
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ASYMOB: ALGEBRAIC SYMBOLIC MATHEMATICAL
OPERATIONS BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly applied to symbolic mathematics,
yet existing evaluations often conflate pattern memorization with genuine reason-
ing. To address this gap, we present ASyMOB, a high-resolution dataset of 35,368
validated symbolic math problems spanning integration, limits, differential equa-
tions, series, and hypergeometrics. Unlike prior benchmarks, ASyMOB system-
atically perturbs each seed problem using symbolic, numeric, and equivalence-
preserving transformations, enabling a fine-grained assessment of generalization
and robustness. Our evaluation reveals three key findings: (1) most models’ per-
formance collapses under minor perturbations, while frontier systems exhibit sub-
stantial robustness, suggesting an emerging ‘phase transition’ from memorization
to generalization; (2) integrated code tools stabilize performance, particularly for
weaker models; and (3) we identify examples where Computer Algebra Systems
(CAS) fail while LLMs succeed, as well as problems solved only via a hybrid
LLM-CAS approach, highlighting a promising integration frontier. ASyMOB
serves as a principled diagnostic tool for measuring and accelerating progress to-
ward building verifiable, trustworthy AI for scientific discovery.

1 INTRODUCTION

In recent years, large language models (LLMs) have shown remarkable capabilities in domains such
as mathematical reasoning (Lewkowycz et al. 2022; Kojima et al. 2022; X. Wang et al. 2023; Trinh
et al. 2024; Luo et al. 2025; Davies et al. 2021) and code generation (Rozière et al. 2024; Ridnik
et al. 2024; Zan et al. 2023; Hou et al. 2024). A crucial skill for real-world applications of these
capabilities is mastery of university-level symbolic mathematics, including integration, limit com-
putation, differential equation solving, and algebraic simplification. This proficiency is fundamental
across many mathematical, scientific, and engineering challenges.

However, existing mathematical benchmarks inadequately assess symbolic proficiency. Early
benchmarks like GSM8K (Cobbe et al. 2021) and MATH (Hendrycks et al. 2021), while driving
progress in arithmetic reasoning, focus on pre-university level questions and have been mastered
by frontier LLMs (Glazer et al. 2024). Furthermore, many popular benchmarks rely on multiple-
choice questions (Rein et al. 2024), an unrealistic setting which artificially lowers the difficulty.
Word-problem benchmarks mix two fundamentally different challenges: text-to-math conversion
(understanding the text to build expressions) and symbolic manipulation (solving them). This con-
flation makes it hard to evaluate an LLM’s performance specifically on the latter, and to diagnose the
root causes of model errors. Conversely, formal proof datasets (e.g. Zheng et al. 2022; Balunović
et al. 2025) address theorem proving but often skip core tasks like integration or solving differential
equations.

The broad topic coverage that most benchmarks strive for forces small sample sizes per skill cat-
egory, hindering robust statistical analysis. For example, only 150 out of 3709 (4%) questions in
MathBench (H. Liu et al. 2024) address university-level math in English. The 5K test dataset by
Lample et al. (2020) targets symbolic math, but mainly contains simple problems and was immedi-
ately saturated. Recent efforts, such as FrontierMath (Glazer et al. 2024) and Humanity’s Last Exam
(Phan et al. 2025), demand that LLMs exhibit very high proficiency across numerous skills simul-
taneously, thereby impeding conclusions regarding specific LLM capabilities. Overcoming these
limitations can shed light on a fundamental question: do LLMs solve problems through genuine
mathematical understanding or merely through advanced pattern recognition (Mirzadeh et al. 2025;

Code for ASyMOB dataset generation and LLM evaluation pipeline is attached in the supplementary.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Boye et al. 2025; Z. Zhou, Q. Wang, et al. 2024; K. Huang et al. 2025; Z. Zhou, S. Liu, et al. 2025;
Jiang et al. 2024). Addressing this question calls for different types of datasets, which can separate
sophisticated pattern memorization from true mathematical abilities.

In response, we present ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark (pro-
nounced Asimov, in tribute to the renowned author). ASyMOB assesses LLM capabilities through
systematic perturbations of core symbolic tasks; introducing three key innovations:

1. Focused Scope: Targeting pure symbolic manipulation (Figure 1).
2. Controlled Complexity: Systematically introduced questions varied by difficulty levels.
3. High Resolution: The large scale and fine-grained difficulty steps enable statistically ro-

bust measurement of model accuracy, sensitivity to noise types, and impact of tool use.

Seed Question

<Code / No-Code Prompt>

Solve the following integral.∫ 2

1

ex(x− 1)

x(x+ ex)
dx

Solution:

ln

(
2 + e2

2 + 2e

)

Symbolic Perturbation

<Code / No-Code Prompt>

Solve the following integral.
Assume A, B, F, G are real and positive.∫ 2

1

AeFx(Fx− 1)

Fx (BeFx + FGx)
dx

Solution:

A

BF
· ln

(
e2B + 2G

2(eB +G)

)

No-Code Prompt
Assume you don’t have access to a computer, and do not use code to solve
the question.

Code Prompt Please use Python to solve the question.

Figure 1: Example ASyMOB question and code-use preambles. A seed question (left) and its
symbolically perturbed variant (right). Proceeding text disallows or encourages code execution (this
part is omitted for models without inherent code execution capabilities).

Using ASyMOB, we evaluated the performance of open- and closed-weight LLMs, including gen-
eral and mathematical models. Perturbations significantly challenge LLMs’ symbolic math skills,
reducing the average model success rate from 74.6% on the unperturbed subset to 46.8% on the full
ASyMOB benchmark. Even the simplest perturbations noticeably affect performance (Figure 2).

Following reports on the effects of tool-use in math problem solving (Novikov et al. 2025; Yue et al.
2024; A. Zhou et al. 2024; OpenAI 2025b; Liao et al. 2024; Gou et al. 2024; Imani et al. 2023;
Romera-Paredes et al. 2023; Dugan et al. 2024), we tested code-integrated LLMs with and without
code execution (Figure 2 left). Tool use boosts performance in weaker models, but surprisingly has
no positive effect on frontier ones.

Some perturbed variants in ASyMOB proved impossible for the CAS we tested - Mathematica,
WolframAlpha and SymPy (Wolfram Research Inc. 2024; Wolfram Alpha LLC 2025; Meurer et al.
2017) - yet certain LLMs managed to solve them (section 3.1). Moreover, we present an exam-
ple where pure CAS and pure LLM approaches fail, yet their combination successfully solves the
challenge - leveraging the complementary strengths of each system.

2 METHODOLOGY FOR SYMBOLIC MATHEMATICAL OPERATIONS
MEASUREMENT

2.1 DATASET DESIGN AND GENERATION

We begin by curating and creating a set of 100 seed problems that contain only symbolic content
- no word-problems or other textual or graphical information beyond the minimal instructions or

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Seed 0 1 2 3 4 5 6 7 8 9 10
Digits

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 C
ha

ng
e

(%
)

Perturbation Type: Numeric-All

Seed 0 1 2 3 4 5 6 7 8 9 10
Digits

0

20

40

60

80

100 Perturbation Type: Numeric-All

Seed 1 2 3 4 5 6 7 8 9 10
Digits

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 C
ha

ng
e

(%
)

Perturbation Type: Numeric-One

Seed 1 2 3 4 5 6 7 8 9 10
Digits

0

20

40

60

80

100 Perturbation Type: Numeric-One

Seed 1 2 3 4
Symbols

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 C
ha

ng
e

(%
)

Perturbation Type: Symbolic

Seed 1 2 3 4
Symbols

0

20

40

60

80

100 Perturbation Type: Symbolic

o4-mini (Code)
o4-mini (No Code)
Gemini 2.5 Flash (Code)
Gemini 2.5 Flash (No Code)
Gemini 2.0 Flash (Code)

Gemini 2.0 Flash (No Code)
GPT-4.1 (Code)
GPT-4.1 (No Code)
GPT-4o (Code)
GPT-4o (No Code)

DeepSeek-R1
DeepSeek-Prover-V2
DeepSeek-V3
Qwen2.5-72B-Instruct

Llama 4 Scout
Gemma 3n 4B
GPT-4o mini
Nemotron-Super-v1

Figure 2: Degradation of success rate relative to seed-set performance. Both code-integrated
models (left) and non-code integrated (right) exhibit performance degradation due to numeric and
symbolic perturbations, but frontier models are more resilient. Notably, GPT-4o is substantially
more robust when code-enabled. Wald 95% confidence intervals are shown (Wald 1943).

assumptions needed to define the symbolic task. This restriction excludes almost all olympiad-style
problems (Gao et al. 2025) and separates our dataset from existing benchmarks. 55 seed questions
were curated from university-level benchmarks (Chernyshev et al. 2025; Fang et al. 2024; Frieder
et al. 2023; Xu et al. 2025) and math olympiads (Brazilian Mathematical Olympiad 2019; Z. Huang
et al. 2024; He et al. 2024). 45 additional seed questions were created to cover underrepresented
topics. The questions represent a sample of the practical mathematical challenges that engineers and
scientists frequently encounter in their work and research. Each question is categorized by its topic:
Integrals (30), Differential Equations (23), Series (22), Limits (15), Hypergeometrics (10).

Based on these seed questions, we introduce symbolic perturbations to create an overall dataset of
35,368 unique symbolic math challenges (Table 1). The guiding principle was to modify the sym-
bolic structure of the problem - thereby adding a layer of variation - without substantially altering
the core mathematical challenge or the required solution techniques.

For instance, consider the elementary integral
∫
x2exdx = ex

(
x2 − 2x+ 2

)
, typically solved using

integration by parts.

• An acceptable perturbation is
∫
x2eFxdx =

eFx(F 2x2−2Fx+2)
F 3 . Although this variant in-

troduces a substitution step (t = Fx), the fundamental solution technique is preserved.
• Conversely, a modification like

∫
x2Bexdx = (−x)−2Bx2BΓ(2B + 1,−x) would not be

considered a symbolic perturbation as it significantly increases the problem’s complexity
and demands additional mathematical knowledge compared to the original.

After manually perturbing each seed question with 2-to-5 parameters, additional variants were gen-
erated using algorithmic transformations. Note that the random nature of the following question
generation methods makes ASyMOB inherently resilient against benchmark hacking and memoriza-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Table 1: ASyMOB question variants (shown for seed question #6). For each variant type, the
right-most column presents the number of variants for this seed question and the total number of
this category in the dataset (e.g. there are 30 ‘Numeric-One-N’ variants of question #6, totaling
3490 ‘Numeric-One-N’ variants over all seed questions). XX, YY, and ZZ in ‘Numeric-All-N-S’
represent 2 digit random numbers. Full dataset available in the supplementary material.

Variant Example Challenge Answer #

Seed (Original) limx→0(
2·tan(x

2)
x)

3
x2 e

1
4

1
(100)

Symbolic-N
(Shown for N=3)

limx→0 A · (2·tan(
B·x
2)

B·x)
C·3

(B·x)2 A · eC
4

7
(1348)

Numeric-All-N
(Shown for N=2)

limx→0 17 · (
2·tan(91·x

2)
91·x)

57·3
(91·x)2 17 · e 57

4
11

(1100)

Numeric-One-N
(Shown for N=6)

limx→0(
2·tan(x

2)
x)

838310·3
x2 e

838310
4

30
(3490)

Numeric-All-N-S
(Shown for N=2)

limx→0 XX · (2·tan(
YY·x

2)
YY·x)

ZZ·3
(YY·x)2 XX · eZZ

4
100

(10000)

Equivalence-One-Easy limx→0+(
2·tan(x

2)
x)

(sin2 (−Fx)+cos2 (Fx))·3
x2 e

1
4

15
(1745)

Equivalence-One-Hard limx→0+(
sinh (log (Ax+

√
A2x2+1))

Ax)(
2·tan(x

2)
x)

3
x2 e

1
4

15
(1745)

Equivalence-All-Easy limx→0+(sin
2 (−Ax) + cos2 (Ax))(

2·tan
(

(− sinh2 (Bx)+cosh2 (Bx))x
2

)
(− sinh2 (Bx)+cosh2 (Bx))x

)

(
ln(x)·logx(F)

ln(F)
)3

((− sinh2 (Bx)+cosh2 (Bx))x)2 e
1
4

60
(7920)

Equivalence-All-Hard limx→0+

(
tan (x)+tan (x(A−1))

(− tan (x) tan (x(A−1))+1) tan (Ax)

)
(

2·tan


(

logB(x
e)+logB(e)

logB(x)

)
x

2


(

logB(x
e)+logB(e)

logB(x)

)
x

)

(
F

∑∞
N=1

6x
π2N2F

x

)
3((

logB(x
e)+logB(e)

logB(x)

)
x

)2

e
1
4

60
(7920)

tion, as the dataset can (and should) be re-generated before assessing a new LLM - unlike manual
benchmarks which are static and most frontier models were exposed to them during training.

One of the questions we aim to investigate is the effect of the number of symbolic perturbations on
model performance. Specifically, we ask whether each additional perturbation further degrades per-
formance, or whether most of the added difficulty for LLMs arises from the introduction of the first
symbolic perturbation - transforming the problem to contain non-numeric parameters. To enable
this measurement, we systematically remove added symbols from each manually perturbed ques-
tion, generating all possible combinations. This approach helps avoid subjective bias in perturbation
choice. Each variant is labeled as ‘Symbolic-N’, where N indicates the number of perturbing sym-
bols. For example, a question originally marked as ‘Symbolic-4’ will yield additional variants: four
‘Symbolic-3’, six ‘Symbolic-2’, and four ‘Symbolic-1’.

Another key evaluation axis contrasts symbolic and numerical perturbations. Mathematically, if
a model can solve a symbolically perturbed question, it should also be able to solve its numeric
counterpart via substituting constants by symbols, solved symbolically, and substituted back. Yet,
as Figure 2 shows, LLMs often underperform on numeric perturbations vs. symbolic perturbations,
suggesting their reasoning remains constrained by their token-based architectures.

To test this, numeric variants were by replacing every symbolic parameter with a random positive
integer of fixed digit length, varying from 0 to 10 digits to probe both in- and out-of-distribution
performance (large coefficients being rare in training). Here, 0 digits means replacing all symbols
by ‘1’, yielding a mathematically equivalent question - yet Figure 2 shows even this trivial case
degrades performance, further questioning LLMs’ true mathematical understanding. These variants
are labeled ‘Numeric-All-N’, where N is the digit length.

Due to the probabilistic nature of LLMs, we measure the stability of mathematical correctness over
50 random variations of ‘Numeric-All-N’ for N = 2, 3 - generating a new set of random 2 or 3-digit
numbers per variation (Figure 8 in Appendix C). These variants are marked as ‘Numeric-All-N-S’.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

o4
-m

ini
 (C

od
e)

o4
-m

ini
 (N

o C
od

e)

Ge
mini

 2.
5 F

las
h (

Co
de

)

Ge
mini

 2.
5 F

las
h (

No
 Co

de
)

Ge
mini

 2.
0 F

las
h (

Co
de

)

Ge
mini

 2.
0 F

las
h (

No
 Co

de
)

GP
T-4

.1
(C

od
e)

GP
T-4

.1
(N

o C
od

e)
GP

T-4
o (

Co
de

)
GP

T-4
o (

No
 Co

de
)

De
ep

Se
ek

-R
1

De
ep

Se
ek

-Pr
ov

er-
V2

De
ep

Se
ek

-V3

Qw
en

2.5
-72

B-
Ins

tru
ct

Lla
ma 4

 Sc
ou

t
Ge

mma 3
n 4

B
GP

T-4
o m

ini
Ne

motr
on

-Su
pe

r-v
1

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Seed
'Equivalence-One-Easy'
'Equivalence-One-Hard'
'Equivalence-All-Easy'
'Equivalence-All-Hard'

Figure 3: Effect of equivalence-type perturbations. Note the substantial drop in success rate vs.
seed set performance for most models. Wald 95% confidence intervals are shown (Wald 1943).

To explore whether the initial introduction of a large number causes a disproportionate performance
drop, or whether performance declines progressively with each added numeric coefficient, we also
create variants where only one symbolic parameter is replaced by a number (ranging from 1 to 10
digits), and the remaining symbols are removed. To avoid selection bias, we generate all possible
choices of which symbol to retain and replace. These variants are labeled ‘Numeric-One-N’.

Numeric perturbations are similar in spirit to previous works like Mirzadeh et al. (2025), Y. Zhang
et al. (2024), Shrestha et al. (2025), Srivastava et al. (2024), and K. Huang et al. (2025) - which
are based on GSM8K (Cobbe et al. 2021) or MATH (Hendrycks et al. 2021) word problems, as
well as Balunović et al. (2025) - that focuses on constructive proofs. Differing from these previous
benchmarks, the larger-scale ASyMOB dataset focuses on advanced symbolic math problems, with
no language understanding component, and controlled complexity.

Finally, we evaluate the impact of equivalent-form perturbations. In this case, we complicate the
problem by inserting one or more expressions that mathematically equal to 1. For example, symbol
A might be replaced by sin2 (−Ax) + cos2 (Ax). While such perturbations introduce extra steps in
simplification, the final answer is identical to the original version. Five identity types were selected
for this transformation - trigonometric, hyperbolic, logarithmic, complex exponential, and series -
each with an ’Easy’ and a ’Hard’ version (see Appendix A.1 for the full list). The ‘Easy’/‘Hard’
classification was done manually, but the results in Figure 3 retroactively validate our assumptions.
To implement this transformation at scale, these identities replace the symbols in the symbolic per-
turbations. For consistency, each variant uses only the easy or the hard forms. Similar to the nu-
meric case, we generate two types of variants: either all symbols are replaced by equivalent forms
(‘Equivalence-All-Easy/Hard’), or only one (‘Equivalence-One-Easy/Hard’).

One of the advantages in ASyMOB is once the seed and manual symbolic perturbations are complete
and thoroughly validated, all other tasks are generated algorithmically - removing the risk of errors
in specific questions or answers. This is not obvious as existing mathematical benchmarks are known
to have up to 5-10% mistaken labeling and formatting errors (Vendrow et al. 2024; W. Zhang et al.
2025; Patel et al. 2021). See Appendix A.2 for examples which were discovered during the seed
curation process for ASyMOB.

Additionally, by maintaining consistant question formatting and disallowing substantial textual or
graphical information, we prevent potential task ambiguities and missing data (Vendrow et al. 2024).

2.2 TESTING AND VALIDATION

Validating open-ended symbolic problems is harder than closed-form or numerical ones. For ex-
ample, the reference answer to question #51 in the ASyMOB dataset is 1

2

√
x. However, solving it

using Mathematica yields e
1
2 (log(x)−2 log(2)). Although structurally different, these expressions are

mathematically identical. Our evaluation must accept any correct symbolic form and phrasing with-
out penalizing the LLM (e.g. ‘

√
x · 1

2 ’, ‘y = 1
2

√
x’, ‘y → 1

2

√
x’, etc.). To prevent false negatives,

we implement a multi-step validation process with dual verification methods (see Figure 4).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

LaTex

SymPy

Challenge
Formatting Instructions
Tool-Use Instructions

LLM

Full Response

Regex

Final Answer in LaTex

parse_latex()

Final Answer in SymPy

Symbolic
Validation

LaTex SymPy
(Gemini 2.0 Flash)

Numeric
Validation

Verdict

Parsed?
LaTex to SymPy

(sympy.parse_latex)

LaTex

SymPy
(Gemini)

Figure 4: Result validation
pipeline. The final LaTeX an-
swer is extracted from the full
LLM response via a flexible
regex. It’s parsed into a com-
putable SymPy expression via
a deterministic function or, if
it fails, via an LLM . The ex-
pression is then validated both
symbolically and numerically
against the reference answer.

The final mathematical answer is extracted from the LLM’s
full textual response using a highly flexible regular expres-
sion (see Appendix B). The extracted LaTeX expression is
then cleaned (e.g. formatting commands like \displaystyle and
\boxed are removed) and parsed into a SymPy expression using
sympy.parsing.latex.parse latex. If the parsing fails,
we resort to using gemini-2.0-flash (Pichai et al. 2024) for this trans-
lation (occurred in 18% of cases). Since problem answers are al-
ways simpler expressions than the problems themselves, this trans-
lation is much easier than the original challenge, and relies on the
model’s coding skills and not mathematical prowess.

The resulting SymPy expression is validated both symbolically (via
SymPy.simplify) and numerically (by generating 5 instances
of random values for each symbolic parameter and comparing re-
sults of .evalf()). See Appendix B for details.

This validation approach avoids the need to employ LLMs as judges
during evaluation (as was done in (U-Math, MathOdyssey), among
others), thus avoiding validation errors due to LLM pattern recog-
nition biases (Mao et al. 2024; Chernyshev et al. 2025).

We exclusively use the pass@1 evaluation criterion, reflecting the
practical requirement for reliability in real-world applications by
engineers and researchers. The inherent LLM randomness is ac-
counted for by evaluating success across the large number of ques-
tions within each category.

3 EXPERIMENTAL RESULTS

Using the ASyMOB benchmark, open- and closed-weight
LLMs were evaluated, including both general-purpose and
mathematically-specialized models. Table 2 summarizes their per-
formance.

While frontier closed-weight models (o4-mini, Gemini 2.5
Flash: OpenAI n.d.; Kavukcuoglu 2025) achieve the high-
est seed accuracy, older (Gemini 2.0 Flash, GPT-4.1, GPT-
4o, GPT-4o-mini: Pichai et al. 2024; OpenAI 2025a; Ope-
nAI 2024) and open-weight models (DeepSeek-V3, DeepSeek-
R1, DeepSeek-Prover-V2-671B, Llama-4-Scout-17B-16E-Instruct,
Qwen2.5-72B-Instruct, Gemma-3n-e4b-it, Llama-3 3-Nemotron-
Super-49B-v1: DeepSeek-AI 2025b; DeepSeek-AI 2025a; Ren
et al. 2025; Meta 2025; Yang et al. 2024; Farabet et al. 2025;
Bercovich et al. 2025) also perform reasonably well, all scoring at
least 40%.

A significant finding is the substantial degradation in performance when models are faced with per-
turbed versions of the seed questions (Figures 2, 3). Some LLMs struggle more with symbolic
perturbations, suggesting gaps in mathematical understanding, while others falter with numeric per-
turbations, possibly due to longer token chains. Understanding the reasons behind these differences
between models may reveal deeper principles of how LLMs process mathematical structures.

Where the top models truly shine is their robustness to perturbations - which is arguably a more
critical metric for assessing LLM generalization capabilities - netting a performance gap of 20%
between o4-mini, Gemini-2.5 Flash, and DeepSeek-R1, to the next best model on the total dataset.
This robustness persists across perturbation categories and mathematical topics (Figure 5), even
when faced with out-of-distribution challenges, which might indicate a recent “phase transition” of
frontier LLMs from reliance on memorized patterns to genuine mathematical understanding.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Model performance on ASyMOB by perturbation category. Bold indicates the top
performer in each category. Subset titles are color-coded in accordance to Table 1.

Model Seed Symbolic Numeric Equivalence Variance Total.
Closed-Weights Models

o4-mini (code) 92 69.0 74.9 78.6 72.8 76.1
o4-mini (no code) 95 71.8 78.1 79.0 76.8 78.1
GPT-4.1 (code) 83 66.1 66.3 31.3 62.8 46.2
GPT-4.1 (no code) 79 64.7 64.8 38.7 58.8 48.9
GPT-4o (code) 76 57.1 61.3 15.1 59.3 35.3
GPT-4o (no code) 40 34.5 32.3 9.3 21.6 16.8
GPT-4o-mini 43 26.9 27.6 3.8 17.6 11.8
Gemini-2.5 Flash (code) 87 70.3 68.2 73.2 62.6 69.5
Gemini-2.5 Flash (no code) 95 75.9 72.6 84.7 69.5 78.5
Gemini-2.0 Flash (code) 91 71.9 68.2 53.7 59.7 58.1
Gemini-2.0 Flash (no code) 87 69.7 64.1 53.4 51.2 54.9

Open-Weights Models
DeepSeek-V3 78 64.2 59.5 39.2 48.2 45.4
DeepSeek-R1 94 78.8 76.7 80.1 75.2 78.3
DeepSeek-Prover-V2-671B 79 65.6 59.8 39.8 50.1 46.3
Llama-4-Scout-17B-16E-Instruct 65 50.6 48.2 28.5 36.7 34.3
Qwen2.5-72B-Instruct 60 45.3 43.5 22.8 29.1 28.2
Gemma-3n-e4b-it 50 30.4 30.3 4.7 15.1 12.0
Nemotron-Super-49B-v1 48 37.1 34.0 18.9 23.6 23.0

Measuring the performance of mathematically fine-tuned models, we notice that DeepSeek-Prover-
V2-671B, despite achieving 88.9% pass ratio on the MiniF2F proof benchmark (Zheng et al. 2022;
Ren et al. 2025), is still outperformed by DeepSeek-R1 (from the same model family), on every
category in ASyMOB. Furthermore, its performance gains vs. the base model (DeepSeek-V3) are
incremental at best. This suggests that proficiency in formal proof generation may not directly trans-
late to skill in the broader set of symbolic mathematical operations, where the reasoning capabilities
of general models can prove more effective. Nemotron-Super (Bercovich et al. 2025), on the other
hand, shows relatively high perturbation resilience, despite the low success rate on the seed subset.

The ’Variance’ subset provides insights into model consistency. The variance of results over all
’Numeric-All-N-S’ variants was calculated per seed question and per model (Figure 8). An in-
teresting observation is the absence of correlations of variance between models per seed question,
indicating that the effect of perturbation is similar regardless of the specific seed (see Appendix C).

Enabling code execution improved the performance of older models (GPT-4o by up to 37.7% and
Gemini-2.0 Flash by up to 8.6% in a single category), likely compensating for their symbolic-math
weaknesses through coding skills. In contrast, frontier models performed similarly or worse with
code execution, likely because their limitations become apparent on the hardest problems - which
are usually unsolvable by a naive application of SymPy - so gains require combining the model’s
internal reasoning (to break down complex problems) with strategic tool use. Both effects highlight
the value of hybrid solution strategies.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
Seed Question

o4-mini (Code)
o4-mini (No Code)

Gemini 2.5 Flash (Code)
Gemini 2.5 Flash (No Code)

Gemini 2.0 Flash (Code)
Gemini 2.0 Flash (No Code)

GPT-4.1 (Code)
GPT-4.1 (No Code)

GPT-4o (Code)
GPT-4o (No Code)

DeepSeek-R1
DeepSeek-Prover-V2

DeepSeek-V3
Qwen2.5-72B-Instruct

Llama 4 Scout
Gemma 3n 4B

GPT-4o mini
Nemotron-Super-v1 0

20

40

60

80

100

Figure 5: Heatmap of overall performance per model per seed, averaged over all perturbations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

3.1 COMPUTER ALGEBRA SYSTEMS LIMITATIONS

While CAS like SymPy, Mathematica, and WolframAlpha are powerful tools for symbolic math-
ematics, they have their own limitations. The ASyMOB benchmark includes instances where tra-
ditional CAS fail yet LLMs manage. Symbolic perturbations, while apparently easier for LLMs
to handle than numeric perturbations, seem to have a much larger detrimental effect on CAS, with
multiple examples of CAS solving the seed variant and then failing on a ‘Symbolic’ variant.

For example, 2 of the 5 ‘Hard’ equivalence forms (Appendix A.1) are not recognized by SymPy as
identical to 1. Yet, many ‘Equivalence’ variants containing these identities are successfully solved
by models in our testing. Another example is the aforementioned ASyMOB question #6 (Table
1) - where WolframAlpha does not simply fail to answer on variant ‘Symbolic-3’, but produces a
false result1. Such examples provide added motivation for developing LLMs skillful at symbolic
mathematical manipulations, capable of overcoming CAS shortcomings.

Prompt:
Integrate[
((2m+(2m-n)(u-1))(u-1)^((m - n)/n)) /
(2n(u + (u-1)^(2m/n)) Sqrt[u]), u]

Response:
...Try substitution
…Final Simplified Integral:

Prompt: Assume you don't have access
to a computer: do not use code, solve
this manually - using your internal
reasoning. Solve the following integral:

LLM Only

Response:
...Try substitution
...But this seems to be getting messier
...Final Answer:

LLM + CAS CAS Only
Prompt:
Integrate[
(2m x^(m-1)+(2m-n) x^(m+n-1)) /
(2(1+x^n+x^(2m)) Sqrt[1+x^n]), x]

Response:

Response:

Prompt: Please solve the following integral. First
simplify it manually as much as possible, specifically
perform a non-trivial substitution that simplifies the
challenge, and then write Mathematica code that
solves the simplified version.

Prompt: Solve the integral:

Response:
...for general m, n, it cannot be
integrated in closed form

Mathematica Code:...

<Left Unsolved>

Integrate[
((2m+(2m-n)(u-1))(u-1)^((m - n)/n)) / (2n(u +
(u-1)^(2m/n)) Sqrt[u]), u]

Figure 6: Example question solved exclusively by a hybrid LLM+CAS approach. ASyMOB’s
question #122 was solved incorrectly (left) by GPT-4o, despite the model “considering” a correct
substitution. Standard CAS systems also failed to solve the question (right). However, a hybrid
strategy succeeded: GPT-4o was prompt to first simplify the problem via substitution and then use
CAS code on the simplified expression - enabling Mathematica to solve the question.

Perhaps the most teaching example is ASyMOB question #122 on GPT-4o (Figure 6). Pure CAS
and pure LLM approaches both failed. However, when instructed to simplify the integral first and
then solve using CAS, the model succeeded, demonstrating the power of combining LLM strategic
ability with CAS rigor.

4 DISCUSSION AND OUTLOOK

We introduced ASyMOB, a high-resolution symbolic mathematics benchmark that isolates core
symbolic reasoning skills, containing 35,368 challenges. Assessment of leading models shows:

• LLMs’ symbolic math performance substantially degrades under perturbations, suggesting
reliance on pattern memorization and lack of “true understanding”.

• Frontier LLMs show a leap in robustness against perturbations of various kinds, suggesting
strong symbolic math generalization capabilities.

• Correct tool-use (code execution) can meaningfully improve performance, especially when
applied via hybrid LLM+CAS strategies.

1Tested on Wolfram Language version 14.2.1: https://www.wolframalpha.com/input?i=
Limit%5BA+%28Tan%5B%28B+x%29%2F2%5D%2F%28%28B+x%29%2F2%29%29%5E%28%28C+3%
29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D

8

https://www.wolframalpha.com/input?i=Limit%5BA+%28Tan%5B%28B+x%29%2F2%5D%2F%28%28B+x%29%2F2%29%29%5E%28%28C+3%29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D
https://www.wolframalpha.com/input?i=Limit%5BA+%28Tan%5B%28B+x%29%2F2%5D%2F%28%28B+x%29%2F2%29%29%5E%28%28C+3%29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D
https://www.wolframalpha.com/input?i=Limit%5BA+%28Tan%5B%28B+x%29%2F2%5D%2F%28%28B+x%29%2F2%29%29%5E%28%28C+3%29%2F%28B+x%29%5E2%29%2C+x+-%3E+0%2C+Direction+-%3E+%22FromAbove%22%5D

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Benchmarks aspire to present uncontaminated “new” questions, but ASyMOB bypasses this chal-
lenge via systematic perturbations. Even if seed questions are contaminated, the benchmark results
remain meaningful - an increasingly important property as sourcing truly novel questions becomes
infeasible for large-scale datasets.

To empirically assess this robustness, we ran experiments on Gemini 2.0 Flash, OpenAI GPT-4o,
and LLaMA 3.3 Nemotron Super, explicitly including the original seed question and its correct
answer as an in-context exemplar within the prompt. While performance improved on simple per-
turbations (Numeric-All-0: +2%, +27%, +43.5% respectively), the effect quickly dropped on more
complex ones (Numeric-One-3, Numeric-All-3, Symbolic-3: +2%, +5.1%, +6.8% respectively).
These findings show that seed question contamination does not substantially distort performance on
harder variants, and ASyMOB’s complex perturbations still expose limitations beyond memoriza-
tion. Given the extremity of this setup, these modest gains likely represent an upper bound from
pretraining, underscoring ASyMOB’s robustness in detecting genuine generalization.

Contamination can even be reframed as a feature: if a model leverages prior knowledge of a seed
question to solve perturbed variants, it demonstrates real generalization. Eventually, if LLMs im-
prove on re-generated questions by training on earlier iterations, that signifies deeper mathematical
understanding - a desirable capability, not a flaw.

Looking forward, LLMs should be intentionally trained to generalize, both via tool use and through
systematic perturbations on the training set. Fine-grained perturbations thus emerge as a principled
method for generating high-quality synthetic data, offering a valuable resource for training and fine-
tuning current and future reasoning models.

One of our perturbations is inspired by GSM-Symbolic (Mirzadeh et al. 2025) - which showed that
even “trivial” complications in textual math questions can substantially reduce success rates (up to
65%). Similarly, in our work, symbolic complications also led to substantial performance drops (up
to 60.9%). This test generalizes the finding of GSM-Symbolic that “current LLMs are not capable
of genuine logical reasoning”, now shown in the domain of symbolic manipulations and not just in
text-to-math conversion.

Importantly, our results suggest a possible solution: once an LLM learns when and where to use
tools, it can mitigate substantial pitfalls by using code execution as a form of grounding. This can
be encouraged through prompting strategies like ”simplify-then-code” (Figure 6).

Until recently, the hybrid LLM+CAS approach appeared to be the most promising path forward.
However, the surprising finding that frontier models no longer benefit from CAS use for symbolic
math triggers deeper and more fascinating possibilities. Looking ahead, we see three possible tra-
jectories for future developments in AI for math and AI for science:

1. Intrinsic mastery: Frontier models may continue to improve in their inherent abilities,
eventually surpassing the need for external symbolic math tools, as in the frontier model
behavior observed in this work.

2. Deeper integration: Tool use may remain essential, but will demand increasingly sophis-
ticated CAS capabilities that co-evolve with LLMs, complementing their inherent abilities
and motivating the next generation of CAS infrastructure.

3. Autonomous tool creation: LLMs may internalize symbolic computation itself - leverag-
ing their reasoning and coding capacities to build internal, CAS-like mechanisms that blur
the boundary between model and tool.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Balunović, M. et al. (2025). “MathConstruct: Challenging LLM Reasoning with Constructive
Proofs”. In.

Bercovich, A. et al. (2025). Llama-Nemotron: Efficient Reasoning Models. arXiv: 2505.00949
[cs.CL]. URL: https://arxiv.org/abs/2505.00949.

Boye, J. et al. (2025). Large Language Models and Mathematical Reasoning Failures. arXiv: 2502.
11574 [cs.AI]. URL: https://arxiv.org/abs/2502.11574.

Brazilian Mathematical Olympiad, U. L. (2019). OBMU 2019 Mathematics Competition. Accessed:
2025-04-08. URL: https://www.obm.org.br.

Chernyshev, K. et al. (2025). U-MATH: A University-Level Benchmark for Evaluating Mathematical
Skills in LLMs. arXiv: 2412.03205 [cs.CL]. URL: https://arxiv.org/abs/2412.
03205.

Cobbe, K. et al. (2021). Training Verifiers to Solve Math Word Problems. arXiv: 2110.14168
[cs.LG]. URL: https://arxiv.org/abs/2110.14168.

Davies, A. et al. (2021). “Advancing mathematics by guiding human intuition with AI”. In: Nature
600. URL: https://api.semanticscholar.org/CorpusID:244837059.

DeepSeek-AI (2025a). DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. arXiv: 2501.12948 [cs.CL]. URL: https://arxiv.org/abs/2501.
12948.

– (2025b). DeepSeek-V3 Technical Report. arXiv: 2412.19437 [cs.CL]. URL: https://
arxiv.org/abs/2412.19437.

Dugan, O. et al. (2024). “OccamLLM: Fast and Exact Language Model Arithmetic in a Sin-
gle Step”. In: Advances in Neural Information Processing Systems. Ed. by A. Globerson et al.
Vol. 37. Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_
files / paper / 2024 / file / 3eceb70f47690051d6769739fbf6294b - Paper -
Conference.pdf.

Fang, M. et al. (2024). MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large
Language Models Using Odyssey Math Data. arXiv: 2406.18321 [cs.CL]. URL: https:
//arxiv.org/abs/2406.18321.

Farabet, C. et al. (Mar. 2025). Introducing Gemma 3: The most capable model you can run on
a single GPU or TPU. URL: https://blog.google/technology/developers/
gemma-3/.

Frieder, S. et al. (2023). “Mathematical capabilities of chatgpt”. In: Advances in neural information
processing systems 36.

Gao, B. et al. (2025). “Omni-MATH: A Universal Olympiad Level Mathematic Benchmark for
Large Language Models”. In: The Thirteenth International Conference on Learning Representa-
tions. URL: https://openreview.net/forum?id=yaqPf0KAlN.

Glazer, E. et al. (2024). FrontierMath: A Benchmark for Evaluating Advanced Mathematical Rea-
soning in AI. arXiv: 2411.04872 [cs.AI]. URL: https://arxiv.org/abs/2411.
04872.

Gou, Z. et al. (2024). “ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solv-
ing”. In: ICLR. URL: https://openreview.net/forum?id=Ep0TtjVoap.

He, C. et al. (Aug. 2024). “OlympiadBench: A Challenging Benchmark for Promoting AGI with
Olympiad-Level Bilingual Multimodal Scientific Problems”. In: Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Ed. by
L.-W. Ku et al. Bangkok, Thailand: Association for Computational Linguistics. URL: https:
//aclanthology.org/2024.acl-long.211/.

Hendrycks, D. et al. (2021). “Measuring Mathematical Problem Solving With the MATH Dataset”.
In: NeurIPS.

Hou, X. et al. (Dec. 2024). “Large Language Models for Software Engineering: A Systematic Lit-
erature Review”. In: ACM Trans. Softw. Eng. Methodol. 33.8. ISSN: 1049-331X. URL: https:
//doi.org/10.1145/3695988.

Huang, K. et al. (2025). “MATH-Perturb: Benchmarking LLMs’ Math Reasoning Abilities against
Hard Perturbations”. In: Workshop on Reasoning and Planning for Large Language Models. URL:
https://openreview.net/forum?id=M8OLGgYK7e.

Huang, Z. et al. (2024). “OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for
Superintelligent AI”. In: arXiv preprint arXiv:2406.12753. URL: https://arxiv.org/
abs/2406.12753.

10

https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2502.11574
https://arxiv.org/abs/2502.11574
https://arxiv.org/abs/2502.11574
https://www.obm.org.br
https://arxiv.org/abs/2412.03205
https://arxiv.org/abs/2412.03205
https://arxiv.org/abs/2412.03205
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://api.semanticscholar.org/CorpusID:244837059
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://proceedings.neurips.cc/paper_files/paper/2024/file/3eceb70f47690051d6769739fbf6294b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3eceb70f47690051d6769739fbf6294b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3eceb70f47690051d6769739fbf6294b-Paper-Conference.pdf
https://arxiv.org/abs/2406.18321
https://arxiv.org/abs/2406.18321
https://arxiv.org/abs/2406.18321
https://blog.google/technology/developers/gemma-3/
https://blog.google/technology/developers/gemma-3/
https://openreview.net/forum?id=yaqPf0KAlN
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://openreview.net/forum?id=Ep0TtjVoap
https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://doi.org/10.1145/3695988
https://doi.org/10.1145/3695988
https://openreview.net/forum?id=M8OLGgYK7e
https://arxiv.org/abs/2406.12753
https://arxiv.org/abs/2406.12753

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Imani, S. et al. (2023). “MathPrompter: Mathematical Reasoning using Large Language Models”.
In: Annual Meeting of the Association for Computational Linguistics. URL: https://api.
semanticscholar.org/CorpusID:257427208.

Jiang, B. et al. (Nov. 2024). “A Peek into Token Bias: Large Language Models Are Not Yet Genuine
Reasoners”. In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing. Ed. by Y. Al-Onaizan et al. Miami, Florida, USA: Association for Computational
Linguistics. URL: https://aclanthology.org/2024.emnlp-main.272/.

Kavukcuoglu, K. (Mar. 2025). Gemini 2.5: Our most intelligent AI model. URL: https://blog.
google/technology/google-deepmind/gemini-model-thinking-updates-
march-2025/.

Kojima, T. et al. (2022). “Large language models are zero-shot reasoners”. In: Proceedings of the
36th International Conference on Neural Information Processing Systems. NIPS ’22. New Or-
leans, LA, USA: Curran Associates Inc.

Lample, G. et al. (2020). “Deep learning for symbolic mathematics”. In: 8th International Confer-
ence on Learning Representations, ICLR 2020. https://openreview.net/forum?id=S1eZYeHFDS.
URL: https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html.

Lewkowycz, A. et al. (2022). “Solving Quantitative Reasoning Problems with Language Models”.
In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh et al. URL: https:
//openreview.net/forum?id=IFXTZERXdM7.

Liao, M. et al. (Aug. 2024). “MARIO: MAth Reasoning with code Interpreter Output - A Repro-
ducible Pipeline”. In: Findings of the Association for Computational Linguistics: ACL 2024. Ed.
by L.-W. Ku et al. Bangkok, Thailand: Association for Computational Linguistics. URL: https:
//aclanthology.org/2024.findings-acl.53/.

Liu, H. et al. (Aug. 2024). “MathBench: Evaluating the Theory and Application Proficiency of LLMs
with a Hierarchical Mathematics Benchmark”. In: Findings of the Association for Computational
Linguistics: ACL 2024. Ed. by L.-W. Ku et al. Bangkok, Thailand: Association for Computational
Linguistics. URL: https://aclanthology.org/2024.findings-acl.411/.

Luo, H. et al. (2025). “WizardMath: Empowering Mathematical Reasoning for Large Language
Models via Reinforced Evol-Instruct”. In: The Thirteenth International Conference on Learning
Representations. URL: https://openreview.net/forum?id=mMPMHWOdOy.

Mao, Y. et al. (2024). CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs’
Mathematical Reasoning Capabilities. arXiv: 2401 . 06961 [cs.CL]. URL: https : / /
arxiv.org/abs/2401.06961.

Meta (Apr. 2025). The Llama 4 herd: The beginning of a new era of natively multimodal AI
innovation. URL: https : / / ai . meta . com / blog / llama - 4 - multimodal -
intelligence/.

Meurer, A. et al. (Jan. 2017). “SymPy: symbolic computing in Python”. In: PeerJ Computer Science
3. ISSN: 2376-5992. URL: https://doi.org/10.7717/peerj-cs.103.

Mirzadeh, S. I. et al. (2025). “GSM-Symbolic: Understanding the Limitations of Mathematical Rea-
soning in Large Language Models”. In: The Thirteenth International Conference on Learning
Representations. URL: https://openreview.net/forum?id=AjXkRZIvjB.

Novikov, A. et al. (May 2025). AlphaEvolve: A coding agent for scientific and algorithmic discovery.
Tech. rep. Google DeepMind. URL: https://storage.googleapis.com/deepmind-
media/DeepMind.com/Blog/alphaevolve- a- gemini- powered- coding-
agent-for-designing-advanced-algorithms/AlphaEvolve.pdf.

OpenAI (2024). GPT-4o System Card. arXiv: 2410.21276 [cs.CL]. URL: https://arxiv.
org/abs/2410.21276.

– (Apr. 2025a). Introducing GPT-4.1 in the API. URL: https://openai.com/index/gpt-
4-1/.

– (Apr. 2025b). Introducing o3 and o4-mini. URL: https : / / openai . com / index /
introducing-o3-and-o4-mini/.

– (n.d.). URL: https://cdn.openai.com/pdf/2221c875- 02dc- 4789- 800b-
e7758f3722c1/o3-and-o4-mini-system-card.pdf.

Patel, A. et al. (June 2021). “Are NLP Models really able to Solve Simple Math Word Problems?” In:
Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies. Online: Association for Computational
Linguistics. URL: https://aclanthology.org/2021.naacl-main.168.

Phan, L. et al. (2025). Humanity’s Last Exam. arXiv: 2501.14249 [cs.LG]. URL: https:
//arxiv.org/abs/2501.14249.

11

https://api.semanticscholar.org/CorpusID:257427208
https://api.semanticscholar.org/CorpusID:257427208
https://aclanthology.org/2024.emnlp-main.272/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://iclr.cc/virtual_2020/poster_S1eZYeHFDS.html
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://aclanthology.org/2024.findings-acl.53/
https://aclanthology.org/2024.findings-acl.53/
https://aclanthology.org/2024.findings-acl.411/
https://openreview.net/forum?id=mMPMHWOdOy
https://arxiv.org/abs/2401.06961
https://arxiv.org/abs/2401.06961
https://arxiv.org/abs/2401.06961
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://doi.org/10.7717/peerj-cs.103
https://openreview.net/forum?id=AjXkRZIvjB
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://aclanthology.org/2021.naacl-main.168
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Pichai, S. et al. (Dec. 2024). Introducing Gemini 2.0: our new AI model for the agentic era. URL:
https://blog.google/technology/google-deepmind/google-gemini-ai-
update-december-2024/#ceo-message.

Rein, D. et al. (2024). “GPQA: A Graduate-Level Google-Proof Q&A Benchmark”. In: First
Conference on Language Modeling. URL: https://openreview.net/forum?id=
Ti67584b98.

Ren, Z. Z. et al. (2025). DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Rein-
forcement Learning for Subgoal Decomposition. arXiv: 2504.21801 [cs.CL]. URL: https:
//arxiv.org/abs/2504.21801.

Ridnik, T. et al. (2024). “Code Generation with AlphaCodium: From Prompt Engineering to Flow
Engineering”. In: arXiv preprint arXiv:2401.08500.

Romera-Paredes, B. et al. (2023). “Mathematical discoveries from program search with large
language models”. In: Nature 625. URL: https : / / api . semanticscholar . org /
CorpusID:266223700.

Rozière, B. et al. (2024). Code Llama: Open Foundation Models for Code. arXiv: 2308.12950
[cs.CL]. URL: https://arxiv.org/abs/2308.12950.

Shrestha, S. et al. (2025). Mathematical Reasoning in Large Language Models: Assessing Logical
and Arithmetic Errors across Wide Numerical Ranges. arXiv: 2502.08680 [cs.LG]. URL:
https://arxiv.org/abs/2502.08680.

Srivastava, S. et al. (2024). Functional Benchmarks for Robust Evaluation of Reasoning Perfor-
mance, and the Reasoning Gap. arXiv: 2402.19450 [cs.AI]. URL: https://arxiv.
org/abs/2402.19450.

Trinh, T. H. et al. (2024). “Solving olympiad geometry without human demonstrations”. In: Nature
625.7995.

Vendrow, J. et al. (2024). “Large Language Model Benchmarks Do Not Test Reliability”. In: Neurips
Safe Generative AI Workshop 2024. URL: https://openreview.net/forum?id=
XSeN6xZtZ9.

Wald, A. (1943). “Tests of Statistical Hypotheses Concerning Several Parameters When the Number
of Observations is Large”. In: Transactions of the American Mathematical Society 54.3. URL:
https://www.jstor.org/stable/1990256.

Wang, X. et al. (2023). “Self-Consistency Improves Chain of Thought Reasoning in Language Mod-
els”. In: The Eleventh International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=1PL1NIMMrw.

Wolfram Alpha LLC (2025). Wolfram—Alpha: Computational Intelligence. https : / / www .
wolframalpha.com/.

Wolfram Research Inc. (2024). Mathematica, Version 14.2. Champaign, IL. URL: https://www.
wolfram.com/mathematica.

Xu, X. et al. (2025). “UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level
Mathematical Reasoning with Large Language Models”. In: The Thirteenth International Con-
ference on Learning Representations. URL: https://openreview.net/forum?id=
fovPyqPcKY.

Yang, A. et al. (2024). “Qwen2.5 Technical Report”. In: arXiv preprint arXiv:2412.15115.
Yue, X. et al. (2024). “MAmmoTH: Building Math Generalist Models through Hybrid Instruction

Tuning”. In: The Twelfth International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=yLClGs770I.

Zan, D. et al. (July 2023). “Large Language Models Meet NL2Code: A Survey”. In: Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Ed. by A. Rogers et al. Toronto, Canada: Association for Computational Linguistics.
URL: https://aclanthology.org/2023.acl-long.411/.

Zhang, W. et al. (2025). Beyond the Singular: The Essential Role of Multiple Generations in Ef-
fective Benchmark Evaluation and Analysis. arXiv: 2502.08943 [cs.CL]. URL: https:
//arxiv.org/abs/2502.08943.

Zhang, Y. et al. (2024). “Training and Evaluating Language Models with Template-based Data Gen-
eration”. In: arXiv preprint arXiv:2411.18104.

Zheng, K. et al. (2022). “miniF2F: a cross-system benchmark for formal Olympiad-level math-
ematics”. In: International Conference on Learning Representations. URL: https : / /
openreview.net/forum?id=9ZPegFuFTFv.

12

https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://api.semanticscholar.org/CorpusID:266223700
https://api.semanticscholar.org/CorpusID:266223700
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2502.08680
https://arxiv.org/abs/2502.08680
https://arxiv.org/abs/2402.19450
https://arxiv.org/abs/2402.19450
https://arxiv.org/abs/2402.19450
https://openreview.net/forum?id=XSeN6xZtZ9
https://openreview.net/forum?id=XSeN6xZtZ9
https://www.jstor.org/stable/1990256
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://www.wolframalpha.com/
https://www.wolframalpha.com/
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://openreview.net/forum?id=fovPyqPcKY
https://openreview.net/forum?id=fovPyqPcKY
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://aclanthology.org/2023.acl-long.411/
https://arxiv.org/abs/2502.08943
https://arxiv.org/abs/2502.08943
https://arxiv.org/abs/2502.08943
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Zhou, A. et al. (2024). “Solving Challenging Math Word Problems Using GPT-4 Code Interpreter
with Code-based Self-Verification”. In: The Twelfth International Conference on Learning Rep-
resentations. URL: https://openreview.net/forum?id=c8McWs4Av0.

Zhou, Z., S. Liu, et al. (2025). “Is Your Model Really A Good Math Reasoner? Evaluating Math-
ematical Reasoning with Checklist”. In: The Thirteenth International Conference on Learning
Representations. URL: https://openreview.net/forum?id=nDvgHIBRxQ.

Zhou, Z., Q. Wang, et al. (2024). “MathAttack: attacking large language models towards math solv-
ing ability”. In: Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and
Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Sym-
posium on Educational Advances in Artificial Intelligence. AAAI’24/IAAI’24/EAAI’24. AAAI
Press. URL: https://doi.org/10.1609/aaai.v38i17.29949.

13

https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=nDvgHIBRxQ
https://doi.org/10.1609/aaai.v38i17.29949

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A ADDITIONAL DETAILS ABOUT THE DATASET

A.1 LIST OF EQUIVALENCE PERTURBATIONS

The complete list of equivalence perturbations, discussed in section 2.1, is provided below.

Easy:

• Trigonometric: sin2 (−Qx) + cos2 (Qx)

• Hyperbolic: cosh2 (Qx)− sinh2 (Qx)

• Logarithmic:
ln(x) · logx(Q)

ln(Q)

• Complex exponential:
Q
∑∞

N=1
2−Nx

Q

x

• Series: −
i
(
eiQx − e−iQx

)
2 sin (Qx)

Hard:

• Trigonometric:
tan (x) + tan (x (Q− 1))

(− tan (x) tan (x (Q− 1)) + 1) tan (Qx)

• Hyperbolic:
sinh

(
log

(
Qx+

√
Q2x2 + 1

))
Qx

• Logarithmic:
logQ

(
x
e

)
+ logQ(e)

logQ(x)

• Complex exponential: −
2i

(
e4iQx + 1

)
tan (Qx)

(1− e4iQx)
(
1− tan2 (Qx)

)
• Series:

Q
∑∞

N=1
6x

π2N2Q

x

These perturbations were selected to avoid significantly altering the mathematical complexity of the
challenge compared to the original questions. We confirmed that the tested LLMs could correctly
simplify each expression when presented individually, indicating that the ‘Equivalence’ variants’
difficulty arises mostly from the original question and its combination with the equivalence pertur-
bations.

Notably, SymPy Meurer et al. 2017 was unable to simplify the more difficult trigonometric and hy-
perbolic identities to 1, providing another example for CAS limitations in university-level symbolic
math challenges.

Figure 3 shows that for most LLMs the challenge level of a single ‘Hard’ perturbation is lower than
multiple ‘Easy’ perturbations - but not for all LLMs. The reasons behind this difference are a topic
for future investigation.

A.2 DISCOVERED BENCHMARK ERRORS

As mentioned in Section 2.1, existing mathematical benchmarks are known to have up to 5-10%
mistaken labeling and formatting errors (Vendrow et al. 2024; W. Zhang et al. 2025; Patel et al.
2021).

For example, question 97 from the GHOSTS ‘Symbolic Integration’ subset (Frieder et al. 2023):
“What is the integral of 2x−x7atan(3)”. The output: “...The antiderivative... 2x2

2 − 1
7x

8atan(3)+C”
receives a 5/5 rating, but the 1

7 should have been 1
8 , potentially creating false positives.

Another example from OlympiadBench (He et al. 2024, subset ‘OE TO maths en COMP’,
id:2498): “If log2 x − 2 log2 y = 2, determine y, as a function of x”. The dataset provides both

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

a full solution: “...to obtain y = 1
2

√
x”, and a final answer: “1

2 ,
√
x”. The extra comma that ap-

peared in the middle of the final answer prevents deterministic systems from recognizing correct
answers.

We inserted both of these questions (with corrected answers) as two of our seeds.

ASyMOB’s algorithmic generation methods substantially reduces the risk for such errors in specific
questions or answers.

A.3 ‘SYMBOLIC-N’ SUBSETS ANALYSIS

Due to the requirement that substituting all symbols with 1 reverts the question to its original seed
form, the total number of ‘Symbolic-N’ variations depends on N. For instance, ASyMOB contains
only 7 ‘Symbolic-5’ questions. This small sample size is the reason ‘Symbolic-5’ is not represented
in Figure 2, as it is insufficient for robust statistical analysis. This variability also means that the
baseline difficulty of ‘Symbolic-N’ questions changes with different values of N. The 7 seed ques-
tions with a maximal perturbation of 5 symbols have an average success rate across all models of
86.6%. In contrast, the 13 seed questions with a maximal perturbation of 4 symbols have a 74.7%
success rate, and the overall success rate across all seeds is 73.9%. The ‘Symbolic-4’ subset includes
13 questions with maximal symbolic perturbation (derived from the 13 seeds mentioned above) and
35 permutations based on the 7 maximally perturbed ‘Symbolic-5’ questions. It is likely that the
lower initial difficulty of the seeds influences the difficulty of their derived variations to some ex-
tent. Therefore, the difficulty of each ‘Symbolic’ subset should not be assumed to be identical. This
effect can account for the slight increase in success rate observed across most models in the bottom
graphs of Figure 2 for 3 and 4 symbols.

B TESTING DETAILS

As noted in section 2.2, a core principle of the test process is to rely on deterministic and predictable
tools whenever possible. Figure 4 shows a ”Formatting Instructions” wrap around the challenge text.
Specifically, these instructions state:

“Finish your answer by writing ”The final answer is:” and then the answer in LaTeX in a new line.
Write the answer as a single expression. Do not split your answer to different terms. Use $$ to wrap
the LaTeX text. Do not write anything after the LaTeX answer.”

The primary goal is to encourage the LLM to produce a clear LaTeX expression, labeled with “The
final answer is:”. We opt against using forced structured outputs, even when available, to ensure a
fair comparison with models lacking this capability and to avoid introducing requirements beyond
symbolic math skills. In essence, we aim to minimize the impact of specific phrasing and structural
choices in both language and mathematical presentation.

Once the full answer is received, a series of regexes are used to extract the final answer:

Pattern 1 (as instructed):
r’**[Tt]he final answer is:?**\s*’
r’(?:(?:\\\()|(?:\\\[)|(?:\$+))’
r’(.*?)’
r’(?:(?:\\\))|(?:\\\])|(?:\$+))’

Pattern 2 (last boxed expression):
r’\\boxed\{(.*?)\}’ + ’(?:\n|$|")’

Pattern 3 (last display expression):
r"\$+(.*?)\$+"

Pattern 4 (output=’ ’ case):
r"output=’(.*?)’"

Pattern 5 (output=" " case):
r’output="(.*?)"’

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

While the first pattern represents the given formatting instructions - other output formats were ac-
cepted as well. It’s important to note that responses claiming, for example, the challenge is impos-
sible or asking for specific values to substitute into the symbols, will frequently lack fitting LaTeX
expressions. Therefore, the absence of relevant LaTeX usually indicates a missing or incoherent
answer, not a parsing issue. Overall, this stage was successful in 98% of cases.

The extracted LaTeX expression is then cleaned and parsed into a SymPy expression using
sympy.parsing.latex.parse latex. If the parsing fails, we resort to using an LLM
(gemini-2.0-flash) for this translation. It’s important to note that not all “final answer” expressions
extracted by our permissive regexes are valid LaTeX or even mathematical expressions. Therefore,
a failure to produce a working SymPy expression usually indicates a broken or irrelevant answer,
rather than a translation issue. Overall, this stage was successful in 96.1% of cases.

The resulting SymPy expression undergoes two distinct validation checks against the reference an-
swer (also represented as a SymPy object):

Symbolic validation. The difference between the extracted expression and the correct answer is
simplified via SymPy.simplify. If the simplification reduces this difference to zero (or a con-
stant, in the case of indefinite integrals), the answer is deemed correct.

Numeric validation. We randomly generate numerical values for each variable (e.g., x and any
symbolic perturbation parameters) and substitute them into both the LLM’s result and the correct
answer. If the relative difference between the two evaluations is less than 0.002%, the answers
are considered matching. This process is repeated five times to mitigate the risk of coincidental
matches. To allow the detection of numeric equivalence between indefinite integrals, we require that
all 5 repetitions produce the same difference (not necessarily zero), concluding that the expressions
are equivalent up to a constant factor.

Due to the limitations of SymPy (imperfections in SymPy.simplify, handling of very large
numbers in .evalf(), etc.), if either validation method confirms an answer, it is treated as correct
(false positives are highly unlikely). Out of all the valid SymPy expressions created on the previous
stage, 97.6% were successfully tested. Responses that could not be verified by either method due to
SymPy’s technical limitations were excluded from the data analysis and omitted from the reported
statistics.

In terms of resources required for this work, by far the biggest compute consumer was querying the
LLMs. The total number of successful queries for all the tests is 17092 · 17 = 290, 564 (5-10%
additional calls were made during development, and due to provider rate limits and network issues).
These were done via cloud API calls, for a total expense of: OpenAI ∼1400$ (for o4-mini, GPT-4.1,
GPT-4o, GPT-4o-mini), Google ∼150$ (for Gemini 2.5 Flash, Gemini 2.0 Flash, Gemma-3-27b-it),
Hugging Face ∼600$ (for all other models; interface providers used: Novita, Together AI, Nebius
AI Studio). Temperature was set to the default value (1 for OpenAI and Google, 0.5 for Hugging
Face).

Dataset generation compute was negligible (less than 5 minutes on a single workstation), while the
validation stage was more resource-intensive (∼10 hours on 3 workstations). Note that the validation
process is trivially parallelizable.

C DATA ANALYSIS

Figure 7 presents each model’s (with and without code execution) success on each seed question -
showing a mix of easier and harder challenges.

Figure 8 illustrates the variance within each 50-question subset of variant ‘Numeric-All-2-S’ (per
seed). Each cell is marked with a ’V’ if the model correctly solved at least half of the ‘Numeric-All-
2-S’ variants from that seed question, and an ’X’ otherwise.

It is important to note that while correct answers are unique (aside from presentation differences),
incorrect answers can vary significantly, including instances where no answer is provided. Con-
sequently, low consistency might result in lower variance for questions with a low success rate
compared to those with a high success rate. Indeed, the average variance for all ’V’ questions is
0.11, whereas for ’X’ questions, it is 0.07.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

o4
-m

ini
(Cod

e)

o4
-m

ini
(No C

od
e)

Gem
ini

2.5
 Fla

sh
(Cod

e)

Gem
ini

2.5
 Fla

sh
(No C

od
e)

Gem
ini

2.0
 Fla

sh
(Cod

e)

Gem
ini

2.0
 Fla

sh
(No C

od
e)

GPT-
4.1

 (C
od

e)

GPT-
4.1

 (N
o C

od
e)

GPT-
4o

 (C
od

e)

GPT-
4o

 (N
o C

od
e)

Dee
pS

ee
k-R

1

Dee
pS

ee
k-P

rov
er-

V2

Dee
pS

ee
k-V

3

Qwen
2.5

-72
B-In

str
uct

Lla
ma 4

 Sc
ou

t

Gem
ma 3

n 4
B

GPT-
4o

 m
ini

Nem
otr

on
-Su

pe
r-v

1

U-Math sequences_series 1ccc052c-9604-4459-a752-98ebdf3e0764 (1)
U-Math sequences_series ca5ffe7c-f495-43dc-a653-de477cabc185 (2)
U-Math sequences_series f89bd354-18c9-4f31-b91f-cf6421e24921 (3)
U-Math sequences_series d1fe21df-ee7f-40c2-9655-6bd6a7a23ff1 (4)

U-Math sequences_series 068e40ce-9108-4ef8-8ee5-0d1471ebbe43 (5)
U-Math differential_calc 363dd580-f1fc-4867-a6ef-db2a03139745 (6)

U-Math differential_calc 2d799998-115a-489b-a48b-57090954303e (7)
U-Math differential_calc efdc4110-cf56-4f37-bf54-40fdd5d58145 (8)

U-Math differential_calc 99a2304d-5d8e-4245-90da-a80651ca15d8 (9)
U-Math differential_calc 84c6a419-c103-41d5-aad5-dd8e690c6e88 (10)

U-Math integral_calc 0c0ba3db-1470-4c36-975c-91ff5f51986f (11)
U-Math integral_calc 126c4165-b3d5-4470-8412-08e79d9821cf (12)
U-Math integral_calc 00f6affb-905a-4109-a78e-2dde7a0b83accf (13)
U-Math integral_calc 05ea9929-8cbb-432b-bbbb-ec1e74c9f401 (14)
U-Math integral_calc 08c72d46-1abd-49e1-9c9c-ce509902be6e (15)

U-Math integral_calc 4c1292e1-d4b3-4acf-afaf-eaac62f2662d (16)
U-Math integral_calc 147944c5-b782-48c5-a664-d66deb92d9a7 (17)

U-Math integral_calc 1db212f0-2fac-410d-969d-fe3b5b55d076 (18)
U-Math integral_calc 275f7ceb-f331-4a3f-96ec-346e6d81b32a (19)

U-Math integral_calc 47a11349-0386-4969-9263-d3cdfcc98cb9 (20)
UGMathBench Calculus_-_single_variable_0016 (21)
UGMathBench Calculus_-_single_variable_0022 (22)
UGMathBench Calculus_-_single_variable_0508 (23)
UGMathBench Calculus_-_single_variable_0512 (24)
UGMathBench Calculus_-_single_variable_0592 (25)
UGMathBench Calculus_-_single_variable_0604 (26)
UGMathBench Calculus_-_single_variable_0606 (27)
UGMathBench Calculus_-_single_variable_0612 (28)
UGMathBench Calculus_-_single_variable_0624 (29)
UGMathBench Calculus_-_single_variable_0939 (30)

MathOdyssey Problem 340 from Differential Equations - College Math (31)
MathOdyssey Problem 339 from Differential Equations - College Math (32)
MathOdyssey Problem 315 from Calculus and Analysis - College Math (33)
MathOdyssey Problem 317 from Calculus and Analysis - College Math (34)
MathOdyssey Problem 325 from Calculus and Analysis - College Math (35)
MathOdyssey Problem 326 from Calculus and Analysis - College Math (36)
MathOdyssey Problem 327 from Calculus and Analysis - College Math (37)
MathOdyssey Problem 328 from Calculus and Analysis - College Math (38)
MathOdyssey Problem 329 from Calculus and Analysis - College Math (39)
MathOdyssey Problem 336 from Calculus and Analysis - College Math (40)

GHOSTS Symbolic Integration Q97 (41)
GHOSTS Symbolic Integration Q98 (42)
GHOSTS Symbolic Integration Q90 (43)
GHOSTS Symbolic Integration Q14 (44)

GHOSTS Symbolic Integration Q7 (45)
GHOSTS Symbolic Integration Q15 (46)
GHOSTS Symbolic Integration Q18 (47)
GHOSTS Symbolic Integration Q20 (48)
GHOSTS Symbolic Integration Q22 (49)
GHOSTS Symbolic Integration Q29 (50)

OlympiadBench oe_to_maths_en_comp 2498 (51)
OlympicArena Math_1381 (52)

OBMU 2019 - Q21 (53)
OBMU 2019 - Q18 (54)
OBMU 2019 - Q22 (55)

ASyMOB Hypergeometrics Q1 (56)
ASyMOB Hypergeometrics Q2 (57)
ASyMOB Hypergeometrics Q3 (58)
ASyMOB Hypergeometrics Q4 (59)
ASyMOB Hypergeometrics Q5 (60)
ASyMOB Hypergeometrics Q6 (61)
ASyMOB Hypergeometrics Q7 (62)
ASyMOB Hypergeometrics Q8 (63)
ASyMOB Hypergeometrics Q9 (64)

ASyMOB Hypergeometrics Q10 (65)
ASyMOB Differential_Equations Q1 (66)
ASyMOB Differential_Equations Q2 (67)
ASyMOB Differential_Equations Q3 (68)
ASyMOB Differential_Equations Q4 (69)
ASyMOB Differential_Equations Q5 (70)
ASyMOB Differential_Equations Q6 (71)
ASyMOB Differential_Equations Q7 (72)
ASyMOB Differential_Equations Q8 (73)
ASyMOB Differential_Equations Q9 (74)

ASyMOB Differential_Equations Q10 (75)
ASyMOB Differential_Equations Q11 (76)
ASyMOB Differential_Equations Q12 (77)
ASyMOB Differential_Equations Q13 (78)
ASyMOB Differential_Equations Q14 (79)
ASyMOB Differential_Equations Q15 (80)
ASyMOB Differential_Equations Q16 (81)
ASyMOB Differential_Equations Q17 (82)
ASyMOB Differential_Equations Q18 (83)
ASyMOB Differential_Equations Q19 (84)
ASyMOB Differential_Equations Q20 (85)

ASyMOB Series Q1 (86)
ASyMOB Series Q2 (87)
ASyMOB Series Q3 (88)
ASyMOB Series Q4 (89)
ASyMOB Series Q5 (90)
ASyMOB Series Q6 (91)
ASyMOB Series Q7 (92)
ASyMOB Series Q8 (93)
ASyMOB Series Q9 (94)

ASyMOB Series Q10 (95)
ASyMOB Series Q11 (96)
ASyMOB Series Q12 (97)
ASyMOB Series Q13 (98)
ASyMOB Series Q14 (99)

ASyMOB Series Q15 (100)

Figure 7: Model success (blue) / failure (white) per seed question. Seeds are marked by their
source and index in the dataset. Note the difference in challenge level between seeds with different
sources. ‘ASyMOB’ source indicates original questions that were created for the purpose of this
work.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

o4
-m

ini
 (C

od
e)

o4
-m

ini
 (N

o C
od

e)

Ge
mini

 2.
5 F

las
h (

Co
de

)

Ge
mini

 2.
5 F

las
h (

No
 Co

de
)

Ge
mini

 2.
0 F

las
h (

Co
de

)

Ge
mini

 2.
0 F

las
h (

No
 Co

de
)

GP
T-4

.1
(C

od
e)

GP
T-4

.1
(N

o C
od

e)
GP

T-4
o (

Co
de

)

GP
T-4

o (
No

 Co
de

)
De

ep
Se

ek
-R

1

De
ep

Se
ek

-Pr
ov

er-
V2

De
ep

Se
ek

-V3

Qw
en

2.5
-72

B-
Ins

tru
ct

Lla
ma 4

 Sc
ou

t
Ge

mma 3
n 4

B
GP

T-4
o m

ini

Ne
motr

on
-Su

pe
r-v

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
Average

Se
ed

 Q
ue

st
io

n

.081 .063 .144 .094 .127 .104 .081 .117 .091 .087 .065 .105 .100 .102 .115 .076 .078 .095 0.00

0.05

0.10

0.15

0.20

0.25

Figure 8: Variance per model per seed question. The bottom row shows the average variance of
each model across all questions.

18

