
000 ASYMOB: ALGEBRAIC SYMBOLIC MATHEMATICAL 001 OPERATIONS BENCHMARK 002 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Large language models (LLMs) are increasingly applied to symbolic mathematics,
012 yet existing evaluations often conflate pattern memorization with genuine reasoning.
013 To address this gap, we present **ASyMOB**, a high-resolution dataset of 35,368
014 validated symbolic math problems spanning integration, limits, differential equations,
015 series, and hypergeometrics. Unlike prior benchmarks, **ASyMOB** systematically
016 perturbs each seed problem using symbolic, numeric, and equivalence-
017 preserving transformations, enabling a fine-grained assessment of generalization.
018 Our evaluation reveals three key findings: (1) most models' performance collapses
019 under minor perturbations, while frontier systems exhibit substantial robustness,
020 suggesting an emerging '*phase transition*' from memorization to generalization;
021 (2) integrated code tools stabilize performance, particularly for weaker models;
022 and (3) we identify examples where Computer Algebra Systems (CAS) fail while
023 LLMs succeed, as well as problems solved only via a hybrid LLM-CAS approach,
024 highlighting a promising integration frontier. **ASyMOB** serves as a principled di-
025 agnostic tool for measuring and accelerating progress toward building verifiable,
026 trustworthy AI for scientific discovery.

027 1 INTRODUCTION 028

029 In recent years, large language models (LLMs) have shown remarkable capabilities in domains such
030 as mathematical reasoning (Lewkowycz et al. 2022; Kojima et al. 2022; X. Wang et al. 2023; Trinh
031 et al. 2024; Luo et al. 2025; Davies et al. 2021) and code generation (Rozière et al. 2024; Ridnik
032 et al. 2024; Zan et al. 2023; Hou et al. 2024). A crucial skill for real-world applications of these
033 capabilities is mastery of university-level symbolic mathematics, including integration, limit com-
034 putation, differential equation solving, and algebraic simplification. This proficiency is fundamental
035 across many mathematical, scientific, and engineering challenges.

036 However, existing mathematical benchmarks inadequately assess symbolic proficiency. Early
037 benchmarks like GSM8K (Cobbe et al. 2021) and MATH (Hendrycks et al. 2021), while driving
038 progress in arithmetic reasoning, focus on pre-university-level questions and have been mastered
039 by frontier LLMs (Glazer et al. 2024). Furthermore, many popular benchmarks rely on multiple-
040 choice questions (Rein et al. 2024), an unrealistic setting which artificially lowers the difficulty.
041 Word-problem benchmarks mix two fundamentally different challenges: text-to-math conversion
042 (understanding the text to build expressions) and symbolic manipulation (solving them). This con-
043flation makes it hard to evaluate an LLM's performance specifically on the latter, and to diagnose the
044 root causes of model errors. Conversely, formal proof datasets (e.g. Zheng et al. 2022; Balunović
045 et al. 2025) address theorem proving but often skip core tasks like integration or solving differential
046 equations.

047 The broad topic coverage that most benchmarks strive for forces small sample sizes per skill cat-
048 egory, hindering robust statistical analysis. For example, in MathBench (H. Liu et al. 2024) only
049 150 out of 3709 (4%) questions address university-level math in English. The 5K test dataset by
050 Lample et al. (2020) targets symbolic math, but mainly contains simple problems and was immedi-
051 ately saturated. Recent efforts, such as FrontierMath (Glazer et al. 2024) and Humanity's Last Exam
052 (Phan et al. 2025), demand that LLMs exhibit very high proficiency across numerous skills sim-
053 taneously, thereby impeding conclusions regarding specific LLM capabilities. Overcoming these

Code for ASyMOB dataset generation and LLM evaluation pipeline is attached in the supplementary.

054 limitations can shed light on a fundamental question: do LLMs solve problems through genuine
 055 mathematical understanding or merely through advanced pattern recognition (Mirzadeh et al. 2025;
 056 Boye et al. 2025; Z. Zhou, Q. Wang, et al. 2024; K. Huang et al. 2025; Z. Zhou, S. Liu, et al. 2025;
 057 Jiang et al. 2024). Addressing this question calls for different types of datasets, which can separate
 058 sophisticated pattern memorization from true mathematical abilities.

059 In response, we present ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark (pro-
 060 nounced Asimov, in tribute to the renowned author). ASyMOB assesses LLM capabilities through
 061 systematic perturbations of core symbolic tasks, introducing three key innovations:
 062

- 063 **Focused Scope:** Targeting pure symbolic manipulation (Figure 1).
- 064 **Controlled Complexity:** Systematically introduced questions varied by difficulty levels.
- 065 **High Resolution:** The large scale and fine-grained difficulty steps enable statistically ro-
 066 bust measurement of model accuracy, sensitivity to noise types, and impact of tool use.

069 Seed Question	070 Symbolic Perturbation
071 072 <Code / No-Code Prompt> 073 074 <i>Solve the following integral.</i> 075 076 $\int_1^2 \frac{e^x(x-1)}{x(x+e^x)} dx$ 077	078 <Code / No-Code Prompt> 079 080 <i>Solve the following integral.</i> 081 <i>Assume A, B, F, G are real and positive.</i> 082 $\int_1^2 \frac{Ae^{Fx}(Fx-1)}{Fx(Be^{Fx}+FGx)} dx$
083 084 Solution: 085 086 $\ln\left(\frac{2+e^2}{2+2e}\right)$	087 088 Solution: 089 $\frac{A}{BF} \cdot \ln\left(\frac{e^2B+2G}{2(eB+G)}\right)$
090 091 No-Code Prompt 092 <i>Assume you don't have access to a computer, and do not use code to solve</i> 093 <i>the question.</i>	094 095 Code Prompt 096 <i>Please use Python to solve the question.</i>

087 **Figure 1: Example ASyMOB question and code-use preambles.** A seed question (left) and its
 088 symbolically perturbed variant (right). The preamble either disallows or encourages code execution
 089 (this part is omitted for models without inherent code execution capabilities).

091 While there are examples of variational math problem generation (e.g., Mirzadeh et al. 2025; Li et al.
 092 2024), ASyMOB offers three key advancements. First, it evaluates university-level symbolic math-
 093 ematics - whereas other works remain confined to school-level math, mostly derived from GSM8K
 094 and MATH. Second, it introduces entirely new perturbation categories: ‘Symbolic’ and ‘Equiva-
 095 lence’ perturbations probe distinct robustness dimensions absent in prior work. Third, it focuses on
 096 mathematical reasoning rather than linguistic variation, in contrast to GSM-Symbolic (Mirzadeh et
 097 al. 2025), whose perturbations primarily alter textual phrasing and whose most pronounced effects
 098 stem from changes in language rather than changes in the underlying mathematics.

099 Using ASyMOB, we evaluated the performance of open- and closed-weight LLMs, including gen-
 100 eral and mathematical models. Perturbations significantly challenge LLMs’ symbolic math skills,
 101 reducing the average model success rate from 74.6% on the unperturbed subset to 46.8% on the full
 102 ASyMOB benchmark. Even the simplest perturbations noticeably affect performance (Figure 2).

103 Following the extensive work on the effects of tool-use in math problem solving (Novikov et al.
 104 2025; Yue et al. 2024; A. Zhou et al. 2024; OpenAI 2025c; Liao et al. 2024; Gou et al. 2024; Imani
 105 et al. 2023; Romera-Paredes et al. 2023; Dugan et al. 2024; L. Gao et al. 2023; J. Zhang et al. 2025),
 106 we tested code-integrated LLMs both with and without code execution (Figure 2 left) - measuring
 107 the effect of tool-use in the specific context of purely symbolic math challenges. Tool-use boosts
 108 performance in weaker models, but surprisingly has no positive effect on frontier ones.



Figure 2: **Degradation of success rate relative to seed-set performance.** Both code-integrated models (left) and non-code integrated (right) exhibit performance degradation due to ‘Numeric’ and ‘Symbolic’ perturbations, but frontier models are more resilient. Notably, GPT-4.0 is substantially more robust when code-enabled. Wald 95% confidence intervals are shown (Wald 1943).

Some perturbed variants in ASyMOB proved impossible for the CAS we tested - Mathematica, WolframAlpha and SymPy (Wolfram Research Inc. 2024; Wolfram Alpha LLC 2025; Meurer et al. 2017) - yet certain LLMs managed to solve them (section 3.1). Moreover, we present an example where pure CAS and pure LLM approaches fail, yet their combination successfully solves the challenge, leveraging the complementary strengths of each system.

2 METHODOLOGY FOR SYMBOLIC MATHEMATICAL OPERATIONS MEASUREMENT

2.1 DATASET DESIGN AND GENERATION

We begin by curating and creating a set of 100 seed problems that contain only symbolic content - no word-problems or other textual or graphical information beyond the minimal instructions or assumptions needed to define the symbolic task. This restriction excludes almost all olympiad-style problems (B. Gao et al. 2025) and separates our dataset from existing benchmarks. 55 seed questions were curated from university-level benchmarks (Chernyshev et al. 2025; Fang et al. 2024; Frieder et al. 2023; Xu et al. 2025) and math olympiads (Brazilian Mathematical Olympiad 2019; Z. Huang et al. 2024; He et al. 2024). 45 additional seed questions were created to cover underrepresented topics. The questions represent a sample of the practical mathematical challenges that engineers and

162 scientists frequently encounter in their work and research. Each question is categorized by its topic:
 163 Integrals (30), Differential Equations (23), Series (22), Limits (15), Hypergeometrics (10).

164 Based on these seed questions, we introduce symbolic perturbations to create an overall dataset of
 165 35,368 unique symbolic math challenges (Table 1). The guiding principle was to modify the sym-
 166 bolic structure of the problem - thereby adding a layer of variation - *without substantially altering*
 167 *the core mathematical challenge* or the required solution techniques.

168
 169 **Table 1: ASyMOB question variants (shown for seed question #6).** For each variant type, the
 170 right-most column presents the number of variants for this seed question and the total number of
 171 this category in the dataset (e.g. there are 30 ‘Numeric-One-N’ variants of question #6, totaling
 172 3490 ‘Numeric-One-N’ variants over all seed questions). XX, YY, and ZZ in ‘Numeric-All-N-S’
 173 represent 2 digit random numbers. Full dataset available in the supplementary material.

Variant	Example Challenge	Answer	#
Seed (Original)	$\lim_{x \rightarrow 0} \left(\frac{2 \cdot \tan\left(\frac{x}{2}\right)}{x} \right)^{\frac{3}{x^2}}$	$e^{\frac{1}{4}}$	1 (100)
Symbolic-N (Shown for N=3)	$\lim_{x \rightarrow 0} A \cdot \left(\frac{2 \cdot \tan\left(\frac{B \cdot x}{2}\right)}{B \cdot x} \right)^{\frac{C \cdot 3}{(B \cdot x)^2}}$	$A \cdot e^{\frac{C}{4}}$	7 (1348)
Numeric-All-N (Shown for N=2)	$\lim_{x \rightarrow 0} 17 \cdot \left(\frac{2 \cdot \tan\left(\frac{91 \cdot x}{2}\right)}{91 \cdot x} \right)^{\frac{57 \cdot 3}{(91 \cdot x)^2}}$	$17 \cdot e^{\frac{57}{4}}$	11 (1100)
Numeric-One-N (Shown for N=6)	$\lim_{x \rightarrow 0} \left(\frac{2 \cdot \tan\left(\frac{x}{2}\right)}{x} \right)^{\frac{838310 \cdot 3}{x^2}}$	$e^{\frac{838310}{4}}$	30 (3490)
Numeric-All-N-S (Shown for N=2)	$\lim_{x \rightarrow 0} XX \cdot \left(\frac{2 \cdot \tan\left(\frac{YY \cdot x}{2}\right)}{YY \cdot x} \right)^{\frac{ZZ \cdot 3}{(YY \cdot x)^2}}$	$XX \cdot e^{\frac{ZZ}{4}}$	100 (10000)
Equivalence-One-Easy	$\lim_{x \rightarrow 0} \left(\frac{2 \cdot \tan\left(\frac{x}{2}\right)}{x} \right)^{\frac{(\sin^2(-Fx) + \cos^2(Fx)) \cdot 3}{x^2}}$	$e^{\frac{1}{4}}$	15 (1745)
Equivalence-One-Hard	$\lim_{x \rightarrow 0+} \left(\frac{\sinh(\log(Ax + \sqrt{A^2 x^2 + 1}))}{Ax} \right) \left(\frac{2 \cdot \tan\left(\frac{x}{2}\right)}{x} \right)^{\frac{3}{x^2}}$	$e^{\frac{1}{4}}$	15 (1745)
Equivalence-All-Easy	$\lim_{x \rightarrow 0+} (\sin^2(-Ax) + \cos^2(Ax)) \left(\frac{2 \cdot \tan\left(\frac{(-\sinh^2(Bx) + \cosh^2(Bx))x}{2}\right)}{(-\sinh^2(Bx) + \cosh^2(Bx))x} \right)^{\frac{(\ln(x) \cdot \log_e(F)) \cdot 3}{(\ln(F))^2}}$	$e^{\frac{1}{4}}$	60 (7920)
Equivalence-All-Hard	$\lim_{x \rightarrow 0+} \left(\frac{\tan(\pi x) \cdot \tan(\pi(A-1))}{\pi \cdot \tan(\pi x) \cdot \tan(\pi(A-1)) + \pi \cdot \tan(A\pi)} \right) \left(\frac{2 \cdot \tan\left(\frac{(\log_e(\frac{\pi}{2}) + \log_e(\pi)) \cdot x}{2}\right)}{(\log_e(\frac{\pi}{2}) + \log_e(\pi))x} \right)^{\frac{(\pi \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot \frac{1}{n^2}) \cdot 3}{(\pi \cdot \log_e(\frac{\pi}{2}) + \pi \cdot \log_e(\pi))^2}}$	$e^{\frac{1}{4}}$	60 (7920)

200 For instance, consider the elementary integral $\int x^2 e^x dx = e^x (x^2 - 2x + 2)$, typically solved using
 201 integration by parts.

202

- 203 An acceptable perturbation is $\int x^2 e^{Fx} dx = \frac{e^{Fx} (F^2 x^2 - 2Fx + 2)}{F^3}$. Although this variant in-
 204 troduces a substitution step ($t = Fx$), the fundamental solution technique is preserved.
- 205 Conversely, a modification like $\int x^{2B} e^x dx = (-x)^{-2B} x^{2B} \Gamma(2B + 1, -x)$ would *not* be
 206 considered a symbolic *perturbation* as it significantly increases the problem’s complexity
 207 and demands additional mathematical knowledge compared to the original.

208 After manually perturbing each seed question with 2-to-5 parameters, additional variants were gen-
 209 erated using algorithmic transformations. Note that the random nature of the following question
 210 generation methods makes ASyMOB inherently resilient against benchmark hacking and memo-
 211 rization. The dataset can (and should) be re-generated before assessing a new LLM - unlike manual
 212 benchmarks which are static and most frontier models were exposed to them during training.

213 One of the questions we aim to investigate is the effect of the number of symbolic perturbations on
 214 model performance. Specifically, we ask whether each additional perturbation further degrades per-

216 formance, or whether most of the added difficulty for LLMs arises from the introduction of the first
 217 symbolic perturbation - transforming the problem to contain non-numeric parameters. To enable
 218 this measurement, we systematically remove added symbols from each manually perturbed ques-
 219 tion, generating all possible combinations. This approach helps avoid subjective bias in perturbation
 220 choice. Each variant is labeled as ‘Symbolic- N ’, where N indicates the number of perturbing sym-
 221 bolic. For example, a question originally marked as ‘Symbolic-4’ will yield additional variants: four
 222 ‘Symbolic-3’, six ‘Symbolic-2’, and four ‘Symbolic-1’.

223 Another key evaluation axis contrasts symbolic and numerical perturbations. Mathematically, if a
 224 model can solve a symbolically perturbed question, it should also be able to solve its numeric coun-
 225 terpart via substituting constants by symbols, solved symbolically, and substituted back. Yet, as
 226 Figure 2 shows, LLMs often underperform on numeric perturbations compared to symbolic pertur-
 227 bations, suggesting their reasoning remains constrained by their token-based architectures.

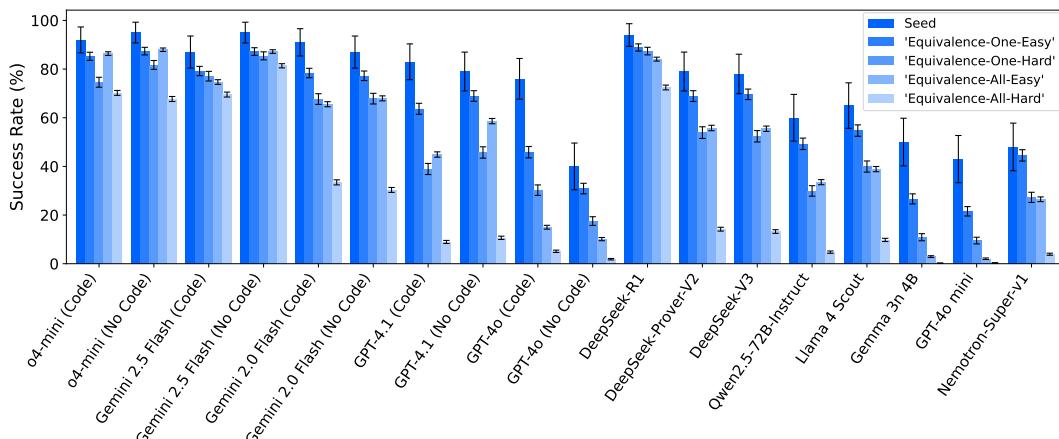
228 To test this, numeric variants were created by replacing every symbolic parameter with a random
 229 positive integer of fixed digit length, varying from 0 to 10 digits to probe both in- and out-of-
 230 distribution performance (large coefficients being rare in training). Here, 0 digits means replacing all
 231 symbols by ‘1’, yielding a mathematically equivalent question - yet, Figure 2 shows even this trivial
 232 case degrades performance, further questioning LLMs’ true mathematical understanding. These
 233 variants are labeled ‘Numeric-All- N ’, where N is the digit length.

234 Due to the probabilistic nature of LLMs, we measure the stability of mathematical correctness over
 235 50 random variations of ‘Numeric-All- N ’ for $N = 2, 3$ - generating a new set of random 2 or 3-digit
 236 numbers per variation (Figure 8 in Appendix C). These variants are marked as ‘Numeric-All- N -S’.

237 To explore whether the initial introduction of a large number causes a disproportionate performance
 238 drop, or whether performance declines progressively with each added numeric coefficient, we also
 239 create variants where only one symbolic parameter is replaced by a number (ranging from 1 to 10
 240 digits), and the remaining symbols are removed. To avoid selection bias, we generate all possible
 241 choices of which symbol to retain and replace. These variants are labeled ‘Numeric-One- N ’.

242 Numeric perturbations are similar in spirit to previous works like Mirzadeh et al. (2025), Y. Zhang
 243 et al. (2024), Shrestha et al. (2025), Srivastava et al. (2024), and K. Huang et al. (2025) - which
 244 are based on GSM8K (Cobbe et al. 2021) or MATH (Hendrycks et al. 2021) word problems, as
 245 well as Balunović et al. (2025) - that focuses on constructive proofs. Differing from these previous
 246 benchmarks, the larger-scale ASyMOB dataset focuses on advanced symbolic math problems, with
 247 no language understanding component, and controlled complexity.

248 Finally, we evaluate the impact of equivalent-form perturbations. In this case, we complicate the
 249 problem by inserting one or more expressions that are mathematically equal to 1. For example,
 250 symbol A might be replaced by $\sin^2(-Ax) + \cos^2(Ax)$. While such perturbations (intentionally)
 251 introduce extra steps in simplification, the final answer is identical to the original version. We con-
 252 firmed that the tested LLMs could correctly simplify each expression when presented individually,
 253



269 Figure 3: **Effect of ‘Equivalence’ perturbations.** Note the substantial drop in success rate vs. seed
 270 set performance for most models. Wald 95% confidence intervals are shown (Wald 1943).

270 indicating that the ‘Equivalence’ variants’ additional difficulty arises from the increased structural
271 complexity - not the challenge of simplifying the added expressions themselves.
272

273 Five identity types were selected for this transformation - trigonometric, hyperbolic, logarithmic,
274 complex exponential, and series - each with an ‘Easy’ and a ‘Hard’ version (see Appendix A.1
275 for the full list). The ‘Easy’/‘Hard’ classification was done manually, but the results in Figure 3
276 retroactively validate our assumptions. To implement this transformation at scale, these identities
277 replace the symbols in the symbolic perturbations. For consistency, each variant uses only ‘Easy’
278 or ‘Hard’ forms. Similar to the numeric case, we generate two types of variants: either all symbols
279 are replaced by equivalent forms (‘Equivalence-All-Easy/Hard’), or only one (‘Equivalence-One-
280 Easy/Hard’).

281 Some of the resulting expressions may seem “contrived” or unnatural. The ‘Hard’ perturbations were chosen intentionally to have not
282 just increased difficulty compared to their ‘Easy’ counterparts, but also be more complex than what is common in questions on
283 conventional exams and in other benchmarks. Part of the goal of such
284 “over-complex” questions is to test LLM ability to *think in steps*. While questions provided in conventional exams would normally
285 not be so complex, intermediate steps in long calculations often create
286 such complex expressions that require symbolic simplification
287 (especially after parameter changes, integration by parts, etc). The
288 ability to simplify complex sub-expressions before attempting to
289 directly solve the complete problem, is itself a skill worth testing.
290

291 Notably, SymPy (Meurer et al. 2017) was unable to simplify the
292 more difficult trigonometric and hyperbolic identities to 1, providing
293 an example for CAS limitations in university-level symbolic
294 math challenges.
295

296 Figure 3 shows that for most LLMs the challenge level of a single
297 ‘Hard’ perturbation is lower than multiple ‘Easy’ perturbations - but
298 not for all LLMs. The reasons behind this difference are a topic for
299 future investigation.
300

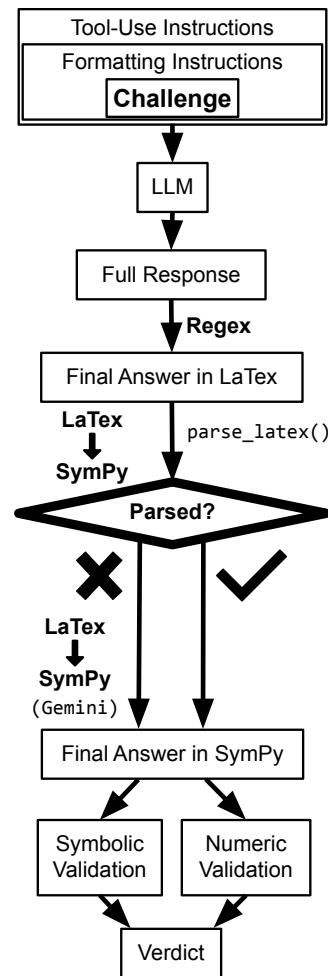
301 One of the advantages in ASyMOB is once the seed and manual
302 symbolic perturbations are complete and thoroughly validated, all
303 other tasks are generated algorithmically - removing the risk of
304 errors in specific questions or answers. This is not obvious as existing
305 mathematical benchmarks are known to have up to 5-10% mistaken
306 labeling and formatting errors (Vendrow et al. 2024; W. Zhang et
307 al. 2025; Patel et al. 2021). See Appendix A.2 for examples which
308 were discovered during the seed curation process for ASyMOB.
309

310 Additionally, by maintaining consistent question formatting and
311 disallowing substantial textual or graphical information, we prevent
312 potential task ambiguities and missing data (Vendrow et al. 2024).
313

314 2.2 TESTING AND VALIDATION

315 Validating open-ended symbolic problems is harder than closed-
316 form or numerical ones. For example, the reference answer to ques-
317 tion #51 in the ASyMOB dataset is $\frac{1}{2}\sqrt{x}$. However, solving it using
318 Mathematica yields $e^{\frac{1}{2}(\log(x)-2\log(2))}$. Although structurally differ-
319 ent, these expressions are mathematically identical. Our evalua-
320 tion must accept any correct symbolic form and phrasing without pen-
321 alizing the LLM (e.g. ‘ $\sqrt{x} \cdot \frac{1}{2}$ ’, ‘ $y = \frac{1}{2}\sqrt{x}$ ’, ‘ $y \rightarrow \frac{1}{2}\sqrt{x}$ ’, etc.). To
322 prevent false negatives, we implement a multi-step validation pro-
323 cess with dual verification methods (see Figure 4).
324

325 The final mathematical answer is extracted from the LLM’s full tex-
326 tual response using a highly flexible regular expression (see Appendix B). The extracted LaTeX ex-
327



328 **Figure 4: Result validation**
329 **pipeline.** The final LaTeX answer is extracted from the full
330 LLM response via a flexible
331 regex. It’s parsed into a
332 computable SymPy expression via
333 a deterministic function or, if
334 it fails, via an LLM. The ex-
335 pression is then validated both
336 symbolically and numerically
337 against the reference answer.
338

324 expression is then cleaned (e.g. formatting commands like `\displaystyle` and `\boxed` are removed) and
325 parsed into a SymPy expression using `sympy.parsing.latex.parse_latex`. If the parsing
326 fails, we resort to using `geminii-2.0-flash` (Pichai et al. 2024) for this translation (occurred in 18% of
327 cases). Since problem answers are always simpler expressions than the problems themselves, this
328 translation is much easier than the original challenge, and relies on the model’s coding skills and not
329 mathematical prowess.

330 The resulting SymPy expression undergoes two distinct validation checks against the reference an-
331 swer (also represented as a SymPy object):
332

- 333 • **Symbolic validation.** The difference between the extracted expression and the correct
334 answer is simplified via `Sympy.simplify`. If the simplification reduces this difference
335 to zero (or a constant, in the case of indefinite integrals), the answer is deemed correct.
- 336 • **Numeric validation.** We randomly generate numerical values for each variable (e.g., x and
337 any symbolic perturbation parameters) and substitute them into both the LLM’s expression
338 and the reference answer. If the relative difference between the two evaluations is less
339 than 0.002%, the answers are considered matching. This process is repeated 5 times to
340 mitigate the risk of coincidental matches. To allow the detection of numeric equivalence
341 between indefinite integrals, we require that all 5 repetitions produce the same difference
342 (not necessarily zero), concluding that the expressions are equivalent up to a constant factor.

343 This validation approach avoids the need to employ LLMs as judges during evaluation (as was done
344 in Chernyshev et al. 2025 and Fang et al. 2024, among others), thus avoiding validation errors due
345 to LLM pattern recognition biases (as was shown to happen, e.g. in Mao et al. 2024; Chernyshev
346 et al. 2025).

347 We exclusively use the `pass@1` evaluation criterion, reflecting the practical requirement for reli-
348 ability in real-world applications by engineers and researchers. The inherent LLM randomness is
349 accounted for by evaluating success across the large number of questions within each category.
350

351 3 EXPERIMENTAL RESULTS

352 Using the ASyMOB benchmark, open- and closed-weight LLMs were evaluated, including both
353 general-purpose and mathematically-specialized models. Table 2 summarizes their performance.

354 While frontier closed-weight models (o4-mini, Gemini 2.5 Flash: OpenAI 2025a; Kavukcuoglu
355 2025) achieve the highest seed accuracy, older (Gemini 2.0 Flash, GPT-4.1, GPT-4o, GPT-4o-
356 mini: Pichai et al. 2024; OpenAI 2025b; OpenAI 2024) and open-weight models (DeepSeek-
357 V3, DeepSeek-R1, DeepSeek-Prover-V2-671B, Llama-4-Scout-17B-16E-Instruct, Qwen2.5-72B-
358 Instruct, Gemma-3n-e4b-it, Llama-3_3-Nemotron-Super-49B-v1: DeepSeek-AI 2025b; DeepSeek-
359 AI 2025a; Ren et al. 2025; Meta 2025; Yang et al. 2024; Farabet et al. 2025; Bercovich et al. 2025)
360 also perform reasonably well, all scoring at least 40%.

361 A significant finding is the substantial degradation in performance when models are faced with per-
362 turbated versions of the seed questions (Figures 2, 3). Some LLMs struggle more with symbolic
363 perturbations, suggesting gaps in mathematical understanding, while others falter with numeric per-
364 turbations, possibly due to longer token chains. Understanding the reasons behind these differences
365 between models may reveal deeper principles of how LLMs process mathematical structures.

366 Where the top models truly shine is their robustness to perturbations - which is arguably a more
367 critical metric for assessing LLM generalization capabilities - netting a performance gap of 20%
368 between o4-mini, Gemini-2.5 Flash, and DeepSeek-R1, to the next best model on the total dataset.
369 This robustness persists across perturbation categories and mathematical topics (Figure 5), even
370 when faced with out-of-distribution challenges, which might indicate a recent ‘phase transition’ of
371 frontier LLMs from reliance on memorized patterns to genuine mathematical understanding.
372

373 Comparing LLM performance on ASyMOB to recent competitive math benchmarks, like
374 AIME2025 (Balunovic et al. 2025) and RIMO (Chen et al. 2025), we see a general correlation.
375 However, we notice that DeepSeek-Prover-V2-671B - despite achieving 88.9% pass ratio on the
376 MiniF2F proof benchmark (Zheng et al. 2022; Ren et al. 2025) and outperforming both Gemini-2.5
377 and DeepSeek-V3 on PutnamBench (Tsoukalas et al. 2024) - is still surpassed by DeepSeek-R1

378 Table 2: **Model performance on ASyMOB by perturbation category.** Bold indicates the top
 379 performer in each category. Subset titles are color-coded in accordance to Table 1. The bottom
 380 line shows SymPy success statistics, providing pure CAS performance baseline. Note that SymPy’s
 381 100% success rate on the Seed set is unsurprising, as we validated all questions during seed selection
 382 and creation via CAS, introducing a natural selection bias in favor of SymPy.

Model	Seed	Symbolic	Numeric	Equivalence	Variance	Total.
Closed-Weights Models						
o4-mini (code)	92	69.0	74.9	78.6	72.8	76.1
o4-mini (no code)	95	71.8	78.1	79.0	76.8	78.1
GPT-4.1 (code)	83	66.1	66.3	31.3	62.8	46.2
GPT-4.1 (no code)	79	64.7	64.8	38.7	58.8	48.9
GPT-4o (code)	76	57.1	61.3	15.1	59.3	35.3
GPT-4o (no code)	40	34.5	32.3	9.3	21.6	16.8
GPT-4o-mini	43	26.9	27.6	3.8	17.6	11.8
Gemini-2.5 Flash (code)	87	70.3	68.2	73.2	62.6	69.5
Gemini-2.5 Flash (no code)	95	75.9	72.6	84.7	69.5	78.5
Gemini-2.0 Flash (code)	91	71.9	68.2	53.7	59.7	58.1
Gemini-2.0 Flash (no code)	87	69.7	64.1	53.4	51.2	54.9
Open-Weights Models						
DeepSeek-V3	78	64.2	59.5	39.2	48.2	45.4
DeepSeek-R1	94	78.8	76.7	80.1	75.2	78.3
DeepSeek-Prover-V2-671B	79	65.6	59.8	39.8	50.1	46.3
Llama-4-Scout-17B-16E-Instruct	65	50.6	48.2	28.5	36.7	34.3
Qwen2.5-72B-Instruct	60	45.3	43.5	22.8	29.1	28.2
Gemma-3n-e4b-it	50	30.4	30.3	4.7	15.1	12.0
Nemotron-Super-49B-v1	48	37.1	34.0	18.9	23.6	23.0
SymPy	100	56.7	65.2	21.9	57.8	39.2

(from the same model family), on every category in ASyMOB. Furthermore, its performance gains vs. the base model (DeepSeek-V3) are incremental at best. This suggests that proficiency in formal proof generation may not directly translate to skill in the broader set of symbolic mathematical operations, where the reasoning capabilities of general models can prove more effective. Nemotron-Super (Bercovich et al. 2025), on the other hand, shows relatively high perturbation resilience, despite the low success rate on the seed subset.

The ‘Variance’ subset provides insights into model consistency. The variance of results over all ‘Numeric-All-N-S’ variants was calculated per seed question and per model (Figure 8). An interesting observation is the absence of correlations of variance between models per seed question, indicating that the effect of perturbation is similar regardless of the specific seed (see Appendix C).

Enabling code execution improved the performance of older models (GPT-4o by up to 37.7% and Gemini-2.0 Flash by up to 8.6% in a single category), likely compensating for their symbolic-math

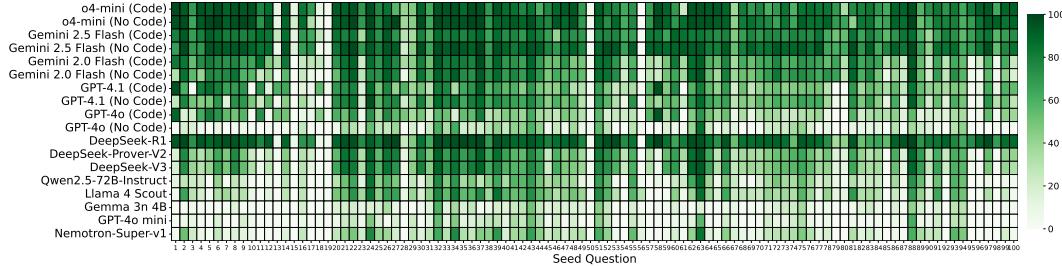


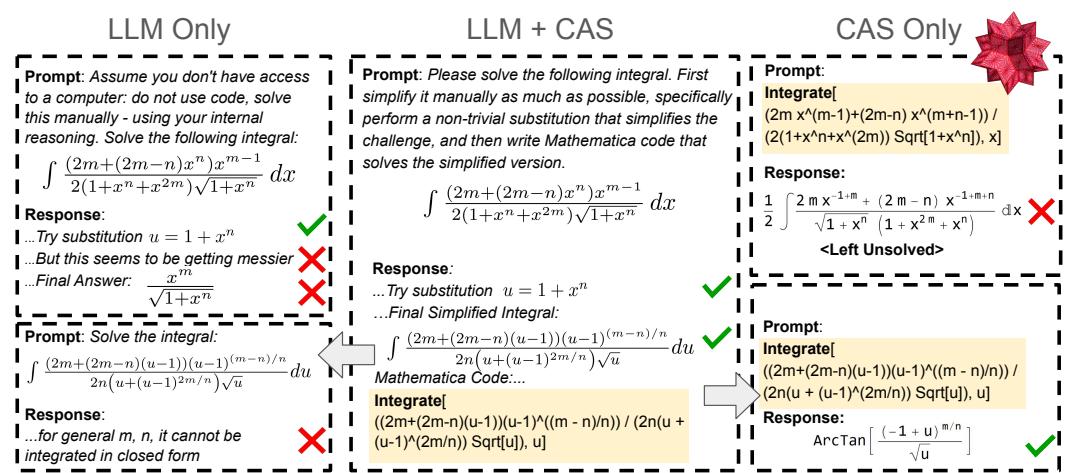
Figure 5: **Heatmap of overall performance per model per seed, averaged over all perturbations.**

432 weaknesses through coding skills. In contrast, frontier models performed similarly or worse with
 433 code execution, likely because their limitations become apparent on the hardest problems - which
 434 are usually unsolvable by a naive application of SymPy - so gains require combining the model's
 435 internal reasoning (to break down complex problems) with strategic tool use. Both effects highlight
 436 the value of hybrid solution strategies.

438 3.1 COMPUTER ALGEBRA SYSTEMS LIMITATIONS

440 While CAS like SymPy, Mathematica, and WolframAlpha are powerful tools for symbolic mathematics,
 441 they have their own limitations. The ASyMOB benchmark includes instances where traditional
 442 CAS fail yet LLMs manage. Symbolic perturbations, while apparently easier for LLMs
 443 to handle than numeric perturbations, seem to have a much larger detrimental effect on CAS, with
 444 multiple examples of CAS solving the seed variant and then failing on a 'Symbolic' variant.

445 For example, 2 of the 5 'Hard Equivalence' forms (Appendix A.1) are not recognized by SymPy as
 446 identical to 1. Yet, many 'Equivalence' variants containing these identities are successfully solved
 447 by models in our testing. Another example is the aforementioned ASyMOB question #6 (Table
 448 1) - where WolframAlpha does not simply fail to answer on variant 'Symbolic-3', but produces a
 449 false result¹. Such examples provide added motivation for developing LLMs skillful at symbolic
 450 mathematical manipulations, capable of overcoming CAS shortcomings.



467 **Figure 6: Example question solved exclusively by a hybrid LLM+CAS approach.** ASyMOB's
 468 question #122 was solved incorrectly (left) by GPT-4o, despite the model "considering" a correct
 469 substitution. Standard CAS systems also failed to solve the question (right). However, a hybrid
 470 strategy succeeded: GPT-4o was prompt to first simplify the problem via substitution and then use
 471 CAS code on the simplified expression - enabling Mathematica to solve the question.

473 Perhaps the most teaching example is ASyMOB question #122 on GPT-4o (Figure 6). Pure CAS
 474 and pure LLM approaches both failed. However, when instructed to simplify the integral first and
 475 then solve using CAS, the model succeeded, demonstrating the power of combining LLM strategic
 476 ability with CAS rigor.

478 4 DISCUSSION AND OUTLOOK

481 We introduced ASyMOB, a high-resolution symbolic mathematics benchmark that isolates core
 482 symbolic reasoning skills, containing 35,368 challenges. Assessment of leading models shows:

484 ¹Tested on Wolfram Language version 14.2.1: <https://www.wolframalpha.com/input/?i=Limit%5BA%28Tan%5B%28B+x%29%2F2%5D%2F28%28B+x%29%2F2%29%5E%28%28C+3%29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D>

486 • LLMs’ symbolic math performance substantially degrades under perturbations, suggesting
487 reliance on pattern memorization and lack of “true understanding”.
488 • Frontier LLMs show a leap in robustness against perturbations of various kinds, suggesting
489 strong symbolic math generalization capabilities.
490 • Correct tool-use (code execution) can meaningfully improve performance, especially when
491 applied via hybrid LLM+CAS strategies.
492

493 Benchmarks aspire to present uncontaminated “new” questions, but ASyMOB bypasses this chal-
494 lenge via systematic perturbations. Even if seed questions are contaminated, the benchmark results
495 remain meaningful - an increasingly important property as sourcing truly novel questions becomes
496 infeasible for large-scale datasets.

497 To empirically assess this robustness, we ran experiments on Gemini 2.0 Flash, OpenAI GPT-4o,
498 and LLaMA 3.3 Nemotron Super, explicitly including the original seed question and its correct
499 answer as an in-context exemplar within the prompt. While performance improved on simple per-
500 turbations (Numeric-All-0: +2%, +27%, +43.5% respectively), the effect quickly dropped on more
501 complex ones (Numeric-One-3, Numeric-All-3, Symbolic-3: +2%, +5.1%, +6.8% respectively).
502 These findings show that seed question contamination does not substantially distort performance on
503 harder variants, and ASyMOB’s complex perturbations still expose limitations beyond memoriza-
504 tion. Given the extremity of this setup, these modest gains likely represent an upper bound from
505 pretraining, underscoring ASyMOB’s robustness in detecting genuine generalization.

506 Contamination can even be reframed as a feature: if a model leverages prior knowledge of a seed
507 question to solve perturbed variants, it demonstrates real generalization. Eventually, if LLMs im-
508 prove on re-generated questions by training on earlier iterations, that signifies deeper mathematical
509 understanding - a desirable capability, not a flaw.

510 Looking forward, LLMs should be intentionally trained to generalize, both via tool use and through
511 systematic perturbations on the training set. Previous works showed that such synthetic data im-
512 proves overall performance (e.g. Li et al. 2024). Fine-grained perturbations provide a systematic
513 method for generating high-quality synthetic data, offering a valuable resource for fine-tuning future
514 reasoning models.

515 One of our perturbations is inspired by GSM-Symbolic (Mirzadeh et al. 2025) - which showed that
516 even “trivial” complications in textual math questions can substantially reduce success rates (up to
517 65%). Similarly, in our work, symbolic complications also led to substantial performance drops (up
518 to 60.9%). This test generalizes the finding of GSM-Symbolic that “current LLMs are not capable
519 of genuine logical reasoning”, now shown in the domain of symbolic manipulations and not just in
520 text-to-math conversion.

521 Importantly, our results suggest a possible solution: once an LLM learns *when* and *where* to use
522 tools, it can mitigate substantial pitfalls by using code execution as a form of grounding. This can
523 be encouraged through prompting strategies like “simplify-then-code” (Figure 6).

524 Until recently, the hybrid LLM+CAS approach appeared to be the most promising path forward.
525 However, the surprising finding that frontier models *no longer benefit* from CAS use for symbolic
526 math triggers deeper and more fascinating possibilities. Looking ahead, we see three possible tra-
527 jectories for future developments in AI for math and AI for science:

528

- 529 1. **Intrinsic mastery:** Frontier models may continue to improve in their inherent abilities,
530 eventually surpassing the need for external symbolic math tools, as in the frontier model
531 behavior observed in this work.
- 532 2. **Deeper integration:** Tool use may remain essential, but will demand increasingly sophis-
533 ticated CAS capabilities that co-evolve with LLMs, complementing their inherent abilities
534 and motivating the next generation of CAS infrastructure.
- 535 3. **Autonomous tool creation:** LLMs may internalize symbolic computation itself - leverag-
536 ing their reasoning and coding capacities to build internal, CAS-like mechanisms that blur
537 the boundary between model and tool.

540 REFERENCES

541

542 Balunovic, M. et al. (2025). *MathArena: Evaluating LLMs on Uncontaminated Math Competitions*.
543 SRI Lab, ETH Zurich.

544 Balunović, M. et al. (2025). *MathConstruct: Challenging LLM Reasoning with Constructive Proofs*.
545 arXiv: 2502.10197 [cs.AI]. URL: <https://arxiv.org/abs/2502.10197>.

546 Bercovich, A. et al. (2025). *Llama-Nemotron: Efficient Reasoning Models*. arXiv: 2505.00949
547 [cs.CL]. URL: <https://arxiv.org/abs/2505.00949>.

548 Boye, J. et al. (2025). *Large Language Models and Mathematical Reasoning Failures*. arXiv: 2502.
549 11574 [cs.AI]. URL: <https://arxiv.org/abs/2502.11574>.

550 Brazilian Mathematical Olympiad, U. L. (2019). *OBMU 2019 Mathematics Competition*. Accessed:
551 2025-04-08. URL: <https://www.obm.org.br>.

552 Chen, Z. et al. (2025). *RIMO: An Easy-to-Evaluate, Hard-to-Solve Olympiad Benchmark for Ad-
553 vanced Mathematical Reasoning*. arXiv: 2509.07711 [cs.AI]. URL: <https://arxiv.org/abs/2509.07711>.

554 Chernyshev, K. et al. (2025). *U-MATH: A University-Level Benchmark for Evaluating Mathematical
555 Skills in LLMs*. arXiv: 2412.03205 [cs.CL]. URL: <https://arxiv.org/abs/2412.03205>.

556 Cobbe, K. et al. (2021). *Training Verifiers to Solve Math Word Problems*. arXiv: 2110.14168
557 [cs.LG]. URL: <https://arxiv.org/abs/2110.14168>.

558 Davies, A. et al. (2021). “Advancing mathematics by guiding human intuition with AI”. In: *Nature*
559 600. URL: <https://api.semanticscholar.org/CorpusID:244837059>.

560 DeepSeek-AI (2025a). *DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
561 ment Learning*. arXiv: 2501.12948 [cs.CL]. URL: <https://arxiv.org/abs/2501.12948>.

562 – (2025b). *DeepSeek-V3 Technical Report*. arXiv: 2412.19437 [cs.CL]. URL: <https://arxiv.org/abs/2412.19437>.

563 Dugan, O. et al. (2024). “OccamLLM: Fast and Exact Language Model Arithmetic in a Sin-
564 gle Step”. In: *Advances in Neural Information Processing Systems*. Ed. by A. Globerson et al.
565 Vol. 37. Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2024/file/3eceb70f47690051d6769739fbf6294b-Paper-Conference.pdf.

566 Fang, M. et al. (2024). *MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large
567 Language Models Using Odyssey Math Data*. arXiv: 2406.18321 [cs.CL]. URL: <https://arxiv.org/abs/2406.18321>.

568 Farabet, C. et al. (Mar. 2025). *Introducing Gemma 3: The most capable model you can run on
569 a single GPU or TPU*. URL: <https://blog.google/technology/developers/gemma-3/>.

570 Frieder, S. et al. (2023). “Mathematical capabilities of chatgpt”. In: *Advances in neural information
571 processing systems* 36.

572 Gao, B. et al. (2025). “Omni-MATH: A Universal Olympiad Level Mathematic Benchmark for
573 Large Language Models”. In: *The Thirteenth International Conference on Learning Representa-
574 tions*. URL: <https://openreview.net/forum?id=yaqPf0KAlN>.

575 Gao, L. et al. (2023). “PAL: program-aided language models”. In: *Proceedings of the 40th Interna-
576 tional Conference on Machine Learning*. ICML’23. Honolulu, Hawaii, USA: JMLR.org.

577 Glazer, E. et al. (2024). *FrontierMath: A Benchmark for Evaluating Advanced Mathematical Rea-
578 soning in AI*. arXiv: 2411.04872 [cs.AI]. URL: <https://arxiv.org/abs/2411.04872>.

579 Gou, Z. et al. (2024). “ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solv-
580 ing”. In: *ICLR*. URL: <https://openreview.net/forum?id=Ep0TtjVoap>.

581 He, C. et al. (Aug. 2024). “OlympiadBench: A Challenging Benchmark for Promoting AGI with
582 Olympiad-Level Bilingual Multimodal Scientific Problems”. In: *Proceedings of the 62nd An-
583 nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Ed. by
584 L.-W. Ku et al. Bangkok, Thailand: Association for Computational Linguistics. URL: <https://aclanthology.org/2024.acl-long.211/>.

585 Hendrycks, D. et al. (2021). “Measuring Mathematical Problem Solving With the MATH Dataset”.
586 In: *NeurIPS*.

587

594 Hou, X. et al. (Dec. 2024). “Large Language Models for Software Engineering: A Systematic Lit-
595 erature Review”. In: *ACM Trans. Softw. Eng. Methodol.* 33.8. ISSN: 1049-331X. URL: <https://doi.org/10.1145/3695988>.

596

597 Huang, K. et al. (2025). “MATH-Perturb: Benchmarking LLMs’ Math Reasoning Abilities against
598 Hard Perturbations”. In: *Workshop on Reasoning and Planning for Large Language Models*. URL:
599 <https://openreview.net/forum?id=M80LGgYK7e>.

600 Huang, Z. et al. (2024). “OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for
601 Superintelligent AI”. In: *arXiv preprint arXiv:2406.12753*. URL: <https://arxiv.org/abs/2406.12753>.

602 Imani, S. et al. (2023). “MathPrompter: Mathematical Reasoning using Large Language Models”.
603 In: *Annual Meeting of the Association for Computational Linguistics*. URL: <https://api.semanticscholar.org/CorpusID:257427208>.

604

605 Jiang, B. et al. (Nov. 2024). “A Peek into Token Bias: Large Language Models Are Not Yet Genuine
606 Reasoners”. In: *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
607 Processing*. Ed. by Y. Al-Onaizan et al. Miami, Florida, USA: Association for Computational
608 Linguistics. URL: <https://aclanthology.org/2024.emnlp-main.272/>.

609 Kavukcuoglu, K. (Mar. 2025). *Gemini 2.5: Our most intelligent AI model*. URL: <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/>.

610

611 Kojima, T. et al. (2022). “Large language models are zero-shot reasoners”. In: *Proceedings of the
612 36th International Conference on Neural Information Processing Systems*. NIPS ’22. New Or-
613 leans, LA, USA: Curran Associates Inc.

614 Lample, G. et al. (2020). “Deep learning for symbolic mathematics”. In: *8th International Confer-
615 ence on Learning Representations, ICLR 2020*. <https://openreview.net/forum?id=S1eZYeHFDS>.
616 URL: https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html.

617 Lewkowycz, A. et al. (2022). “Solving Quantitative Reasoning Problems with Language Models”.
618 In: *Advances in Neural Information Processing Systems*. Ed. by A. H. Oh et al. URL: <https://openreview.net/forum?id=IFXTZERXdM7>.

619

620 Li, Z. et al. (2024). “Neuro-Symbolic Data Generation for Math Reasoning”. In: *Advances in Neu-
621 ral Information Processing Systems*. Vol. 37. URL: https://proceedings.neurips.cc/paper_files/paper/2024/hash/29d319f7c1513c9ecd81d3a6e9632a6e-Abstract-Conference.html.

621

622 Liao, M. et al. (Aug. 2024). “MARIO: MATH Reasoning with code Interpreter Output - A Repro-
623 ducible Pipeline”. In: *Findings of the Association for Computational Linguistics: ACL 2024*. Ed.
624 by L.-W. Ku et al. Bangkok, Thailand: Association for Computational Linguistics. URL: <https://aclanthology.org/2024.findings-acl.53/>.

625

626 Liu, H. et al. (Aug. 2024). “MathBench: Evaluating the Theory and Application Proficiency of LLMs
627 with a Hierarchical Mathematics Benchmark”. In: *Findings of the Association for Computational
628 Linguistics: ACL 2024*. Ed. by L.-W. Ku et al. Bangkok, Thailand: Association for Computational
629 Linguistics. URL: <https://aclanthology.org/2024.findings-acl.411/>.

630

631 Luo, H. et al. (2025). “WizardMath: Empowering Mathematical Reasoning for Large Language
632 Models via Reinforced Evol-Instruct”. In: *The Thirteenth International Conference on Learning
633 Representations*. URL: <https://openreview.net/forum?id=mMPMHWOdOy>.

634

635 Mao, Y. et al. (2024). *CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs’
636 Mathematical Reasoning Capabilities*. arXiv: 2401.06961 [cs.CL]. URL: <https://arxiv.org/abs/2401.06961>.

637

638 Meta (Apr. 2025). *The Llama 4 herd: The beginning of a new era of natively multimodal AI
innovation*. URL: <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>.

639

640 Meurer, A. et al. (Jan. 2017). “SymPy: symbolic computing in Python”. In: *PeerJ Computer Science*
641 3. ISSN: 2376-5992. URL: <https://doi.org/10.7717/peerj-cs.103>.

642

643 Mirzadeh, S. I. et al. (2025). “GSM-Symbolic: Understanding the Limitations of Mathematical Rea-
644 soning in Large Language Models”. In: *The Thirteenth International Conference on Learning
645 Representations*. URL: <https://openreview.net/forum?id=AjXkRZIVjb>.

646

647 Novikov, A. et al. (May 2025). *AlphaEvolve: A coding agent for scientific and algorithmic discovery*.
648 Tech. rep. Google DeepMind. URL: <https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf>.

648 OpenAI (2024). *GPT-4o System Card*. arXiv: 2410.21276 [cs.CL]. URL: <https://arxiv.org/abs/2410.21276>.
649
650 – (Apr. 2025a). URL: <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>.
651 – (Apr. 2025b). *Introducing GPT-4.1 in the API*. URL: <https://openai.com/index/gpt-4-1/>.
652 – (Apr. 2025c). *Introducing o3 and o4-mini*. URL: <https://openai.com/index/introducing-o3-and-o4-mini/>.
653
654 Patel, A. et al. (June 2021). “Are NLP Models really able to Solve Simple Math Word Problems?” In:
655 *Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
656 putational Linguistics: Human Language Technologies*. Online: Association for Computational
657 Linguistics. URL: <https://aclanthology.org/2021.naacl-main.168>.
658 Phan, L. et al. (2025). *Humanity’s Last Exam*. arXiv: 2501.14249 [cs.LG]. URL: <https://arxiv.org/abs/2501.14249>.
659
660 Pichai, S. et al. (Dec. 2024). *Introducing Gemini 2.0: our new AI model for the agentic era*. URL:
661 [https://blog.google/technology/google-deepmind/google-gemini-ai-
662 update-december-2024/#ceo-message](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message).
663 Rein, D. et al. (2024). “GPQA: A Graduate-Level Google-Proof Q&A Benchmark”. In: *First
664 Conference on Language Modeling*. URL: <https://openreview.net/forum?id=Ti67584b98>.
665 Ren, Z. Z. et al. (2025). *DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Rein-
666 forcement Learning for Subgoal Decomposition*. arXiv: 2504.21801 [cs.CL]. URL: <https://arxiv.org/abs/2504.21801>.
667 Ridnik, T. et al. (2024). “Code Generation with AlphaCodium: From Prompt Engineering to Flow
668 Engineering”. In: *arXiv preprint arXiv:2401.08500*.
669 Romera-Paredes, B. et al. (2023). “Mathematical discoveries from program search with large
670 language models”. In: *Nature* 625. URL: <https://api.semanticscholar.org/CorpusID:266223700>.
671 Rozière, B. et al. (2024). *Code Llama: Open Foundation Models for Code*. arXiv: 2308.12950
672 [cs.CL]. URL: <https://arxiv.org/abs/2308.12950>.
673 Shrestha, S. et al. (2025). *Mathematical Reasoning in Large Language Models: Assessing Logical
674 and Arithmetic Errors across Wide Numerical Ranges*. arXiv: 2502.08680 [cs.LG]. URL:
675 <https://arxiv.org/abs/2502.08680>.
676 Srivastava, S. et al. (2024). *Functional Benchmarks for Robust Evaluation of Reasoning Per-
677 formance, and the Reasoning Gap*. arXiv: 2402.19450 [cs.AI]. URL: <https://arxiv.org/abs/2402.19450>.
678 Trinh, T. H. et al. (2024). “Solving olympiad geometry without human demonstrations”. In: *Nature*
679 625.7995.
680 Tsoukalas, G. et al. (2024). “PutnamBench: Evaluating Neural Theorem-Provers on the
681 Putnam Mathematical Competition”. In: *Proceedings of the 38th Conference on Neu-
682 ral Information Processing Systems, Datasets and Benchmarks Track*. URL: https://proceedings.neurips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html.
683 Vendrow, J. et al. (2024). “Large Language Model Benchmarks Do Not Test Reliability”. In: *Neurips
684 Safe Generative AI Workshop 2024*. URL: <https://openreview.net/forum?id=XSeN6xZtZ9>.
685 Wald, A. (1943). “Tests of Statistical Hypotheses Concerning Several Parameters When the Number
686 of Observations is Large”. In: *Transactions of the American Mathematical Society* 54.3. URL:
687 <https://www.jstor.org/stable/1990256>.
688 Wang, X. et al. (2023). “Self-Consistency Improves Chain of Thought Reasoning in Language Mod-
689 els”. In: *The Eleventh International Conference on Learning Representations*. URL: <https://openreview.net/forum?id=1PL1NIMMrw>.
690 Wolfram Alpha LLC (2025). *Wolfram—Alpha: Computational Intelligence*. <https://www.wolframalpha.com/>.
691 Wolfram Research Inc. (2024). *Mathematica, Version 14.2*. Champaign, IL. URL: <https://www.wolfram.com/mathematica>.
692 Xu, X. et al. (2025). “UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level
693 Mathematical Reasoning with Large Language Models”. In: *The Thirteenth International Con-*

702 *ference on Learning Representations*. URL: <https://openreview.net/forum?id=fovPyqPcKY>.

703

704 Yang, A. et al. (2024). “Qwen2.5 Technical Report”. In: *arXiv preprint arXiv:2412.15115*.

705 Yue, X. et al. (2024). “MAmmoTH: Building Math Generalist Models through Hybrid Instruction

706 Tuning”. In: *The Twelfth International Conference on Learning Representations*. URL: <https://openreview.net/forum?id=yLC1Gs770I>.

707

708 Zan, D. et al. (July 2023). “Large Language Models Meet NL2Code: A Survey”. In: *Proceedings*

709 *of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*

710 *Papers)*. Ed. by A. Rogers et al. Toronto, Canada: Association for Computational Linguistics.

711 URL: <https://aclanthology.org/2023.acl-long.411/>.

712 Zhang, J. et al. (2025). “AFlow: Automating Agentic Workflow Generation”. In: *The Thirteenth*

713 *International Conference on Learning Representations*. URL: <https://openreview.net/forum?id=z5uVAKwmjf>.

714 Zhang, W. et al. (2025). *Beyond the Singular: The Essential Role of Multiple Generations in Ef-*

715 *fective Benchmark Evaluation and Analysis*. arXiv: 2502.08943 [cs.CL]. URL: <https://arxiv.org/abs/2502.08943>.

716

717 Zhang, Y. et al. (2024). “Training and Evaluating Language Models with Template-based Data Gen-

718 *eration*”. In: *arXiv preprint arXiv:2411.18104*.

719 Zheng, K. et al. (2022). “miniF2F: a cross-system benchmark for formal Olympiad-level math-

720 *ematics*”. In: *International Conference on Learning Representations*. URL: <https://openreview.net/forum?id=9ZPegFuFTFv>.

721

722 Zhou, A. et al. (2024). “Solving Challenging Math Word Problems Using GPT-4 Code Interpreter

723 *with Code-based Self-Verification*”. In: *The Twelfth International Conference on Learning Rep-*

724 *resentations*. URL: <https://openreview.net/forum?id=c8McWs4Av0>.

725 Zhou, Z., S. Liu, et al. (2025). “Is Your Model Really A Good Math Reasoner? Evaluating Math-

726 *ematical Reasoning with Checklist*”. In: *The Thirteenth International Conference on Learning*

727 *Representations*. URL: <https://openreview.net/forum?id=nDvgHIBRxQ>.

728 Zhou, Z., Q. Wang, et al. (2024). “MathAttack: attacking large language models towards math solv-

729 *ing ability*”. In: *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and*

730 *Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Sym-*

731 *posium on Educational Advances in Artificial Intelligence*. AAAI’24/IAAI’24/EAAI’24. AAAI

732 Press. URL: <https://doi.org/10.1609/aaai.v38i17.29949>.

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A ADDITIONAL DETAILS ABOUT THE DATASET**

757 **A.1 LIST OF EQUIVALENCE PERTURBATIONS**

760 The complete list of ‘Equivalence’ perturbations, discussed in section 2.1, is provided in Table 3.

Category	Equivalence Perturbation
Easy	
Trigonometric	$\sin^2(-Qx) + \cos^2(Qx)$
Hyperbolic	$\cosh^2(Qx) - \sinh^2(Qx)$
Logarithmic	$\frac{\ln(x) \log_x(Q)}{\ln(Q)}$
Series	$\frac{Q \sum_{N=1}^{\infty} \frac{2^{-N} x}{Q}}{x}$
Complex Exponential	$-\frac{i(e^{iQx} - e^{-iQx})}{2 \sin(Qx)}$
Hard	
Trigonometric	$\frac{\tan(x) + \tan(x(Q-1))}{(1 - \tan(x) \tan(x(Q-1))) \tan(Qx)}$
Hyperbolic	$\frac{\sinh(\log(Qx + \sqrt{Q^2 x^2 + 1}))}{Qx}$
Logarithmic	$\frac{\log_Q(x/e) + \log_Q(e)}{\log_Q(x)}$
Series	$\frac{Q \sum_{N=1}^{\infty} \frac{6x}{\pi^2 N^2 Q}}{x}$
Complex Exponential	$-\frac{2i(e^{4iQx} + 1) \tan(Qx)}{(1 - e^{4iQx})(1 - \tan^2(Qx))}$

798 Table 3: List of the ‘Easy’ and ‘Hard’ expressions, which are identical to 1 for any Q and x , used in
799 the ‘Equivalence’ perturbations.

801 **A.2 DISCOVERED BENCHMARK ERRORS**

804 As mentioned in Section 2.1, existing mathematical benchmarks are known to have up to 5-10%
805 mistaken labeling and formatting errors (Vendrow et al. 2024; W. Zhang et al. 2025; Patel et al.
806 2021).

808 For example, question 97 from the GHOSTS ‘Symbolic Integration’ subset (Frieder et al. 2023):
809 “What is the integral of $2x - x^7 \tan(3)$ ”. The output: “...The antiderivative... $\frac{2x^2}{2} - \frac{1}{7}x^8 \tan(3) + C$ ”
receives a 5/5 rating, but the $\frac{1}{7}$ should have been $\frac{1}{8}$, potentially creating false positives.

810 Another example from OlympiadBench (He et al. 2024, subset ‘OE_TO_maths_en_COMP’,
811 id:2498): “If $\log_2 x - 2 \log_2 y = 2$, determine y , as a function of x ”. The dataset provides both
812 a full solution: “...to obtain $y = \frac{1}{2}\sqrt{x}$ ”, and a final answer: “ $\frac{1}{2}, \sqrt{x}$ ”. The extra comma that
813 appeared in the middle of the final answer prevents deterministic systems from recognizing correct
814 answers.

815 We inserted both of these questions (with corrected answers) as two of our seeds.

816 ASyMOB’s algorithmic generation methods substantially reduces the risk for such errors in specific
817 questions or answers.

819 A.3 ‘SYMBOLIC-N’ SUBSETS ANALYSIS

821 Due to the requirement that substituting all symbols with 1 reverts the question to its original seed
822 form, the total number of ‘Symbolic-N’ variations depends on N. For instance, ASyMOB contains
823 only 7 ‘Symbolic-5’ questions. This small sample size is the reason ‘Symbolic-5’ is not represented
824 in Figure 2, as it is insufficient for robust statistical analysis. This variability also means that the
825 baseline difficulty of ‘Symbolic-N’ questions changes with different values of N. The 7 seed ques-
826 tions with a maximal perturbation of 5 symbols have an average success rate across all models of
827 86.6%. In contrast, the 13 seed questions with a maximal perturbation of 4 symbols have a 74.7%
828 success rate, and the overall success rate across all seeds is 73.9%. The ‘Symbolic-4’ subset includes
829 13 questions with maximal ‘Symbolic’ perturbation (derived from the 13 seeds mentioned above)
830 and 35 permutations based on the 7 maximally perturbed ‘Symbolic-5’ questions. It is likely that
831 the lower initial difficulty of the seeds influences the difficulty of their derived variations to some
832 extent. Therefore, the difficulty of each ‘Symbolic’ subset should not be assumed to be identical.
833 This effect can account for the slight increase in success rate observed across most models in the
834 bottom graphs of Figure 2 for 3 and 4 symbols.

835 B TESTING DETAILS

837 As noted in section 2.2, a core principle of the test process is to rely on deterministic and predictable
838 tools whenever possible. Figure 4 shows a “Formatting Instructions” wrap around the challenge text.
839 Specifically, these instructions state:

841 *“Finish your answer by writing “The final answer is:” and then the answer in LaTeX in a new line.
842 Write the answer as a single expression. Do not split your answer to different terms. Use \$\$ to wrap
843 the LaTeX text. Do not write anything after the LaTeX answer.”*

844 The primary goal is to encourage the LLM to produce a clear LaTeX expression, labeled with “The
845 final answer is:”. We opt against using forced structured outputs, even when available, to ensure a
846 fair comparison with models lacking this capability and to avoid introducing requirements beyond
847 symbolic math skills. In essence, we aim to minimize the impact of specific phrasing and structural
848 choices in both language and mathematical presentation.

849 Once the full answer is received, a series of regexes are used to extract the final answer:

```
851 Pattern 1 (as instructed):  
852     r'\*\*[Tt]he final answer is:?\*\*\s*'  
853     r'(?:(:\\\()|(:\\\[)|(:\$+))'  
854     r'(.*?)'  
855     r'(?:(:\\\\))|(:\\\\])|(:\$+))'  
856 Pattern 2 (last boxed expression):  
857     r'\boxed{(.*)}' + '(:\n|$|")'  
858  
859 Pattern 3 (last display expression):  
860     r"\$+(.*?)\$+"
```

```
862 Pattern 4 (output=' ' case):  
863     r"output='(.*)'"
```

```

864 Pattern 5 (output=" " case):
865     r'output="(.*)"'
866

```

867 While the first pattern represents the given formatting instructions - other output formats were accepted as well. It's important to note that responses claiming, for example, the challenge is impossible or asking for specific values to substitute into the symbols, will frequently lack fitting LaTeX expressions. Therefore, the absence of relevant LaTeX usually indicates a missing or incoherent answer, not a parsing issue. Overall, this stage was successful in 98% of cases.

872 The extracted LaTeX expression is then cleaned and parsed into a SymPy expression using
873 `sympy.parsing.latex.parse_latex`. If the parsing fails, we resort to using an LLM
874 (`gemini-2.0-flash`) for this translation. It's important to note that not all "final answer" expressions
875 extracted by our permissive regexes are valid LaTeX or even mathematical expressions. Therefore,
876 a failure to produce a working SymPy expression usually indicates a broken or irrelevant answer,
877 rather than a translation issue. Overall, this stage was successful in 96.1% of cases.

878 As detailed in Section 2.2, the resulting SymPy expression undergoes two distinct validation checks
879 against the reference answer (also represented as a SymPy object). Due to the limitations of SymPy
880 (imperfections in `Sympy.simplify`, handling of very large numbers in `.evalf()`, etc.), if ei-
881 ther validation method confirms an answer, it is treated as correct (false positives are highly un-
882 likely). Out of all the valid SymPy expressions created on the previous stage, 97.6% were suc-
883 cessfully tested. Responses that could not be verified by either method due to SymPy's technical
884 limitations were excluded from the data analysis and omitted from the reported statistics.

885 In terms of resources required for this work, by far the largest cost was querying the LLMs. The
886 specific costs per setup (model with and without code execution) are summarized in Table 4. Dataset
887 generation compute was negligible (less than 5 minutes on a single workstation), while the validation
888 stage was more resource-intensive (\sim 10 hours on 3 workstations). Note that the validation process
889 is trivially parallelizable.

Model Name	Cost
Closed-Weights Models	
Gemini-2.0-flash (no code)	33\$
Gemini-2.0-flash (code)	32\$
Gemini-2.5-flash (no code)	687\$
Gemini-2.5-flash (code)	648\$
GPT-4.1 (no code)	524\$
GPT-4.1 (code)	1574\$
GPT-4o (no code)	545\$
GPT-4o (code)	1595\$
GPT-4o-mini	16\$
o4-mini (no code)	799\$
o4-mini (code)	1849\$
Open-Weights Models	
Gemma-3n-e4b-it	22\$
Llama-4-Scout-17B-16E-Instruct	273\$
Nemotron-Super-49B-v1	250\$
Qwen2.5-72B-Instruct	261\$
DeepSeek-Prover-V2-671B	244\$
DeepSeek-R1	927\$
DeepSeek-V3	244\$

913 Table 4: Cost of evaluating each test setup on the full ASyMOB dataset. Prices vary mostly due to
914 the vendor and the cost of tool use.

915
916 In terms of LLM queries, ASyMOB's testing cost is kept in check by using a single LLM call
917 per problem, unlike many prior works, which assess models using protocols that involve multiple
calls per problem. For instance, Lewkowycz et al. 2022 evaluate Minerva on the MATH dataset

918 (Hendrycks et al. 2021; 12.5K problems) using $\text{maj1}@k$ majority voting with k values up to 256,
919 resulting in a minimum of 3.2 million LLM calls. The ASyMOB assessment approach is roughly
920 90X more cost-efficient due to our use of $\text{pass}@1$. The inherent LLM randomness is accounted for
921 by evaluating success across the large number of questions within each category.
922

923 **C DATA ANALYSIS**
924

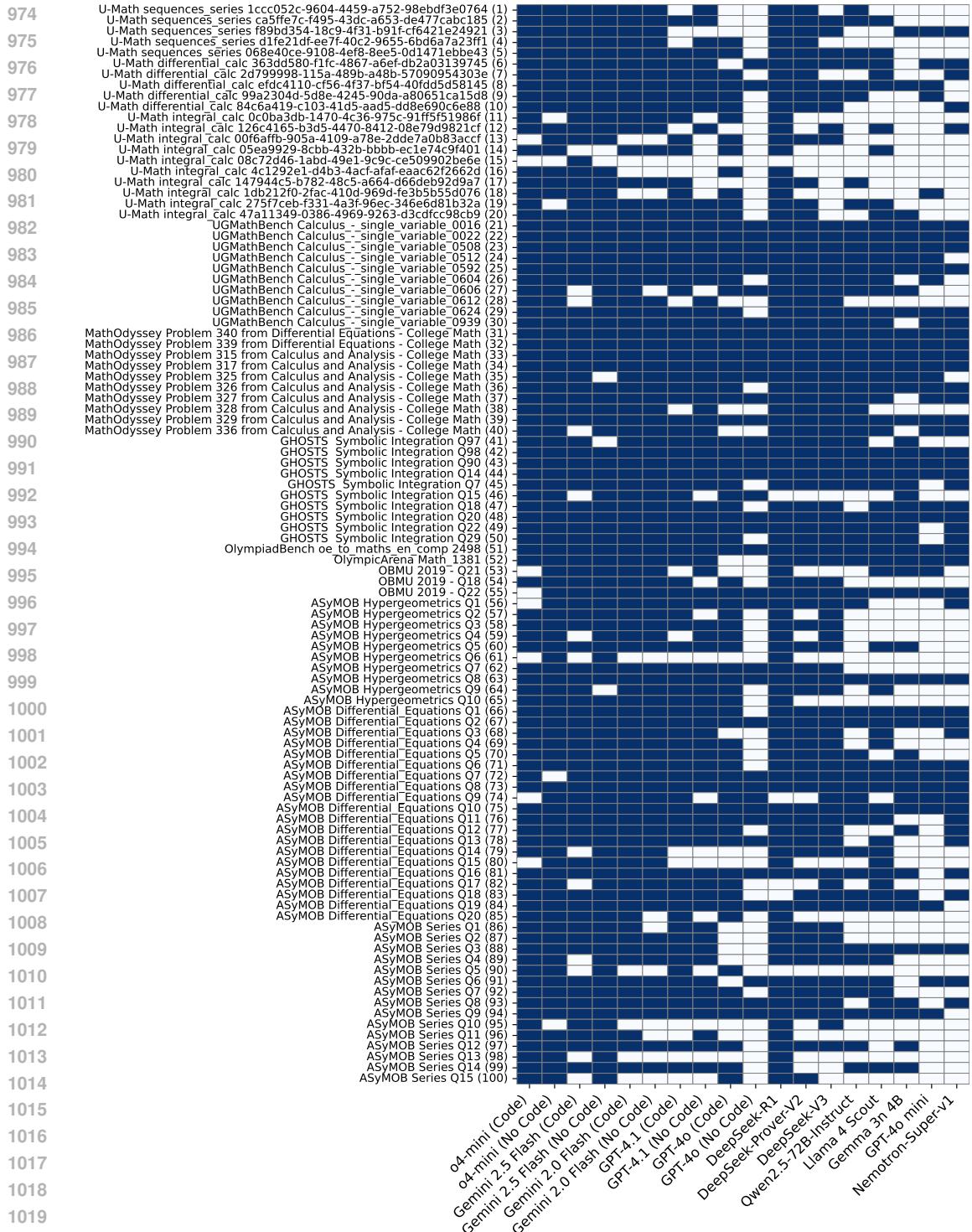
925 Figure 7 presents each model’s (with and without code execution) success on each seed question -
926 showing a mix of easier and harder challenges.
927

928 Figure 8 illustrates the variance within each 50-question subset of variant ‘Numeric-All-2-S’ (per
929 seed). Each cell is marked with a ‘V’ if the model correctly solved at least half of the ‘Numeric-All-
930 2-S’ variants from that seed question, and an ‘X’ otherwise.

931 It is important to note that while correct answers are unique (aside from presentation differences),
932 incorrect answers can vary significantly, including instances where no answer is provided. Con-
933 sequently, low consistency might result in lower variance for questions with a low success rate
934 compared to those with a high success rate. Indeed, the average variance for all ‘V’ questions is
935 0.11, whereas for ‘X’ questions, it is 0.07.
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972

973



974 U-Math sequences, series 1ccc052c-9604-4459-a752-98ebdf3e0764 (1)
 975 U-Math sequences, series ca5fe7c-f495-43dc-a653-de477abc185 (2)
 976 U-Math sequences, series f89bd354-18c9-4f31-b91f-f6421e24921 (3)
 977 U-Math sequences, series d1fe21df-ee7f-40c2-9655-5bd6a7a23ff1 (4)
 978 U-Math differential, calc 363d3d580-11fc-4867-a6ef-d52a03139745 (6)
 979 U-Math differential, calc 2d799998-115a-489b-a48b-570990954303 (7)
 980 U-Math differential, calc efdc4110-cf56-4f37-bf54-40dd5d58145 (8)
 981 U-Math differential, calc 99a2304d-5d8e-4245-90da-a80651ca15d9 (9)
 982 U-Math integral, calc 84c6a419-c103-41d5-aad5-dd8e690c6e88 (10)
 983 U-Math integral, calc 0c0ba3db-1470-4c3a-975c-91ff5f1986f (11)
 984 U-Math integral, calc 006fffb-305f-4090-8a0e-79a0e93a251 (12)
 985 U-Math integral, calc 05ca9929-8ccb-432b-bbbb-ea1c4e94901 (14)
 986 U-Math integral, calc 08c72d46-1abd-49e1-9c9c-ce509902be6 (15)
 987 U-Math integral, calc 147944c5-b782-48c5-a664-d66deb92d9a97 (17)
 988 U-Math integral, calc 1db212f0-2fac-410d-969d-fe3b5b55d076 (18)
 989 U-Math integral, calc 275f7ceb-f331-4a3f-96ec-346e6d681b32a (19)
 990 U-Math integral, calc 47a11349-0386-4969-9263-d3cfcc98cb9 (20)
 991 UGMathBench Calculus - single variable_0016 (21)
 992 UGMathBench Calculus - single variable_0022 (22)
 993 UGMathBench Calculus - single variable_0508 (23)
 994 UGMathBench Calculus - single variable_0523 (24)
 995 UGMathBench Calculus - single variable_0622 (25)
 996 UGMathBench Calculus - single variable_0604 (26)
 997 UGMathBench Calculus - single variable_0606 (27)
 998 UGMathBench Calculus - single variable_0612 (28)
 999 UGMathBench Calculus - single variable_0624 (29)
 1000 UGMathBench Calculus - single variable_0939 (30)
 MathOdyssey Problem 340 from Differential Equations - College Math (31)
 MathOdyssey Problem 339 from Differential Equations - College Math (32)
 MathOdyssey Problem 315 from Calculus and Analysis - College Math (33)
 MathOdyssey Problem 317 from Calculus and Analysis - College Math (34)
 MathOdyssey Problem 325 from Calculus and Analysis - College Math (35)
 MathOdyssey Problem 326 from Calculus and Analysis - College Math (36)
 MathOdyssey Problem 327 from Calculus and Analysis - College Math (37)
 MathOdyssey Problem 328 from Calculus and Analysis - College Math (38)
 MathOdyssey Problem 329 from Calculus and Analysis - College Math (39)
 MathOdyssey Problem 336 from Calculus and Analysis - College Math (40)
 1001 GHOSTS Symbolic Integration Q97 (41)
 1002 GHOSTS Symbolic Integration Q98 (42)
 1003 GHOSTS Symbolic Integration Q90 (43)
 1004 GHOSTS Symbolic Integration Q14 (44)
 1005 GHOSTS Symbolic Integration Q7 (45)
 1006 GHOSTS Symbolic Integration Q15 (46)
 1007 GHOSTS Symbolic Integration Q18 (47)
 1008 GHOSTS Symbolic Integration Q20 (48)
 1009 GHOSTS Symbolic Integration Q22 (49)
 1010 OlympiadBench oe to maths en comp 2498 (51)
 1011 OlympicArena Math_1381 (52)
 1012 OBMU 2019 - Q21 (53)
 1013 OBMU 2019 - Q18 (54)
 1014 OBMU 2019 - Q22 (55)
 1015 ASyMOB Hypergeometrics Q1 (56)
 1016 ASyMOB Hypergeometrics Q2 (57)
 1017 ASyMOB Hypergeometrics Q3 (58)
 1018 ASyMOB Hypergeometrics Q4 (59)
 1019 ASyMOB Hypergeometrics Q5 (60)
 1020 ASyMOB Hypergeometrics Q6 (61)
 1021 ASyMOB Hypergeometrics Q7 (62)
 1022 ASyMOB Hypergeometrics Q8 (63)
 1023 ASyMOB Hypergeometrics Q9 (64)
 1024 ASyMOB Hypergeometrics Q10 (65)
 1025 ASyMOB Differential Equations Q1 (66)
 1026 ASyMOB Differential Equations Q2 (67)
 1027 ASyMOB Differential Equations Q3 (68)
 1028 ASyMOB Differential Equations Q4 (69)
 1029 ASyMOB Differential Equations Q5 (70)
 1030 ASyMOB Differential Equations Q6 (71)
 1031 ASyMOB Differential Equations Q7 (72)
 1032 ASyMOB Differential Equations Q8 (73)
 1033 ASyMOB Differential Equations Q9 (74)
 1034 ASyMOB Differential Equations Q10 (75)
 1035 ASyMOB Differential Equations Q11 (76)
 1036 ASyMOB Differential Equations Q12 (77)
 1037 ASyMOB Differential Equations Q13 (78)
 1038 ASyMOB Differential Equations Q14 (79)
 1039 ASyMOB Differential Equations Q15 (80)
 1040 ASyMOB Differential Equations Q16 (81)
 1041 ASyMOB Differential Equations Q17 (82)
 1042 ASyMOB Differential Equations Q18 (83)
 1043 ASyMOB Differential Equations Q19 (84)
 1044 ASyMOB Differential Equations Q20 (85)
 1045 ASyMOB Series Q1 (86)
 1046 ASyMOB Series Q2 (87)
 1047 ASyMOB Series Q3 (88)
 1048 ASyMOB Series Q4 (89)
 1049 ASyMOB Series Q5 (90)
 1050 ASyMOB Series Q6 (91)
 1051 ASyMOB Series Q7 (92)
 1052 ASyMOB Series Q8 (93)
 1053 ASyMOB Series Q9 (94)
 1054 ASyMOB Series Q10 (95)
 1055 ASyMOB Series Q11 (96)
 1056 ASyMOB Series Q12 (97)
 1057 ASyMOB Series Q13 (98)
 1058 ASyMOB Series Q14 (99)
 1059 ASyMOB Series Q15 (100)

1021 Figure 7: **Model success (blue) / failure (white) per seed question.** Seeds are marked by their
 1022 source and index in the dataset. Note the difference in challenge level between seeds with different
 1023 sources. ‘ASyMOB’ source indicates original questions that were created for the purpose of this
 1024 work.

1025

