios can be prohibitively expensive or even intractable. On the other hand, the
transition data available in real-world problems—collected as the context—may not originate from a complete
episode. These stringent requirements on the pretraining dataset of the SOTA ICRL algorithms severely
limit their practical applications to the real world, especially for those where the transition data exhibits
high variance to train an effective policy. This work thus aims to relax these requirements by considering an
untrained random policy. Although the random policy cannot solve all decision-making problems, it is worth
noting that the random policy and the optimal policy select the same optimal actions in certain problems,
e.g., the grid world navigation problem (Laskin et al., 2022; Lee et al., 2024; Dong et al., 2024) where the
reward is received only upon reaching the unique goal. In these problems, the optimal action induced by
both policies corresponds to navigating to the goal as quickly as possible. Consequently, this paper centers
on the ICRL that operates without the need for optimal (or any degree of well-trained) policies or episodic
context, placing its emphasis on the scenarios under (e.g., uniform) random policies and random contexts
only. Our applicable domains in this work focus on the multi-armed bandits and the grid world navigation
problems with a single sparse reward received only upon achieving the unique goal.

1.1 Main Contributions

The main contributions of this work are summarized as follows.

• We propose a novel approach termed State-Action Distillation (SAD) to generate the pretraining
dataset of ICRL under random policies. Notably, SAD distills the outstanding state-action pairs
over the entire state and action spaces for the query states and corresponding action labels (refer to
Figure 1), by executing all possible actions under the random policies within a trust horizon.

• To the best of our knowledge, SAD stands as the first method that enables effective ICRL under
(e.g., uniform) random policies and random contexts.

• We establish the quantitative analysis of the trustworthiness as well as the performance guarantees
of our SAD approach. We substantiate the efficacy of SAD by empirical results on several popular
ICRL benchmark environments. On average, SAD significantly outperforms all existing SOTA ICRL
algorithms. More concretely, SAD surpasses the best baseline by 236.3% in the offline evaluation
and by 135.2% in the online evaluation.
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Figure 1: Schematic of the State-Action Distillation approach: i) Collecting the context by using the random
policy to interact with pretraining environments. ii) Sampling a query state randomly from the state space.
iii) Starting from the query state and any action in action space, running trust horizons under the random
policy, and distilling the action label by the action that yields the maximal return. iv) Pretraining foundation
models in a supervised mechanism, which predicts the action label given the context and query state.

2 Related Work

2.1 Offline Reinforcement Learning

In contrast to the unlimited interactions with the environment in online RL, offline RL seeks to learn optimal
policies from a pre-collected and static dataset (Fujimoto et al., 2019; Levine et al., 2020; Kumar et al., 2020;
Kostrikov et al., 2021; Chen et al., 2024a). One of the critical challenges in offline RL is with bootstrapping
from out-of-distribution (OOD) actions (Levine et al., 2020; Kumar et al., 2020; Xu et al., 2022a; Liu et al.,
2024) due to the mismatch between the behavior policies and the learned policies. To address this issue, the
current SOTA offline RL algorithms propose to update pessimistically by either adding a regularization or
underestimating the Q-value of OOD actions.

2.2 Autoregressive-Supervised Decision Making

In addition to the traditional offline RL methods, autoregressive-supervised mechanisms based on the trans-
former architecture (Vaswani, 2017) have been successfully applied to offline decision making domains by
their powerful capability in sequential modeling. The pioneering work in the autoregressive-supervised deci-
sion making is the Decision Transformer (DT) (Chen et al., 2021). DT autoregressively models the sequence
of actions from the historical offline data conditioned on the sequence of returns in the history. During
the inference, the trained model can be queried based on pre-defined target returns, allowing it to generate
actions aligned with the target returns. The subsequent works such as Multi-Game Decision Transformer
(MGDT) (Lee et al., 2022) and Gato (Reed et al., 2022) have exhibited the success of the autoregressive-
supervised mechanisms in learning multi-task policies by fine-tuning or leveraging expert demonstrations in
the downstream tasks.

2.3 In-Context Reinforcement Learning

However, both traditional offline RL and autoregressive-supervised decision making mechanisms suffer from
the poor zero-shot generalization and in-context learning capabilities to new environments, as neither can
improve the policy, with a fixed trained model, in context by trial and error. In-context reinforcement
learning (ICRL) aims to pretrain a transformer-based FM, such as GPT2 (Radford et al., 2019), across a
wide range of pretraining environments. During the evaluation (or inference), the pretrained model can
directly infer the unseen environment and learn in-context without the need for updating model parameters.
The SOTA ICRL algorithms including AD (Laskin et al., 2022), DPT (Lee et al., 2024) and DIT (Dong et al.,
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2024) have demonstrated the potential of the ICRL framework. Nevertheless, each of these methods imposes
distinct yet strict requirements on the pretraining dataset e.g., requiring well-trained (or even optimal)
behavior policies, the context to be episodic and/or substantial, which significantly restrict their practicality
in real-world applications. Accordingly, mastering and executing ICRL under (e.g., uniform) random policies
and random contexts remains a crucial direction and a critical challenge.

3 In-Context Reinforcement Learning

This section introduces the background of ICRL mechanisms and three SOTA ICRL algorithms. We start
by presenting the preliminaries of ICRL.

3.1 Preliminaries

RL problems are generally formulated as Markov Decision Processes (MDPs) (Sutton, 2018). An MDP
can be represented by a tuple τ = (S, A, R, P, ρ), where S and A denote finite state and action spaces,
R : S × A → R denotes the reward function that evaluates the quality of the action, P : S × A × S → [0, 1]
denotes the transition probability that describes the dynamics of the system, and ρ : S → [0, 1] denotes the
initial state distribution.

A policy π defines a mapping from states to probability distributions over actions, providing a strategy that
guides the agent in the decision making. The agent interacts with the environment following the policy π and
the transition dynamics of the system, and then generates an episode of the transition data (s0, a0, r0, · · · ).
The performance measure J(π) is defined by the expected discounted cumulative reward under the policy π

J(π) = Es0∼ρ,at∼π(·|st),st+1∼P (·|st,at)

[ ∞∑
t=0

γtrt

]
. (1)

The goal of RL is to find an optimal policy π∗ that maximizes J(π). It is crucial to recognize that π∗ often
varies across different MDPs (environments). Thus, the optimal policy for standard RL must be re-learned
each time a new environment is encountered. Under this circumstance, ICRL proposes to pretrain a FM
on a wide variety of pretraining environments, and then deploy it in the unseen test environments without
updating parameters in the pretrained model, i.e., zero-shot generalization (Sohn et al., 2018; Mazoure et al.,
2022; Zisselman et al., 2023; Kirk et al., 2023).

3.2 Supervised Pretraining Mechanism

In this subsection, we introduce the methodology behind ICRL–a supervised pretraining mechanism. Con-
sider two distributions over environments Ttrain and Ttest for pretraining and test (evaluation), respectively.
Each environment, along with its corresponding MDP τ , can be regarded as an instance drawn from the
environment distributions, where each environment may exhibit distinct reward functions and transition
dynamics. Given an environment τ , a context/prompt C = {si, ai, ri, s′

i}i∈[n] refers to a sample from a
pretraining context dataset Dtrain(· | τ), i.e., C ∼ Dtrain(· | τ), which are collected through interactions
between a behavior policy and the environment τ (see e.g., Algorithm 1). Notably, Dtrain(· | τ) contains the
contextual information regarding the environment τ . We next consider a query state distribution Dτ

q and a
label policy that maps the query state to the distribution of the action label, i.e., πl : S → ∆al

(A), where
∆al

(·) denotes the probability distribution and al denotes the prediction/output goal of the FM. Then, the
joint distribution over the environment τ , context C, query state sq, and action label al is given by

Ptrain(τ, C, sq, al) = Ttrain(τ) · Dtrain(C|τ) · Dτ
q · πl(al|sq). (2)

ICRL follows a supervised pretraining mechanism. More concretely, a FM with parameter θ (denoted by
Fθ : C × S → ∆(al)) is pretrained to predict the action label al given the context C and query state sq.
To do so, the current literature (Laskin et al., 2022; Lee et al., 2024; Dong et al., 2024) often considers the
following objective function

θ∗ = arg min
θ

EPtrain [l (Fθ(· | C, sq), al)] , (3)
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where l(·, ·) represents the loss function, for instance, negative log-likelihood (NLL) for discrete-action prob-
lems and mean square error (MSE) for continuous-action scenarios. We note that while the current SOTA
ICRL algorithms (AD, DPT, and DIT) adhere to a common objective function equation 3, they differ signif-
icantly in constructing the context, query state, and action label. Furthermore, it is important to highlight
that selecting appropriate action labels in existing ICRL algorithms can be prohibitively expensive. We
discuss this in more detail for each of the ICRL baselines that follow.

Algorithm Distillation. Instead of learning an optimal policy for a specific environment, AD proposes
to learn a RL algorithm itself across a wide range of environments. This is, the FM in AD is pretrained to
imitate the source (or behavior) algorithm over the pretraining environment distribution Ttrain. In general,
AD demands a well-trained source algorithm with its complete learning history (from the initial policy to
the final-trained policy). Additionally, AD is restricted to the environments with short episode length, as the
context must capture cross-episode information of the source algorithm, while standard transformers often
have limited context length. In terms of the objective function equation 3, AD takes the state at the time
step t as the query state, at from the source algorithm as the action label, and the episodic history data
(s0, a0, r0, · · · , st−1, at−1, rt−1) to be the context.

Decision Pretrained Transformer. Instead of being stringent on the context and the environment itself,
DPT handles the context and query state in a more general manner. Specifically, in terms of the objective
function equation 3, DPT can consider a random collection of transitions as the context C, a random query
state sq drawn from Dq, and an optimal action label corresponding to sq. Despite less requirements on
the context, DPT necessitates access to optimal policies for the optimal action labels in all pretraining
environments, which may not be available in real-world applications.

Decision Importance Transformer. DIT proposes to learn ICRL without optimal action labels, follow-
ing the same supervised pretraining mechanism as DPT. To that end, DIT chooses to consider every possible
state and action in the context as the query state and corresponding action label. It is important to point
out that DIT requires a (partially) complete episode to form the context, enabling the computation of a
return-to-go for each state-action pair. By mapping the return-to-go to a weight that reflects the quality
of each state-action pair, DIT can pretrain the FM using the DPT structure, augmented by the weight
assigned to each query state and action label. In other words, DIT prioritizes the training on high-return
pairs. Notably, DIT still mandates that more than 30% of the context data comes from well-trained policies
to ensure the coverage of good action labels.

To summarize, it is worth highlighting that all these SOTA ICRL algorithms necessitate varying degrees
of well-trained, or even optimal policies during the pretraining phase. However, obtaining such policies for
real-world applications is often prohibitive, as it demands extensive training across a vast number of real-
world environments. This challenge becomes even more pronounced in the domains where the transition
data exhibits high variance to train an effective policy. Thus, executing ICRL under (e.g., uniform) random
policies and random contexts is crucial for enabling the practical application of ICRL in the real-world.

4 State-Action Distillation

In this section, we propose the State-Action Distillation (SAD), an approach for generating the pretraining
dataset for ICRL under random policies and random contexts (see Figure 1).

As indicated in equation 2, the pretraining data consists of the context, the query state and the action label.
We start by introducing the generation of the context under random policies in SAD (refer to Algorithm 1).
It is important to highlight that the context is collected through interactions with the environment under
any given random policy (e.g., uniform random policy), and notably, the context not necessarily originates
from a complete episode. These benefits make SAD potentially well-suited for ICRL’s real-world applications
with random transition data only. Having collected the random context, we are now in the stage of collecting
query states and corresponding action labels for the pretraining of FM under the random policy.
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Algorithm 1 Collecting Contexts under Random Policy
1: Require: Random policy π, context horizon length T , state space S, environment τ , empty context

C = ∅
2: for t in [T ] do
3: Sample a state s ∼ S and an action a ∼ π(·|s)
4: Collect (r, s′) by executing action a in the environment τ
5: Add (s, a, r, s′) to C
6: end for
7: Return C

We proceed by recalling that DIT prioritizes the training on high-return pairs from the context data collected.
To that end, DIT assigns a weight w to the loss function during the pretraining phase that is proportional to
the return-to-go, i.e., w(st, at) ∝

∑T
t′=t γt′−trt′ . Nonetheless, we acknowledge that DIT may not explore to

train on good state-action pairs under the random policy for two reasons: (i) DIT solely considers to train on
the state-action pairs that are observed in the context, which now contains limited and, more importantly,
random transition data. (ii) Even for the state-action pairs in the collected context, the return-to-go does
not necessarily prioritize the optimal pair but rather promotes the pair with high immediate reward, as the
discount factor applies starting from the current time step with a horizon of (T − t + 1) only, instead of T .
This issue becomes even more critical in the problems with sparse rewards.

Under this circumstance, our SAD approach advocates for distilling the outstanding query states and action
labels by searching across the entire state and action spaces under the random policy. Before proceeding, we
recall the definition of the optimal action in the problems of multi-armed bandit (MAB) and MDP. For any
query state sq, the optimal action for sq corresponds to the action that maximizes the optimal Q-function

a∗
MAB(sq) ∆= arg max

a∈A
E [r(sq, a)]︸ ︷︷ ︸
Q∗

MAB(sq,a)

, a∗
MDP(sq) ∆= arg max

a∈A
Eπ∗

[ ∞∑
t=0

γtrt|s0 = sq, a0 = a

]
︸ ︷︷ ︸

Q∗
MDP(sq,a)

, (4)

where sq in the MAB problem refers to the singleton state of bandits, and π∗ denotes the optimal policy in
the MDP. However, both a∗

MAB and a∗
MDP are intractable to obtain in our problem of interest for two reasons:

(i) computing the expectation in the Q-function demands to sample infinite episodes; (ii) one can only have
access to the random policy, instead of π∗. Therefore, we instead consider (i) stochastic approximation that
uses the average as the unbiased estimate of the expectation due to the law of large numbers; (ii) maximizing
the episodic return under the random policy.

4.1 Trustworthiness of the Random Policy

Subsequently, the crucial question arises: when can we trust the random policy? We claim: The
random policy is probabilistically trustworthy for the MAB and MDP problems within a trust horizon. We
formalize this claim for MAB and MDP in this subsection, which relies on the following assumptions.
Assumption 1. The absolute value of the reward r(s, a) is bounded by a positive constant B for all state-
action pairs in the MAB and MDP, i.e., |r(s, a)| ≤ B, ∀(s, a) ∈ S × A.

Note that Assumption 1 is common in the literature (Azar et al., 2017; Wei et al., 2020; Zhang et al., 2021).
In particular, in the case of finite state-action spaces, it is always possible to design the reward to avoid the
possibility of being unbounded.
Assumption 2. Given a random policy π, assume that

arg max
a∈A

Qπ
MDP(sq, a) = arg max

a∈A
Q∗

MDP(sq, a), ∀sq ∈ S. (5)

It is worth highlighting first that Assumption 2 may not hold universally for all MDP problems. In fact, it is
unlikely that a random policy and the optimal policy select the same optimal actions for all problems. Nev-
ertheless, we acknowledge that Assumption 2 does hold in the MDP problems like the grid world navigation
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where the reward is received only upon achieving the unique goal (Laskin et al., 2022; Lee et al., 2024; Dong
et al., 2024), which fall into the applicable domains of this work. We visualize in Figure 2 a single-dimensional
grid world navigation problem as an example. In particular, the action derived from maximizing the return
under the random policy becomes equivalent to that guided by maximizing the return under the optimal
policy, as the maximal return induced by both policies corresponds to navigating to the goal as quickly as
possible. We formalize this in Proposition 1 and provide a theoretical proof and empirical validation (refer
to Appendix A.2). Although Assumption 2 holds for the grid world navigation problems considered in this
work, it is crucial to point out that Assumption 2 may not hold for all grid world navigation problems.
To this end, we further discuss the validity of Assumption 2 for the grid world navigation with two sparse
rewards (see Appendix A.3), and demonstrate that the validity of Assumption 2 depends on problem-specific
factors such as the rewards and the discount factor γ.

s s s s s

a a

Figure 2: A single-dimensional grid world MDP comprising five states {s0, s1, s2, s3, s4}, where s0 represents
the goal state (golden star). The environment offers two possible actions: a0 (go left), and a1 (go right).
Any transitions that would result in (left or right) boundary crossing will be confined to the current position.
The reward structure is sparse, with a value of 1 received solely upon reaching the unique goal state s0 and
a value of 0 otherwise. We consider an infinite time horizon with a discounter factor γ.

Having introduced the necessary assumptions, we are in the stage of investigating the trustworthiness of the
random policy in both MAB and MDP problems. To proceed, we rely on the following two definitions.
Definition 1 (MAB). Denote by sq and a∗ the singleton state and optimal arm in the MAB problem.
Consider a random policy π. Suppose that each arm a has been selected Na times (Na ∈ N+) under π.
The trustworthiness of the random policy in the the MAB problems represents the probability of selecting the
optimal arm under the random policy, i.e.,

1
Na∗

Na∗∑
i=1

ri(sq, a∗) ≥ max
a∈A\{a∗}

1
Na

Na∑
i=1

ri(sq, a). (6)

The corresponding trust horizon denotes the minimal number of selections over all arms, i.e., N ≜ mina∈A Na

that guarantees such trustworthiness.

Definition 1 implies by the law of large numbers that N → ∞ serves as a trust horizon, ensuring the selection
of the optimal arm with probability one. In practice, achieving large trustworthiness requires a sufficiently
large trust horizon. The intuition is that a large enough horizon approximates the infinite step problem.
The same intuition holds for the MDP problems. We formalize this concept in the next definition, which
builds upon the Q-function of the finite-horizon MDP

Qπ,N
MDP(sq, a) = Eπ

[
N∑

t=0
γtr(st, at)|s0 = sq, a0 = a

]
, ∀a ∈ A, (7)

Q̂π,N
MDP(sq, a)= 1

Nep

Nep∑
i=1

N∑
t=0

(
γtr(st, at)|s0 = sq, a0 = a, π

)
, ∀a ∈ A, (8)

where Q̂π,N
MDP(sq, a) is an unbiased estimate of Qπ,N

MDP(sq, a) and Nep denotes the number of episodes.
Definition 2 (MDP). Denote by a∗ the optimal action given a query state sq. Consider a random policy
π as well as its Q-function Qπ

MDP. The trustworthiness of the random policy in the the MDP problems
represents the probability of selecting the optimal action for any query state in the state space, i.e.,

Q̂π,N
MDP(sq, a∗) ≥ max

a∈A\{a∗}
Q̂π,N

MDP(sq, a), ∀sq ∈ S. (9)
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The corresponding trust horizon denotes the minimal horizon length of the MDP such that

Qπ,N
MDP(sq, a∗) ≥ max

a∈A\{a∗}
Qπ,N

MDP(sq, a), ∀sq ∈ S. (10)

In both Definitions 1 and 2, the trustworthiness refers to the probability of selecting the optimal action.
While the trust horizon in both cases approximates the infinite-horizon problem, they show subtle differences
in the relationship to the trustworthiness. In the MAB problem, which consists of a single episode, the
trustworthiness depends on the trust horizon only. However, in the MDP, computing Qπ,N

MDP(sq, a) is generally
intractable, thus requiring the use of an unbiased estimate (as defined in equation 8), which depends on the
number of episodes Nep. Consequently, the trustworthiness in the MDP setting is influenced by both the trust
horizon and the number of episodes. Next, we formally quantify the relationship between the trustworthiness
and the trust horizon for the MAB and MDP problems.
Theorem 1 (MAB). Let Assumption 1 hold. The random policy is at least (1 − δ)-trustworthy as in
Definition 1, when the trust horizon N satisfies

N ≥ 8B2(
E[r(sq, a∗)] − max

a∈A\{a∗}
E[r(sq, a)]

)2 log
(

1 +
√

1 − δ

δ

)
. (11)

Proof. See Appendix A.1. □

Theorem 1 implies that the trust horizon N quantifies the trustworthiness of the decision making under the
random policy π for MAB problems. Indeed, a larger N implies a higher probability (smaller δ) that the
average reward of the optimal arm under π exceeds that of the next-best arm, therefore, making a more
reliable decision. We substantiate this claim by empirical evidence (depicted in Figure 6(a)). In the practical
implementation, we simply execute the MAB under the random policy π until every action in the action
space A selected at least N times. Subsequently, we select the action with the maximal average reward as
the action label. The detailed procedure for collecting such action labels in MAB is outlined in Algorithm 2.

Algorithm 2 Collecting Query States and Action Labels under Random Policy (MAB)
1: Require: Random policy π, singleton query state sq, action space A, environment τ , empty average

reward list Lr, trust horizon N
2: Execute the MAB in τ under the random policy π until every action in A selected at least N times
3: for a in [A] do
4: Record the average reward associated with the action a in the history, and add it to Lr

5: end for
6: Obtain al = A(arg max(Lr))
7: Return (sq, al)

Theorem 2 (MDP). Let Assumptions 1 and 2 hold. Define κ = min
sq∈S

(
Qπ

MDP(sq, a∗)− max
a∈A\{a∗}

Qπ
MDP(sq, a)

)
.

Consider the trust horizon N > logγ (κ(1 − γ)/(2B)) − 1. The random policy is at least (1 − δ)-trustworthy
as in Definition 2, when the number of episodes Nep satisfies

Nep ≥
2
(
1 − γN+1)2

(κ (1 − γ) /(2B) − γN+1)2︸ ︷︷ ︸
G1

log
(

1 +
√

1 − δ

δ

)
. (12)

Proof. See Appendix A.4. □

Theorem 2 implies that the trust horizon N and the number of episodes Nep quantify the trustworthiness
of the decision making under the random policy π for MDP problems. Notice that G1 in equation 12 is
monotonically decreasing with respect to the trust horizon N when N > logγ (κ(1 − γ)/(2B)) − 1 (see

8



Published in Transactions on Machine Learning Research (04/2025)

Lemma 2 in Appendix A.5). Thus, with a fixed number of episodes, a larger N corresponds to a higher
probability (smaller δ) that the average reward of the optimal action under π exceeds that of the next-best
action, indicating a more reliable decision. This aligns with the intuition that a larger N corresponds to
a closer approximation of the infinite-horizon MDP, where the random policy π selects the same optimal
action as that of the optimal policy (by Assumption 2). However, it is worth noting that Theorem 2 considers
the worst-case guarantee of selecting the optimal actions over all states in the state space. It is therefore
could be conservative. That being said, Theorem 2 still hints to the fact that one should select the action
that yields the largest average reward in practice. In the practical implementation, we randomly select a
query state from the state space and execute an episode of N steps for each action in the action space.
When the maximal return across all actions is no less than a pre-designed return threshold R, we choose
the action that maximizes Q̂π,N

MDP(sq, a) across the entire action space A. Otherwise, we randomly sample
another query state and repeat the process of evaluating each action in a horizon N . The implementation
details are summarized in Algorithm 3.

Algorithm 3 Collecting Query States and Action Labels under Random Policy (MDP)
1: Require: Random policy π, state space S, action space A, environment τ , trust horizon N , return

threshold R
2: Set max_return = R − 1
3: while max_return < R do
4: Sample a query state sq ∼ S
5: Empty a return list Lr

6: for a in [A] do
7: Initialize the state and action as s0 = sq, a0 = a
8: Run an episode of N steps in τ under the random policy π
9: Add the discounted episodic return to Lr

10: end for
11: max_return = max(Lr)
12: end while
13: Obtain al = A(arg max(Lr))
14: Return (sq, al)

Notably, this work focuses on the grid world navigation problems where the reward is received solely upon
reaching the unique goal. In this sparse reward MDP, it is worth highlighting that the action that maximizes
the discounted return is essentially the same as that reaches the goal using fewest steps. This is because
that the discounted return

∑
t γtrt has a term γt where t is the time step. Thus, fewer steps (smaller t)

corresponds to larger discounted return (larger γt). Therefore, for any query state sq, we prioritize actions
that can achieve the goal within N steps, with the actions consuming fewer steps being preferred. If no
action can accomplish the goal within N steps, we sample another query state until a qualified action is
identified. This action is then designated as the action label associated with the query state sq. Details of
this implementation are outlined in Algorithm 5 (see Appendix B).

Having introduced the processes for collecting the context, query state, and action label under the random
policy, we can now generate the pretraining dataset by integrating the aforementioned procedures (refer to
Algorithm 4). Given the pretraining dataset, the model pretraining procedure as well as the offline and
online deployment for SAD are summarized in Algorithm 6 (see Appendix B).

4.2 Performance Guarantees

This subsection establishes the performance guarantees of SAD, offering deeper insights into its efficacy.
Corollary 1. Let hypotheses of Theorems 1 and 2 hold. Denote by l the length of the trajectory. For any
environment τ and history data H, SAD and the well-specified posterior sampling follow the same trajectory
distribution with probability (1 − δ)l

PFθ
(trajectory | τ, H) = Pps(trajectory | τ, H), ∀trajectory. (13)
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Algorithm 4 State-Action Distillation (SAD) under Random Policy
1: Require: Empty pretraining dataset D with size |D|, pretraining environment distribution Ttrain, ran-

dom policy π, context horizon length T , state space S, action space A, trust horizon N
2: for i in [|D|] do
3: Sample an environment τ ∼ Ttrain
4: Collect the context C under the environment τ and the random policy π through Algorithm 1
5: Collect the query state sq and the action label al under the environment τ and the random policy π

through Algorithm 2 for MAB (Algorithm 3 for MDP)
6: Add (C, sq, al) to the pretraining dataset D
7: end for
8: Return D

Proof. See Appendix A.6. □

Notice that DPT takes the same distribution as that from a well-specified posterior sampling (Lee et al.,
2024), which is widely recognized as a provably sample-efficient RL algorithm (Osband et al., 2013). However,
it is crucial to highlight that our SAD approach focuses only on the pretraining dataset generation, while
maintaining the same pretraining process as that of DPT. Building upon Theorems 1 and 2 implying that
SAD probabilistically selects the optimal action (required by DPT), Corollary 1 substantiates that our SAD
approach follows the same trajectory distribution as that of the posterior sampling with probability (1 − δ)l.

Having established the corollary above, we next investigate the regret bound of SAD in the finite MDP
setting (see details in Appendix A.7). Consider the online cumulative regret of SAD over K episodes in the
environment τ as Regretτ (Fθ) =

∑K
k=0 Vτ (π∗

τ ) − Vτ (πk), where πk(· | st) = Fθ(· | Ck−1, st). Then, the regret
bound of SAD is formally stated as follows.
Corollary 2. Let hypotheses of Theorems 1 and 2 hold. Given environment τ and a constant B′ > 0, suppose
that supτ Ttest(τ)/Ttrain(τ) ≤ B′. In the finite MDP with horizon T , it holds with probability (1 − δ)KT that

ETtest [Regretτ (Fθ)] ≤ Õ(B′|S|T 3/2
√

K|A|). (14)

Proof. See Appendix A.8. □

Analogous to Corollary 1, Corollary 2 implies that SAD achieves the same regret bound as that of DPT
(equation 14) with probability (1 − δ)KT , as SAD and DPT undergo the identical pretraining process.

5 Experiments

In this section, we substantiate the efficacy of our proposed SAD method on five ICRL benchmark problems:
Gaussian Bandits, Bernoulli Bandits, Darkroom, Darkroom-Large, Miniworld, which are commonly consid-
ered in the ICRL literature (Laskin et al., 2022; Lee et al., 2024; Dong et al., 2024). All these problems are
challenging to solve in-context, as the test environments differ from the pretraining environments, while the
parameters of the FM remain frozen during the test.

5.1 Environmental Setup

Gaussian Bandits. We investigate a five-armed bandit problem in which the state space S consists solely
of a singleton state sq. With each arm (action) pulled, the agent receives a reward. The goal is to identify
the optimal arm that can maximize the cumulative reward. We consider the reward function for each arm
following a Gaussian distribution with mean µa and variance σ2, i.e., R(·|sq, a) = N (µa, σ2). Each arm
possesses means µa drawn from a uniform distribution U [0, 1] and all arms share the same variance σ = 0.3.
We consider the pretraining and test data to have distinct Gaussian distributions with different means.

Bernoulli Bandits. We adopt the same setup as in Gaussian Bandits, with the exception that the reward
function does not follow a Gaussian distribution. Instead, we model the reward function using a Bernoulli
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distribution. Specifically, the mean of each arm µa is drawn from a Beta distribution Beta(1, 1), and the
reward function follows a Bernoulli distribution with probability of success µa. To validate the capability
of SAD tackling OOD scenarios, we consider the test data drawn from the Bernoulli distribution while the
pretraining data drawn from the Gaussian distribution as in the Gaussian bandits.

Darkroom. Darkroom (Laskin et al., 2022; Zintgraf et al., 2019) is a two-dimensional navigation task with
discrete state and action spaces. The room consists of 7×7 grids (|S| = 49), with an unknown goal randomly
placed at any of these grids. The agent can select 5 actions: go up, go down, go left, go right, or stay. The
horizon length for Darkroom is 49, meaning the agent must reach the goal within 49 moves. The challenge
of this task arises from its sparse reward structure, i.e., the agent receives a reward of 1 solely upon reaching
the unique goal, and 0 otherwise. Given 7 × 7 = 49 available goals, we utilize 39 of these goals (∼ 80%) for
pretraining and reserve the remaining 10 (∼ 20%) (unseen during pretraining) for test.

Darkroom-Large. We adopt the same setup as in Darkroom, yet with an expanded state space of 10 × 10
and a longer horizon T = 100. Consequently, the agent must explore the environment more extensively due
to the sparse reward setting, making this task more challenging than Darkroom. We still consider 80% of
the 100 available goals for pretraining and the remaining unseen 20% goals for test.

Miniworld. Miniworld is a three-dimensional pixel-based navigation task. The agent is situated in a
room with four differently colored boxes, one of which is the target (unknown to the agent). The agent must
navigate to the target box using 25 × 25 × 3 image observations and by selecting from 4 available actions:
turn left, turn right, move forward, or stay. Similar to Darkroom, the agent receives a reward of 1 only
upon approaching the unique target box, and 0 otherwise. The high-dimensional pixel inputs clearly render
Miniworld a much more challenging task than Darkroom and Darkroom-Large.

5.2 Numerical Results

We consider four SOTA ICRL algorithms as our baselines in this work: AD, DIT, DPT, and DPT∗. Since all
these methods are FM-based, we employ the same transformer architecture (causal GPT2 model (Radford
et al., 2019)) and hyperparameters (number of attention layers, number of attention heads, embedding
dimensions, etc) across all experiments to ensure a fair comparison. The main hyperparameters employed
in this work are summarized in Tables 1-2 (refer to Appendix C.1).

In all experiments, we employ a uniform random policy to collect context, query states, and action labels, as
indicated in Algorithms 1-3. Then, we pretrain the FM and deploy it with two options: online and offline.
In online deployment, the pretrained model collects its own context by iteratively interacting with the test
environments. In offline deployment, the pretrained model directly uses a sampled context from an offline
context dataset, which is pre-collected using the random policy to interact with the test environments. The
details of online/offline deployments are deferred to Algorithm 6 in Appendix B.
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Figure 3: Offline and online evaluations of ICRL algorithms trained under a uniform random policy: AD,
DPT, DIT, DPT∗, and SAD (ours). Each algorithm contains four independent runs with mean and standard
deviation. Gaussian Bandits: (a) and (b), Bernoulli Bandits: (c) and (d).
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Bandits. We adhere to offline and online evaluation metrics for Bandits established in (Lee et al., 2024).
In the offline evaluation, we utilize the suboptimality over different context horizon, defined by µa∗ − µa,
where µa∗ and µa represent the mean rewards over 200 test environments of the optimal arm and the selected
arm, respectively. In online evaluation, we employ cumulative regret, defined by

∑T
t=0(µa∗ − µat

), where at

denotes the selected arm at time t. Figures 3(a) and 3(b) demonstrate that our SAD approach significantly
outperforms three SOTA baselines under uniform random policy, by achieving much lower suboptimality
and cumulative regret. More specifically, let us define the performance improvement of SAD over baselines
in the offline evaluation by (suboptimalitybaseline − suboptimalitySAD)/suboptimalitySAD. Likewise, the
performance improvement in the online evaluation is to simply replace the suboptimality by cumulative regret.
Then, SAD surpasses the best baseline, DIT, by achieving 354.0% performance improvements in the offline
evaluation and 273.9% in the online evaluation (refer to the first row of Tables 3 and 4 in Appendix C.2).
To evaluate the out-of-distribution performance of SAD compared to other baselines, we test the models
pretrained by all methods on the Gaussian Bandits and assess their performance on the Bernoulli Bandits
with no further fine-tuning. Figures 3(c) and 3(d) illustrate that SAD still achieves lower suboptimality
and cumulative regret than all other baselines, demonstrating a more robust performance in handling out-
of-distribution scenarios. More specifically, SAD surpasses the best baseline, DIT, by 289.5% in the offline
evaluation and 313.9% in the online evaluation (refer to the second row of Tables 3 and 4 in Appendix C.2).

In the environments of Darkroom and Miniworld, we use return as the evaluation metric. Moreover, we
define the performance improvement of our SAD approach over the baseline methods in both offline and
online evaluations by (ReturnSAD − Returnbaseline)/Returnbaseline.
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Figure 4: Offline and online evaluations of ICRL algorithms trained under a uniform random policy: AD,
DPT, DIT, DPT∗, and SAD (ours). Each algorithm contains four independent runs with mean and standard
deviation. DarkRoom: (a) and (b). DarkRoom-Large: (c) and (d).

Darkrooms. Figure 4 demonstrates that our SAD approach significantly outperforms three SOTA base-
lines in the Darkroom and Darkroom-Large under uniform random policy, by achieving much higher return.
In the Darkroom, SAD surpasses the best baseline, DIT, by 149.3% in the offline evaluation and 41.7% in
the online evaluation (refer to the third row of Tables 3 and 4 in Appendix C.2). Likewise, in the Darkroom-
Large, SAD outperforms the best baseline, DIT, by 266.8% in the offline evaluation and 24.7% in the online
evaluation (refer to the fourth row of Tables 3 and 4 in Appendix C.2).

Miniworld. Figure 5 demonstrates that our SAD approach outperforms the three SOTA baselines in the
Miniworld under uniform random policy, by achieving a higher return. More specifically, SAD surpasses the
best baseline, DIT, by 122.1% in the offline evaluation and 21.7% in the online evaluation (refer to the fifth
row of Tables 3 and 4 in Appendix C.2).

Tables 3 and 4 also imply that SAD significantly outperforms all baselines on average across the five ICRL
benchmark environments. In the offline evaluation, SAD exceeds the best baseline DIT by 236.3% on
average, the second-best DPT by 2015.9%, and the third-best AD by 2075.2%. In the online evaluation,
SAD surpasses DIT by 135.2%, DPT by 3093.8%, and AD by 3208.8% on average. In addition to comparing
SAD with the three SOTA ICRL algorithms under the uniform random policy, we also include the empirical
performance of the DPT with optimal action labels (DPT∗) as the oracle upper bound of SAD. We observe
that SAD demonstrates performance comparable to DPT∗ in tasks such as Gaussian Bandits, Bernoulli
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Figure 5: Offline and online evaluations of ICRL algorithms trained under a uniform random policy: AD,
DPT, DIT, DPT∗, and SAD (ours). Each algorithm contains four independent runs with mean and standard
deviation. Environment: Miniworld.

Bandits, DarkRoom, and DarkRoom-Large. Although Miniworld introduces challenges due to its pixel-based
inputs and complex environments, SAD under the random policy still achieves approximately 50% of the
performance of DPT∗. Overall, SAD is within 18.6% of the performance of DPT∗ in the offline evaluation
across five ICRL tasks, and within 12.3% in the online evaluation (see details in Tables 3 and 4).

5.3 Ablation Studies

Trust Horizon. Theorems 1 implies that the uniform random policy is probabilistically trustworthy within
a horizon N , with monotonically increasing probability of selecting the optimal action with N in the MAB
problem. We substantiate this observation from the theorem by empirical evidence, as presented in Fig-
ure 6(a). Furthermore, we conduct empirical investigations into the influence of the trust horizon N on the
performance of the MAB problem, which considers the environments of Gaussian Bandits. As expected, a
larger N in the MAB problem leads to a better performance (see Figures 7(a) and 7(b)).
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Figure 6: (a) and (b): The accuracy (probability) of selecting the optimal action in the MAB and MDP
problems with varying trust horizon N . (c) and (d): The minimal number of steps required for a query state
to reach the goal (the golden star) in the upper-right corner and in the middle.

We then shift to the MDP problem with the environment of Darkroom. Notice that in our practical algorithm
for the sparse-reward MDP like Darkroom (Algorithm 5), we only utilize the state-action pairs that can reach
the goal within a trust horizon. Therefore, we solely record the probability/accuracy of selecting the optimal
actions on those states, as presented in Figure 6(b). It shows that the accuracy monotonically decreases with
respect to the trust horizon N , which, at first glance, may lead to monotonically decreasing performance as
well. Nonetheless, we acknowledge that this is not the case. In particular, a large trust horizon N in the
MDP leads to the low accuracy of selecting the optimal action, whereas a small N may induce the partially
short-sighted training of FM, as Algorithm 5 solely trains on the states at most N steps from the goal,
instead of all states (refer to Figures 6(c) and 6(d)). Our numerical results in Figures 7(c) and 7(d) validate
this with the fact N = 7 performing best, and provide the empirical evidence that either an excessively large
or small trust horizon can lead to suboptimality.
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Figure 7: Offline and online evaluation of SAD with varying trust horizon N for MAB: (a) and (b), and for
MDP: (c) and (d). Each N contains four independent runs with mean and standard deviation.

Transformer Hyperparameters. We aim to validate the robustness of our proposed SAD approach with
respect to the hyperparameters in the transformer block. Concretely, we focus on the number of attention
heads and attention layers, as they have large impacts on the model size of the transformer. As depicted in
Figure 8, our empirical results in Darkroom demonstrate a robust performance across varying numbers of
attention heads and attention layers.
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Figure 8: Offline and online evaluations of SAD with different transformer hyperparameters: the number of
attention heads ((a) and (b)); the number of attention layers ((c) and (d)). Each hyperparameter contains
four independent runs with mean and standard deviation.

6 Conclusion

In this work, we propose State-Action Distillation (SAD), a novel approach for generating the pretraining
dataset for ICRL, which is designed to overcome the limitations imposed by the existing ICRL algorithms
like AD, DPT, and DIT in terms of relying on well-trained or even optimal policies to collect the pretraining
dataset. SAD leverages solely random policies to construct the pretraining data, significantly promoting
the practical application of ICRL in real-world scenarios. We also provide the quantitative analysis of the
trustworthiness as well as the performance guarantees of SAD. Moreover, our empirical results on multiple
popular ICRL benchmark environments demonstrate significant improvements over the existing baselines in
terms of both performance and robustness. Nevertheless, we note that SAD is currently limited to the discrete
action space. Extending SAD to handle the continuous action space as well as more complex environments
presents a promising direction for the future research.
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A Omitted Proofs

A.1 Proof of Theorem 1

Theorem 1 (MAB). Let Assumption 1 hold. The random policy is at least (1 − δ)-trustworthy as in
Definition 1, when the trust horizon N satisfies

N ≥ 8B2(
E[r(sq, a∗)] − max

a∈A\{a∗}
E[r(sq, a)]

)2 log
(

1 +
√

1 − δ

δ

)
. (15)

Proof. For any action a ∈ A \ {a∗}, consider two positive constants

ϵ1 = α (E[r(sq, a∗)] − E[r(sq, a)]) , (16)
ϵ2 = (1 − α) (E[r(sq, a∗)] − E[r(sq, a)]) , (17)

where α ∈ [0, 1].

Consider the following two inequalities

1
Na∗

Na∗∑
i=1

r(sq, a∗) ≥ E[r(sq, a∗)] − ϵ1, (18)

1
Na

Na∑
i=1

r(sq, a) ≤ E[r(sq, a)] + ϵ2. (19)

We note that the two inequalities above are the sufficient but not necessary conditions for
1

Na∗

∑Na∗
i=1 r(sq, a∗) ≥ 1

Na

∑Na

i=1 r(sq, a) to hold.

Therefore, we simply obtain that

P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) ≥ 1
Na

Na∑
i=1

r(sq, a)
)

≥ P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) ≥ E[r(sq, a∗)] − ϵ1,
1

Na

Na∑
i=1

r(sq, a) ≤ E[r(sq, a)] + ϵ2

)
(20)

= P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) ≥ E[r(sq, a∗)] − ϵ1

)
· P

(
1

Na

Na∑
i=1

r(sq, a) ≤ E[r(sq, a)] + ϵ2

)
, (21)

where the last equation follows from the fact that each arm is independent to other arms. We then lower
bound the two probabilities in the previous expression using Hoeffding’s inequality (Hoeffding, 1994).

Since Assumption 1 implies that r(·, ·) ∈ [−B, B], Hoeffding’s inequality yields

P

(
1

Na

Na∑
i=1

r(sq, a) − E[r(sq, a)] ≤ ϵ2

)
≥ 1 − exp

(
− 2Naϵ2

2
(B − (−B))2

)
, (22)

i.e.,

P

(
1

Na

Na∑
i=1

r(sq, a) − E[r(sq, a)] ≤ ϵ2

)
≥ 1 − exp

(
−Naϵ2

2
2B2

)
. (23)

Likewise, we have

P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) − E[r(sq, a∗)] ≥ −ϵ1

)
≥ 1 − exp

(
− 2Na∗ϵ2

1
(B − (−B))2

)
, (24)
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i.e.,

P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) − E[r(sq, a∗)] ≥ −ϵ1

)
≥ 1 − exp

(
−Na∗ϵ2

1
2B2

)
. (25)

Since N ≜ mina∈A Na, it then follows from the monotonicity of the exponential function that

P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) ≥ 1
Na

Na∑
i=1

r(sq, a)
)

≥
(

1 − exp
(

−Na∗ϵ2
1

2B2

))
·
(

1 − exp
(

−Naϵ2
2

2B2

))
(26)

≥
(

1 − exp
(

−Nϵ2
1

2B2

))
·
(

1 − exp
(

−Nϵ2
2

2B2

))
. (27)

Therefore, it holds for any α ∈ [0, 1] that

P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) ≥ 1
Na

Na∑
i=1

r(sq, a)
)

≥

(
1 − exp

(
−Nα2 (E[r(sq, a∗)] − E[r(sq, a)])2

2B2

))
·

(
1 − exp

(
−N(1 − α)2 (E[r(sq, a∗)] − E[r(sq, a)])2

2B2

))
.

(28)

Notice that the maximal value of the previous equation with respect to α reaches at α = 0.5. Then it holds
that

P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) ≥ 1
Na

Na∑
i=1

r(sq, a)
)

≥

(
1 − exp

(
−N (E[r(sq, a∗)] − E[r(sq, a)])2

8B2

))2

, ∀a ∈ A \ {a∗}.

(29)

Since the previous inequality holds for any a ∈ A \ {a∗}, let us define

ā = arg max
a∈A\{a∗}

1
Na

Na∑
i=1

r(sq, a). (30)

Then it also holds that

P

(
1

Na∗

Na∗∑
i=1

r(sq, a∗) ≥ max
a∈A\{a∗}

1
Na

Na∑
i=1

r(sq, a)
)

≥

(
1 − exp

(
−N (E[r(sq, a∗)] − E[r(sq, ā)])2

8B2

))2

(31)

≥

(
1 − exp

(
−

N
(
E[r(sq, a∗)] − maxa∈A\{a∗} E[r(sq, a)]

)2

8B2

))2

. (32)

where the last inequality follows from the monotonicity.

To make the previous probability greater than 1 − δ, we require(
1 − exp

(
−

N
(
E[r(sq, a∗)] − maxa∈A\{a∗} E[r(sq, a)]

)2

8B2

))2

≥ 1 − δ. (33)
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Hence, we require the trust horizon N ≜ mina∈A Na to satisfy

N ≥ 8B2(
E[r(sq, a∗)] − maxa∈A\{a∗} E[r(sq, a)]

)2 log
(

1 +
√

1 − δ

δ

)
. (34)

This completes the proof.

□

A.2 Validity of Assumption 2 in the grid world MDP with a single sparse reward

For the sake of simplicity and without loss of generality, we consider a single-dimensional grid world MDP
with the understanding that Assumption 2 holds for the two-dimensional grid world MDP as well, which
is considered in our numerical experiments. The environmental details of the single-dimensional grid world
MDP can be found in Figure 2, where the reward is received only upon reaching the unique goal. To proceed,
we rely on the lemma below, and Assumption 2 is then validated by Proposition 1 that follows.
Lemma 1. Consider the MDP of a single-dimensional grid world with S = {s0, s1, s2, s3, s4} and A =
{a0, a1}, as depicted in Figure 2. Consider the random policy π in Assumption 2. It holds that

V π
MDP(s0) ≥ V π

MDP(s1) ≥ V π
MDP(s2) ≥ V π

MDP(s3) ≥ V π
MDP(s4). (35)

Proof. For simplicity, we consider π to be a uniform random policy, i.e., P (a0 | s) = P (a1 | s) = 0.5, ∀s ∈ S.
Recall the Bellman expectation equation

V π
MDP(s) =

∑
a∈A

π(a | s) (r(s, a) + γEs′V π
MDP(s′)) . (36)

By combining the previous Bellman expectation equation with Figure 2 yields

V π
MDP(s0) = 1

2 (r(s0, a0) + γV π
MDP(s0) + r(s0, a1) + γV π

MDP(s1)) ,

V π
MDP(s1) = 1

2 (r(s1, a0) + γV π
MDP(s0) + r(s1, a1) + γV π

MDP(s2)) ,

V π
MDP(s2) = 1

2 (r(s2, a0) + γV π
MDP(s1) + r(s2, a1) + γV π

MDP(s3)) ,

V π
MDP(s3) = 1

2 (r(s3, a0) + γV π
MDP(s2) + r(s3, a1) + γV π

MDP(s4)) ,

V π
MDP(s4) = 1

2 (r(s4, a0) + γV π
MDP(s3) + r(s4, a1) + γV π

MDP(s4)) .

(37)

Substituting all rewards from Figure 9 (left) into the previous equations yields

V π
MDP(s0) = 1

2 (1 + γV π
MDP(s0) + γV π

MDP(s1)) ,

V π
MDP(s1) = 1

2 (1 + γV π
MDP(s0) + γV π

MDP(s2)) ,

V π
MDP(s2) = 1

2 (γV π
MDP(s1) + γV π

MDP(s3)) ,

V π
MDP(s3) = 1

2 (γV π
MDP(s2) + γV π

MDP(s4)) ,

V π
MDP(s4) = 1

2 (γV π
MDP(s3) + γV π

MDP(s4)) .

(38)

Given γ ∈ (0, 1), the last equation of equation 38 implies that

V π
MDP(s3) = 2 − γ

γ
V π

MDP(s4) ≥ V π
MDP(s4). (39)

Then, the fourth equation of equation 38 yields

V π
MDP(s2) = 2

γ
V π

MDP(s3) − V π
MDP(s4) (40)

≥ 2
γ

V π
MDP(s3) − V π

MDP(s3) (41)

≥ V π
MDP(s3). (42)
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Likewise, the third equation of equation 38 can be rewritten as

V π
MDP(s1) = 2

γ
V π

MDP(s2) − V π
MDP(s3) (43)

≥ 2
γ

V π
MDP(s2) − V π

MDP(s2) (44)

≥ V π
MDP(s2). (45)

Combining the previous inequality with the first two equations of equation 38 directly yields

V π
MDP(s0) ≥ V π

MDP(s1). (46)

This completes the proof.

□

Proposition 1. Consider the MDP of a single-dimensional grid world with S = {s0, s1, s2, s3, s4} and
A = {a0, a1}, as depicted in Figure 2. Consider a uniform random policy π. It holds that

arg max
a∈A

Qπ
MDP(s, a) = arg max

a∈A
Q∗

MDP(s, a), ∀s ∈ S. (47)

Proof. By the definition of Q∗
MDP and π∗ we obtain

Q∗
MDP(s, a) = Qπ∗

MDP(s, a), ∀(s, a) ∈ S × A. (48)

Since the objective of the agent in Figure 2 is to reach the goal state as quickly as possible, and stay still,
π∗(s) is given by

π∗(s) = a0, ∀s ∈ S. (49)

Moreover, we have

arg max
a∈A

Q∗
MDP(s, a) = arg max

a∈A
Qπ∗

MDP(s, a) = π∗(s) = a0, ∀s ∈ S. (50)

We then turn to consider the learning of Q-function under the random policy π. For simplicity, we consider
π to be a uniform random policy, i.e., P (a0 | s) = P (a1 | s) = 0.5, ∀s ∈ S.

We next prove that Qπ
MDP(s, a0) ≥ Qπ

MDP(s, a1), ∀s ∈ S. We start with the state s0. Notice that

Qπ
MDP(s0, a0) = r(s0, a0) + γV π

MDP(s0) = 1 + γV π
MDP(s0), (51)

Qπ
MDP(s0, a1) = r(s0, a1) + γV π

MDP(s1) = γV π
MDP(s1). (52)

Lemma 1 implies that V π
MDP(s0) ≥ V π

MDP(s1). The previous equations then directly indicate

Qπ
MDP(s0, a0) ≥ Qπ

MDP(s0, a1). (53)

For the state s1, we have

Qπ
MDP(s1, a0) = r(s1, a0) + γV π

MDP(s0) = 1 + γV π
MDP(s0), (54)

Qπ
MDP(s1, a1) = r(s1, a1) + γV π

MDP(s2) = γV π
MDP(s2). (55)

Lemma 1 implies that V π
MDP(s0) ≥ V π

MDP(s1) ≥ V π
MDP(s2). Then it holds that

Qπ
MDP(s1, a0) ≥ Qπ

MDP(s1, a1). (56)

For the state s2, we have

Qπ
MDP(s2, a0) = r(s2, a0) + γV π

MDP(s1) = γV π
MDP(s1), (57)

Qπ
MDP(s2, a1) = r(s2, a1) + γV π

MDP(s3) = γV π
MDP(s3). (58)
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Employing Lemma 1 directly yields

Qπ
MDP(s2, a0) ≥ Qπ

MDP(s2, a1). (59)

For the state s3, we have

Qπ
MDP(s3, a0) = r(s3, a0) + γV π

MDP(s2) = γV π
MDP(s2), (60)

Qπ
MDP(s3, a1) = r(s3, a1) + γV π

MDP(s4) = γV π
MDP(s4). (61)

Employing Lemma 1 directly yields

Qπ
MDP(s3, a0) ≥ Qπ

MDP(s3, a1). (62)

Last but not least, for the state s4, we have

Qπ
MDP(s4, a0) = r(s4, a0) + γV π

MDP(s3) = γV π
MDP(s3), (63)

Qπ
MDP(s4, a1) = r(s4, a1) + γV π

MDP(s4) = γV π
MDP(s4). (64)

Employing Lemma 1 directly yields

Qπ
MDP(s4, a0) ≥ Qπ

MDP(s4, a1). (65)

Hence we obtain

arg max
a∈A

Qπ
MDP(s, a) = a0, ∀s ∈ S. (66)

and then

arg max
a∈A

Qπ
MDP(s, a) = a0 = arg max

a∈A
Q∗

MDP(s, a), ∀s ∈ S. (67)

This completes the proof.

□

Empirical validation of Assumption 2 in the grid world MDP. In addition to the theoretical proof
above, we also provide an empirical validation of Assumption 2 in the grid world MDP in Figure 2.

We start by considering the Bellman expectation equation

Qπ
MDP(s, a) = r(s, a) + γEa′ [Qπ

MDP(s′, a′)] , ∀(s, a) ∈ S × A. (68)

Let us define the temporal-difference (TD) error as follows

E(s, a) = |r(s, a) + γEa′ [Qπ
MDP(s′, a′)] − Qπ

MDP(s, a)| , ∀(s, a) ∈ S × A. (69)

With the understanding that the TD error E(s, a) of Qπ
MDP(s, a) is zero, we iteratively learn and update

Qπ
MDP(s, a) by minimizing the TD error. To that end, we consider γ = 0.99 and a convergence threshold

ϵQ = 10−6 (can be arbitrarily small). We initialize Qπ
MDP(s, a) to be full of zeros as in Figure 9 (middle-left).

Subsequently, we consistently update Qπ
MDP(s, a) under the uniform policy π, until convergence as follows

E(s, a) ≤ ϵQ, ∀(s, a) ∈ S × A. (70)

Empirically, we observe that the Q-table Qπ
MDP(s, a) converges after the 1216th iteration; demonstrated in

Figure 10. As depicted in Figure 9 (middle-right), the convergent Qπ
MDP(s, a) implies that the optimal action

for any state under the uniform policy π is a0 (see the golden stars), i.e.,

arg max
a∈A

Qπ
MDP(s, a) = a0, ∀s ∈ S. (71)
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Likewise, we follow the same process above using the Bellman optimality equation

Q∗
MDP(s, a) = r(s, a) + γ max

a′∈A
Q∗

MDP(s′, a′), ∀(s, a) ∈ S × A. (72)

The convergent Q∗
MDP(s, a) in Figure 9 (right) demonstrates that the optimal action for any state under the

optimal policy is a0 as well, i.e.,

arg max
a∈A

Q∗
MDP(s, a) = a0, ∀s ∈ S. (73)

This validates Assumption 2 empirically.

Figure 9: Left: reward table. Middle-Left: initial Q-table. Middle-Right: convergent Q-table under uniform
policy π. Right: convergent optimal Q-table.
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Figure 10: The learning curve of the maximal TD error of Qπ
MDP(s, a) over the entire state-action spaces:

max(s,a)∈S×A |r(s, a) + γEa′ [Qπ
MDP(s′, a′)] − Qπ

MDP(s, a)|.

A.3 Discussion of Assumption 2 in the grid world MDP with two sparse rewards

As depicted in Figure 11, we consider the same problem setting as in Appendix A.2 except that we assign the
rewards Rl and Rs to the states s0 and s4, respectively. In the following three cases, we demonstrate that
Assumption 2 holds for some (but not all) navigation problems that have two sparse rewards. The validity
of Assumption 2 depends on the problem-specific factors such as the rewards and the discount factor γ.

(a) Consider Rl = 1, Rs = 0.1, γ = 0.99. The action that maximizes the Q table for both random and
optimal policies is the same, i.e., a0 = arg maxa Qπ

MDP (s, a) = arg maxa Q∗
MDP (s, a) for all states

as shown in Figure 12.

(b) Consider Rl = 1, Rs = 0.9, γ = 0.8. In this case, the random policy selects a0 at the states s0, s1, s2
and a1 at the states s3, s4 (see Qπ

MDP in Figure 13). However, notice that the optimal policy selects
exactly the same optimal actions as that of the random policy, i.e., a0 for states s0, s1, s2 and a1 for
states s3, s4 (see Q∗

MDP in Figure 13), thus Assumption 2 still holding.
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s s s s s

a a

Figure 11: A single-dimensional grid world MDP comprising five states {s0, s1, s2, s3, s4}. The environment
offers two possible actions: a0 that corresponds to moving left, and a1 that corresponds to moving right.
Crossing the boundaries is strictly prohibited. Any transitions that would result in boundary crossing will be
confined to the current position. The reward structure is sparse, with a value of Rl received upon reaching
s0, a value of Rs received upon reaching s4 and a value of 0 otherwise. We consider an infinite time horizon
with a discounter factor γ.

Figure 12: When Rl = 1, Rs = 0.1, γ = 0.99. Left: convergent Q-table under uniform policy π. Right:
convergent optimal Q-table.

(c) Consider Rl = 1, Rs = 0.9, γ = 0.97. The convergent Q-tables in Figure 14 indicate that under the
random policy, the optimal action for states s3 and s4 is a1, whereas under the optimal policy, it is
a0. This discrepancy indicates that Assumption 2 does not hold.
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Figure 13: When Rl = 1, Rs = 0.9, γ = 0.8. Left: convergent Q-table under uniform policy π. Right:
convergent optimal Q-table.

Figure 14: When Rl = 1, Rs = 0.9, γ = 0.97. Left: convergent Q-table under uniform policy π. Right:
convergent optimal Q-table.
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A.4 Proof of Theorem 2

Theorem 2 (MDP). Let Assumptions 1 and 2 hold. Define κ = min
sq∈S

(
Qπ

MDP(sq, a∗)− max
a∈A\{a∗}

Qπ
MDP(sq, a)

)
.

Consider the trust horizon N > logγ (κ(1 − γ)/(2B)) − 1. The random policy is at least (1 − δ)-trustworthy
as in Definition 2, when the number of episodes Nep satisfies

Nep ≥
2
(
1 − γN+1)2

(κ (1 − γ) /(2B) − γN+1)2︸ ︷︷ ︸
G1

log
(

1 +
√

1 − δ

δ

)
. (74)

Proof. For any action a ∈ A \ {a∗}, let us define

Qπ
MDP(sq, a) = E

[
N∑

t=0
γtr(st, at) | s0 = sq, a0 = a

]
︸ ︷︷ ︸

Qπ,N
MDP(sq,a)

+E

[ ∞∑
t=N+1

γtr(st, at) | s0 = sq, a0 = a

]
︸ ︷︷ ︸

ξa

, (75)

Qπ
MDP(sq, a∗) = E

[
N∑

t=0
γtr(st, at) | s0 = sq, a0 = a∗

]
︸ ︷︷ ︸

Qπ,N
MDP(sq,a∗)

+E

[ ∞∑
t=N+1

γtr(st, at) | s0 = sq, a0 = a∗

]
︸ ︷︷ ︸

ξa∗

. (76)

Then ∀sq ∈ S,

Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a) (77)
= Qπ

MDP(sq, a∗) − ξa∗ − (Qπ
MDP(sq, a) − ξa) (78)

= Qπ
MDP(sq, a∗) − Qπ

MDP(sq, a) + ξa − ξa∗ (79)

= Qπ
MDP(sq, a∗) − Qπ

MDP(sq, a) +
∞∑

t=N+1
γt (E [r(st, at) | s0 = sq, a0 = a] − E [r(st, at) | s0 = sq, a0 = a∗])

(80)
(a)
≥ Qπ

MDP(sq, a∗) − Qπ
MDP(sq, a) − γN+1 2B

1 − γ
(81)

≥ Qπ
MDP(sq, a∗) − max

a∈A\{a∗}
Qπ

MDP(sq, a) − γN+1 2B

1 − γ
(82)

≥ min
sq∈S

(
Qπ

MDP(sq, a∗) − max
a∈A\{a∗}

Qπ
MDP(sq, a)

)
− γN+1 2B

1 − γ
(83)

(b)= κ − γN+1 2B

1 − γ
, (84)

(c)
> 0. (85)

where (a) follows from Assumption 1 and the properties of geometry series, (b) follows from the definition
of κ, (c) is due to N > logγ (κ(1 − γ)/(2B)) − 1. Therefore, let us consider two positive constants as follows

ϵ1 = α
(

Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a)
)

, (86)

ϵ2 = (1 − α)
(

Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a)
)

, (87)

where α ∈ [0, 1]. Consider the following two inequalities

Q̂π,N
MDP(sq, a∗) ≥ Qπ,N

MDP(sq, a∗) − ϵ1, (88)
Q̂π,N

MDP(sq, a) ≤ Qπ,N
MDP(sq, a) + ϵ2. (89)
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We acknowledge that equation 88 and equation 89 are the sufficient but not necessary conditions for
Q̂π,N

MDP(sq, a∗) ≥ Q̂π,N
MDP(sq, a) to hold. Thus,

P
(

Q̂π,N
MDP(sq, a∗) ≥ Q̂π,N

MDP(sq, a)
)

(90)

≥ P
(

Q̂π,N
MDP(sq, a∗) ≥ Qπ,N

MDP(sq, a∗) − ϵ1, Q̂π,N
MDP(sq, a) ≤ Qπ,N

MDP(sq, a) + ϵ2

)
(91)

= P
(

Q̂π,N
MDP(sq, a∗) ≥ Qπ,N

MDP(sq, a∗) − ϵ1

)
· P
(

Q̂π,N
MDP(sq, a) ≤ Qπ,N

MDP(sq, a) + ϵ2

)
(92)

where the last equation follows from the fact that each action is independent to other actions.

Assumption 1 implies that
∑N

t=0 (γtr(st, at) | s0 = sq, a0 = a, π) ∈ [−B 1−γN+1

1−γ , B 1−γN+1

1−γ ], ∀a ∈ A. We there-
fore lower bound the two probabilities in the previous expression using Hoeffding’s inequality (Hoeffding,
1994)

P
(

Q̂π,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a∗) ≥ −ϵ1

)
≥ 1 − exp

− Nepϵ2
1

2B2
(

1−γN+1

1−γ

)2

 , (93)

P
(

Q̂π,N
MDP(sq, a) − Qπ,N

MDP(sq, a) ≤ ϵ2

)
≥ 1 − exp

− Nepϵ2
2

2B2
(

1−γN+1

1−γ

)2

 . (94)

Then, it holds for any α ∈ [0, 1] that

P
(

Q̂π,N
MDP(sq, a∗) ≥ Q̂π,N

MDP(sq, a)
)

(95)

≥

1 − exp

− Nepϵ2
1

2B2
(

1−γN+1

1−γ

)2


 ·

1 − exp

− Nepϵ2
2

2B2
(

1−γN+1

1−γ

)2


 (96)

≥

1 − exp

−
Nepα2

(
Qπ,N

MDP(sq, a∗) − Qπ,N
MDP(sq, a)

)2

2B2
(

1−γN+1

1−γ

)2


 (97)

·

1 − exp

−
Nep(1 − α)2

(
Qπ,N

MDP(sq, a∗) − Qπ,N
MDP(sq, a)

)2

2B2
(

1−γN+1

1−γ

)2


 (98)

Notice that the maximal value of the previous expression with respect to α reaches at α = 0.5. Then it holds
that

P
(

Q̂π,N
MDP(sq, a∗) ≥ Q̂π,N

MDP(sq, a)
)

≥

1 − exp

−
Nep

(
Qπ,N

MDP(sq, a∗) − Qπ,N
MDP(sq, a)

)2

8B2
(

1−γN+1

1−γ

)2




2

, ∀a ∈ A \ {a∗}.

(99)

Since the previous inequality holds for any a ∈ A \ {a∗}, let us define

â = arg max
a∈A\{a∗}

Q̂π,N
MDP(sq, a). (100)
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Then it also holds that

P

(
Q̂π,N

MDP(sq, a∗) ≥ max
a∈A\{a∗}

Q̂π,N
MDP(sq, a)

)

≥

1 − exp

−
Nep

(
Qπ,N

MDP(sq, a∗) − Qπ,N
MDP(sq, â)

)2

8B2
(

1−γN+1

1−γ

)2




2

(101)

≥

1 − exp

−
Nep

(
Qπ,N

MDP(sq, a∗) − maxa∈A\{a∗} Qπ,N
MDP(sq, a)

)2

8B2
(

1−γN+1

1−γ

)2




2

, (102)

where the last inequality follows from the monotonicity and the fact that Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, a) ≥
0, ∀a ∈ A \ {a∗}.

Let us define

ā = arg max
a∈A\{a∗}

Qπ,N
MDP(sq, a). (103)

Then ∀sq ∈ S we obtain

Qπ,N
MDP(sq, a∗) − max

a∈A\{a∗}
Qπ,N

MDP(sq, a) (104)

(a)= Qπ,N
MDP(sq, a∗) − Qπ,N

MDP(sq, ā) (105)
(b)= Qπ

MDP(sq, a∗) − ξa∗ − (Qπ
MDP(sq, ā) − ξā) (106)

= Qπ
MDP(sq, a∗) − Qπ

MDP(sq, ā) + ξā − ξa∗ (107)

= Qπ
MDP(sq, a∗) − Qπ

MDP(sq, ā) +
∞∑

t=N+1
γt (E [r(st, at) | s0 = sq, a0 = ā] − E [r(st, at) | s0 = sq, a0 = a∗])

(108)
(c)
≥ Qπ

MDP(sq, a∗) − Qπ
MDP(sq, ā) − γN+1 2B

1 − γ
(109)

(d)
≥ Qπ

MDP(sq, a∗) − max
a∈A\{a∗}

Qπ
MDP(sq, a) − γN+1 2B

1 − γ
(110)

≥ min
sq∈S

(
Qπ

MDP(sq, a∗) − max
a∈A\{a∗}

Qπ
MDP(sq, a)

)
− γN+1 2B

1 − γ
(111)

(e)= κ − γN+1 2B

1 − γ
(112)

(f)
> 0, (113)

where (a) follows from the definition of ā, (b) follows from the definition of Qπ
MDP, (c) follows from Assump-

tion 1 and the properties of geometry series, (d) follows from the fact that ā may not be the maximizer of
Qπ

MDP(sq, ·), (e) follows from the definition of κ, (f) is due to N > logγ (κ(1 − γ)/(2B)) − 1.

Consequently, equation 102 is monotonically increasing with Qπ,N
MDP(sq, a∗)−maxa∈A\{a∗} Qπ,N

MDP(sq, a). Sub-
stituting the previous inequality into equation 102 and by the monotonicity yields

P

(
Q̂π,N

MDP(sq, a∗) ≥ max
a∈A\{a∗}

Q̂π,N
MDP(sq, a)

)
≥

1 − exp

−
Nep

(
κ − γN+1 2B

1−γ

)2

8B2
(

1−γN+1

1−γ

)2




2

, (114)
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To make the previous probability greater than 1 − δ, we require1 − exp

−
Nep

(
κ − γN+1 2B

1−γ

)2

8B2
(

1−γN+1

1−γ

)2




2

≥ 1 − δ. (115)

Thus,

Nep ≥ log
(

1 +
√

1 − δ

δ

) 8B2
(

1−γN+1

1−γ

)2

(
κ − γN+1 2B

1−γ

)2 (116)

=
2
(
1 − γN+1)2

(κ (1 − γ) /(2B) − γN+1)2 log
(

1 +
√

1 − δ

δ

)
. (117)

This completes the proof.

□

A.5 Technical Lemma

Lemma 2. Given N > logγ (κ(1 − γ)/(2B)) − 1, G1 in equation 12 is monotonically decreasing with respect
to the trust horizon N .

Proof. We proceed by defining Y = κ(1 − γ)/(2B). Since N > logγ (κ(1 − γ)/(2B)) − 1, we can obtain

Y = κ (1 − γ)
2B

∈ (γN+1, 1]. (118)

Let Z = N + 1, and then we can rewrite G1 as

G1 =
2
(
1 − γZ

)2

(Y − γZ)2 , where Y ∈ (γZ , 1]. (119)

The chain rule implies that

∂G1

∂N
= ∂G1

∂Z
· ∂Z

∂N
(120)

= ∂G1

∂Z
(121)

= 4
(

1 − γZ

Y − γZ

)
−γZ log γ(Y − γZ) + (1 − γZ)γZ log γ

(Y − γZ)2 (122)

= 4
(

1 − γZ

Y − γZ

)
γZ log γ(1 − Y )

(Y − γZ)2 (123)

≤ 0, (124)

where the last inequality follows from γ ∈ (0, 1] and Y ∈ (γZ , 1].

This completes the proof.

□

A.6 Proof of Corollary 1

Corollary 1. Let hypotheses of Theorems 1 and 2 hold. Denote by l the length of the trajectory. For any
environment τ and history data H, SAD and the well-specified posterior sampling follow the same trajectory
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distribution with probability (1 − δ)l

PFθ
(trajectory | τ, H) = Pps(trajectory | τ, H), ∀trajectory. (125)

Proof. To proceed, we rely on the following assumption.
Assumption 3. Denote by Fθ the pretrained FM. ∀(C, sq), assume Ptrain(a | C, sq) = Fθ(a | C, sq) for all
a ∈ A.

Note that Assumption 3 is a common assumption in the in-context learning literature (Xie et al., 2021;
Lee et al., 2024), assuming that the pretrained FM fits the pretraining distribution exactly provided with
sufficient coverage and data, where the SAD fits with a sufficiently large trust horizon N .

With Assumption 3 established, Theorem 1 of (Lee et al., 2024) implies that equation 125 holds when the
optimal action is selected at each step. In addition, Theorems 1 and 2 indicate that the FM trained by SAD
selects the optimal action label with probability 1 − δ at each step. Consequently, equation 125 holds for
SAD with probability (1 − δ)l.

This completes the proof. □

A.7 Finite MDP setting from Osband et al. (2013)

Let us consider the finite MDP setting as in (Osband et al., 2013), where E[r(st, at)] ∈ [0, 1]. Denote by
S, A, T the state space, action space, and time horizon. Consider the uniform random policy π for sampling
the context C and query state sq. Denote by Ttest(τ) and Ttrain(τ) the test and pretraining distribution
over the environment τ , respectively. Consider the online cumulative regret of SAD over K episodes in the
environment τ as

Regretτ (Fθ) ∆=
K∑

k=0
Vτ (π∗

τ ) − Vτ (πk), (126)

where πk(· | st) = Fθ(· | Ck−1, st).

A.8 Proof of Corollary 2

Corollary 2. Let hypotheses of Theorems 1 and 2 hold. Given the environment τ and a constant B′ > 0,
suppose that supτ Ttest(τ)/Ttrain(τ) ≤ B′. In the finite MDP setting above, it holds with probability (1−δ)KT

that

ETtest [Regretτ (Fθ)] ≤ Õ(B′|S|T 3/2
√

K|A|). (127)

Proof. Theorems 1 and 2 imply that the FM trained by SAD selects the optimal action label with
probability 1 − δ at each step, while the finite MDP setting above comprises K · T steps. Therefore, it holds
with probability (1 − δ)KT that the trained FM Fθ is equivalent to the posterior sampling established in
Corollary 1. Then, it follows directly from Corollary 6.2 of (Lee et al., 2024) that with probability (1 − δ)KT

it holds that

ETtrain [Regretτ (Fθ)] ≤ Õ(|S|T 3/2
√

K|A|), (128)

where the notation Õ omits the polylogarithmic dependence. Subsequently, by using the bounded likelihood
ratio between the test and pretraining distributions yields

ETtest [Regretτ (Fθ)] =
∫

Ttest(τ)Regretτ (Fθ)d(τ) (129)

≤ B′
∫

Ttrain(τ)Regretτ (Fθ)d(τ) (130)

= B′ETtrain [Regretτ (Fθ)] (131)
≤ Õ(B′|S|T 3/2

√
K|A|). (132)

This completes the proof. □
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B Implementation Details

We provide below the pseudo-codes that are omitted in the main body of the paper.

Algorithm 5 Collecting Query States and Action Labels under Random Policy (Sparse-Reward MDP)
1: Require: Random policy π, state space S, action space A, environment τ , trust horizon N
2: Set min_step = N + 1
3: while min_step > N do
4: Sample a query state sq ∼ S
5: Empty a step list Ls

6: for a in [A] do
7: Initialize the state and action as s0 = sq, a0 = a
8: Run an episode of N steps in τ under the random policy π, and terminate the episode early upon

receiving a reward
9: Add consumed steps to Ls (add “N + 1” if no reward is received)

10: end for
11: min_step = min(Ls)
12: end while
13: Obtain al = A(arg min(Ls))
14: Return (sq, al)

Algorithm 6 Pretraining and Deployment of SAD (Inspired by (Lee et al., 2024))
1: Require: Pretraining dataset D, initial model parameters θ, test environment distribution Ttest, number

of episodes NE

2: // Model pretraining
3: while not converged do
4: Sample (C, sq, al) from the pretraining dataset D and predict actions by the model Fθ(·|Ci, sq) for all

i ∈ [|C|]
5: Compute the loss in equation 3 with respect to the action label al and backpropagate to update θ.
6: end while
7: // Offline deployment
8: Sample unseen environments τ ∼ Ttest
9: Sample a context C ∼ Ttest(· | τ)

10: Deploy Fθ in τ by selecting at ∈ arg maxa∈A Fθ(a | C, st) at time step t
11: // Online deployment
12: Sample unseen environments τ ∼ Ttest and initialize empty context C = {}
13: for i in [NE ] do
14: Deploy Fθ by sampling at ∼ Fθ(· | C, st) at time step t
15: Add (s0, a0, r0, . . .) to C
16: end for

C Experimental Details

C.1 Hyperparameters

The main hyperparameters employed in this work are summarized in Tables 1-2.

C.2 Additional Results

We provide in this subsection additional experimental results that are omitted in the main body of paper.
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Table 1: The main hyperparameters of each algorithm

Hyperparameters AD DPT DIT SAD (ours)
Causal transformer GPT2 GPT2 GPT2 GPT2

Number of attention heads 3 3 3 3
Number of attention layers 3 3 3 3

Embedding size 32 32 32 32
DIT Weight λ N/A N/A 500 N/A
Learning rate 0.001 0.001 0.001 0.001

Dropout 0.1 0.1 0.1 0.1

Table 2: The main hyperparameters of each environment

Hyperparameters Gaussian Bandits Bernoulli Bandits Darkroom Darkroom-Large Miniworld
Action dimension 5 5 5 5 4

Pixel-based ✗ ✗ ✗ ✗ ✓

Trust Horizon 320 320 7 10 3
# of epochs 100 100 100 100 200

Context horizon 500 500 49 100 50
Training/Test ratio 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2
# of environments 100000 100000 24010 100000 40000

Figure 15 presents the dataset generation time of our SAD approach, compared with other SOTA baselines
(AD, DPT, DIT), where the MAB and MDP problems consider the environments of Gaussian Bandits and
Darkroom respectively. SAD (avg) represents the average of consumed time over different trust horizons
(consistent with those in Figure 6). On average, SAD requires the most significant amount of time in the
MDP problem. While in the MAB problem, SAD ranks as the second most time-consuming method, with
its duration surpassing all except DIT. Notice that the additional computational time of SAD aligns with
the prevailing trend of leveraging increased computation to fully harness the advanced reasoning capabilities
of FMs (Brown, 2020).

Figure 16 compares our SAD approach with the SOTA baselines (AD, DPT, DIT) under the same time
budget (38 seconds, which is consumed by DIT). Despite with degraded performance and increased vairance
compared to before, our SAD method still outperforms all baselines, especially in the offline deployment.
This implies that our method has a more robust performance than the baselines when tackling the random
contexts as the offline deployment uses pre-collected random contexts.

Table 5 demonstrates that our method with N = 7 uses 21,445,147 transition data only and consumes
82 seconds only in the dataset generation. In contrast, obtaining well-trained policies for all pretraining
environments in the baseline methods (AD) uses 2,401,000,000 transition data and consumes 3452 seconds
in the dataset generation. Furthermore, the baseline methods need to learn and maintain policy and value
networks for all pretraining environments (additional costs), which is not the case in our method since the
only thing we do is collecting at random. It is true that the baseline methods take about 20-40 seconds
(see Figure 15) if they just employ the random policy (no well-trained policies), however, accompanied by a
catastrophic performance as depicted in Figure 4.
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Table 3: Performance improvements of SAD compared to baseline algorithms in the offline evaluation.

Environment SAD vs AD SAD vs DPT SAD vs DIT SAD vs DPT∗

Gaussian Bandits 647.0% 508.9% 354.0% −5.2%
Bernoulli Bandits 553.4% 426.8% 289.5% −18.7%

Darkroom 2162.2% 2069.6% 149.3% −1.3%
Darkroom-Large 6325.5% 6389.9% 266.8% −14.9%

Miniworld 687.7% 684.2% 122.1% −52.9%
Average 2075.2% 2015.9% 236.3% −18.6%

Table 4: Performance improvements of SAD compared to baseline algorithms in the online evaluation.

Environment SAD vs AD SAD vs DPT SAD vs DIT SAD vs DPT∗

Gaussian Bandits 933.6% 942.5% 273.9% −0.4%
Bernoulli Bandits 846.8% 830.9% 313.9% −0.2%

Darkroom 3053.9% 2893.8% 41.7% −3.4%
Darkroom-Large 10626.9% 10221.8% 24.7% −0.1%

Miniworld 582.9% 580.1% 21.7% −57.3%
Average 3208.8% 3093.8% 135.2% −12.3%
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Figure 15: The dataset generation time consumed by SAD averaged over varying trust horizons (as in
Figure 6), compared with AD, DPT, and DIT.
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Figure 16: Offline and online evaluations of ICRL algorithms under the same time budget (38 seconds).

Table 5: The amount of transition data and computation time of SAD (N = 7) compared to AD with
well-trained policies.

Algorithms Amount of Transition Data Computation Time (s)
AD 2, 401, 000, 000 3452

SAD (ours) 21, 445, 147 82
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