
Published in Transactions on Machine Learning Research (02/2023)

Differentially Private Fréchet Mean on the Manifold of Sym-
metric Positive Definite (SPD) Matrices with log-Euclidean
Metric

Saiteja Utpala saitejautpala@gmail.com
UC Santa Barbara

Praneeth Vepakomma vepakom@mit.edu
MIT

Nina Miolane ninamiolane@ucsb.edu
UC Santa Barbara

Reviewed on OpenReview: https: // openreview. net/ forum? id= mAx8QqZ14f

Abstract

Differential privacy has become crucial in the real-world deployment of statistical and ma-
chine learning algorithms with rigorous privacy guarantees. The earliest statistical queries,
for which differential privacy mechanisms have been developed, were for the release of the
sample mean. In Geometric Statistics, the sample Fréchet mean represents one of the most
fundamental statistical summaries, as it generalizes the sample mean for data belonging to
nonlinear manifolds. In that spirit, the only geometric statistical query for which a differen-
tial privacy mechanism has been developed, so far, is for the release of the sample Fréchet
mean: the Riemannian Laplace mechanism was recently proposed to privatize the Fréchet
mean on complete Riemannian manifolds. In many fields, the manifold of Symmetric Pos-
itive Definite (SPD) matrices is used to model data spaces, including in medical imaging
where privacy requirements are key. We propose a novel, simple and fast mechanism -
the tangent Gaussian mechanism - to compute a differentially private Fréchet mean on the
SPD manifold endowed with the log-Euclidean Riemannian metric. We show that our new
mechanism has significantly better utility and is computationally efficient — as confirmed
by extensive experiments.

1 Introduction

Privacy-preserving computing is an active area of research which is necessitated by ethics, regulations, re-
quirements for protections of trade secrets, or possible lack of trust amongst distributed data siloes. Privacy
preservation is desired across several topologies of data sharing, be it from client devices to powerful central-
ized entities or a in peer-to-peer fashion. Mistrust in data sharing carries over not only in the sharing of raw
data but also in the sharing of results obtained from intermediate or complete computations. The need for
stringent privacy protections is often fueled by many privacy leakages and attacks that continue to happen
under various settings operating without the right level of privacy-protecting mechanisms.

In this context, differential privacy (DP) (Dwork et al., 2006; Dwork, 2008; Dwork et al., 2014; Dwork,
2006) has emerged as one of the leading mathematical definitions to ensure the preservation of privacy up
to a chosen level. Privacy-preserving mechanisms that satisfy the definition of differential privacy were
subsequently developed to privatize a wide range of statistical and machine learning computations. The
earliest queries, for which mechanisms have been proposed, were for the privatization of sample means
in statistics, computed for data lying on linear spaces. When data belong to nonlinear manifolds, the
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Fréchet mean query (Fréchet, 1948) is the foundational building block of geometric statistics that needs to
be privatized. Our work proposes a new, simpler and faster, mechanism for private Fréchet means on the
manifold of symmetric positive definite (SPD) matrices endowed with log-Euclidean metric.

1.1 Motivation

Fréchet mean: a building block in geometric statistics While traditional statistics studies data that
lies on linear spaces, geometric statistics studies data that lies on nonlinear spaces such as Riemannian man-
ifolds, affine connection spaces, or stratified spaces (Pennec et al., 2019; Miolane, 2016). Such analysis is
fruitful as data might have inherent constraints that are well captured by the geometry of a nonlinear space
Miolane et al. (2021); Myers et al. (2022). For instance, symmetric matrices constrained to have strictly
positive eigenvalues are conveniently modeled as elements of the manifold of symmetric positive definite
(SPD) matrices. Several extensions of traditional statistical analysis tools have thus been developed for the
manifold setting: regression has been generalized to geodesic regression (Fletcher, 2011; Thomas Fletcher,
2013), principal component analysis (PCA) to principal geodesic analysis or geodesic PCA (Fletcher et al.,
2004; Sommer et al., 2010; Huckemann et al., 2010), and mean shift to Riemannian mean shift clustering
(Subbarao & Meer, 2009; Caseiro et al., 2012). In each of these algorithms, the computation of the sample
Fréchet mean generalizes the computation of the sample mean, and thus represents the most fundamental
building block. The privatization of the Fréchet mean is therefore the key element required to privatize
geometric statistical queries. Privacy-preserving geometric statistics is also crucial, as one of its main appli-
cation areas is medical imaging and computational anatomy (Pennec et al., 2019; Miolane, 2016) for which
privacy requirements are often desirable.

Importance of the SPD manifold with log-Euclidean metric Symmetric positive definite (SPD)
matrices model a wide range of data, from medical images with Diffusion Tensor Imaging (DTI) (Basser et al.;
Pennec et al., 2006), to physiological signals with electroencephalography (EEG) signals from brain-computer
interfaces (BCI)(Yger et al., 2016; Zanini et al., 2017; Chevallier et al., 2021), to 3D shapes (Tabia et al.,
2014) to name a few. Given their central roles for medical data where privacy is of the utmost importance
(Lotan et al., 2020; Li et al., 2005), private statistical computations on the SPD manifold are a worthy
endeavour. The SPD manifold can be equipped with different Riemannian metrics that provide elementary
operations such as distance computations. The log-Euclidean metric, originally proposed in (Arsigny et al.,
2006), has numerous advantages over another popular Riemannian metric called the affine invariant metric
(Pennec et al., 2006): (a) it is computationally faster, (b) it gives similar or better performances on several
processing and learning tasks, (c) and quite importantly, it provides a closed form expression for the Fréchet
mean - which otherwise requires solving an optimization problem.

Need for better and faster privacy mechanisms Despite its importance for the processing of a number
of (medical) data, geometric statistics currently stands understudied from the lens of differential privacy. The
very recent work by (Reimherr et al., 2021) provides the first differentially private mechanism for the Fréchet
mean. However, its utility - a measure of the mechanism’s deviation from non-privatized computations -
makes it impracticable on the manifold of SPD matrices as soon as we consider matrices of moderate size,
e.g. 20 × 20 matrices. Consequently, there is a need for better and faster privacy mechanisms on manifolds,
starting with the SPD manifold.

1.2 Related Work and Contributions

Reimherr et al. (2021) were first to consider differential privacy in manifold setting and developed Riemannian
Laplace mechanism by extending the standard Laplace mechanism (Dwork et al., 2014) for linear spaces to
complete Riemannian manifolds. It is based on a Laplace distribution that was originally proposed for SPD
matrices (Hajri et al., 2016) based on distance of the affine invariant metric (Pennec et al., 2006), which they
generalize to any manifold M equipped with a distance ρ:

p(x) ∝ exp
(

−ρ(x, m)
σ

)
, ∀x ∈ M (1)
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where m ∈ M, σ ∈ R>0(positive reals) are parameters of the probability density p. Reimherr et al. (2021)
show that the mechanism obtained achieves pure differential privacy and provides an upper bound for the
expectation of its utility (a measure of the deviation from non-privatized computations) for the Fréchet mean
query. Their method is applicable to various Riemannian manifolds that satisfy some regularity conditions.

Approximate differential privacy relaxes pure differential privacy (see Section 2) but provides significantly
better utility for higher dimensions and is heavily used in real world applications Abadi et al. (2016). In the
Euclidean case, the Gaussian mechanism, where noise is added from standard Gaussian, satisfies approximate
differential privacy. To this end, we make use of log Gaussian distribution Schwartzman (2016), an intrinsic
distribution on SPD matrices, for deriving approximate differentially private mechanism. This relaxation
helps us obtain better utility compared to Riemannian Laplace mechanism in terms of dimension, similar to
standard Euclidean case. We summarize our contributions are as follows.

Mechanism A DP E[ρ2(f(D), A(D))] Theoretical Results
Riemannian Laplace (Reimherr et al., 2021) Pure DP O(k4) Expectation of ρ2(f(D), A(D))

tangent Gaussian (Ours) Approx. DP O(ln(1/δ)k2) Exact Distribution of ρ2(f(D), A(D))

Table 1: Differences between existing (Reimherr et al., 2021) and proposed mechanisms for private Fréchet
mean queries on the manifold of k × k SPD matrices endowed with the log-Euclidean metric. The notation
ρ2(f(D), A(D)) represents the utility with D the dataset, A the mechanism under consideration, ρ the log-
Euclidean distance, f the Fréchet mean and δ quantifies approximate differential privacy.

1. We propose a new and simple mechanism - called the tangent Gaussian Mechanism - that privatizes any
statistical summary on the manifold of Symmetric Positive Definite (SPD) matrices endowed with the
log-Euclidean metric. We prove that it achieves approximate differential privacy (Th. 2).

2. When the statistical summary is the Fréchet mean, we show that our mechanism obtains significant
improvement in terms of utility over recent works - which we demonstrate theoretically, and practically for
data in higher dimensions. Further, our mechanism is computationally efficient and easily implementable.

3. We present the effectiveness of our mechanism on synthetic and real-world (medical) imaging data, the
latter being represented via their covariance descriptors. To this aim, we also prove a theoretical bound
on the radius of log-Euclidean geodesic ball with the covariance descriptor pipeline (Tuzel et al., 2006) -
required for the applicability of our mechanism (Th. 5).

Table 1 highlights the technical differences between (Reimherr et al., 2021) and our work.

2 Preliminaries and Notations

Elements of Riemannian Geometry Let M be a d-dimensional smooth connected manifold and TpM
be its tangent space at point p ∈ M. A Riemannian metric g on M is a collection of inner products
gp : TpM × TpM → R that vary smoothly with p. A manifold M equipped with a Riemannian metric g
is called a Riemannian manifold. Importantly, the metric g gives a distance ρ on M. Let γ : [0, 1] → M
be a smooth parametrized curve on M with velocity vector at t denoted as γ̇t ∈ Tγ(t)M. The length of
γ is defined as Lγ =

∫ 1
0
√

gγ(t)(γ̇t, γ̇t)dt and the distance ρ between any two points p, q ∈ M is: ρ(p, q) =
infγ:γ(0)=p,γ(1)=q Lγ .

If in addition M is complete for ρ, then any two points p, q ∈ M can be joined by length-minimizing curve,
called a geodesic. We refer the reader to (Do Carmo & Flaherty Francis, 1992; Lee, 2006; Helgason, 1979)
for a detailed exposition.

Elements of Differential Privacy (DP) Let X be an input data space and M the manifold under
consideration. Let f : X n → M be a manifold-valued statistical summary that requires privatization with
respect to some sensitive dataset D of size n, i.e. D ∈ X n. Two datasets D, D′ ∈ X n are said to be adjacent
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if they differ by at most one data point. We denote adjacency as D ∼ D′. The sensitivity of the summary f
with respect to the distance ρ on M is defined as:

∆ρ = sup
D∼D′

ρ(f(D), f(D′)), (2)

which is the maximum amount of deviation that can occur in the output of f for adjacent datasets.

A mechanism A : X n → M is a randomized algorithm that takes a dataset D as input, and outputs a
privatized version of the summary f on D. The mechanism A satisfies (ϵ, 0) differential privacy (also pure
differential privacy) if, for all adjacent datasets D ∼ D′ and for all measurable sets S of M the following
holds:

P[A(D) ∈ S] ≤ exp (ϵ)P[A(D′) ∈ S] (3)

The intuition is that the change of a single element of the data space X does not significantly alter the
output distribution of the mechanism. As a relaxation, the mechanism A satisfies (ϵ, δ)-differential privacy
(also approximate differential privacy) if, for all adjacent datasets D ∼ D′ and for all measurable sets S of
M:

P[A(D) ∈ S] ≤ exp (ϵ)P[A(D′) ∈ S] + δ.

Intuitively, δ can be thought of as the probability of privacy failure, when Eq. equation 3 is not guaranteed.

Let pA(D) be the density of the random variable Y = A(D). Given adjacent datasets D ∼ D′, the privacy
loss function of A is defined as

ℓA,D,D′(y) = ln
(

pA(D)(y)
pA(D′)(y)

)
∀y ∈ M, (4)

and the privacy loss random variable is LA,D,D′ = ℓA,D,D′(Y ) (Balle & Wang, 2018). Importantly for
our derivations, both sufficient and sufficient & necessary conditions for the mechanism A to be (ϵ, δ)-
differentially private (DP) can be formulated in terms of LA,D,D′ . The sufficient condition writes : ∀D ∼
D′ : P[LA,D,D′ ≥ ϵ] ≤ δ =⇒ A is(ϵ, δ)-DP. The sufficient & necessary condition is: ∀D ∼ D′ : P[LA,D,D′ ≥
ϵ] − exp (ϵ)P[LA,D,D′ ≤ −ϵ] ≤ δ ⇐⇒ A is(ϵ, δ)-DP.

Fréchet Mean When the data space X is equal to the manifold M, we will be interested in mechanisms
that can privatize a specific statistical summary f called the Fréchet mean. The sample Fréchet mean X
(Fréchet, 1948) of the dataset D = {X1, . . . Xn} on the manifold M is defined as

X ≜

{
p|p ∈ arg min

q∈M

n∑
i=1

ρ2(q, Xi)
}

,

i.e. we have in this case X = f(D) for D ∈ Mn. Intuitively, the Fréchet mean uses a property of the mean
on linear spaces - namely the fact that mean minimizes the sum of squared distances to the data points - as
a definition of mean on manifolds. Crucially, the Fréchet mean depends on the distance ρ and therefore on
the Riemannian metric defined on M. We also note that the Fréchet mean might not always exist, and if
it exists it might not be unique – see supplementary materials. In practice, computing X generally requires
optimization algorithms such as gradient descent on manifolds (Boumal, 2020).

3 Geometry of the SPD Manifold with Log Euclidean Metric

Manifold and vector space structures We now restrict M to be the manifold of symmetric positive
definite (SPD) matrices:

SPD(k) =
{

X ∈ Rk×k|XT = X and ∀u ∈ Rk \ {0} , uT Xu > 0
}

, (5)

which has dimension d = k(k+1)
2 . The tangent space of the manifold SPD(k) at any point X ∈ SPD(k) is the

vector space of symmetric matrices SYM(k). The mathematical construct (SPD(k), +, .) is not a vector space
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under element-wise addition and element-wise scalar multiplication. This can be seen from the observation
that a ∈ R≤0, X ∈ SPD(k) =⇒ aX ̸∈ SPD(k). Instead, SPD(k) is an open cone of Rk×k and, as such,
naturally possesses a smooth manifold structure which can further be equipped with different Riemannian
metrics (Thanwerdas & Pennec, 2021). However, Arsigny et al. (Arsigny et al., 2007) showed in a surprising
result that SPD(k) can be given a vector space structure (SPD(k), ⊕, ⊙) via the operations ⊕, ⊙ defined in
Table 2, where Expm, Logm denote the matrix exponential and matrix logarithm. This fact is central for
the proofs provided in the present paper.

Operation Notation Expression
Addition X1 ⊕ X2 Expm [Logm X1 + Logm X2]
Subtraction X1 ⊖ X2 Expm [Logm X1 − Logm X2]
Scalar Multiplication a ⊙ X Expm [a. Logm X]

Table 2: Operations turning the manifold SPD(k) into a vector space. Expm and Logm denote the matrix
exponential and logarithms, respectively. X1, X2 belong to SPD(k) while a ∈ R is a scalar.

Riemannian structure Arsigny et al. further define a Riemannian metric on SPD(k), called the log-
Euclidean metric, which induces the following distance:

ρLE(X1, X2) = ∥Logm X1 − Logm X2∥F , ∀X1, X2 ∈ SPD(k), (6)

where ∥.∥F denotes the Frobenius norm on matrices. Importantly, the log-Euclidean metric (Arsigny et al.,
2006) gives a unique and simple closed form expression for the Fréchet mean in terms of matrix logarithm
and matrix exponential

XLE = Expm
[

1
n

n∑
i=1

Logm Xi

]
,

for the dataset X1, ..., Xn ∈ SPD(k).

Maps between spaces Lastly, we present maps that will help us define the differential privacy mecha-
nism proposed in the next section. Consider the map vecd : SYM(k) → R

k(k+1)
2 defined as vecd(X) =[

diag(X)T ,
√

2 upperdiag(X)T
]T , where diag : SYM(k) → Rk and upperdiag : SYM(k) → R

k(k−1)
2 build

vectors from the diagonal, and from the strictly upper diagonal entries, of the matrix X. The map vecd is
invertible and we denote by invvecd its inverse. Specifically, the spaces SPD(k), SYM(k) and R

k(k+1)
2 are

now related as follows:

SPD(k) SYM(k) R
k(k+1)

2 .
Logm

Expm

vecd

invvecd

4 Tangent Gaussian Mechanism on SPD manifolds

We can now introduce our differential privacy mechanism for statistical summaries on the SPD(k) manifold.
Let f : X n → SPD(k) be any SPD(k)-valued summary that needs to be privatized. The proposed mechanism
is based on the log Gaussian distribution on the SPD manifold (Schwartzman, 2016) which is defined as
follows. Consider a mean M ∈ SPD(k) and a tangent covariance Σ ∈ SPD

(
k(k+1)

2

)
. We can (i) first map

the mean M to the tangent space SYM(k) of SPD(k) at the identity using the matrix Logarithm Logm, then
(ii) to R

k(k+1)
2 using the map vecd introduced in the previous section, and (iii) consider whether the result

follows a traditional Gaussian distribution.
Definition 1 (Log Gaussian Distribution on SPD(k) (Schwartzman, 2016)). Given a mean M ∈ SPD(k),
and a tangent covariance Σ ∈ SPD

(
k(k+1)

2

)
, we say that X ∼ LN (M, Σ) follows a log Gaussian distribution
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Algorithm 1: tangent Gaussian Mechanism for f : X n → SPD(k)
Inputs : Dataset D of k × k SPD matrices of size n, sigma-type ∈ {’classical’, ’analytic’ }, ∆LE the

log-Euclidean sensitivity of f , ϵ > 0, δ ∈ (0, 1) and additionally ϵ < 1 if sigma-type is
’classical’, the noise calibration subroutines CLASSIC, ANALYTIC which take ∆LE , ϵ, δ
and provide σ.

Output: Private f(D)
1 if sigma-type is ’classical’ then σ = classic(∆LE, ϵ, δ); else σ = analytic(∆LE, ϵ, δ);
2 Compute non private output : fnp := f(D)
3 Compute mean of Gaussian distribution: M := vecd[Logm fnp], M ∈ R

k(k+1)
2

4 Sample from the Gaussian distribution in R
k(k+1)

2 : N ∼ N (M, σ2I)
5 Map sample to the SPD manifold: fp := Expm[invvecd N ]
6 Return private fp

on SPD(k) if vecd[Logm X] ∼ N (vecd[Logm M ], Σ) follows a (regular) Gaussian distribution with mean
vecd Logm M and covariance matrix Σ on R

k(k+1)
2 .

The density p(X|M, Σ) is then given by

J(X)
(2π) d

2 (det Σ) 1
2

exp
(

−1
2 vecd(Logm X − Logm M)T Σ−1 vecd(Logm X − Logm M)

)

where d = k(k+1)
2 , J(X) = 1

det X

∏
i<j h(λi, λj), and h(λi, λj) =

{
(log λi − log λj) λi > λj

1
λi

λi = λj

, with λi, λj

eigenvalues of the matrix X.

The definition of log Gaussian distribution on the SPD(k) manifold allows us to define our proposed tangent
Gaussian mechanism.
Definition 2 (tangent Gaussian Mechanism). Consider any statistical summary f : X n → SPD(k) on
the manifold SPD(k) equipped with log-Euclidean metric. Given σ2 > 0, we define the tangent Gaussian
mechanism ATG : X n → SPD(k), as

ATG(D) = X, where X ∼ LN (f(D), σ2I).

We now state our main theorem, which shows that the privacy loss of the tangent Gaussian mechanism is
normally distributed with mean and variance parametrized by the log-Euclidean distance. Proof is given in
Appendix A.2
Theorem 1 (Distribution of Privacy Loss for the tangent Gaussian Mechanism). Let ATG be a tangent
Gaussian mechanism with variance σ2. Its privacy loss is normally distributed as

LATG,D,D′ ∼ N
(

ρ2
LE(f(D), f(D′))

2σ2 ,
ρ2

LE(f(D), f(D′))
σ2

)
.

This distribution is analogous to the distribution of the privacy loss for the Euclidean Gaussian mechanism,
but with the log-Euclidean sensitivity instead of the Euclidean sensitivity (Dwork et al., 2014; Balle &
Wang, 2018). Consequently, our theoretical analysis of the tangent Gaussian mechanism - deriving privacy
guarantees from the distribution of the privacy loss above - closely follows the steps of the analysis for the
Euclidean Gaussian case. Specifically, we can proceed in two ways with either a (1) classical approach where
sufficient conditions are used to show the mechanism is (ϵ, δ)-DP as in Dwork et al. (2014), or with an (2)
analytic approach where the utility is better by using sufficient and necessary conditions (Balle & Wang,
2018).
Theorem 2 (Privacy Guarantee of tangent Gaussian Mechanism). Consider f : X n → SPD(k) with log-
Euclidean sensitivity ∆LE.
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1. (Classical) Given ϵ, δ ∈ (0, 1), choosing σ = ∆LE
√

2 ln(1.25/δ)/ϵ, makes the tangent Gaussian
mechanism (ϵ, δ)-differentially private.

2. (Analytic) Given ϵ ≥ 0, δ ∈ (0, 1) and Φ the cumulative distribution of the standard Gaussian,
choosing any σ that satisfies Φ( ∆LE

2σ − ϵσ
∆LE

) − exp(ϵ)Φ( ∆LE
2σ − ϵσ

∆LE
) ≤ δ makes the tangent Gaussian

mechanism (ϵ, δ)-differentially private.

Proofs are is given in Appendix A.3. Algorithm 1 shows the implementation of the mechanism.

5 Privatizing the Fréchet mean

In the previous section, f is any function that outputs a summary statistics on SPD(k). In this section, we
seek to privatize the Fréchet mean f of the log-Euclidean metric. We first compute its sensitivity and then
provide its utility. In what follows, Br(M) = {X|ρLE(M, X) < r} denotes an open geodesic ball of radius
0 < r < ∞ centered at M ∈ SPD(k).
Theorem 3 (Sensitivity of Log-Euclidean Fréchet Mean). Given data in Br(M) for some 0 < r < ∞ and
M ∈ SPD(k), the sensitivity of the log-Euclidean Fréchet mean verifies: ∆LE ≤ 2r

n .

Note above theorem can also obtained from (Reimherr et al., 2021, Theorem 2) by setting κ = 0. The utility
of the tangent Gaussian mechanism for a Fréchet mean query is then given below.
Theorem 4 (Utility). Let ATG be the (classical) tangent Gaussian mechanism, Br(M) a geodesic ball of
radius 0 < r < ∞ and center M ∈ M containing the dataset D and f the Fréchet mean. The utility of the
mechanism ATG is given by:

ρ2
LE(f(D), ATG(D))) ∼ σ2χ2

d,

E[ρ2
LE(f(D), ATG(D))] = 4r2 ln(1.25/δ)d

n2ϵ2 with d = dim(SPD(k)) = k(k + 1)
2 ,

where χ2
d represents the chi squared distribution with d degree of freedoms.

Proofs of Th. 3 and Th. 4 are given in Appendix A.4. We compare these results with those of the Riemannian
Laplace mechanism (Reimherr et al., 2021), denoted ARL.

Utility: We compare the utility in terms of size k of spd matrices k × k because dependancy
on other factors n, ϵ are same. Utility of the Riemannian Laplace mechanism has an expectation
given by E[ρ2

LE(f(D), ARL(D))] = O(k4). By contrast, our tangent Gaussian mechanism provides
E[ρ2

LE(f(D), ATG(D))] = O(ln(1/δ)k2). Hence our mechanism has significantly better utility in terms of
dimension.

Pure DP vs Approx DP: It should be noted that our privacy guarantees are weaker than Riemannian
Laplace. In practice, δ is chosen to be cryptographically small and typically δ ≪ 1/n Canonne (2021).

Theoretical Results: The authors of Reimherr et al. (2021) characterize the utility in terms of its expecta-
tion E[ρ2

LE(f(D), A(D))]. By contrast, our results yield a more complete picture, as we derive the probability
distribution of ρ2

LE(f(D), A(D))) given that we are tailoring mechanism for flat geometry of SPD matrices
with log-Euclidean metric.

6 Experiments

We use the Riemannian Laplace mechanism as the baseline and recall that this mechanism uses the Rieman-
nian Laplace distribution equation 25. Efficient sampling from the Riemannian Laplace distribution is only
discussed for (i) SPDManifold with affine-invariant metric and (ii) Hypersphere with Euclidean metric in
Reimherr et al. (2021) and we didn’t find any sampling procedure from this distribution on SPD manifold
with log-Euclidean metric in Reimherr et al. (2021); Hajri et al. (2016) and hence we used MCMC sampling
in our experiments.
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Figure 1: Utilities on synthetic data for Rie-Laplace the Riemannian Laplace mechanism (Reimherr et al.,
2021), and TanG Classical, TanG-Cla and TanG Analytic, TanG-Ana our proposed tangent Gaussian mech-
anisms (classical and analytic versions), and ExtG-Analytic the Extrinsic analytic gaussian mechanism for
different matrix sizes k and privacy parameter ϵ. ρLE and ρE denotes log-Euclidean and Euclidean distance
respectively. Note output of extrinsic mechanism is not a SPD matrix and hence deviation is measured in
standard Euclidean distance.

6.1 Experiments on Synthetic Datasets

The utility depends on privacy parameters (ϵ, δ), the size k of the matrices, the dataset size n and r the
radius of the geodesic ball containing the dataset. The utilities of the tangent Gaussian and Riemannian
Laplace mechanisms have the same dependency on n, ϵ, r, such that their differentiating parameters are δ, k.
Consequently, our experiments on synthetic data fix n, ϵ, r and vary δ, k.

We also consider Extrinsic approach suggested in Reimherr et al. (2021) where Fréchet mean is seen to be
belonging to Symmetric matrix and noise from Euclidean normal distribution is added, specifically AEX(D) =
X, X ∼ invvecd

(
N
(
vecd X̄LE, σ2I

))
for appropriate σ. If r is radius of log-Euclidean geodesic ball of data,

extrinsic sensitivity is given by ∆EX = 2(exp (r) − 1)/n (Reimherr et al., 2021, Proposition 1). It should be
emphasized that resultant privatized Fréchet mean is no longer a SPD matrix. Hence Reimherr et al. (2021)
compared deviation between private and non private Fréchet mean in the standard Euclidean norm.
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We generate random k × k SPD matrices as follows: (i) generate k real values (λ1, . . . , λk) uniformly in
[e−r, er], (ii) build D the diagonal matrix with Dii = λi, for i ∈ {1, ..., k}, (iii) generate a k × k random
orthogonal matrix E with the Haar distribution, and (iv) build the SPD matrix as: X = EDET . This process
generates SPD matrices, that can be shown to belong to the geodesic ball B√

kr(I) with I the identity matrix:

∥Logm X∥F =
√∑k

i=1(ln λi)2 ≤
√

kr2 =
√

kr. We use n = 500 and r = 1/4 in our experiments and hence
∆LE ≤

√
k/1000.

Fig. 1 (first) compares utilities using a fixed δ = 10−6 for our mechanism, a MCMC burn-in of 50, 000 for the
Riemannian Laplace mechanism, and different values of k ∈ {2, 5, 10, 15, 20, 25, 30} and ϵ ∈ {0.1, 0.2, 0.3, 0.4}.
Each experiment is repeated 10 times, the results are averaged and the band (µ−2σ, µ+2σ) is shown, where
µ and σ are the mean and standard deviation, respectively, of the associated result. The σ is small for
our mechanism, and does not appear on the plots. The tangent Gaussian mechanisms (ours) yield almost
×10 utility improvement for larger k, for each ϵ. Fig. 1 (middle) shows that, as expected, our utility is
not significantly impacted by different values of δ ∈ {10−7, 10−8, 10−9}. Fig. 1 (bottom) compares utilities
between Extrinsic Gaussian mechanism (analytic) and tangent Gaussian mechanism (analytic) in Euclidean
distance and shows proposed mechanism is better.

6.2 Experiments on Real-World Datasets

We run experiments on covariance descriptors of real-world images. Covariance descriptors (Tuzel et al.,
2006) have been widely used for face and person recognition (Tuzel et al., 2007; Zhang & Li, 2011; Pang
et al., 2008; Križaj et al., 2013; Ma et al., 2014; Cai et al., 2010; Zeng et al., 2015; Matsukawa et al., 2016),
action and gesture recognition (Cirujeda & Binefa, 2014; Hussein et al., 2013; Sharaf et al., 2015), 3D shape
analysis (Tabia et al., 2014; Ma et al., 2014), medical imaging (Khan et al., 2015; Cirujeda et al., 2016); and
even recently as layers in neural networks (Yu & Salzmann, 2017) - which makes them interesting data to
privatize.

Let I ∈ Rh×w×c be an image of height h, width w and with c channels, where c is 1 for gray scale images
and 3 for RGB images. Let ϕ : Rh×w×c → Rhw×k be a feature extractor of dimension k, i.e. ϕ(I)(x) is
a k-dimensional vector at each spatial coordinate x in the image’s domain S. Given a small η > 0, the
covariance descriptor Rη : Rh×w×c → SPD(k) associated with ϕ is defined as

Rη(I) =
[

1
|S|
∑
x∈S

(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T

]
+ η.I,

where µ = |S|−1∑
x∈S ϕ(I)(x), and η.I ensures Rη(I) ∈ SPD(k) with η usually set to 10−6. Our experiments

follow (Tuzel et al., 2006; Jayasumana et al., 2015) and use the covariance descriptors associated with
the feature vector given as ϕ(I)(x) =

[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|I|x

|I|y

)]
, where

x = (x, y), intensities derivatives are denoted by Ix, Iy, Ixx, Iyy and we added the intensity values I for each
channel compared to (Tuzel et al., 2006; Jayasumana et al., 2015). For gray scale images, ϕ(I)(x) is a 9-
dimensional vector that makes Rη(I) a 9×9 SPD matrix, while for RGB images ϕ(I)(x) is a 11-dimensional
vector that makes Rη(I) a 11×11 SPD matrix. We are within the assumptions of Th. 4 since such covariance
descriptors belong to geodesic balls centered at I, as shown by the following theorem.
Theorem 5. Let Rη(I) be the covariance descriptor associated with the feature vector ϕ(I) above.

1. If I is a gray scale image, then ∥Logm Rη(I)∥F ≤
√

9 max {|ln η|, |ln(14 + η)|}.

2. If I is a RGB image, then ∥Logm Rη(I)∥F ≤
√

11 max {|ln η|, |ln(16 + η)|}.

Proof is given in Appenidx A.5

6.2.1 Experiments on medical imaging data

We use images from 4 classes of the medical imaging datasets PATHMNIST (gray scale) and OctoMNIST
(RGB) from MedMNISTv2 (Yang et al., 2021), compute the 4 class-wise Fréchet means of their covariance

9



Published in Transactions on Machine Learning Research (02/2023)

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

LE
(f(

),
A(

))
N = 10704

Rie Laplace
TanG( = 10 5)
TanG( = 10 7)
TanG( = 10 9)

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

N = 10356

Rie Laplace
TanG( = 10 5)
TanG( = 10 7)
TanG( = 10 9)

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

N = 10699

Rie Laplace
TanG( = 10 5)
TanG( = 10 7)
TanG( = 10 9)

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

N = 11035

Rie Laplace
TanG( = 10 5)
TanG( = 10 7)
TanG( = 10 9)

0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LE
(f(

),
A(

))

N = 33734

Rie Laplace
TanG( = 10 5)
TanG( = 10 7)
TanG( = 10 9)

0.2 0.4 0.6 0.8
0

2

4

6

8

N = 10463

Rie Laplace
TanG( = 10 5)
TanG( = 10 7)
TanG( = 10 9)

0.2 0.4 0.6 0.8
0

2

4

6

8

10

N = 8004

Rie Laplace
TanG( = 10 5)
TanG( = 10 7)
TanG( = 10 9)

0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

N = 46276

Rie Laplace
TanG( = 10 5)
TanG( = 10 7)
TanG( = 10 9)

Figure 2: Utilities on the private Fréchet means for different privacy parameters ϵ, and real-world datasets
of sizes N . Top: PathMNIST (RGB images yielding 11 × 11 SPD descriptors). Bottom: OctoMNIST (gray
scale images yielding 9 × 9 SPD matrices). Rie-Laplace is the Riemannian Laplacian mechanism (Reimherr
et al., 2021) and TanG the tangent Gaussian mechanism for different values of δ (ours). We also show the
(µ − 2σ, µ + 2σ) band.

descriptors (η = 10−6), which we privatize using the Riemannian Laplace and tangent Gaussian (analytical)
mechanisms. We avoid using extrinsic approach because extrinsic sensitivity is extremely high Fig. 2 shows
the utilities for different values of ϵ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and δ ∈ {10−5, 10−7, 10−9}. The datasets sizes
N range from 8000 to 46276 images. The sensitivity of the Fréchet mean, required for the mechanisms,
is calculated using Th. 5 and Th. 3. Each experiment is repeated 10 times and averaged and the band
(µ−2σ, µ+2σ) is shown, where µ and σ are the mean and standard deviation, respectively, of the associated
result. Our mechanism also outperforms the Riemannian Laplace on real-world datasets, and the utility gap
is higher for smaller values of N and ϵ.

6.2.2 Experiments on standard imaging data

In this section, we perform additional experiments on standard image datasets. We choose MNIST, KMNIST
(Clanuwat et al., 2018) (gray scale images) and CIFAR10, FashionMNIST (Xiao et al., 2017) (RGB images)
as datasets. We extract images from 4 classes for each dataset and compute the corresponding class-wise
Fréchet means of their covariance descriptors (η = 10−6), which we privatize using the Riemannian Laplace
Mechanism (Reimherr et al., 2021) and our proposed mechanism tangent Gaussian (Analytic). Fig. 3 shows
the utilities for different values of ϵ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and δ ∈ {10−5, 10−7, 10−9}. Each experiment is
repeated 10 times, the results are averaged and the band (µ − 2σ, µ + 2σ) is shown, where µ and σ are the
mean and standard deviation, respectively, of the associated result. Fig. 3 illustrates the better utility of
our mechanism compared to the Riemannian Laplace mechanism.

7 Conclusion and Future Work

Differential privacy for geometric statistics and learning is at a very early stage. We proposed a tangent
Gaussian mechanism that is specific to the SPD manifold equipped with the log-Euclidean metric, and
that outperforms the only existing baseline. One limitation of our work is that the proposed mechanism
is restricted to one manifold with one specific metric. While the log-Euclidean metric is one of the most
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Figure 3: Utilities on the private Fréchet means for different privacy parameters ϵ, and real-world datasets
of sizes N . First and Second Row: Fréchet mean from MNIST, KMNIST (Gray scale images yielding 9 × 9
SPD descriptors). Third and Fourth Row: Fréchet mean from CIFAR10, FashionMNIST (RGB images
yielding 11 × 11 SPD descriptor). Rie-Laplace means the Riemannian Laplacian mechanism. TanG means
the tangent Gaussian Mechanism for different values of δ (ours). We also show the mean-2∗std, mean+2∗std
bands.

important metrics on the SPD manifold, future work should investigate how to build a Gaussian mechanism
that works on any complete Riemannian manifold. We could define such as a mechanism using a Riemannian
Gaussian distribution derived in Pennec (2006). The main challenge would be to show that the associated
procedure is (ϵ, δ) differentially private. Future work can also seek to privatize other geometric statistical
algorithms like geodesic regression or principal geodesic analysis.
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A Proofs

Consider k ∈ N∗. In this supplementary material, ∥.∥L2 and ⟨, ⟩2 denote the standard Euclidean inner
product and the Euclidean norm on vectors. i.e., for all x, y ∈ Rk

⟨x, y⟩L2 =
p∑

i=1
xiyi.

∥x∥L2 =
√

⟨x, x⟩L2.

Then, ⟨, ⟩F , ∥.∥F denotes Frobenius inner product and Frobenius norm respectively, i.e., given A, B ∈ Rk×k

⟨A, B⟩F = Tr[AT B].

∥A∥F =
√

⟨A, A⟩F .

Lastly, ∥.∥2 denotes the spectral norm of matrices. i.e., for all A ∈ Rk×k

∥A∥2 = sup
∥x∥L2 ̸=0

∥Ax∥L2
∥x∥L2

.

A.1 Useful Lemmas

In this section, we derive the distribution of the privacy loss. Its proof requires us to first introduce the
following definitions.
Definition 3 (Diffeomorphism and Isometry). A diffeomorphism between two manifolds M1 and M2 is
an invertible smooth function whose inverse is also smooth. A diffeomorphism ϕ between two Riemannian
manifolds (M1, g1), (M2, g2) is called an isometry if it preserves distances i.e., ρg1(p, q) = ρg2(ϕ(p), ϕ(q))
for all p, q ∈ M1.

Note that Logm is a diffeomorphism from SPD(k) to SYM(k) and vecd is a diffeomorphism from SYM(k)
to R

k(k+1)
2 , making vecd Logm a diffeomorphism from SPD(k) to R

k(k+1)
2 . Importantly for our derivations in

the proofs of this Subsection, the operation vecd Logm preserves the distances – making it an isometry.
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Lemma A.1 (vecd Logm is an isometry). Let Logm : SPD(k) → SYM(k) be the matrix logarithm and
let vecd : SYM(k) → R

k(k+1)
2 be defined as vecd(X) =

[
diag(X)T ,

√
2 upperdiag(X)T

]T . Then vecd Logm :
SPD(k) → R

k(k+1)
2 is an isometry from SPD(k) equipped with the log-Euclidean metric to standard Euclidean

space R
k(k+1)

2 with standard L2 metric, i.e.,

ρLE(X1, X2) = ρL2(vecd Logm X1, vecd Logm X2), (7)

where X1, X2 ∈ SPD(k). Hence we have that

∥Logm X∥F = ∥vecd Logm X∥L2 . (8)

Proof. Let X1, X2 be elements of SPD(k). We have:

ρ2
LE(X1, X2)
= ∥Logm X1 − Logm X2∥2

F

=
k∑

i,j

(Logm X1 − Logm X2)2
ij

=
k∑

i<j

(Logm X1 − Logm X2)2
ij +

k∑
i>j

(Logm X1 − Logm X2)2
ij +

k∑
i=j

(Logm X1 − Logm X2)2
ij

= 2.

k∑
i<j

(Logm X1 − Logm X2)2
ij +

k∑
i=j

(Logm X1 − Logm X2)2
ij

=
∥∥∥√

2 upperdiag(Logm X1 − Logm X2)
∥∥∥2

L2
+ ∥diag (Logm X1 − Logm X2)∥2

L2

= ∥vecd(Logm X1 − Logm X2)∥2
L2

= ∥vecd Logm X1 − vecd Logm X2∥2
L2

= ρ2
L2(vecd Logm X1, vecd Logm X2).

from which we have Eq. equation 7. Eq. equation 8 follows as

∥Logm X∥F = ρLE(X, I) = ρL2(vecd Logm X, vecd Logm I) = ∥vecd Logm X∥L2 .

Now, we prove some useful properties of the Log Gaussian distribution, denoted LN , that we will use later.
Essentially, we show that the Log Gaussian distribution behaves “nicely" with vector space structure of
SPD(k). We recall that the vector space operations on the SPD manifold are defined as follows,

X1 ⊕ X2 = Expm [Logm X1 + Logm X2] . (9)
X1 ⊖ X2 = Expm [Logm X1 − Logm X2] . (10)

Lemma A.2. Take k ∈ N. Let I denote the k × k identity matrix, and consider M, C ∈ SPD(k), Σ ∈
SPD( k(k+1)

2 ) and χ2
d the chi-square distribution with d degrees of freedom. Then:

X ∼ LN (I, Σ) =⇒ X ⊕ M ∼ LN (M, Σ). (11)
X ∼ LN (I, σ2I) =⇒ ⟨Logm C, Logm X⟩F ∼ N (0, σ2 ∥Logm C∥2

F ). (12)
X ∼ LN (I, σ2I) =⇒ ∥Logm X∥2

F ∼ σ2χ2
k(k+1)

2
. (13)
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Proof. We first recall standard properties of multivariate normal distribution. Let m, a ∈ Rp and Σ, I ∈ Rp×p

then following properties hold true.

x ∼ N (m, Σ) =⇒ a + x ∼ N (a + m, Σ). (14)
x ∼ N (m, Σ) =⇒ aT x ∼ N (aT m, aT Σa). (15)

x ∼ N (0, σ2I) =⇒ ∥x∥2
L2 ∼ σ2χ2

p. (16)

where χ2 denotes chi-square distribution. We prove the properties (a)-(c) below.

(a) Distribution of X ⊕ M .

vecd[Logm[X ⊕ M ]] (∗)= vecd[Logm[Expm [log X + log M ]]]
= vecd[Logm X + Logm M ]
= vecd[Logm X] + vecd[Logm M ]
(∗∗)∼ N (vecd[Logm M ], Σ).

where in (∗) we used Eq. 9 and in (∗∗) Eq. equation 14.

(b) Distribution of ⟨Logm C, Logm X⟩F .

⟨Logm C, Logm X⟩F
(∗)= ⟨vecd[Logm C], vecd[Logm X]⟩L2

(∗∗)∼ N
(
⟨vecd[Logm C], 0⟩L2, vecd[Logm C]T σ2I vecd[Logm C]

)
∼ N (0, σ2 ∥vecd[Logm C]∥2

L2)
(∗)∼ N (0, σ2 ∥Logm C∥2

F ).

where we used Eq. 8 in (∗) and Eq. 15 in (∗∗).

(c) Distribution of ∥Logm X∥2
F .

∥Logm X∥2
F

(∗)= ∥vecd[Logm X]∥2
L2

(∗∗)∼ σ2χ2
k(k+1)

2
.

where we used Eq. 8 in (∗) and Eq. 16 in (∗∗) with p = k(k+1)
2 .

As corollary, we give equivalent reformulation of tangent Gaussian mechanism that will useful in the rest of
the proofs.

Corollary A.3 (Equivalent Reformulation of tangent Gaussian). Let ATG be a tangent Gaussian mechanism
defined as ATG(f(D)) = X, X ∼ LN (f(D), σ2I). Then, it is equivalently defined as:

ATG(f(D)) = f(D) ⊕ N, N ∼ LN (I, σ2I).

Proof. The proof comes from Eq. 11 of Lemma A.2.

Now, we are ready to prove the distribution of the privacy loss of the tangent Gaussian Mechanism which is
given Th. 1.
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A.2 Proof of Th. 1

Theorem A.4 (Distribution of the privacy loss of the tangent Gaussian). Let ATG be a tangent Gaussian
mechanism with variance σ2. Its privacy loss is normally distributed as

LATG,D,D′ ∼ N
(

ρ2
LE(f(D), f(D′))

2σ2 ,
ρ2

LE(f(D), f(D′))
σ2

)
.

Proof. Assume that D, D′ are adjacent datasets. Let V = f(D) ⊖ f(D′). Consider the privacy loss random
variable LATG,D,D′ . Let Y = ATG(D).

ln
(

pATG(D)(Y )
pATG(D′)(Y )

)
(1)= ln

(
pATG(D)(f(D) ⊕ N)
pATG(D′)(f(D) ⊕ N)

)
(2)= −1

2

[
vecd

(
Logm(f(D) ⊕ N) − Logm f(D)

)]T I

σ2 vecd
(

Logm(f(D) ⊕ N) − Logm f(D)
)

+ 1
2

[
vecd

(
Logm(f(D) ⊕ N) − Logm f(D′)

)]T I

σ2 vecd
(

Logm(f(D) ⊕ N) − Logm f(D′)
)

(3)= − 1
2σ2

∥∥∥vecd
(

Logm N
)∥∥∥2

L2
+ 1

2σ2

∥∥∥vecd
(

Logm f(D) − Logm f(D′) + Logm N
)∥∥∥2

L2
(4)= − 1

2σ2

∥∥∥vecd
(

Logm N
)∥∥∥2

L2
+ 1

2σ2

∥∥∥vecd
(

Logm(V ⊕ N)
)∥∥∥2

L2
(5)= 1

2σ2

[
∥Logm(V ⊕ N)∥2

F − ∥Logm N∥2
F

]
= 1

2σ2

[
∥Logm V ∥2

F + 2⟨Logm V, Logm N⟩F

]
(6)∼ 1

2σ2

[
∥Logm V ∥2

F + 2N
(

0, σ2 ∥Logm V ∥2
F

)]
(7)∼ N

(
∥Logm V ∥2

F

2σ2 ,
∥Logm V ∥2

F

σ2

)
(8)∼ N

(
ρ2

LE(f(D), f(D′))
2σ2 ,

ρ2
LE(f(D), f(D′))

σ2

)
,

where we used following properties in each of the steps labeled above.

1. Equivalent reformulation of tangent Gaussian, Corollary. A.3.

2. Density of Log Gaussian Distribution.

3. f(D) ⊕ N = Expm[Logm f(D) + Logm N ].

4. Logm(V ⊕ N) = Logm f(D) − Logm f(D′) + Logm N .

5. Isometry of the vecd operation, Eq.8

6. Eq. 12 in Lemma. A.2.

7. standard Gaussian property, see Eq. 14.

8. ∥Logm V ∥2
F = ∥Logm f(D) − Logm f(D′)∥2

F = ρ2
LE(f(D), f(D′)).
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A.3 Proof of Th. 2

In this section we give proof of privacy guarantee of the tangent Gaussian Mechanism.

Proof. The proof proceeds similarly to the proofs referenced below, by only replacing the standard sensitivity
∆L2 with respect to the Euclidean L2 metric, by ∆LE:

1. (Classical). See Th. A.1 (Appendix A Page 261) in Dwork et al. (2014).

2. (Analytic). See Th. 5, Th. 8, Th. 9 (Section 3) in Balle & Wang (2018).

The fact that mechanism is manifold valued comes into play while deriving privacy loss (Taken care by
Theorem 1). Once privacy loss (which is real valued scalar random variable) is derived, going from privacy
loss to actual privacy guarantee wouldn’t be affected whether a mechanism is manifold-valued or not because
both of the above proofs entirely rely on properties of one-dimensional euclidean Gaussian random variables.
Specifically,

1. (Classical). Directly employs tail bound of one-dimensional Gaussian variable that P[x > t] <
σ
π exp(− t2

2σ2 )

2. (Analytic). The method employs both the sufficient and necessary conditions of the (ϵ, δ) guarantee.
Additionally, the algorithm avoids using tail bounds, since they may be loose, instead uses properties
of Gaussian CDFs and employs binary search to solve analytically for σ, given (ϵ, δ). See (Balle &
Wang, 2018, Algorithm 1) and discussion therein for more details.

A.4 Proof of Th. 3 and Th. 4

In this section, we prove the sensitivity of the Fréchet Mean in Theorem. 3 and then the utility of the tangent
Gaussian Mechanism in Theorem. 4. First we give the proof of 3.

Proof. Consider k ∈ N, 0 < r < ∞ and M ∈ SPD(k) such that Br(M) is a geodesic ball of radius r and
center M . Let D ∼ D′ be adjacent datasets of size n ∈ N that lie in Br(M). Without loss of generality,
we can assume that they differ only by their last data point Xn and X ′

n: D = {X1, X2, . . . , Xn} and
D′ = {X1, X2, . . . , X ′

n}. Let XD, XD′ denote the Fréchet means of D and D′ for the log-Euclidean metric,
which can be expressed in closed forms as mentioned in the main text. The log-Euclidean distance between
the Fréchet means writes:

ρLE(XD, XD′)

(∗)=

∥∥∥∥∥Logm
(

Expm
(

n∑
i=1

Logm Xi

n

))
− Logm

(
Expm

(
n−1∑
i=1

Logm Xi

n
+ Logm X ′

n

n

))∥∥∥∥∥
F

=

∥∥∥∥∥ 1
n

n−1∑
i=1

Logm Xi − 1
n

n−1∑
i=1

Logm Xi + 1
n

Logm Xn − 1
n

Logm X ′
n

∥∥∥∥∥
F

= 1
n

∥Logm Xn − Logm X ′
n∥F

= 1
n

ρLE(Xn, X ′
n).
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∆LE = sup
D∼D′

ρLE(XD, XD′) = sup
D∼D′

1
n

ρLE(Xn, X ′
n)

(†)
≤ 1

n
[ρLE(Xn, M) + ρLE(M, X ′

n)]
(‡)
≤ 2r

n
,

where we use the closed form for the log-Euclidean Fréchet means in (∗), the triangle inequality in (†) and
assumption that data lies in Br(M) in (‡).

Proof of Th. 4 is given as follows,

Proof. Consider deviation ρ2
LE(f(D), ATG(D)))

ρ2
LE(f(D), ATG(D))) = ∥Logm f(D) − Logm ATG(D)∥2

F

(1)= ∥Logm f(D) − Logm(f(D) ⊕ N)∥2
F

(2)= ∥Logm N∥2
F

(3)∼ σ2χ2
d,

where we use the following properties at each step:

(1) Corollary. A.3.

(2) f(D) ⊕ N = Expm [Logm f(D) + Logm N ].

(3) Eq. 13 of Lemma. A.2.

Now we derive expression for E[ρ2
LE(f(D), ATG(D))]

E[ρ2
LE(f(D), ATG(D))] (1)= σ2d

(2)= 2∆2
LE ln(1.25/δ)d

ϵ2

(3)
≤ 8r2 ln(1.25/δ)d

n2ϵ2 .

where we use following properties at each step:

1. c ∼ χ2
d =⇒ E[c] = d i.e., expectation of chi squared distributed random variable is number of

degrees of freedom.

2. σ = ∆LE
√

2 ln(1.25/δ)/ϵ for (ϵ, δ)-ATG from Th. 2.

3. ∆LE ≤ 2r
n from Th. 3.

A.5 Proof of Theorem 5

In this section we derive log-Euclidean geodesic radius of covariance descriptors. We first prove following
lemma that relates || Logm X||F in terms of lower bound on least eigenvalue and upper bound on largest
eigenvalue of X.
Lemma A.5. If X ∈ SPD(k) and let λmin(X), λmax(X) be the minimum and maximum eigenvalues of X.
If ℓ ≤ λmin(X) and λmax(X) ≤ L Then, ∥Logm X∥F ≤

√
k max {|ln ℓ|, |ln L|}.
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Proof. Consider,

∥Logm X∥F

(†)
≤

√
k ∥Logm X∥2

=
√

k
nmax

i=1
|ln λi|

=
√

k max
{

|
n

min
i=1

ln λi|, | nmax
i=1

ln λi|
}

(‡)=
√

k max
{

|ln
n

min
i=1

λi|, |ln nmax
i=1

λi|
}

=
√

k max {|ln λmin|, |ln λmax|} . (17)

where (†) uses the fact that A ∈ Rk×k, ∥A∥F ≤
√

k ∥A∥2 and (‡) uses the fact that ln is monotonically
increasing. Now, we split the derivation into two cases.

1. Case λmin(X) ≥ 1. For x ≥ 1 , | ln x| is an increasing function, which gives us: |ln ℓ| ≤
|ln λmin(X)| ≤ |ln λmax| ≤ |ln L|

√
k max {|ln λmin|, |ln λmax|} ≤

√
k|ln L| =

√
k max {|ln ℓ|, |ln L|} . (18)

2. Case λmin(X) < 1. For x < 1, | ln x| is a decreasing function: |ln λmin| ≤ |ln ℓ|. We further split
the derivation into two sub-cases here

(a) Sub-case λmax ≥ 1. In this sub-case |ln λmax| ≤ |ln L| and ln λmin ≤ |ln ℓ| from which we have
that

√
k max {|ln λmin|, |ln λmax|} ≤

√
k max {|ln ℓ|, |ln L|} . (19)

(b) Sub-case λmax < 1. In this sub-case |ln L| ≤ |ln λmax| ≤ |ln λmin| ≤ |ln ℓ|.
√

k max {|ln λmin|, |ln λmax|} ≤
√

k|ln ℓ| =
√

k max {|ln ℓ|, |ln L|} . (20)

Based on Eq. 18, Eq. 19, Eq. 20 and Eq.17. We can conclude the lemma.

Lemma A.6. Let Rη(I) denote the covariance descriptor for image I for given η > 0, which is defined as
follows ,

Rη(I) =
[

1
|S|
∑
x∈S

(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T

]
+ η.I,

with,

ϕ(I) =
[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|Ix|
|Iy|

)]
.

where x, y are grid positions of Image I, I denote pixel intensity values , |Ix|, |Iy| denotes first order intensity
derivatives and |Ixx|, |Iyy| denotes the second order intensity derivatives then following holds,

1. If I is grayscale image, then ∥Rη(I)∥2 ≤ 12 + η.

2. If I is RGB image then ∥Rη(I)∥2 ≤ 14 + η.
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Proof. We have:

∥Rη(I)∥2 =

∥∥∥∥∥
[

1
|S|
∑
x∈S

(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T

]
+ η.I

∥∥∥∥∥
2

(1)
≤ 1

|S|
∑
x∈S

∥∥(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T
∥∥

2 + ∥η.I∥2

≤ max
x∈S

∥∥(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T
∥∥

2 + η

(2)= max
x∈S

∥(ϕ(I)(x) − µ)∥2
L2 + η

(3)
≤ max

x∈S
∥ϕ(I)(x)∥2

L2 + η, (21)

where we used following properties in each of the steps:

1. Triangle Inequality.

2. For all a ∈ Rp, the spectral norm of 1-rank matrix aaT is ∥a∥2
L2.

3. Consider the descriptor ϕ(I) =
[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|Ix|
|Iy|

)]
. Then,

ϕ(I)(x)i ≥ 0 for each x ∈ S and i ∈ {1, . . . , k}. This yields: (µ)i =
(
|S|−1∑

x∈S ϕ(I)(x)
)

i
≥ 0.

Hence it implies that ∥ϕ(I)(x) − µ∥2
L2 ≤ ∥ϕ(I)(x)∥2

L2.

Then, the following calculations provide an upper bound for ∥ϕ(I)(x)∥2
2. Specifically, we bound each of the

6 elements constituting the descriptor ϕ(I) =
[
x, y, I, |Ix|, |Iy|, |Ixx|, |Iyy|,

√
|Ix|2 + |Iy|2, arctan

(
|Ix|
|Iy|

)]
.

1. Normalized grid positions : ∀x ∈ S, 0 ≤ x, y ≤ 1.

2. Pixel intensity values Ci for i ∈ [c] : ∀x ∈ S, 0 ≤ Ci[x] ≤ 1.

3. First intensity derivatives |Ix|, |Iy|: The first intensity derivatives can be obtained by the convolution
operation (denoted as ⋆):

Ix = I ⋆
1
4

+1 0 −1
+2 0 −2
+1 0 −1

 , Iy = I ⋆
1
4

+1 +2 +1
0 0 0

−1 −2 −1

 .

Since 0 ≤ I(x) ≤ 1, using the definition of the convolution operation yields ∀x ∈ S, |Ix(x)| ≤ 1,
|Iy(x)| ≤ 1.

4. Second intensity derivatives |Ixx|, |Iyy| : The second intensity derivatives can be obtained by the
convolution operation (denoted as ⋆)

Ixx = I ⋆
1
32


+1 0 −2 0 1
+4 0 −8 0 4
+6 0 −12 0 6
+4 0 −8 0 4
+1 0 −2 0 1

 , Iyy = I ⋆
1
32


+1 +4 +6 +4 +1
0 0 0 0 0

−2 −8 −12 −8 −2
0 0 0 0 0

+1 +4 +6 +4 +1

 .

Since 0 ≤ I(x) ≤ 1, using the definition of the convolution operation yields |Ixx(x)| ≤ 1, |Iyy(x)| ≤
1.
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5. Norm of first intensity derivatives : since |Ix(x)| ≤ 1, |Iy(x)| ≤ 1 we have that ∀x ∈
S,
√

Ix(x)2 + Iy(x)2 ≤
√

2.

6. Angle of intensity derivatives : Note that for a ≥ 0, 0 ≤ arctan a ≤ π
2 . Hence we have that

∀x ∈ S, arctan
(

| Ix(x)
Iy(x) |

)
≤ π

2 .

These provide the following upper bounds on L2 norm of ϕ(I)(x),

for a gray scale image, ∀x ∈ S ∥ϕ(I)(x)∥2
L2 ≤ 12, (22)

for RGB image, ∀x ∈ S ∥ϕ(I)(x)∥2
L2 ≤ 14. (23)

The claim follows by using Eq. 22, Eq. 23 in Eq. 21

Theorem A.7 (Geodesic Radius of Covariance Descriptors).

1. If I is a gray scale image, then ∥Logm Rη(I)∥F ≤
√

9 max {|ln η|, |ln(12 + η)|}.

2. If I is a RGB image, then ∥Logm Rη(I)∥F ≤
√

11 max {|ln η|, |ln(14 + η)|}.

Proof. We first note that

λmin(Rη(I)) = λmin

[
1

|S|
∑
x∈S

(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T + η.I

]
(1)
≥ λmin

[
1

|S|
∑
x∈S

(ϕ(I)(x) − µ)(ϕ(I)(x) − µ)T

]
+ λmin[ηI]

(2)
≥ 0 + η. (24)

where we used Weyl’s inequality for symmetric matrices in (1) and λmin of positive semi definite matrix is
≥ 0 and λmin[ηI] = η in (2).

For gray scale images, Rη(I) produces a 9 × 9 matrix:

∥Logm Rη(I)∥F

(∗)
≤

√
9 max {|ln ℓ|, |ln L|}

(∗∗)=
√

9 max {|ln η|, |ln(12 + η)|} ,

where we use Lemma. A.5 in (∗) and Eq.24(ℓ = η) and Lemma. A.6(L = 12 + η) in (∗∗)

For RGB images, Rη(I) produces a 11 × 11 matrix:

∥Logm Rη(I)∥F

(†)
≤

√
11 max {|ln ℓ|, |ln L|}

(‡)=
√

11 max {|ln η|, |ln(14 + η)|} ,

where we use Lemma. A.5 in (†) and Eq.24 (ℓ = η) and Lemma. A.6(L = 14 + η) in (‡), in a similar
fashion.

Note that in all of our experiments, we choose η = 10−6 and hence | ln η| ≈ 13.8 domninates over | ln(12+η)| ≈
2.5 and | ln(14 + η)| ≈ 2.6.
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Figure 4: (a) Computational times for Rie-Laplace(x) the Riemannian Laplace mechanism with a MCMC
burn-in of x ∈ {10, 000; 30, 000; 50, 000} (Reimherr et al., 2021), and TanG-Analytic the proposed tangent
Gaussian mechanism (analytic version). (b) Utility with varying burn-ins for Rie-Laplace. Plots (a, b) use
different matrix sizes k. Plot (c) explores if the bound from Th. 5 is tight in practice.

B Experiments

All experiments were run on Dell XPS 17 9710 Laptop which has 32GB of RAM, 11th Gen Intel(R)
Core i9-11900H @ 2.50GHz Processor. No GPUs were used in the experiments.

B.1 Implementation Details

Let k ∈ N, M ∈ SPD(k), σ > 0 and ρLE denote log-Euclidean distance. The Riemannian Laplace distribution
with log-Euclidean distance is given by

p(X|M, σ) = 1
CM,σ

exp
(

−ρLE(X, M)
σ

)
. (25)

Note that sampling from Eq. equation 25 requires Markov Chain Monte Carlo (MCMC) methods (Robert
et al., 1999), for which one needs to choose a proposal distribution that generates candidates on the SPD
Manifold. We choose the Log Gaussian distribution as the proposal in our experiments given its simplicity
and the fact that it is quick to sample from. In all experiments, we found that using the log Gaussian
distribution as proposal yields a stable acceptance ratio of 50% to 65%. To summarize,

1. Initialize Xcurr at a random point of the manifold SPD(k).

2. For 1 → n iterations

(a) Draw a candidate from X ∼ LN (Xcurr, σ2I).
(b) With probability exp(−ρLE(Xmean, X)/σ)/ exp(−ρLE(Xcurr, X)/σ) accept the generated candi-

date X and set Xcurr = X .

The final sample is chosen based on a burn-in period of 50,000 steps. Both Riemannian Laplace and tangent
Gaussian mechanism can be easily implemented using existing libraries like geomstats Miolane et al. (2020),
tensorflow-riemopt Miolane et al. (2020); Smirnov (2021), rieoptax Utpala et al.. In all our experiments we
used geomstats Miolane et al. (2020).

B.2 Additional Experiments

We compare the times required to privatize the Fréchet mean using both mechanisms and varying k ∈
{2, 5, 10, 15, 20, 25, 30} in Fig. 4(a). Note that we used MCMC for Riemannian Laplace and its time depends
on the burn-in - that we choose in {10000, 30000, 50000}. For k = 30, Fig. 4(a) shows that Riemannian
Laplace mechanism takes 14 sec (burn-in 10000), 36 sec (burn-in 30000) and 73 sec (burn-in 50000) - whereas
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our tangent Gaussian (Analytic) mechanism takes 1.3 microsec. Fig. 4(b) considers the effect of the burn-in
on the Riemannian Laplace’s utility and finds no significant difference for burn-ins in {10000, 30000, 50000}.

Fig. 4 (c) shows that the bound derived in Th. 5 is tight in practice, as illustrated by the ratio of the bound
obtained in Th.5 and the practical bound.

B.3 Code

Code is attached with Supplementary Material.
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