ASYMOB: ALGEBRAIC SYMBOLIC MATHEMATICAL
OPERATIONS BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LL.Ms) are increasingly applied to symbolic mathematics,
yet existing evaluations often conflate pattern memorization with genuine reason-
ing. To address this gap, we present ASyMOB, a high-resolution dataset of 35,368
validated symbolic math problems spanning integration, limits, differential equa-
tions, series, and hypergeometrics. Unlike prior benchmarks, ASyMOB system-
atically perturbs each seed problem using symbolic, numeric, and equivalence-
preserving transformations, enabling a fine-grained assessment of generalization
and robustness. Our evaluation reveals three key findings: (1) most models’ per-
formance collapses under minor perturbations, while frontier systems exhibit sub-
stantial robustness, suggesting an emerging ‘phase transition’ from memorization
to generalization; (2) integrated code tools stabilize performance, particularly for
weaker models; and (3) we identify examples where Computer Algebra Systems
(CAS) fail while LLMs succeed, as well as problems solved only via a hybrid
LLM-CAS approach, highlighting a promising integration frontier. ASyMOB
serves as a principled diagnostic tool for measuring and accelerating progress to-
ward building verifiable, trustworthy Al for scientific discovery.

1 INTRODUCTION

In recent years, large language models (LLMs) have shown remarkable capabilities in domains such
as mathematical reasoning (Lewkowycz et al.[2022; Kojima et al. 2022} X. Wang et al. 2023 Trinh
et al. [2024; Luo et al. 2025; Davies et al. [2021)) and code generation (Roziere et al. 2024} Ridnik
et al. 2024} Zan et al. 2023; Hou et al. 2024). A crucial skill for real-world applications of these
capabilities is mastery of university-level symbolic mathematics, including integration, limit com-
putation, differential equation solving, and algebraic simplification. This proficiency is fundamental
across many mathematical, scientific, and engineering challenges.

However, existing mathematical benchmarks inadequately assess symbolic proficiency. Early
benchmarks like GSM8K (Cobbe et al. [2021) and MATH (Hendrycks et al. 2021}, while driving
progress in arithmetic reasoning, focus on pre-university level questions and have been mastered
by frontier LLMs (Glazer et al.|[2024). Furthermore, many popular benchmarks rely on multiple-
choice questions (Rein et al. 2024), an unrealistic setting which artificially lowers the difficulty.
Word-problem benchmarks mix two fundamentally different challenges: text-to-math conversion
(understanding the text to build expressions) and symbolic manipulation (solving them). This con-
flation makes it hard to evaluate an LLM’s performance specifically on the latter, and to diagnose the
root causes of model errors. Conversely, formal proof datasets (e.g. Zheng et al. [2022; Balunovié¢
et al. 2025)) address theorem proving but often skip core tasks like integration or solving differential
equations.

The broad topic coverage that most benchmarks strive for forces small sample sizes per skill cat-
egory, hindering robust statistical analysis. For example, only 150 out of 3709 (4%) questions in
MathBench (H. Liu et al. |2024) address university-level math in English. The 5K test dataset by
Lample et al. (2020) targets symbolic math, but mainly contains simple problems and was immedi-
ately saturated. Recent efforts, such as FrontierMath (Glazer et al.|2024)) and Humanity’s Last Exam
(Phan et al. |2025)), demand that LL.Ms exhibit very high proficiency across numerous skills simul-
taneously, thereby impeding conclusions regarding specific LLM capabilities. Overcoming these
limitations can shed light on a fundamental question: do LLMs solve problems through genuine
mathematical understanding or merely through advanced pattern recognition (Mirzadeh et al. [2025;

Code for ASyMOB dataset generation and LLM evaluation pipeline is attached in the supplementary.

Boye et al. 2025} Z. Zhou, Q. Wang, et al.|2024; K. Huang et al. 2025} Z. Zhou, S. Liu, et al. 2025
Jiang et al. 2024). Addressing this question calls for different types of datasets, which can separate
sophisticated pattern memorization from true mathematical abilities.

In response, we present ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark (pro-
nounced Asimov, in tribute to the renowned author). ASyMOB assesses LLM capabilities through
systematic perturbations of core symbolic tasks; introducing three key innovations:

1. Focused Scope: Targeting pure symbolic manipulation (Figure T).
2. Controlled Complexity: Systematically introduced questions varied by difficulty levels.

3. High Resolution: The large scale and fine-grained difficulty steps enable statistically ro-
bust measurement of model accuracy, sensitivity to noise types, and impact of tool use.

Seed Question Symbolic Perturbation

<Code / No-Code Prompt> <Code / No-Code Prompt>
Solve the following integral. Solve the following integral.
Assume A, B, F, G are real and positive.
/ ’ M dr 2 F
1 :C(QZ+€$) / Ae (F.I‘—l) "
1 Fz(Bef* 4+ FGx)
Solution: Solution:
! (2+62> A 2B+ 2G
n — In(—0——+
2+ 2e BF 2(eB+ G)

Assume you don’t have access to a computer, and do not use code to solve

No-Code Prompt the question.

Code Prompt Please use Python to solve the question.

Figure 1: Example ASyMOB question and code-use preambles. A seed question (left) and its
symbolically perturbed variant (right). Proceeding text disallows or encourages code execution (this
part is omitted for models without inherent code execution capabilities).

Using ASyMOB, we evaluated the performance of open- and closed-weight LLMs, including gen-
eral and mathematical models. Perturbations significantly challenge LLMs’ symbolic math skills,
reducing the average model success rate from 74.6% on the unperturbed subset to 46.8% on the full
ASyMOB benchmark. Even the simplest perturbations noticeably affect performance (Figure [2).

Following reports on the effects of tool-use in math problem solving (Novikov et al. 2025} Yue et al.
2024 A. Zhou et al. [2024; OpenAl 2025b; Liao et al. [2024; Gou et al. [2024; Imani et al. 2023;
Romera-Paredes et al. 2023; Dugan et al. |[2024])), we tested code-integrated LLMs with and without
code execution (Figure 2] left). Tool use boosts performance in weaker models, but surprisingly has
no positive effect on frontier ones.

Some perturbed variants in ASyMOB proved impossible for the CAS we tested - Mathematica,
WolframAlpha and SymPy (Wolfram Research Inc. 2024 Wolfram Alpha LLC 2025} Meurer et al.
2017) - yet certain LLMs managed to solve them (section [3.I). Moreover, we present an exam-
ple where pure CAS and pure LLM approaches fail, yet their combination successfully solves the
challenge - leveraging the complementary strengths of each system.

2 METHODOLOGY FOR SYMBOLIC MATHEMATICAL OPERATIONS
MEASUREMENT

2.1 DATASET DESIGN AND GENERATION

We begin by curating and creating a set of 100 seed problems that contain only symbolic content
- no word-problems or other textual or graphical information beyond the minimal instructions or

—e— 04-mini (Code) Gemini 2.0 Flash (No Code)

~e- 04-mini (No Code) GPT-4.1 (Code) DeepSeek-R1 —=— Llama 4 Scout
Gemini 2.5 Flash (Code) GPT-4.1 (No Code) DeepSeek-Prover-V2 Gemma 3n 4B
Gemini 2.5 Flash (No Code) —e— GPT-40 (Code) —#— DeepSeek-V3 GPT-40 mini
Gemini 2.0 Flash (Code) —e- GPT-40 (No Code) Qwen2.5-72B-Instruct —#— Nemotron-Super-vl

100 4 N Perturbation Type: Numeric-All 100 4 Perturbation Type: Numeric-All

80

60 4

40

Performance Change (%)

Digits Digits

1001 Perturbation Type: Numeric-One 1001 Perturbation Type: Numeric-One
80

60 1

Performance Change (%)

204 204

Seed 1 2 3 4 5 6 7 8 9 10 Seed 1 2 3 4 5 6 7 8 9 10
Digits Digits

100 o

Perturbation Type: Symbolic 1004 Perturbation Type: Symbolic

80 4 80 4 &

60 601

40 40 I

Performance Change (%)

Seed 1 2 3 4 Seed 1 2 3 4
Symbols Symbols

Figure 2: Degradation of success rate relative to seed-set performance. Both code-integrated
models (left) and non-code integrated (right) exhibit performance degradation due to numeric and
symbolic perturbations, but frontier models are more resilient. Notably, GPT-4o0 is substantially
more robust when code-enabled. Wald 95% confidence intervals are shown (Wald |1943)).

assumptions needed to define the symbolic task. This restriction excludes almost all olympiad-style
problems (Gao et al. [2025) and separates our dataset from existing benchmarks. 55 seed questions
were curated from university-level benchmarks (Chernyshev et al. 2025; Fang et al. 2024; Frieder
et al. [2023} Xu et al.[2025) and math olympiads (Brazilian Mathematical Olympiad 2019; Z. Huang
et al. 2024} He et al. 2024). 45 additional seed questions were created to cover underrepresented
topics. The questions represent a sample of the practical mathematical challenges that engineers and
scientists frequently encounter in their work and research. Each question is categorized by its topic:
Integrals (30), Differential Equations (23), Series (22), Limits (15), Hypergeometrics (10).

Based on these seed questions, we introduce symbolic perturbations to create an overall dataset of
35,368 unique symbolic math challenges (Table [T). The guiding principle was to modify the sym-
bolic structure of the problem - thereby adding a layer of variation - without substantially altering
the core mathematical challenge or the required solution techniques.

For instance, consider the elementary integral [z%e*dz = e” (:c2 —2x+ 2), typically solved using
integration by parts.

Lo o (F22? 2Fz+2 . L
* An acceptable perturbation is [2?ef*dx = P(T—SM Although this variant in-

troduces a substitution step (¢ = F'z), the fundamental solution technique is preserved.

« Conversely, a modification like [2?Pe%dr = (—x)~2B2*PT(2B + 1, —z) would not be
considered a symbolic perturbation as it significantly increases the problem’s complexity
and demands additional mathematical knowledge compared to the original.

After manually perturbing each seed question with 2-to-5 parameters, additional variants were gen-
erated using algorithmic transformations. Note that the random nature of the following question
generation methods makes ASyMOB inherently resilient against benchmark hacking and memoriza-

Table 1: ASyMOB question variants (shown for seed question #6). For each variant type, the
right-most column presents the number of variants for this seed question and the total number of
this category in the dataset (e.g. there are 30 ‘Numeric-One-N’ variants of question #6, totaling
3490 ‘Numeric-One-N’ variants over all seed questions). XX, YY, and ZZ in ‘Numeric-All-N-S’
represent 2 digit random numbers. Full dataset available in the supplementary material.

Variant Example Challenge Answer #
. . . 2-tan(2), 3 1 1
Seed (Original) hmxﬁo(ib)) 2 el
z (100)
Symbolic-N 2.tan(B;2) | €3 o 7
lim A (2B e)? A-ed
(Shown for N=3) z—0 (Bz) (1348)
ic- - . 9l.x 573 5
Numeric-All-N im0 17 - <2 tan (2L))(91.1)2 17. 0% 11
(Shown for N=2) 9l-x (1100)
Numeric-One-N litmy o 2-tan (%) 8383103 o Sast0 30
(Shown for N=6) =0 T ’ (3490)
Numeric-All-N-S 2-tan(YY) | 223, zz | 100
lim, XX (=22) (YY-x)2 XX-et
(Shown for N=2) =0 (=) € (10000)
. 2_tan(£) (sin? (= Fo)+cos? (Fx))-3 1 15
lim =t 22 e
20+ (z (1745)
lim +(sinh (log (A:c-i-\/AQan+1)))(Q‘tan(%))mi2 6% 15
@0 Az @ (1745)
2tan(& uu#wv):w b2 (Ba))e 1 60
lim,,_, o+ (sin? (— Az) + cos? (Az))((—sinhZ (Ba)tcosh? (Bo))w e4 (7920)
1 60
Ty o (o P) e4
' (7920)

tion, as the dataset can (and should) be re-generated before assessing a new LLM - unlike manual
benchmarks which are static and most frontier models were exposed to them during training.

One of the questions we aim to investigate is the effect of the number of symbolic perturbations on
model performance. Specifically, we ask whether each additional perturbation further degrades per-
formance, or whether most of the added difficulty for LLMs arises from the introduction of the first
symbolic perturbation - transforming the problem to contain non-numeric parameters. To enable
this measurement, we systematically remove added symbols from each manually perturbed ques-
tion, generating all possible combinations. This approach helps avoid subjective bias in perturbation
choice. Each variant is labeled as ‘Symbolic-N’, where N indicates the number of perturbing sym-
bols. For example, a question originally marked as ‘Symbolic-4’ will yield additional variants: four
‘Symbolic-3’, six ‘Symbolic-2’, and four ‘Symbolic-1°.

Another key evaluation axis contrasts symbolic and numerical perturbations. Mathematically, if
a model can solve a symbolically perturbed question, it should also be able to solve its numeric
counterpart via substituting constants by symbols, solved symbolically, and substituted back. Yet,
as Figure 2] shows, LLMs often underperform on numeric perturbations vs. symbolic perturbations,
suggesting their reasoning remains constrained by their token-based architectures.

To test this, numeric variants were by replacing every symbolic parameter with a random positive
integer of fixed digit length, varying from O to 10 digits to probe both in- and out-of-distribution
performance (large coefficients being rare in training). Here, O digits means replacing all symbols
by ‘I’, yielding a mathematically equivalent question - yet Figure [2] shows even this trivial case
degrades performance, further questioning LLMs’ true mathematical understanding. These variants
are labeled ‘Numeric-All-N’, where N is the digit length.

Due to the probabilistic nature of LLMs, we measure the stability of mathematical correctness over
50 random variations of ‘Numeric-All-N’ for N = 2, 3 - generating a new set of random 2 or 3-digit
numbers per variation (Figure [8]in Appendix [C). These variants are marked as ‘Numeric-All-N-S’.

100 = Seed
- . B ‘Equivalence-One-Easy'
= 8o/ i - x B 'Equivalence-One-Hard'
g\‘i = - 'Equivalence-All-Easy"
@ Al T T = = ‘Equivalence-All-Hard'
© 601 &
o T -
0
3 40 i
b I
a z
204 . R .
0- i - = - . =
> D D D D D D > > > N v < & 3 2 Q N
S < N N S A N < N A A NS AR L S
o o o o o o [o o o N & X & O Q> <
@ O @ C O O @ C @] C () RN < 2 9 i o
N o S o \ o ~ o 3 o @ S 4 N e < ¥ N
S S $ S B S i~ S o S & N $ » & 2
$ S o N o N ; N » N Q R Q & < & ¢
. > LS i &) ;) A & 3 IS
N & N B N Y ~ o & & & A S G S
N S 3 s 4 oS ¥ 9 & Q ; F & &
IS N ,‘/"? L ,\? & [& & 1% ,\j’? N S
AN “ N N & R S S
£ A N K & & <
& & &8 S
o 9 o 3
§ &
o o

Figure 3: Effect of equivalence-type perturbations. Note the substantial drop in success rate vs.
seed set performance for most models. Wald 95% confidence intervals are shown (Wald |1943)).

To explore whether the initial introduction of a large number causes a disproportionate performance
drop, or whether performance declines progressively with each added numeric coefficient, we also
create variants where only one symbolic parameter is replaced by a number (ranging from 1 to 10
digits), and the remaining symbols are removed. To avoid selection bias, we generate all possible
choices of which symbol to retain and replace. These variants are labeled ‘Numeric-One-N’.

Numeric perturbations are similar in spirit to previous works like Mirzadeh et al. (2025), Y. Zhang
et al. (2024), Shrestha et al. (2025), Srivastava et al. (2024), and K. Huang et al. - which
are based on GSM8K (Cobbe et al. 2021) or MATH (Hendrycks et al. [2021) word problems, as
well as Balunovi¢ et al. - that focuses on constructive proofs. Differing from these previous
benchmarks, the larger-scale ASyMOB dataset focuses on advanced symbolic math problems, with
no language understanding component, and controlled complexity.

Finally, we evaluate the impact of equivalent-form perturbations. In this case, we complicate the
problem by inserting one or more expressions that mathematically equal to 1. For example, symbol
A might be replaced by sin? (—Ax) 4 cos? (Ax). While such perturbations introduce extra steps in
simplification, the final answer is identical to the original version. Five identity types were selected
for this transformation - trigonometric, hyperbolic, logarithmic, complex exponential, and series -
each with an ’Easy’ and a "Hard’ version (see Appendix for the full list). The ‘Easy’/‘Hard’
classification was done manually, but the results in Figure@troactively validate our assumptions.
To implement this transformation at scale, these identities replace the symbols in the symbolic per-
turbations. For consistency, each variant uses only the easy or the hard forms. Similar to the nu-
meric case, we generate two types of variants: either all symbols are replaced by equivalent forms
(‘Equivalence-All-Easy/Hard’), or only one (‘Equivalence-One-Easy/Hard’).

One of the advantages in ASyMOB is once the seed and manual symbolic perturbations are complete
and thoroughly validated, all other tasks are generated algorithmically - removing the risk of errors
in specific questions or answers. This is not obvious as existing mathematical benchmarks are known
to have up to 5-10% mistaken labeling and formatting errors (Vendrow et al. W. Zhang et al.
Patel et al. 2021). See Appendix [A.2]for examples which were discovered during the seed
curation process for ASyMOB.

Additionally, by maintaining consistant question formatting and disallowing substantial textual or
graphical information, we prevent potential task ambiguities and missing data (Vendrow et al.|[2024).

2.2 TESTING AND VALIDATION

Validating open-ended symbolic problems is harder than closed-form or numerical ones. For ex-
ample, the reference answer to question #51 in the ASyMOB dataset is %\/E However, solving it

using Mathematica yields e (log(@)—210g(2) Although structurally different, these expressions are
mathematically identical. Our evaluation must accept any correct symbolic form and phrasing with-
out penalizing the LLM (e.g. ‘vz - 3°, ‘y = 1/x’, ‘y — /2, etc.). To prevent false negatives,
we implement a multi-step validation process with dual verification methods (see Figure [).

Tool-Use Instructions
Formatting Instructions

The final mathematical answer is extracted from the LLM'’s
full textual response using a highly flexible regular expres-
sion (see Appendix [B). The extracted LaTeX expression is
then cleaned (e.g. formatting commands like \displaystyle and
\boxed are removed) and parsed into a SymPy expression using i
sympy.parsing.latex.parse_latex. If the parsing fails, LLM
we resort to using gemini-2.0-flash (Pichai et al.[2024)) for this trans-
lation (occurred in 18% of cases). Since problem answers are al- V
ways simpler expressions than the problems themselves, this trans-
lation is much easier than the original challenge, and relies on the
model’s coding skills and not mathematical prowess.

Full Response

+ Regex

Final Answer in LaTex

The resulting SymPy expression is validated both symbolically (via
SymPy.simplify) and numerically (by generating 5 instances
of random values for each symbolic parameter and comparing re-
sults of .evalf ()). See Appendix E] for details.

This validation approach avoids the need to employ LLMs as judges
during evaluation (as was done in (U-Math, MathOdyssey), among
others), thus avoiding validation errors due to LLM pattern recog-
nition biases (Mao et al.|[2024; Chernyshev et al. 2025).

We exclusively use the pass@1 evaluation criterion, reflecting the
practical requirement for reliability in real-world applications by
engineers and researchers. The inherent LLM randomness is ac-
counted for by evaluating success across the large number of ques-
tions within each category.

(Gemini)

Final Answer in SymPy

AR

Symbolic Numeric
Validation Validation

LK

3 EXPERIMENTAL RESULTS

Verdict

Using the ASyMOB benchmark, open- and closed-weight
LLMs were evaluated, including both general-purpose and
mathematically-specialized models. Table [2| summarizes their per-
formance.

Figure 4: Result validation
pipeline. The final LaTeX an-
swer is extracted from the full

While frontier closed-weight models (o4-mini, Gemini 2.5
Flash: OpenAl n.d.f Kavukcuoglu 2025) achieve the high-
est seed accuracy, older (Gemini 2.0 Flash, GPT-4.1, GPT-
40, GPT-40-mini: Pichai et al. 2024; OpenAl [2025a; Ope-
nAI [2024) and open-weight models (DeepSeek-V3, DeepSeek-
R1, DeepSeek-Prover-V2-671B, Llama-4-Scout-17B-16E-Instruct,
Qwen2.5-72B-Instruct, Gemma-3n-e4b-it, Llama-3_3-Nemotron-
Super-49B-v1: DeepSeek-Al [2025b; DeepSeek-Al 2025a; Ren

LLM response via a flexible
regex. It’s parsed into a com-
putable SymPy expression via
a deterministic function or, if
it fails, via an LLM . The ex-
pression is then validated both
symbolically and numerically
against the reference answer.

et al. 2025 Meta [2025; Yang et al. 2024} Farabet et al. 2025
Bercovich et al. [2025) also perform reasonably well, all scoring at
least 40%.

A significant finding is the substantial degradation in performance when models are faced with per-
turbed versions of the seed questions (Figures [2} B). Some LLMs struggle more with symbolic
perturbations, suggesting gaps in mathematical understanding, while others falter with numeric per-
turbations, possibly due to longer token chains. Understanding the reasons behind these differences
between models may reveal deeper principles of how LLMs process mathematical structures.

Where the top models truly shine is their robustness to perturbations - which is arguably a more
critical metric for assessing LLM generalization capabilities - netting a performance gap of 20%
between o4-mini, Gemini-2.5 Flash, and DeepSeek-R1, to the next best model on the total dataset.
This robustness persists across perturbation categories and mathematical topics (Figure [5), even
when faced with out-of-distribution challenges, which might indicate a recent “phase transition” of
frontier LLMs from reliance on memorized patterns to genuine mathematical understanding.

Table 2: Model performance on ASyMOB by perturbation category. Bold indicates the top
performer in each category. Subset titles are color-coded in accordance to Table E

Model Seed Symbolic Numeric Variance \ Total.
Closed-Weights Models
04-mini (code) 92 69.0 74.9 78.6 72.8 76.1
04-mini (no code) 95 71.8 78.1 79.0 76.8 78.1
GPT-4.1 (code) 83 66.1 66.3 31.3 62.8 46.2
GPT-4.1 (no code) 79 64.7 64.8 38.7 58.8 48.9
GPT-40 (code) 76 57.1 61.3 15.1 59.3 353
GPT-40 (no code) 40 34.5 323 9.3 21.6 16.8
GPT-40-mini 43 26.9 27.6 3.8 17.6 11.8
Gemini-2.5 Flash (code) 87 70.3 68.2 73.2 62.6 69.5
Gemini-2.5 Flash (no code) 95 75.9 72.6 84.7 69.5 78.5
Gemini-2.0 Flash (code) 91 71.9 68.2 53.7 59.7 58.1
Gemini-2.0 Flash (no code) 87 69.7 64.1 534 51.2 54.9
Open-Weights Models
DeepSeek-V3 78 64.2 59.5 39.2 48.2 454
DeepSeek-R1 94 78.8 76.7 80.1 75.2 78.3
DeepSeek-Prover-V2-671B 79 65.6 59.8 39.8 50.1 46.3
Llama-4-Scout-17B-16E-Instruct 65 50.6 48.2 28.5 36.7 343
Qwen2.5-72B-Instruct 60 453 43.5 22.8 29.1 28.2
Gemma-3n-e4b-it 50 304 30.3 4.7 15.1 12.0
Nemotron-Super-49B-v1 48 37.1 34.0 18.9 23.6 23.0

Measuring the performance of mathematically fine-tuned models, we notice that DeepSeek-Prover-
V2-671B, despite achieving 88.9% pass ratio on the MiniF2F proof benchmark (Zheng et al.
Ren et al. [2025), is still outperformed by DeepSeek-R1 (from the same model family), on every
category in ASyMOB. Furthermore, its performance gains vs. the base model (DeepSeek-V3) are
incremental at best. This suggests that proficiency in formal proof generation may not directly trans-
late to skill in the broader set of symbolic mathematical operations, where the reasoning capabilities
of general models can prove more effective. Nemotron-Super (Bercovich et al.[2025), on the other
hand, shows relatively high perturbation resilience, despite the low success rate on the seed subset.

The ’Variance’ subset provides insights into model consistency. The variance of results over all
"Numeric-All-N-S’ variants was calculated per seed question and per model (Figure [8). An in-
teresting observation is the absence of correlations of variance between models per seed question,
indicating that the effect of perturbation is similar regardless of the specific seed (see Appendix [C).

Enabling code execution improved the performance of older models (GPT-40 by up to 37.7% and
Gemini-2.0 Flash by up to 8.6% in a single category), likely compensating for their symbolic-math
weaknesses through coding skills. In contrast, frontier models performed similarly or worse with
code execution, likely because their limitations become apparent on the hardest problems - which
are usually unsolvable by a naive application of SymPy - so gains require combining the model’s
internal reasoning (to break down complex problems) with strategic tool use. Both effects highlight
the value of hybrid solution strategies.

04-mini (Code) 100
o4-mini (No Code)
Gemini 2.5 Flash (Code)
Gemini 2.5 Flash (No Code)
Gemini 2.0 Flash (Code) 80
Gemini 2.0 Flash (No Code)-] | Ml
GPT-4.1 (Code) o
GPT-4.1 (No Code)- N | [l o 60
GPT-40 (Code) o [I [N
GPT-40 (No Code)-

DeepSeek-R1 _40
DeepSeek-Prover-V2 -_|
D 3

Qwen2.5-72B-Instruct |
Llama 4 Scout -,

Gemma 3n 4B-
GPT-40 mini- [T
Nemotron-Super-v1- I
i

[
I LT L,
T TN C R T T T CRCT T T ETT TR T T T T T BT T BT 7T 1T

Seed Question

Figure 5: Heatmap of overall performance per model per seed, averaged over all perturbations.

7

3.1 COMPUTER ALGEBRA SYSTEMS LIMITATIONS

While CAS like SymPy, Mathematica, and WolframAlpha are powerful tools for symbolic math-
ematics, they have their own limitations. The ASyMOB benchmark includes instances where tra-
ditional CAS fail yet LLMs manage. Symbolic perturbations, while apparently easier for LLMs
to handle than numeric perturbations, seem to have a much larger detrimental effect on CAS, with
multiple examples of CAS solving the seed variant and then failing on a ‘Symbolic’ variant.

For example, 2 of the 5 ‘Hard” equivalence forms (Appendix [A.T)) are not recognized by SymPy as
identical to 1. Yet, many ‘Equivalence’ variants containing these identities are successfully solved
by models in our testing. Another example is the aforementioned ASyMOB question #6 (Table
[I) - where WolframAlpha does not simply fail to answer on variant ‘Symbolic-3, but produces a
false resulﬂ Such examples provide added motivation for developing LLMs skillful at symbolic
mathematical manipulations, capable of overcoming CAS shortcomings.

LLM Only LLM + CAS CAS Only
___________________________ - e e ————

I Prompt: Assume you don't have access | Prompt: Please solve the following integral. First | | Prompt:
to a computer: do not use code, solve

| simplify it manually as much as possible, specifically | | Integrate[

’ |
1 1
I
this manually - using your internal I | perform a non-trivial substitution that simplifies the i1 (2m xA(m-1)+(2m-n) xA(m+n-1)) / !
| reasoning. Solve the following integral: I | challenge, and then write Mathematica code that N (2(1+x*n+xA(2m)) Sqrt[1+x"n]), x] :
. _ ny, m—1 implific i
| j (2m+(3m gy)Lz)z _ dx . | solves the simplified version. I | Response: I
I 2(14an+a2m)/1+z | | f (2m+(2m—n)a")z da 1 (2nx s 2mon x 3o ,
I Response: 2(14an+a2m)/1+a™ 5 J i 3 dx
| .. Try substitution u = 1 + z™ Vi : 1?2 \1L+f:" (1 +|X :+ x") I
| --But this seems to be getting messier xl X 1! <Left Unsolved> I
Final Answer: __x™ 1 I Response: L — ==
I~ Ve xl | ...Try substitution v =1+ z" VIime e = 1
T e | -.Final Simplified Integral: y
MPromot: Soive the intearal: (m-n)/n | | Prompt:
rompt: Solve the integral: f (2m+(2m—n)(u—1))(u—1) du V Integrate[
1 F@m@mon) (u=1) -1/ 2n(u+(u—1)2m/")/u ll
1 J U Mathematica Code....

2n(u+(u—l)2'”/“) Vau

1

|
((2m+(2m-n)(u-1))(u-1)A((m - n)/n)) / |
(2n(u + (u-1)A(2m/n)) Sqrt[u]), u] 1
|

I

1 11 Integrate[
Response:) I 1 (2m+@m-n)(u-1))(u-1)*((m - n)/n)) / (2n(u + Response: ol
I ...for general m, n, it cannot be xl | (u-1)A2m/n)) Sqrtu]), u] I Ar‘cTan{ (-1 +/ u)] V

| integrated in closed form

Figure 6: Example question solved exclusively by a hybrid LLM+CAS approach. ASyMOB’s
question #122 was solved incorrectly (left) by GPT-40, despite the model “considering” a correct
substitution. Standard CAS systems also failed to solve the question (right). However, a hybrid
strategy succeeded: GPT-4o0 was prompt to first simplify the problem via substitution and then use
CAS code on the simplified expression - enabling Mathematica to solve the question.

Perhaps the most teaching example is ASyMOB question #122 on GPT-4o (Figure [f). Pure CAS
and pure LLM approaches both failed. However, when instructed to simplify the integral first and
then solve using CAS, the model succeeded, demonstrating the power of combining LLM strategic
ability with CAS rigor.

4 DISCUSSION AND OUTLOOK

We introduced ASyMOB, a high-resolution symbolic mathematics benchmark that isolates core
symbolic reasoning skills, containing 35,368 challenges. Assessment of leading models shows:

* LLMs’ symbolic math performance substantially degrades under perturbations, suggesting
reliance on pattern memorization and lack of “true understanding”.

* Frontier LLMs show a leap in robustness against perturbations of various kinds, suggesting
strong symbolic math generalization capabilities.

* Correct tool-use (code execution) can meaningfully improve performance, especially when
applied via hybrid LLM+CAS strategies.

'Tested on Wolfram Language version 14.2.1: https://www.wolframalpha.com/input?i=
Limit%$5BA+%28Tan%5B%28B+x%29%2F2%5D%2F%$28%28B+x%29%2F2%29%29%5E%28%28C+3%
29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D

https://www.wolframalpha.com/input?i=Limit%5BA+%28Tan%5B%28B+x%29%2F2%5D%2F%28%28B+x%29%2F2%29%29%5E%28%28C+3%29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D
https://www.wolframalpha.com/input?i=Limit%5BA+%28Tan%5B%28B+x%29%2F2%5D%2F%28%28B+x%29%2F2%29%29%5E%28%28C+3%29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D
https://www.wolframalpha.com/input?i=Limit%5BA+%28Tan%5B%28B+x%29%2F2%5D%2F%28%28B+x%29%2F2%29%29%5E%28%28C+3%29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D

Benchmarks aspire to present uncontaminated “new” questions, but ASyMOB bypasses this chal-
lenge via systematic perturbations. Even if seed questions are contaminated, the benchmark results
remain meaningful - an increasingly important property as sourcing truly novel questions becomes
infeasible for large-scale datasets.

To empirically assess this robustness, we ran experiments on Gemini 2.0 Flash, OpenAl GPT-4o,
and LLaMA 3.3 Nemotron Super, explicitly including the original seed question and its correct
answer as an in-context exemplar within the prompt. While performance improved on simple per-
turbations (Numeric-All-0: +2%, +27%, +43.5% respectively), the effect quickly dropped on more
complex ones (Numeric-One-3, Numeric-All-3, Symbolic-3: +2%, +5.1%, +6.8% respectively).
These findings show that seed question contamination does not substantially distort performance on
harder variants, and ASyMOB’s complex perturbations still expose limitations beyond memoriza-
tion. Given the extremity of this setup, these modest gains likely represent an upper bound from
pretraining, underscoring ASyMOB’s robustness in detecting genuine generalization.

Contamination can even be reframed as a feature: if a model leverages prior knowledge of a seed
question to solve perturbed variants, it demonstrates real generalization. Eventually, if LLMs im-
prove on re-generated questions by training on earlier iterations, that signifies deeper mathematical
understanding - a desirable capability, not a flaw.

Looking forward, LLMs should be intentionally trained to generalize, both via tool use and through
systematic perturbations on the training set. Fine-grained perturbations thus emerge as a principled
method for generating high-quality synthetic data, offering a valuable resource for training and fine-
tuning current and future reasoning models.

One of our perturbations is inspired by GSM-Symbolic (Mirzadeh et al.[2025)) - which showed that
even “trivial” complications in textual math questions can substantially reduce success rates (up to
65%). Similarly, in our work, symbolic complications also led to substantial performance drops (up
to 60.9%). This test generalizes the finding of GSM-Symbolic that “current LLMs are not capable
of genuine logical reasoning”, now shown in the domain of symbolic manipulations and not just in
text-to-math conversion.

Importantly, our results suggest a possible solution: once an LLM learns when and where to use
tools, it can mitigate substantial pitfalls by using code execution as a form of grounding. This can
be encouraged through prompting strategies like “’simplify-then-code” (Figure [6)).

Until recently, the hybrid LLM+CAS approach appeared to be the most promising path forward.
However, the surprising finding that frontier models no longer benefit from CAS use for symbolic
math triggers deeper and more fascinating possibilities. Looking ahead, we see three possible tra-
jectories for future developments in Al for math and Al for science:

1. Intrinsic mastery: Frontier models may continue to improve in their inherent abilities,
eventually surpassing the need for external symbolic math tools, as in the frontier model
behavior observed in this work.

2. Deeper integration: Tool use may remain essential, but will demand increasingly sophis-
ticated CAS capabilities that co-evolve with LLMs, complementing their inherent abilities
and motivating the next generation of CAS infrastructure.

3. Autonomous tool creation: LL.Ms may internalize symbolic computation itself - leverag-
ing their reasoning and coding capacities to build internal, CAS-like mechanisms that blur
the boundary between model and tool.

REFERENCES

Balunovi¢, M. et al. (2025). “MathConstruct: Challenging LLM Reasoning with Constructive
Proofs”. In.

Bercovich, A. et al. (2025). Llama-Nemotron: Efficient Reasoning Models. arXiv: 2505 .00949
[cs.CL].URL: https://arxiv.org/abs/2505.00949.

Boye, J. etal. (2025). Large Language Models and Mathematical Reasoning Failures. arXiv: 2502 .
11574 [cs.ATI].URL: https://arxiv.org/abs/2502.11574.

Brazilian Mathematical Olympiad, U. L. (2019). OBMU 2019 Mathematics Competition. Accessed:
2025-04-08. URL: https://www.obm.org.br.

Chernyshev, K. et al. (2025). U-MATH: A University-Level Benchmark for Evaluating Mathematical
Skills in LLMs. arXiv:|2412.03205 [cs.CL]L URL: https://arxiv.org/abs/2412.
03205

Cobbe, K. et al. (2021). Training Verifiers to Solve Math Word Problems. arXiv:|2110.14168
[cs.LG].URL: https://arxiv.org/abs/2110.14168.

Davies, A. et al. (2021). “Advancing mathematics by guiding human intuition with AI”. In: Nature
600. URL: |https://api.semanticscholar.org/CorpusID:244837059.

DeepSeek-Al (2025a). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. arXiv: 2501 .12948 [cs.CL]. URL: https://arxiv.org/abs/2501.
12948.

— (2025b). DeepSeek-V3 Technical Report. arXiv:|2412 . 19437 [cs.CL]. URL: https://
arxiv.org/abs/2412.19437.

Dugan, O. et al. (2024). “OccamLLM: Fast and Exact Language Model Arithmetic in a Sin-
gle Step”. In: Advances in Neural Information Processing Systems. Ed. by A. Globerson et al.
Vol. 37. Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_
files /paper /2024 /file/ 3eceb70£47690051d6769739fbf6294b - Paper —
Conference.pdf.

Fang, M. et al. (2024). MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large
Language Models Using Odyssey Math Data. arXiv: 2406 .18321 [cs.CL]. URL: https:
//arxiv.org/abs/2406.18321.

Farabet, C. et al. (Mar. 2025). Introducing Gemma 3: The most capable model you can run on
a single GPU or TPU. URL: https://blog.google/technology/developers/
gemma-—3/.

Frieder, S. et al. (2023). “Mathematical capabilities of chatgpt”. In: Advances in neural information
processing systems 36.

Gao, B. et al. (2025). “Omni-MATH: A Universal Olympiad Level Mathematic Benchmark for
Large Language Models”. In: The Thirteenth International Conference on Learning Representa-
tions. URL: https://openreview.net/forum?id=yagPfO0KALN.

Glazer, E. et al. (2024). FrontierMath: A Benchmark for Evaluating Advanced Mathematical Rea-
soning in Al. arXiv: 2411 .04872 [cs.AI]. URL: https://arxiv.org/abs/2411.
04872.

Gou, Z. et al. (2024). “ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solv-
ing”. In: ICLR. URL: https://openreview.net/forum?id=Ep0Tt jVoapl

He, C. et al. (Aug. 2024). “OlympiadBench: A Challenging Benchmark for Promoting AGI with
Olympiad-Level Bilingual Multimodal Scientific Problems”. In: Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Ed. by
L.-W. Ku et al. Bangkok, Thailand: Association for Computational Linguistics. URL: https :
//aclanthology.org/2024.acl-1long.211/.

Hendrycks, D. et al. (2021). “Measuring Mathematical Problem Solving With the MATH Dataset”.
In: NeurlPS.

Hou, X. et al. (Dec. 2024). “Large Language Models for Software Engineering: A Systematic Lit-
erature Review”. In: ACM Trans. Softw. Eng. Methodol. 33.8. 1SSN: 1049-331X. URL: https:
//doi.org/10.1145/3695988\

Huang, K. et al. (2025). “MATH-Perturb: Benchmarking LL.Ms’ Math Reasoning Abilities against
Hard Perturbations”. In: Workshop on Reasoning and Planning for Large Language Models. URL:
https://openreview.net/forum?i1d=M80OLGgYK7e.

Huang, Z. et al. (2024). “OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for
Superintelligent AI”. In: arXiv preprint arXiv:2406.12753. URL: https://arxiv.org/
abs/2406.12753.

10

https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2502.11574
https://arxiv.org/abs/2502.11574
https://arxiv.org/abs/2502.11574
https://www.obm.org.br
https://arxiv.org/abs/2412.03205
https://arxiv.org/abs/2412.03205
https://arxiv.org/abs/2412.03205
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://api.semanticscholar.org/CorpusID:244837059
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://proceedings.neurips.cc/paper_files/paper/2024/file/3eceb70f47690051d6769739fbf6294b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3eceb70f47690051d6769739fbf6294b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3eceb70f47690051d6769739fbf6294b-Paper-Conference.pdf
https://arxiv.org/abs/2406.18321
https://arxiv.org/abs/2406.18321
https://arxiv.org/abs/2406.18321
https://blog.google/technology/developers/gemma-3/
https://blog.google/technology/developers/gemma-3/
https://openreview.net/forum?id=yaqPf0KAlN
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://openreview.net/forum?id=Ep0TtjVoap
https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://doi.org/10.1145/3695988
https://doi.org/10.1145/3695988
https://openreview.net/forum?id=M8OLGgYK7e
https://arxiv.org/abs/2406.12753
https://arxiv.org/abs/2406.12753

Imani, S. et al. (2023). “MathPrompter: Mathematical Reasoning using Large Language Models”.
In: Annual Meeting of the Association for Computational Linguistics. URL: https://api.
semanticscholar.org/CorpusID:257427208.

Jiang, B. et al. (Nov. 2024). “A Peek into Token Bias: Large Language Models Are Not Yet Genuine
Reasoners”. In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing. Ed. by Y. Al-Onaizan et al. Miami, Florida, USA: Association for Computational
Linguistics. URL: https://aclanthology.org/2024.emnlp-main.272/

Kavukcuoglu, K. (Mar. 2025). Gemini 2.5: Our most intelligent AI model. URL: https://blog.
google/technology/google—-deepmind/gemini-model-thinking—-updates-—
march-2025/l

Kojima, T. et al. (2022). “Large language models are zero-shot reasoners”. In: Proceedings of the
36th International Conference on Neural Information Processing Systems. NIPS ’22. New Or-
leans, LA, USA: Curran Associates Inc.

Lample, G. et al. (2020). “Deep learning for symbolic mathematics”. In: 8th International Confer-
ence on Learning Representations, ICLR 2020. https://openreview.net/forum?id=S1eZYeHFDS.
URL:https://iclr.cc/virtual_2020/poster_SleZYeHFDS.html.

Lewkowycz, A. et al. (2022). “Solving Quantitative Reasoning Problems with Language Models”.
In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh et al. URL: https:
//openreview.net/forum?id=IFXTZERXdM7.

Liao, M. et al. (Aug. 2024). “MARIO: MAth Reasoning with code Interpreter Output - A Repro-
ducible Pipeline”. In: Findings of the Association for Computational Linguistics: ACL 2024. Ed.
by L.-W. Ku et al. Bangkok, Thailand: Association for Computational Linguistics. URL: https:
//aclanthology.orqg/2024.findings—acl.53/.

Liu, H. et al. (Aug. 2024). “MathBench: Evaluating the Theory and Application Proficiency of LLMs
with a Hierarchical Mathematics Benchmark”. In: Findings of the Association for Computational
Linguistics: ACL 2024. Ed. by L.-W. Ku et al. Bangkok, Thailand: Association for Computational
Linguistics. URL: https://aclanthology.org/2024.findings-acl.411/|

Luo, H. et al. (2025). “WizardMath: Empowering Mathematical Reasoning for Large Language
Models via Reinforced Evol-Instruct”. In: The Thirteenth International Conference on Learning
Representations. URL: https://openreview.net/forum?id=mMPMHWOdOYy.

Mao, Y. et al. (2024). CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs’
Mathematical Reasoning Capabilities. arXiv: 2401 . 06961 [cs.CL]. URL: https: //
arxiv.org/abs/2401.06961.

Meta (Apr. 2025). The Llama 4 herd: The beginning of a new era of natively multimodal Al
innovation. URL: https : / /ai . meta . com/blog/ llama - 4 —multimodal —
intelligence/.

Meurer, A. et al. (Jan. 2017). “SymPy: symbolic computing in Python”. In: PeerJ Computer Science
3. ISSN: 2376-5992. URL: https://doi.org/10.7717/peerj-cs.103.

Mirzadeh, S. . et al. (2025). “GSM-Symbolic: Understanding the Limitations of Mathematical Rea-
soning in Large Language Models”. In: The Thirteenth International Conference on Learning
Representations. URL: https://openreview.net/forum?id=A3XkRZIV]jB.

Novikov, A. et al. May 2025). AlphaEvolve: A coding agent for scientific and algorithmic discovery.
Tech. rep. Google DeepMind. URL: https://storage.googleapis.com/deepmind-—
media /DeepMind . com/Blog/alphaevolve—a—-gemini - powered—- coding-—
agent—-for-designing—advanced—-algorithms/AlphaEvolve.pdfl

OpenAl (2024). GPT-40 System Card. arXiv:2410.21276 [cs.CL].URL: https://arxiv.
org/abs/2410.21276.

— (Apr. 2025a). Introducing GPT-4.1 in the API. URL: https://openai.com/index/gpt—
4-17]

— (Apr. 2025b). Introducing 03 and o4-mini. URL: https : / / openai . com / index /
introducing-o3—-and-o4-mini/\

— (n.d.). URL: https://cdn.openai.com/pdf/2221c875-02dc-4789-800b—
e7758f3722cl/03-and-o4-mini-system-card.pdf.

Patel, A. et al. (June 2021). “Are NLP Models really able to Solve Simple Math Word Problems?” In:
Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies. Online: Association for Computational
Linguistics. URL: https://aclanthology.org/2021.naacl-main. 168,

Phan, L. et al. (2025). Humanity’s Last Exam. arXiv: 2501 . 14249 [cs.LG]. URL: https:
//arxiv.org/abs/2501.142409.

11

https://api.semanticscholar.org/CorpusID:257427208
https://api.semanticscholar.org/CorpusID:257427208
https://aclanthology.org/2024.emnlp-main.272/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://aclanthology.org/2024.findings-acl.53/
https://aclanthology.org/2024.findings-acl.53/
https://aclanthology.org/2024.findings-acl.411/
https://openreview.net/forum?id=mMPMHWOdOy
https://arxiv.org/abs/2401.06961
https://arxiv.org/abs/2401.06961
https://arxiv.org/abs/2401.06961
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://doi.org/10.7717/peerj-cs.103
https://openreview.net/forum?id=AjXkRZIvjB
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://aclanthology.org/2021.naacl-main.168
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249

Pichai, S. et al. (Dec. 2024). Introducing Gemini 2.0: our new Al model for the agentic era. URL:
https://blog.google/technology/google—deepmind/google—gemini—ail-
update-december-2024/#ceo-message.

Rein, D. et al. (2024). “GPQA: A Graduate-Level Google-Proof Q&A Benchmark”. In: First
Conference on Language Modeling. URL: https : / / openreview . net / forum? id=
Ti67584b98.

Ren, Z.Z. et al. (2025). DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Rein-
forcement Learning for Subgoal Decomposition. arXiv: 2504 .21801 [cs.CL]. URL: https:
//arxiv.org/abs/2504.21801.

Ridnik, T. et al. (2024). “Code Generation with AlphaCodium: From Prompt Engineering to Flow
Engineering”. In: arXiv preprint arXiv:2401.08500.

Romera-Paredes, B. et al. (2023). “Mathematical discoveries from program search with large
language models”. In: Nature 625. URL: https : / / api . semanticscholar . org/
CorpusID:266223700.

Roziere, B. et al. (2024). Code Llama: Open Foundation Models for Code. arXiv:|2308.12950
[cs.CL].URL: https://arxiv.org/abs/2308.12950.

Shrestha, S. et al. (2025). Mathematical Reasoning in Large Language Models: Assessing Logical
and Arithmetic Errors across Wide Numerical Ranges. arXiv:|2502 . 08680 [cs.LG]. URL:
https://arxiv.org/abs/2502.08680.

Srivastava, S. et al. (2024). Functional Benchmarks for Robust Evaluation of Reasoning Perfor-
mance, and the Reasoning Gap. arXiv:|2402 . 19450 [cs.AI]. URL: https://arxiv.
org/abs/2402.19450.

Trinh, T. H. et al. (2024). “Solving olympiad geometry without human demonstrations”. In: Nature
625.7995.

Vendrow, J. et al. (2024). “Large Language Model Benchmarks Do Not Test Reliability”. In: Neurips
Safe Generative AI Workshop 2024. URL: https : / / openreview . net / forum? id=
XSeN6xztz9.

Wald, A. (1943). “Tests of Statistical Hypotheses Concerning Several Parameters When the Number
of Observations is Large”. In: Transactions of the American Mathematical Society 54.3. URL:
https://www.jstor.org/stable/1990256.

Wang, X. et al. (2023). “Self-Consistency Improves Chain of Thought Reasoning in Language Mod-
els”. In: The Eleventh International Conference on Learning Representations. URL: https :
//openreview.net/forum?id=1PLINIMMrw.

Wolfram Alpha LLC (2025). Wolfram—Alpha: Computational Intelligence. https : / / www .
wolframalpha.com/l

Wolfram Research Inc. (2024). Mathematica, Version 14.2. Champaign, IL. URL: https://www.
wolfram.com/mathematical

Xu, X. et al. (2025). “UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level
Mathematical Reasoning with Large Language Models”. In: The Thirteenth International Con-
ference on Learning Representations. URL: https : / /openreview.net / forum?id=
fovPygPcKY.

Yang, A. et al. (2024). “Qwen2.5 Technical Report”. In: arXiv preprint arXiv:2412.15115.

Yue, X. et al. (2024). “MAmmoTH: Building Math Generalist Models through Hybrid Instruction
Tuning”. In: The Twelfth International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=yLC1Gs7701Il

Zan, D. et al. (July 2023). “Large Language Models Meet NL2Code: A Survey”. In: Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Ed. by A. Rogers et al. Toronto, Canada: Association for Computational Linguistics.
URL: https://aclanthology.org/2023.acl-long.411/.

Zhang, W. et al. (2025). Beyond the Singular: The Essential Role of Multiple Generations in Ef-
fective Benchmark Evaluation and Analysis. arXiv: 2502 . 08943 [cs.CL]. URL: https:
//arxiv.orqg/abs/2502.08943.

Zhang, Y. et al. (2024). “Training and Evaluating Language Models with Template-based Data Gen-
eration”. In: arXiv preprint arXiv:2411.18104.

Zheng, K. et al. (2022). “miniF2F: a cross-system benchmark for formal Olympiad-level math-
ematics”. In: International Conference on Learning Representations. URL: https : / /
openreview.net/forum?id=9ZPegFuFTFv.

12

https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://api.semanticscholar.org/CorpusID:266223700
https://api.semanticscholar.org/CorpusID:266223700
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2502.08680
https://arxiv.org/abs/2502.08680
https://arxiv.org/abs/2402.19450
https://arxiv.org/abs/2402.19450
https://arxiv.org/abs/2402.19450
https://openreview.net/forum?id=XSeN6xZtZ9
https://openreview.net/forum?id=XSeN6xZtZ9
https://www.jstor.org/stable/1990256
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://www.wolframalpha.com/
https://www.wolframalpha.com/
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://openreview.net/forum?id=fovPyqPcKY
https://openreview.net/forum?id=fovPyqPcKY
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://aclanthology.org/2023.acl-long.411/
https://arxiv.org/abs/2502.08943
https://arxiv.org/abs/2502.08943
https://arxiv.org/abs/2502.08943
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

Zhou, A. et al. (2024). “Solving Challenging Math Word Problems Using GPT-4 Code Interpreter
with Code-based Self-Verification”. In: The Telfth International Conference on Learning Rep-
resentations. URL: https://openreview.net/forum?id=c8McWs4AvO.

Zhou, Z., S. Liu, et al. (2025). “Is Your Model Really A Good Math Reasoner? Evaluating Math-
ematical Reasoning with Checklist”. In: The Thirteenth International Conference on Learning
Representations. URL: https://openreview.net/forum?id=nDvgHIBRxQ.

Zhou, Z., Q. Wang, et al. (2024). “MathAttack: attacking large language models towards math solv-
ing ability”. In: Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and
Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Sym-
posium on Educational Advances in Artificial Intelligence. AAAT'24/TAAT'24/EAAT’ 24. AAAI
Press. URL: https://doi.org/10.1609/aaai.v38117.299409.

13

https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=nDvgHIBRxQ
https://doi.org/10.1609/aaai.v38i17.29949

A ADDITIONAL DETAILS ABOUT THE DATASET

A.1 LIST OF EQUIVALENCE PERTURBATIONS

The complete list of equivalence perturbations, discussed in section[2.1] is provided below.
Easy:

» Trigonometric: sin” (—Qx) + cos? (Qx)

« Hyperbolic: cosh? (Qz) — sinh? (Qz)

(@
In(z) - log, (@)
n(Q)

%) N,
Q ZN:l QT
T
i (eiQx . e*inL’)
2sin (Qx)

¢ Logarithmic:

¢ Complex exponential:
* Series: —

Hard:
tan (x) + tan (z (Q — 1))
(—tan (z) tan (z (Q — 1)) + 1) tan (Qx)
sinh <log (Qx + 1/ Q%% + 1))
Qx
logg () —HogQ(e)
logQ()
2i (e¥9* 4+ 1) tan (Qx)
(1 —e*Q7) (1 — tan? (Qx))

* Trigonometric:

* Hyperbolic:

* Logarithmic:

¢ Complex exponential: —

os} 6
Q ZN:l 7'r2]\/?2Q

X

¢ Series:

These perturbations were selected to avoid significantly altering the mathematical complexity of the
challenge compared to the original questions. We confirmed that the tested LLMs could correctly
simplify each expression when presented individually, indicating that the ‘Equivalence’ variants’
difficulty arises mostly from the original question and its combination with the equivalence pertur-
bations.

Notably, SymPy Meurer et al. 2017 was unable to simplify the more difficult trigonometric and hy-
perbolic identities to 1, providing another example for CAS limitations in university-level symbolic
math challenges.

Figure [3shows that for most LLMs the challenge level of a single ‘Hard” perturbation is lower than
multiple ‘Easy’ perturbations - but not for all LLMs. The reasons behind this difference are a topic
for future investigation.

A.2 DISCOVERED BENCHMARK ERRORS

As mentioned in Section [2.1] existing mathematical benchmarks are known to have up to 5-10%
mistaken labeling and formatting errors (Vendrow et al. [2024; W. Zhang et al. 2025; Patel et al.
2021).

For example, question 97 from the GHOSTS ‘Symbolic Integration’ subset (Frieder et al. 2023)):
“What is the integral of 2x— z Tatan(3)”. The output “...The antiderivative... 222 —Lz%atan(3)+C”
receives a 5/5 rating, but the = should have been = potentlally creating false posmves

Another example from OlympladBench (He et al. 2024, subset ‘OE_TO_maths_en_ COMP’,
id:2498): “If log, © — 2log, y = 2, determine y, as a function of 2”. The dataset provides both

14

3

a full solution: “...to obtain y = %\/E, and a final answer: “%, V/z”. The extra comma that ap-

peared in the middle of the final answer prevents deterministic systems from recognizing correct
answers.

We inserted both of these questions (with corrected answers) as two of our seeds.

ASyMOB’s algorithmic generation methods substantially reduces the risk for such errors in specific
questions or answers.

A.3 ‘SYMBOLIC-N’ SUBSETS ANALYSIS

Due to the requirement that substituting all symbols with 1 reverts the question to its original seed
form, the total number of ‘Symbolic-N’ variations depends on N. For instance, ASyMOB contains
only 7 ‘Symbolic-5" questions. This small sample size is the reason ‘Symbolic-5’ is not represented
in Figure |2| as it is insufficient for robust statistical analysis. This variability also means that the
baseline difficulty of ‘Symbolic-N’ questions changes with different values of N. The 7 seed ques-
tions with a maximal perturbation of 5 symbols have an average success rate across all models of
86.6%. In contrast, the 13 seed questions with a maximal perturbation of 4 symbols have a 74.7%
success rate, and the overall success rate across all seeds is 73.9%. The ‘Symbolic-4’ subset includes
13 questions with maximal symbolic perturbation (derived from the 13 seeds mentioned above) and
35 permutations based on the 7 maximally perturbed ‘Symbolic-5’ questions. It is likely that the
lower initial difficulty of the seeds influences the difficulty of their derived variations to some ex-
tent. Therefore, the difficulty of each ‘Symbolic’ subset should not be assumed to be identical. This
effect can account for the slight increase in success rate observed across most models in the bottom
graphs of Figure 2] for 3 and 4 symbols.

B TESTING DETAILS

As noted in section[2.2] a core principle of the test process is to rely on deterministic and predictable
tools whenever possible. Figure[dshows a “Formatting Instructions” wrap around the challenge text.
Specifically, these instructions state:

“Finish your answer by writing "The final answer is:” and then the answer in LaTeX in a new line.
Write the answer as a single expression. Do not split your answer to different terms. Use $3 to wrap
the LaTeX text. Do not write anything after the LaTeX answer.”

The primary goal is to encourage the LLM to produce a clear LaTeX expression, labeled with “The
final answer is:”. We opt against using forced structured outputs, even when available, to ensure a
fair comparison with models lacking this capability and to avoid introducing requirements beyond
symbolic math skills. In essence, we aim to minimize the impact of specific phrasing and structural
choices in both language and mathematical presentation.

Once the full answer is received, a series of regexes are used to extract the final answer:

Pattern 1 (as instructed):
r’*x[Tt]he final answer is:2**\s*’
(20 (2 NAN O T (2:NANND) [(2:N\S+)) 7
r’ (.*x?)’

£/ (2 (2:N\\)) 1 (2:NA\ND) | (2:\8+)) 7

Pattern 2 (last boxed expression):
r’ \\boxed\{ (.*2)\}" + " (2:\n|S$|")’

Pattern 3 (last display expression):

r"\S+ (. x2)\$+"

14

Pattern 4 (output=’ case) :
r"output=’ (.*x?)""
Pattern 5 (output=" " case):

r’output="(.%x?)"’

15

While the first pattern represents the given formatting instructions - other output formats were ac-
cepted as well. It’s important to note that responses claiming, for example, the challenge is impos-
sible or asking for specific values to substitute into the symbols, will frequently lack fitting LaTeX
expressions. Therefore, the absence of relevant LaTeX usually indicates a missing or incoherent
answer, not a parsing issue. Overall, this stage was successful in 98% of cases.

The extracted LaTeX expression is then cleaned and parsed into a SymPy expression using
sympy.parsing.latex.parse_latex. If the parsing fails, we resort to using an LLM
(gemini-2.0-flash) for this translation. It’s important to note that not all “final answer” expressions
extracted by our permissive regexes are valid LaTeX or even mathematical expressions. Therefore,
a failure to produce a working SymPy expression usually indicates a broken or irrelevant answer,
rather than a translation issue. Overall, this stage was successful in 96.1% of cases.

The resulting SymPy expression undergoes two distinct validation checks against the reference an-
swer (also represented as a SymPy object):

Symbolic validation. The difference between the extracted expression and the correct answer is
simplified via SymPy.simplify. If the simplification reduces this difference to zero (or a con-
stant, in the case of indefinite integrals), the answer is deemed correct.

Numeric validation. We randomly generate numerical values for each variable (e.g., = and any
symbolic perturbation parameters) and substitute them into both the LLM’s result and the correct
answer. If the relative difference between the two evaluations is less than 0.002%, the answers
are considered matching. This process is repeated five times to mitigate the risk of coincidental
matches. To allow the detection of numeric equivalence between indefinite integrals, we require that
all 5 repetitions produce the same difference (not necessarily zero), concluding that the expressions
are equivalent up to a constant factor.

Due to the limitations of SymPy (imperfections in SymPy.simplify, handling of very large
numbers in .evalf (), etc.), if either validation method confirms an answer, it is treated as correct
(false positives are highly unlikely). Out of all the valid SymPy expressions created on the previous
stage, 97.6% were successfully tested. Responses that could not be verified by either method due to
SymPy’s technical limitations were excluded from the data analysis and omitted from the reported
statistics.

In terms of resources required for this work, by far the biggest compute consumer was querying the
LLMs. The total number of successful queries for all the tests is 17092 - 17 = 290, 564 (5-10%
additional calls were made during development, and due to provider rate limits and network issues).
These were done via cloud API calls, for a total expense of: OpenAl ~1400$ (for 04-mini, GPT-4.1,
GPT-40, GPT-40-mini), Google ~150%$ (for Gemini 2.5 Flash, Gemini 2.0 Flash, Gemma-3-27b-it),
Hugging Face ~600$ (for all other models; interface providers used: Novita, Together Al, Nebius
Al Studio). Temperature was set to the default value (1 for OpenAl and Google, 0.5 for Hugging
Face).

Dataset generation compute was negligible (less than 5 minutes on a single workstation), while the
validation stage was more resource-intensive (~10 hours on 3 workstations). Note that the validation
process is trivially parallelizable.

C DATA ANALYSIS

Figure [/| presents each model’s (with and without code execution) success on each seed question -
showing a mix of easier and harder challenges.

Figure [§] illustrates the variance within each 50-question subset of variant ‘Numeric-All-2-S’ (per
seed). Each cell is marked with a *V” if the model correctly solved at least half of the ‘Numeric-All-
2-S’ variants from that seed question, and an X’ otherwise.

It is important to note that while correct answers are unique (aside from presentation differences),
incorrect answers can vary significantly, including instances where no answer is provided. Con-
sequently, low consistency might result in lower variance for questions with a low success rate
compared to those with a high success rate. Indeed, the average variance for all *V’ questions is
0.11, whereas for *X’ questions, it is 0.07.

16

U-Math sequences_series 1ccc052¢-9604-4459-a752-98ebdf3e0764 (
U-Math sequences_series ca5ffe7c-f495-43dc-a653-de477cabcl85 (
U-Math sequences_series f89bd354-18¢9-4f31-b91f-cf6421e24921 (
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1 (
U-Math sequences_seéries 068e40ce-9108-4ef8-8ee5-0d1471ebbed3 (
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745 (
U-| Math dlfferentlal calc 2d799998-115a-489b-a48b-57090954303e (
h differential_calc efdc4110-cf56-4f37-bf54-40fdd5d58145 (

U- Math dufferentlal calc 99a2304d-5d8e-4245-90da-a80651cal5d8 (

U-Math differential_Calc 84c6a419-c103-41d5-aad5-dd8e690c6e88 (1

U-Math integral_calc 0cOba3db-1470-4c36-975c-91ff5f51986f (1
U-Math integral_calc 126c4165-b3d5-4470-8412-08e79d9821cf (1
U-Math integral_calc 00f6affb-905a-4109-a78e-2dde7a0b83accf (1
U-Math integral_calc 05ea9929-8cbb-432b-bbbb-ec1e74c9f401 (1
U-Math integral calc 08c72d46-1abd-49e1-9c9c-ce509902bebe (1
U-Math in eg?ral calc 4c1292el-d4b3-4acf-afaf-eaac62f2662d (1
U-Math integral_calc 147944c5-b782-48c5-a664-d66deb92d9a7 (1
U-Math integral calc 1db212f0 Zfac 410d-969d-fe3b5b55d076 (1.
U-Math integral_calc 275f7ceb-f331-4a3f-96ec-346e6d81b32a (
U-Math integral_Calc 47a11349-0386-4969-9263-d3cdfcc98ch9 (
MathBench Calcu
UGMathBench Calcu
UGMathBench Calcu

o
<
o
=3
)
=4
o
o
S
=

(
(

<<
R
33
o'
=31
o0,
co
ao
oN
N

BB IN ORI E RN C RIS T RIS

NN NN S

UGMathBench Calcu variable”0512 (
UGMathBench Calcu variable”0592 (
UGMathBench Calcu variable”0604 (
UGMathBench Calcu variable_0606 (
UGMathBench Calcu variable”0612 (

UGMathBench Calculus_.
UGMathBench Calculus”-"sing
em 340 from Differential Eﬁuatlons College Math (31)
em 339 from Differential Equations - College Math (32)
MathOdyssey Problem 315 from Calculus and Analysis - College Math (33)
MathOdyssey Pro lem 317 from Calculus and Analysis - College Math (34)
MathOdyssey Problem 325 from Calculus and Analysis - College Math (35)
MathOdyssey Problem 326 from Calculus and Analysis - College Math (36)
MathOdyssey Problem 327 from Calculus and Analysis - College Math (37)
MathOdyssey Problem 328 from Calculus and Analysis - College Math (38)
MathOdyssey Problem 329 from Calculus and Analysis - College Math (39)
MathOdyssey Problem 336 from Calculus and Analysis - College Math (40)
GHOSTS Symbolic Integration Q97 (41
GHOSTS Symbolic Integration Q98 (42

GHOSTS Symbolic Integration Q90 (4.
GHOSTS Symbolic Integration Q14 (4
GHOSTS Symbolic Integration Q7 (4.

GHOSTS Symbolic Integration Q15 (4
GHOSTS Symbolic Integrat
GHOSTS Symbolic Integrat
GHOSTS Symbolic Integrat
GHOSTS Symbolic Integration Q29 E

OlympiadBench oe_to_maths_en_comp 249

DIympchrena Math 381
OB - Q21
OBMU 2019 -Ql8
OBMU 2019 - Q22
ASyMOB Hypergeometrics Q1

ASyMOB Hypergeometrics Q2
ASyMOB Hypergeometrics Oi
5
6
7

[CXCRCRCNCRON RN D)

MathOdyssey Prol
MathOdyssey Prol

ToTTOT

oo

SR
EEE]
000,
N T
No®On
GRRRD

5

ASyMOB Hypergeometrics Q:

ASyMOB Hypergeometrics Q!

ASyMOB Hypergeometrics Q

ASyMOB Hypergeometrics Q

ASYMOB Hypergeometrics Q8
ASYMOB Hypergeometrics Q9
eometrics Q10
|_Equations Q1
"Equations Q2
I_Equations Q3
I_Equations Q4
I"Equations Q5
_Equations Q6
Equatlons Q7

(5
(5
(
(
(
(
(
(
(
(
(
(

ASyMOB Different
ASyMOB Differenti
ASyMOB Differenti
ASyMOB Differenti
ASyMOB Different;
ASyMOB Differential_Equations Q8
ASyMOB Differential_Equations Q9
ASyMOB Differential_Equations Q10
ASyMOB Differential_Equations Q11
ASyMOB Differential_Equations Q12
ASyMOB Differential_Equations Q13
ASyMOB Differential_Equations Q14
ASyMOB Differential_Equations Q15
‘erential_Equations Q16
erential_Equations Q17
erential_Equations Q18
erential_Equations Q19
erential_Equations Q20

,,
mmmmnunmm«:

oo\l\l\l\l\l\A\A\I\I\ImmmmmmmmmmmmmmmA

Sttt st s e rswis ettt At]

>
0
<
=
o
@
o
FHHHH

ASyMOB Series Q:
ASyMOB Series Q!
ASyMOB Series Q!
ASyMOB Series Q
ASyMOB Series Q
ASYMOB Series Q
ASyMOB Series Q
ASyMOB Series Q
ASYMOB Series
ASyMOB Series
ASYMOB Series
ASyMOB Series Q1

[

OO0,
Bt

Figure 7: Model success (blue) / failure (white) per seed question. Seeds are marked by their
source and index in the dataset. Note the difference in challenge level between seeds with different
sources. ‘ASyMOB’ source indicates original questions that were created for the purpose of this

work.

17

0.25

1
2
3
2
5
6
7
8
9
0
1
2

0.20

C
o
-+t
o |
3 — — —— —
52 -—— I ——]
S R e ——— . .
g 5> ~ S 5 S O
g 56 - _—
7
76
77—
£ —
& — [-0-05
83
84
85
—
[
—
100 - -
Average 1127104 .087 . -0.00
D DD DD RRDRDRODNDNDDE OIS
FFFFFIIIIIIITIN NI IS S
LS CLCLCFLEeLsLIF S @
N\ N\ N\ N N\ g ¢ & o K
N TN N I N I N« I N I 2 P ST~ M\ v'b/\,vcoo
ST FTITFTIWISFPILFIESI & £
Fal s s ENL T FESANS S S
F&o o d& o Vg G 3 0 §
N RGN 4) g Vv &
O & 9 &~ 9O [Q) < q? Q
$ A7 § A & & 8
& & S
SIS
< <

Figure 8: Variance per model per seed question. The bottom row shows the average variance of
each model across all questions.

18

