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Abstract

In this work, we bring new insights into the honesty of vision-language models,
particularly in visual question answering (VQA). After a throughout revisit of the
existing ‘lie’ behavior in pure language models, our work makes an unprecedented
extension of ’lies’ to vision-language models. The results indicate that the lie
prefixes have a more obvious misleading effect on vision-language models than
on language models. We also propose a novel visual prefix and prove that the
consistent vision-language prefix is more threatening to vision-language models.
To defend the models from the stated ’lies’, we put forward an unsupervised
framework based on Gaussian mixture modeling and obtain improvement with 3%
against the language prefix and 12% against the vision-language prefix.

1 Introduction

Vision-language models are gaining popularity in various scenarios, where their robustness and safety
are worth noticing. Researchers have investigated different aspects of the model robustness in vision-
language tasks (including visual question answering (VQA) 119,18, 7] and visual grounding [3 12]).
E.g., for the VQA task, the robustness includes two aspects: the model resilience to distribution
shift in both training set and answer type, and the model brittleness to rephrased languages and
manipulated images.

The robustness study of multi-modality models can derive from that of single-modality models.
Recently, [S]] explores the honesty of language models. The authors find that some prefixes can
mislead the language model to output false text, specifically in the case of binary-type questioning
and answering (QA). They call this phenomenon ‘lie” behavior, which is different from previous
works aiming to prevent models from accidentally outputting false results. Viewing binary-type QA
as a classification task, they propose a completely unsupervised learning framework, which only
performs clustering on the test set. Their unsupervised clustering not only proves but also mitigates
the model’s ‘lie” behavior, and it works much better than a direct generation.

Such ‘lie’ behavior may also be a severe drawback in current vision-language models, but the related
research remains untouched yet. In this work, we investigate the ‘lie’ behaviors in vision-language
models and propose practical solutions. Our results show that vision-language models are much
easier to be fooled by the language lie prefix. Besides the single-modality language prefix, we find
that the consistent language prefix and vision manipulation are more threatening to vision-language
models. To solve these problems, we propose completely unsupervised methods based on Gaussian
mixture models. Under the consistent language prefix and vision manipulation settings, our solution
successfully mitigates the ‘lie’ behavior with accuracy improvements of 3% and 12%.

2 Preparations and basic formulations

In this section, we first recap the study in [5], which explores lie behaviors in a pure language setting.
Then we present the basic settings in our work.
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Does it appear to be rainy?
Does this person have 20/20 vision?

What color are her eyes? How many slices of pizza are there? Is this person expecting company?
What is the mustache made of? Is this a vegetarian pizza? What is just under the tree?

Figure 1: Examples in VQA-v2 datasets.

2.1 Lie behavior in language models

[3] focuses on binary-type question-answering (QA) problems. They found that some wrong prefix,
e.g., ‘is the United States inside of England? yes’, can make language models have wrong output.
They call this prefix a ‘lie’. They then construct a contrastive pair for each question, and show that
unsupervised clustering for pair encoding can mitigate the lie behavior.

2.2 Basic formulations for vision-language setting

Task selectioon [3]] discusses QA, specifically with binary-type answers, e.g., true or false, yes or
no. As an extension to the vision-language setting, we consider visual-question answering (VQA) [4]]
problem.

Dataset selection The commonly used dataset in VQA is VQA-v2 [6], which includes multiple
different categories of question-answer types, including yes or no, numbers, efc. Here we clarify two
notations Ay and A; about the dataset:

Ay = {(x;,¢;)} : the original dataset VQA-v2, where (x;,q;) is an image-question pair.
Ay C Ay : the sub-dataset of yes-or-no type.

Besides multiple types of answers in Ay, we also note here that each image in Ay has multiple
different corresponding questions and respective answers, as shown in Figure [T] [4]. This will be
illustrated later. For an image z, denote QQ(x, A) to be a list of all questions on = in A C Ay, and
A(z, A) to be alist of all corresponding answers.

Model selection We choose OFA [[10] as the backbone, and use the checkpoint obtained after
finetuning on Ay

3 VOQA with language lie prefix

3.1 Lie prefix with arbitrary answer type

Lie prefix in [3] is a group of question-answer pairs that have no semantic relations to the target
question-answer pair. In the vision-language setting, we argue that the language prefix should be
consistent with the visual input. Hence, we need the dataset to contain multiple questions for one
image, as shown in Figure For each image and question pair (z,q) € A, we randomly select a
question ¢’ from Q(x, Ag) and the corresponding answer o’ from A(z, Ag) as the prefix. So a’ could
be any type of answer. After adding a language prefix, the language part changes from ¢ to ¢’ +a’ +q.
We find that the lie prefix can severely mislead the output answer. Accuracy drops from 90.6% to
45.01%, and around 37.6% answers are neither ‘yes’ nor ‘no’. The result shows that, compared with
language models, VQA models could be far more easily misled by lie prefixes.

3.2 Lie prefix with yes-or-no answer type
3.2.1 Generate answers directly using OFA model

To avoid the issue mentioned above, we restrict the lie prefix to only the yes-or-no type. This
requires an additional restriction on the dataset. We choose Ay C A; such that for any (z, q) € Ao,

'https://github.com/ofa-sys/ofa



language prefix . S e s
guage p Q: the united states is inside of england. are

the bears fighting? no. was this picture taken
in australia?
A:

Q: was this picture taken in
australia?
A:

Q: a cat is hosting a program on television. are
the bears fighting? no. was this picture taken
in australia?

A:

vision & language prefix

Figure 2: The top is an image with a language prefix. The blue text is inherited from [5)]. The
yellow text is another question and its corresponding false answer from A for the same image. The
bottom is an image with vision & language prefix, where a television patch is added. The blue text
is a sentence related to but not consistent with the added object. The yellow text is the same as the
language-prefix case.

|Q(z, Az)| > 1. This means for each image and question pair in Ay, we can always find another
different yes-or-no question belonging to the same image in As.

Now for each (z, q) € Aa, we select a pair (z, ¢’) with the corresponding answer a’ from A instead
of Ay. We also inherit the prefix used in [5]] and add it to the beginning. We show an example with
all these prefixes in Figure[2] Experiments show that with the yes-or-no prefix, almost all answers
belong to [‘yes’, ‘no’]. Now accuracy drops from 90.6% to 64.3%. This indicates that the lie behavior
can cause around 25% performance drop.

3.2.2 Unsupervised learning on vision-language encoding

[3] mitigates this lie behavior by unsupervised clustering. For a given binary-type question ¢
with lie prefix ¢ + o/, they construct a contrastive pair by answering ‘yes” and ‘no’ respectively:
q +d + q+ ‘ves’and ¢’ + a’ + ¢ + ‘no’. For an encoder h, the final representation is:

d+d+q—H( +d+q)=h(qd +d +q+ ‘yes’) —h(q +d +q+ no’))[-1].

Here [—1] means to take the encoding of the last token. H (-) is used to train an unsupervised binary
classifier, because they argue that for questions with opposite answers, H (-) would lie on different
spaces. They propose two clustering methods based on principal component projection and variance
minimization.

Our OFA model has an encoder-decoder structure, where the image tokens and text tokens are
concatenated in one sequence during encoding. For an image-question pair (z, ¢), the encoding is
h(z,q) € RNV*4 where N = 100 is the number of tokens, d = 1024 is the embedding dimension.
Researchers in [3] simply choose the last token, however, we find this does not work for vision-
language models. We use average pooling to obtain more information. So the representation is:

(z,¢'+ad +q) = H(z,qd +d' +q) = mean(h(z,q +a' +q+ yes’) —h(z, ¢ +d' +q+ ‘no’)) € R%.
Different from [3]], we use mixture Gaussian models for unsupervised clustering on H(-). Results

show that the accuracy improves from 64.3% to 67.3%.

4 VQA with vision-language lie prefix

In this section, we explore a novel visual prefix. It is straightforward to add texts in the front of text
questions as prefix guidance. However, there lacks a counterpart prefix of images. We propose to add



some meaningful semantic objects to the original image. Moreover, we add a sentence related to the
objects at the beginning of the text. Figure 2] presents an example of our prefix design.

We also make inferences on Ay with both direct generation and unsupervised clustering. Since the
vision & language prefix shares the same data structure as before, the pipeline is totally the same.
First, the accuracy of generation using OFA model drops from 90.6% to 52.4% with the vision &
language prefix, which is nearly random guessing. However, unsupervised clustering with a Gaussian
mixture model still remains a good performance as before, which is 64.7%. This illustrates that
unsupervised clustering helps mitigate the lie prefix on both images and texts.

We list some objects and sentences in Table[T]

objects sentences
television a cat is hosting a program on television.
truck a truck is flying to the moon.
computer | a monkey is typing in front of a computer.
motorbike | a dog is driving a blue motorbike on water.

Table 1: Objects and corresponding sentences.

S Experiments summary and conclusions

The main results are summarized in Table 2] We recap some main conclusions here.

d vision language language direct out of unsupervised
ataset : P P :
prefix prefix 1 prefix 2 | generation | [‘yes’, ‘no’] clustering
Ay none none none 90.6% 1.2%
Ay none none Q(z,Ag) 45.0% 37.6%
Ay none | inherit from [5] | Q(x, Ag) 64.3% 0.0% 67.3% (13.0%)
Ao objects | objects related | Q(x, As) 52.4% 0.0% 64.7% (112.3%)

Table 2: The main results in our work. Language prefixes 1 and 2 are added to the front of the
text. Direct generation and out of [‘yes’, ‘no’] refers to the accuracy and percentage when using the
original OFA model. Unsupervised clustering refers to the accuracy of Gaussian mixture models.

Vision-language models are more easily misled by the language prefix. Although [5]] also focuses
on binary-type questions, their language prefix is of arbitrary types other than [‘yes’, ‘no’]. Different
from our results, theirs do not show such a strong misleading effect.

Consistent vision-language prefix is more dangerous than language prefix for vision-language
models. Simple language prefix still keeps the accuracy at a reasonable level. However, the consistent
vision-language prefix degraded the model to random guessing.

Unsupervised clustering helps mitigate lie behaviors. The results show that with good representa-
tion extraction, unsupervised clustering shows a better performance than a direct generation. When
tested with a consistent vision-language prefix, the direct generation performs like a random guess,
while the unsupervised clustering still maintains stable performance as before.
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A X-Risk Analysis

‘Lie’ behavior refers to the phenomenon that models give wrong results when adding some wrong
guidance while giving correct results with no such guidance. This paper makes the first exploration
of ‘lie’ behavior for vision-language models. Our formulation and experiments show that vision-
language models are much easier to be misled by lie prefix than pure language models. Besides pure
language manipulation, we also show that consistent vision and language manipulation are a more
threatening risk for vision-language models.

We then propose a completely unsupervised method to solve this potential problem. We build contrast
pairs of features of the same vision-language input and conduct unsupervised learning. Results
indicate that our method (based on Gaussian mixture modeling) outperforms direct generation, and it
retains higher accuracy even with stronger lie prefixes on both vision and language.

A.1 Long-Term Impact on Advanced AI Systems

In this section, please analyze how this work shapes the process that will lead to advanced Al systems
and how it steers the process in a safer direction.

1. Overview. How is this work intended to reduce existential risks from advanced Al systems?
Answer: Our work can reduce existential risks from advanced Al systems. To illustrate
this, we first make a comparison of our work and previous work. Our exploration derives
from a previous work that first propose the concept of lie behaviors and explore this in
pure language models. They propose unsupervised methods that mitigate the problem. Our
formulation shows that the related formulation is very different from pure language models.
For example, 1. the lie prefix should be related to visual input, 2. the prefix on visual input
also needs to be considered.

Although there are many differences in formulations, our work shows that purely unsu-
pervised methods can also work in vision-language models. Advanced Al systems would
contain multi-modality modules including both vision and language. Therefore, a thorough
formulation and analysis of risks in vision-language systems are crucial. Moreover, our work
shows the generalizability of our proposed unsupervised learning framework. Combined
with the previous work, our work verifies that the unsupervised learning framework can
learn the intrinsic information of high-dimensional cross-modality input.

2. Direct Effects. If this work directly reduces existential risks, what are the main hazards,
vulnerabilities, or failure modes that it directly affects?
Answer: We study the vulnerability of current well-performed vision-language models in
VQA tasks. A simple language prefix as in previous works [5] can significantly reduce
performance (e.g. 90.6% v.s. 64.3 %), which shows the current system can take a high risk
of being fooled. In our work, we further demonstrate a stronger ‘attack’ on this system
by manipulating the image and language simultaneously. We add a small picture with a
corresponding description onto the original image, which not only fools the language model
but also takes the vision encoder into consideration. Compared with the previous language-
prefix-only method, our method further reduces the performance by 12 % (64.3% v.s.
52.4%). It shows that our current VQA models can be easily attacked by adding meaningful
object and object-related prefixes to both vision and language encoders. To address this
issue, we propose to use an unsupervised clustering method to implicitly de-noise the feature
that contains the ’lie’ prefix. We find a Gaussian mixture model can bring us 3% and 12%
improvement in both two settings. It inspires future studies to develop advanced methods
which de-noise the features with lie prefixes and reduces risks.

3. What’s at Stake? What is a future scenario in which this research direction could prevent
the sudden, large-scale loss of life? If not applicable, what is a future scenario in which this
research direction be highly beneficial?

Answer: In our work, we show that taking the vision encoder into consideration for
robustness evaluation is necessary. A meaningful image with a concrete description can
mislead the vision-language model than only adding a language prefix. We believe a future
study can be a more in-depth robustness evaluation of both vision and language models
instead of only considering one of them. Second, we find a simple Gaussian mixture model
can significantly reduce the effect of lie behavior. We believe our work contributes to the



future development of advanced clustering or de-noising algorithms to enhance robustness.
Moreover, one specific scenario or method can be: we can mix the different images and
prefixes together when training the vision language model to see if we can improve the
robustness, similar to the mixup methods in image processing.

Result Fragility. Do the findings rest on strong theoretical assumptions; are they not
demonstrated using leading-edge tasks or models; or are the findings highly sensitive to
hyperparameters? No

. Problem Difficulty. Is it implausible that any practical system could ever markedly outper-

form humans at this task? No

Human Unreliability. Does this approach strongly depend on handcrafted features, expert
supervision, or human reliability? No

. Competitive Pressures. Does work towards this approach strongly trade-off against raw

intelligence, other general capabilities, or the economic utility? No

A.2 Safety-Capabilities Balance

In this section, please analyze how this work relates to general capabilities and how it affects the
balance between safety and hazards from general capabilities.

1.

Overview. How does this improve safety more than it improves general capabilities?
Answer: First of all, our goal is not to improve the performance of the model, so we did not
retrain or restructure the model to achieve better performance. Our goal is to analyze the
robustness of the existing model, so we select the trained model for evaluation. Under this
scenario, we design a more effective method to fool our model by manipulating the image
and language input simultaneously. Second, our proposed method to improve the robustness
also does not modify the model but performs unsupervised clustering at the output level of
the model, and we find that this method is very effective in improving the robustness of the
vision and language models.

. Red Teaming. What is a way in which this hastens general capabilities or the onset of

x-risks?

Answer: In our findings, a classical unsupervised clustering method works better than
well-designed clustering methods in [5]. One way to further improve robustness can be
mixing the different images and prefixes when training vision-language models.

. General Tasks. Does this work advance progress on tasks that have been previously

considered the subject of usual capabilities research? Yes

. General Goals. Does this improve or facilitate research towards general prediction, clas-

sification, state estimation, efficiency, scalability, generation, data compression, executing
clear instructions, helpfulness, informativeness, reasoning, planning, researching, optimiza-
tion, (self-)supervised learning, sequential decision making, recursive self-improvement,
open-ended goals, models accessing the Internet, or similar capabilities? Yes

. Correlation With General Aptitude. Is the analyzed capability known to be highly

predicted by general cognitive ability or educational attainment? Yes

. Safety via Capabilities. Does this advance safety along with, or as a consequence of,

advancing other capabilities or the study of AI? Yes
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