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Abstract

Most existing debiasing methods for multi-
modal models, including causal intervention
and inference methods, utilize approximate
heuristics to represent the biases, such as shal-
low features from early stages of training or
unimodal features for multimodal tasks like
VQA, etc., which may not be accurate. In this
paper, we study bias arising from confounders
in a causal graph for multimodal data, and ex-
amine a novel approach that leverages causally-
motivated information minimization to learn
the confounder representations. Robust predic-
tive features contain diverse information that
helps a model generalize to out-of-distribution
data. Hence, minimizing the information con-
tent of features obtained from a pretrained bi-
ased model helps learn the simplest predictive
features that capture the underlying data distri-
bution. We treat these features as confounder
representations and use them via methods mo-
tivated by causal theory to remove bias from
models. We find that the learned confounder
representations indeed capture dataset biases
and the proposed debiasing methods improve
out-of-distribution (OOD) performance on mul-
tiple multimodal datasets without sacrificing
in-distribution performance. Additionally, we
introduce a novel metric to quantify the suffi-
ciency of spurious features in models’ predic-
tions that further demonstrates the effectiveness
of our proposed methods.1

1 Introduction

The success of multimodal models in various tasks
has been attributed to their ability to rely on spuri-
ous correlations (or biases) present in the training
data (Jabri et al., 2016; Agrawal et al., 2016; Zhang
et al., 2016a; Goyal et al., 2017). An example of
image bias in VQA is when the model tends to
look at prominent objects in the image rather than
focusing on the object about which the question

1Our code is available at: https://github.com/
Vaidehi99/CausalInfoMin
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Figure 1: Multimodal models tend to rely on spurious
correlations in the dataset to answer a question. Existing
methods remove unimodal biases whereas our method
removes biases arising from cross-modal interactions
as well and is more invariant to irrelevant features (e.g.,
the coffee mug) in this example.

is asked (Wen et al., 2021) (see Fig. 1). These
models leverage such biases to perform well on
in-distribution (ID) evaluation data (Agrawal et al.,
2018a). However, their poor performance on out-
of-distribution data reveals that they merely rely on
superficial features rather than capturing the true
causal relationships between inputs and targets.

Existing methods attempt to diminish a model’s
reliance on these shortcuts by taking one or both of
two primary strategies: (a) by balancing the sample
groups with and without spurious correlation, e.g.
via data augmentation (Gokhale et al., 2020) or
sample synthesis (Chen et al., 2020, 2022; Kolling
et al., 2022a), and (b) by explicitly eliminating the
impact of spurious correlations during model train-
ing or inference (Huang et al., 2022; Lin et al.,
2022; Pan et al., 2022). In the former approach, the
identification of the unique set of spurious corre-
lations in each sample becomes essential to curate
augmented samples for achieving balance. Conse-
quently, approaches that alleviate biases in features
or predictions, independent of the availability of
non-spurious data, are more desirable. Such meth-
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ods also offer the additional advantage of being
agnostic to the specific dataset and task at hand.

Recent research on debiasing models has em-
phasized the significance of causal theory (Zhang
et al., 2021; Liu et al., 2022; Bahadori and Hecker-
man, 2020) i.e., many spurious correlations origi-
nate from confounding variables that induce non-
causal dependencies between inputs and labels
(Pearl et al., 2000). However, effectively identify-
ing and representing biases that undermine predic-
tion accuracy remains a challenging task. Previous
studies on multimodal models have utilized image
features from early training stages as contextual bi-
ases for multi-label image classification (Liu et al.,
2022), or introduced unimodal training branches
to mitigate spurious correlations in Visual Ques-
tion Answering (VQA) (Niu et al., 2021). More-
over, these approaches overlook biases stemming
from multimodal interactions within their causal
graphs. Hence, in this work, we represent the bias
as confounder variables that have a direct causal ef-
fect on multimodal features and the corresponding
predictions (see Fig. 2(a)). Spurious correlations
represent the simplest predictive features that ex-
plain biased datasets (Geirhos et al., 2020), thereby
making them easily learnable by machine learn-
ing models under limited representation capacity
(Yang et al., 2022). We capitalize on this notion to
study a novel framework that combines informa-
tion theory and causal graphs to learn confounder
representations capable of capturing spurious fea-
tures. We examine two approaches to learn the con-
founder representations by imposing information
loss on biased multimodal features i.e., (a) latent
variable modeling using a generative model and
(b) rate-distortion minimization (Shannon, 1948).
Subsequently, we utilize these confounders in our
proposed debiasing methods, namely ATE-D and
TE-D, leveraging the concepts of average treat-
ment effect (Glymour et al., 2016) and total effect
(Pearl, 2022) causal mechanisms, respectively.

In ATE-D, we employ an autoencoder to recon-
struct the biased features. The autoencoder projects
these features into a lower-dimensional latent space,
capturing latent features that act as substitutes for
unobserved confounders (Huang et al., 2022). By
clustering the learned confounder representations
across the dataset, we construct a dictionary of
confounders. We subsequently perform backdoor
adjustment based on the average treatment effect,
utilizing feature reweighting (Kirichenko et al.,

2022). In TE-D, we leverage the rate-distortion
function which controls the number of bits required
to encode a set of vector representations (Chowd-
hury and Chaturvedi, 2022). We minimize the rate-
distortion function for a non-linear projection of the
features extracted from a biased pretrained model,
while simultaneously minimizing the cross-entropy
loss of predicting from these projected features.
This results in the loss of diverse information from
the features and the retention of simple features that
are also maximally predictive of the biased dataset.
We treat these features as the confounder repre-
sentations that stem from spurious correlations in
the dataset and compute the (unbiased) total effect
of the input by taking the difference between the
biased feature and its respective confounder.

We evaluate the proposed methods on several
multimodal tasks and along multiple dimensions
i.e., in-distribution and out-of-distribution perfor-
mance, efficiency, and robustness. Results show
that these methods not only outperform baseline
models with lower training overhead but also yield
additional gains on top of unimodal debiasing meth-
ods. In this work, we demonstrate the presence of
multimodal biases and the need for multimodal
debiasing along with the potential of confounder
modeling via information loss in causal multimodal
debiasing. Our contributions are as follows:

• We present two methods, TE-D and ATE-D, that
leverage causally-motivated information loss to
learn confounder representations from biased fea-
tures and utilize them to debias models.

• Our methods remove multimodal biases and yield
up to 2.2% and 2.5% gains over LXMERT (Tan
and Bansal, 2019), on VQA-CP and GQA-OOD
(Kervadec et al., 2021) datasets respectively, and
0.7% gains on top of unimodal debiasing (Wen
et al., 2021). Importantly, our methods exhibit su-
perior parameter efficiency and reduced training
time compared to existing debiasing methods.

• We propose a sufficiency score (λ) for quantify-
ing the reliance of models on spurious features.
Results show that our methods improve robust-
ness to spurious correlations in the dataset.

• We analyze the confounders learnt in ATE-D,
TE-D and show that they encode dataset biases.

2 Related Work

Data Augmentation. Balancing data (Zhang
et al., 2016b) can involve training a generative



model for sample synthesis (Agarwal et al., 2020;
Sauer and Geiger, 2020), designing suitable data
selection heuristics (Chen et al., 2020), or curat-
ing balanced/counterfactual samples (Goyal et al.,
2017; Gokhale et al., 2020; Kolling et al., 2022c).
Human explanations can be used as additional train-
ing signals to promote reasoning (Ying et al., 2022;
Wu and Mooney, 2019; Selvaraju et al., 2019). We
debias models using existing biased data.

Inductive Bias in Model Architecture. Agrawal
et al. (2018a) explicitly design inductive biases to
prevent the model from relying on training priors.
Clark et al. (2019); Cadene et al. (2019); Ramakr-
ishnan et al. (2018) rely on a separate QA branch to
weaken the language prior in VQA models via ad-
versarial or multi-task learning. Wen et al. (2021)
use contrastive loss to remove unimodal biases for
VQA. Peyrard et al. (2022) discover invariant corre-
lations in data across different training distributions
to enable generalization.

Inductive Bias for Modeling Confounders.
Kallus et al. (2018) recover latent confounders via
low-rank matrix factorization and Sen et al. (2017)
utilize low-dimensional variables for encoding con-
founders. We use low-dimensional features to limit
representational capacity for encoding confounders
in multimodal data.

Causal Perspective. Lin et al. (2022) use causal
intervention through backdoor adjustment (Gly-
mour et al., 2016) to disentangle the biases for
unsupervised salient object detection. Huang et al.
(2022) use ATE to debias referring expression mod-
els. Niu et al. (2021) compute the Total Indirect
Effect (TIE) of the multimodal branch to omit the
influence of unimodal branches. Veitch et al. (2021)
formalize counterfactual invariance and its relation
to OOD performance. Liu et al. (2022) use features
from early training as confounders and compute
the Total Direct Effect (TDE) for multi-label image
classification. We combine information theory and
causal theory to learn confounders from biased rep-
resentations and use them via ATE and TE causal
mechanisms to debias a model.

3 Causal Theory Preliminaries
In this section, we discuss our proposed causal
graph for multimodal tasks and the two causal
mechanisms relevant to our debiasing methods.

Causal Graph. Causal graphs are directed
acyclic graphs G = {V, E} where the edges E

(a) (b)

(c)

Figure 2: Demonstration of (a) our proposed causal
graph for multimodal tasks, (b) Average Treatment Ef-
fect (ATE), and (c) Total Effect (TE) on (a). Values in
grey indicate the ‘no-treatment’ condition.

are used to represent causal relationships between
random variables V . When the variable Q has
an indirect effect on A through a variable M i.e.
Q → M → A, the variable M is said to be a
mediator in the causal graph (see Fig. 2(a)). If a
variable C has a direct causal effect on both M
and A, it is said to be a confounder.

Causal Perspective for Multimodal Tasks. Mul-
timodal models for tasks combining vision (V ) and
language (Q) often face the challenge of confound-
ing variables, which introduce spurious features.
Current approaches rooted in causal theory aim to
mitigate direct unimodal effects. However, a VQA
example (Fig. 1) highlights a limitation: models
trained predominantly on centrally located objects
struggle with queries about obscured object colors.
Existing causal graphs for multimodal tasks fail
to account for spurious correlations arising from
such interactions. To address this, we propose a
confounder C that influences both the mediator M
and the answer A (Fig.2(a)). By modeling biases
encoded in multimodal features as confounder C,
we can eliminate biases using causal intervention.

In order to debias VQA models, we adopt two
causal mechanisms i.e., the Average Treatment
Effect (ATE) and Total Effect (TE), which essen-
tially refer to the same quantity but differ in how
they deal with the confounder (VanderWeele, 2015;
Tang et al., 2020a). In ATE, C is treated as a dis-
tribution, and c is sampled by assuming implicit
causal association with the treatment M = m. In
TE, c has an explicit causal association with the
treatment M = m in each sample. We explore
both in our work and discuss their theories below.

Average Treatment Effect. The aim of causal
inference is to estimate the independent effect
of an intervention on a treatment variable M on
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Figure 3: An illustration of our method ATE-D based on autoencoder-based confounder modeling and Average
Treatment Effect causal mechanism (see Sec. 4.1). The confounders are modeled using autoencoder in Step 1 and
biased features are recalibrated using confounders to get debiased features in Step 2.

an outcome of interest A i.e. to estimate the
conditional probability distribution P (A|do(M))
where the do-operation implies the causal effect
of M → A. However, standard models are opti-
mized to infer the observational conditional prob-
ability P (A|M). In the presence of confounders
i.e. variables c ∈ C that affect both A and M ,
P (A|M) ̸= P (A|do(M)). P (A|do(M)) can be
estimated using backdoor adjustment by control-
ling for all values of the confounders c ∈ C as:

P (A|do(M)) = Ec∼C [P (A|M, c)] (1)

This translates to an empirical sum over all possible
values of the confounder in practice, also known as
the average treatment effect (ATE) (see Fig. 2(b)).
When the confounders are known and observed,
the confounder values are selected using suitable
heuristics (Pearl et al., 2000). However, observing
all confounders is not always possible. Hence, we
model the variables that can be used as substitutes
for the confounders via latent representations in
autoencoders (Sen et al., 2017; Kallus et al., 2018).
Huang et al. (2022) use average treatment effect-
based debiasing for the task of visual grounding by
modeling confounders.

Total Effect. We need to isolate the causal effect
of M = m on A, free from the influence of the
confounders C. According to causal theory, the
total effect (TE) of treatment M = m on A is,

TE = Am,Cm −Am∗,Cm (2)

where M = m, M = m∗ represent ‘treatment’
and ‘no treatment’ conditions respectively; Cm is
the confounder under treatment and Am,Cm is the
answer in the presence of treatment as well as con-

founder. The direct effect of Cm on M is elimi-
nated by retaining the confounder on both sides of
the difference (see Fig. 2(c)). In practice, we take
the difference between feature representations of
Am,Cm , Am∗,Cm i.e. Zm,c, Zm∗,c respectively, to
eliminate the effect of Cm (see Sec. 4.2).

4 Debiasing Methods: ATE-D and TE-D

Kirichenko et al. (2022) show that machine-
learning models learn spurious as well as non-
spurious features when trained on a biased dataset,
but over-rely on the former for making predictions.
In Sec. 1, we discussed how confounder variables
contribute to these spurious predictions. Further,
Yang et al. (2022) show empirically that deep mod-
els preferentially encode dataset shortcuts under
limited representation capacity. Indeed, neural nets
are expected to trade-off between maximal com-
pression of the learnt representations and maxi-
mal fitting to the labels (Information-Bottleneck)
(Shwartz-Ziv and Tishby, 2022). Hence, we pro-
pose information minimization, by limiting rep-
resentation capacity via low-dimensional vectors,
to learn the bias/confounder features. Similar ap-
proaches exist i.e. Kallus et al. (2018) recover
latent confounders by performing low-rank ma-
trix factorization on high-dimensional data, and
Sen et al. (2017) use low-dimensional variable
to encode confounder. We propose two methods
to learn and use confounder features for debias-
ing: (a) latent variable modeling in ATE-D and
(b) rate-distortion minimization in TE-D. In both
approaches, the biased features are projected into
low-dimensional vectors through various mecha-
nisms, limiting their representation capacity and
promoting information minimization. Subsequent
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sections further elaborate these methods.

4.1 ATE-D: Deconfounding Using Average
Treatment Effect

We follow a 2-step framework where we start with
a pre-trained biased model, then (1) obtain the sub-
stitute confounders from the latent variables of au-
toencoder (Huang et al., 2022) and (2) use these
confounders to debias the pretrained model using
feature reweighing (Kirichenko et al., 2022).

Step 1: We collect the biased features r ∈ R
from a biased model for all samples in the train-
ing data and train an autoencoder composed of
dense layers (Fenc, Fdec) to encode them into a
lower dimension (see top, Fig. 3). The latent di-
mensions of the generative model capture the most
common biases in the dataset and serve as a substi-
tute for the confounders. We use a small-capacity
network in order to capture the biases stemming
from spurious correlations in the latent dimensions
and avoid encoding the correct predictive features.
Fenc, Fdec are trained using the reconstruction loss
Lrecon = d(R,R), where d(, ) is the Euclidean
distance function. We model the substitute con-
founders ĉ ∈ Ĉ for R (̂. represents approximation)
and cluster them to get a dictionary Dĉ, which rep-
resents the main elements of Ĉ for efficient back-
door adjustment (Eqn. 1).

Step 2: Kirichenko et al. (2022) show that non-
spurious features can be emphasized in biased
features by reweighing them using a balanced
dataset. However, creating balanced data is non-
trivial for complex tasks like VQA. To overcome
this challenge, we instead create an instantiation
of backdoor adjustment that reweighs biased fea-
tures based on their similarity with the substitute
confounders (see bottom, Fig. 3). We hypothesize
that this leads to lower weights for the simple spuri-

ous features and higher weights for more complex
predictive features, alleviating the over-reliance on
spurious features for prediction. For a sequence
of biased features r = [r1, r2, ..., rk], we recali-
brate each ri according to their similarity with the
confounders in Dc i.e., the weight wi for ri is,

wi = 1− 1

len(Dĝ)

∑
gj∈Dĝ

s(Fenc(ri), gj) (3)

where s(.) is the cosine-similarity function (see
ATE-based recalibration in Fig. 3 and see Appendix
for explanation of recalibration as an instantiation
of back-door adjustment).

r′i = wi ∗ ri;R′ = [r′1, r
′
2, ..., r

′
k] (4)

The resulting debiased features R′ are then used
to replace R as shown in Fig. 3.

4.2 TE-D: Debiasing Using Rate-Distortion &
Total Effect

The rate-distortion function R(Z, ϵ) measures the
minimum number of bits per vector required to
encode the sequence Z = {z1, z2, ...zn} ∈ Rn×d

such that the decoded vectors {ẑ}ni=1 can be recov-
ered up to a precision ϵ2 i.e.,

R(Z, ϵ) =
1

2
log2det(I +

d

nϵ2
ZZT ) (5)

where 1
nZZT is the estimate of covariance ma-

trix for the Gaussian distribution (Chowdhury and
Chaturvedi, 2022) and assuming that the vectors
are i.i.d. samples from N (0, 1). Rate-distortion
values are higher for distribution with high vari-
ance (diverse features). Hence, we minimize the
rate-distortion to learn confounder representations
in TE-D. Our implementation is illustrated in Fig. 4.
Given a biased model with parameters θ, we first
obtain the biased feature zθ. Then, we encode the



zθ into a lower dimension to promote information
loss, along with a classification head (Lconf

ce ) to
encourage retaining predictiveness of the informa-
tion present in the encodings, which we treat as the
confounder representation zc. Finally, we enforce
rate-distortion minimization (R(zc, ϵ)) on zc for
promoting the loss of complex feature information.
We enforce a stop gradient (see in Fig. 4) prior
to the encoder in order to prevent the training sig-
nals for learning confounder representations from
seeping into the parameters of the biased model.

In order to isolate the causal effect of M , we
need to cut off the link C → M (see Fig. 2(c)).
This can be achieved by computing the total effect
(see Sec. 3) i.e., Am,c − Am∗,c, where m and m∗
represent the treatment and no-treatment conditions
respectively, while c represents the confounder re-
sulting from M = m. We implement this at the
feature level by representing Am,c with the biased
features zθ and Am∗,c with the confounder features
zc. Next, we take the difference of those features
to secure zteθ which represents the direct effect of
M . i.e. zteθ = zθ−zc. We further aid the debiasing
process by enforcing a contrastive loss between the
three sets of features zθ, zc, zteθ as:

Lcon = log
es(z

te
θ ,zθ)

es(z
te
θ
,zθ) + es(z

te
θ
,zc)

(6)

where s(.) is the cosine similarity function. The
contrastive loss penalizes the model when the con-
founder is correlated with the biased feature zθ
and hence, promotes debiasing of the multimodal
backbone itself. In summary, we jointly opti-
mize the model for learning confounder represen-
tations via Lconf

ce , R(Zc, ϵ) and debiasing with the
help of the learned confounders via Lcon,Lce i.e.,
θdeconf = argminθLcon+Lce+Lconf

ce +αR(Zc, ϵ),
where α is the weight factor for rate-distortion loss.

4.3 Causal Debiasing vs. Data Augmentation
Data augmentation is an effective and popular
method for enhancing model robustness (Puli et al.,
2023; Gokhale et al., 2020; Chen et al., 2020), how-
ever, it presents certain constraints, particularly
when employed in the context of debiasing within
VQA models, such as:

Dependency on prior knowledge. Data augmen-
tation typically hinges on pre-existing knowledge
of potential biases within the dataset. For instance,
Mikołajczyk-Bareła (2023) use knowledge of bi-
ases i.e. the presence of shape and texture bias

in data to augment data based on style transfer,
Gokhale et al. (2020) identify unimodal biases
to augment multimodal datasets. However, such
awareness may not be comprehensive or entirely
precise. Consequently, the efficacy of data augmen-
tation is contingent on the accuracy and complete-
ness of the a priori understanding of the biases un-
derpinning the augmentation strategy. Conversely,
methods that manipulate representation vectors di-
rectly to remove biases, such as our proposed debi-
asing techniques, extract spurious correlations from
the data without requiring predefined assumptions
about specific biases.

Scalability and cost implications. The creation
of augmented datasets is often time-intensive
as well as cost-intensive (Sauer and Geiger,
2020). The process demands domain expertise to
adeptly identify and apply augmentations (Tang
et al., 2020b). This resource-intensive nature of
data augmentation can curtail its applicability,
especially when used for models that must adapt to
a multitude of diverse, evolving sources of bias.

Automated discovery of spurious correlations,
as performed in our proposed methods ATE-D and
TE-D, is advantageous over data augmentation
when dataset biases are inadequately defined or in
a state of perpetual flux. For instance, in numerous
real-world applications, the dataset may harbor
concealed or subtle biases that evade detection
through manual inspection or domain expertise.
Similarly, in dynamic environments, dataset
biases can undergo periodic shifts. As a result,
pre-established augmentation strategies become
unviable for such scenarios. The techniques
proposed in this work can adapt to the changing
characteristics of data within a black box, making
them more useful.

Another research thread aims to uncover coher-
ent data subsets on which machine learning models
exhibit subpar performance, such as the approach
introduced in Domino (Eyuboglu et al., 2021).
When these underperforming slices are accurately
identified and labeled, it offers an opportunity to
enhance model robustness by either updating the
training dataset or employing optimization tech-
niques designed to handle systematic performance
issues in these slices. While this method aligns with
our objective of improving the identification of sys-
tematic biases, slice discovery approaches achieve



it from a data perspective and require ground truth
labels, whereas we take a distinct feature-based
approach that does not rely on the ground truth.

5 Measuring Sufficiency & Necessity of
Spurious Features in Multimodal Tasks

OOD generalization accuracies indicate the
model’s ability to learn causal relationships be-
tween inputs and labels (Veitch et al., 2021). An-
other approach to assess causal learning is by ex-
amining the models’ invariance to spurious fea-
tures in the dataset. Joshi et al. (2022) categorize
spurious features into (a) Type 1 Features that are
neither necessary nor sufficient for predicting the
label e.g., ‘person’ (visual feature) when the VQA
question is “How many trees are in the picture?”
(see left, Fig. 5) (b) Type 2 Features that are nec-
essary but not sufficient to make predictions e.g.,
the feature “Is the man” (see right, Fig. 5). When
a model consistently answers "yes" to all "Is the
man..." questions regardless of the image, it is con-
sidered to exhibit spurious behavior. We employ
this framework to analyze debiasing methods in
our experiments.

Q. Is the man wearing 

a plain tie?

Q. How many trees are 

in this picture?

not necessary

and not sufficient
necessary

but not sufficient

Type 1 Type 2

Figure 5: Types of spurious features (red) in VQA based
on necessity and sufficiency.

Necessity. To assess the robustness of models to
Type 1 features, we compare their performance on
samples with and without a specific Type 1 feature.
In an unbiased model, the absence of this feature
should have no impact on performance. However,
a biased model tends to rely on it due to spurious
correlations that confound the features and labels.
An effective debiasing method should render the
model invariant to such features. Type 1 features
predominantly arise from the image in multimodal
tasks, as depicted in Fig. 5. Therefore, we evaluate
the necessity of these features using counterfactual
images (Agarwal et al., 2020) (refer to Sec.6).

Sufficiency. To assess the robustness of models
to Type 2 features, we propose a new metric for
measuring the sufficiency of a feature in relation

to a prediction. The certainty of predictions is
determined by the Kullback-Leibler (KL) diver-
gence between the predicted output distribution
and a uniform distribution across all samples in the
group (Ying et al., 2022). We define the sufficiency
score (λ) as the percentage of the model’s certainty
that can be attributed to the spurious component
of the input in making a prediction. For a data
sample (x, y), where the input x consists of the
spurious feature xs and the remaining context xc,
i.e., x = [xs;xc], we compute the sufficiency λ as:

λ =

∑G
i=1 KL(f(yi|xsi )||U)∑G
i=1 KL(f(yi|xi)||U)

(7)

Here, U(.) represents the uniform distribution,
f(.) denotes the trained model, and G is a group
of samples. A reliable debiasing technique should
reduce the sufficiency of spurious features. In the
case of the multimodal Visual Question Answering
(VQA) task, where xi = (qi, vi), we evaluate suf-
ficiency of Type 2 features that arise in the textual
modality qi. To compute f(yi|qsi , vi), we mask qci
in the query before feeding it as input to f(.).

6 Experiment Setup

Datasets. We evaluate the performance of our
methods in both in-distribution (ID) and out-of-
distribution (OOD) settings on multiple multimodal
tasks, including VQA-CP (Agrawal et al., 2018b),
GQA (Hudson and Manning, 2019), GQA-OOD
(Kervadec et al., 2021), and NLVR2 (Suhr et al.,
2019) datasets. To further assess robustness in the
presence of language and vision biases, we create
the IVQA-CP test set by replacing the original im-
ages in the VQA-CP test set with counterfactual
images from IV-VQA (Agarwal et al., 2020). These
IV-VQA images have been edited to remove irrele-
vant objects while preserving the original ground
truth label (details in Appendix).

Architectures. We use the LXMERT (Tan and
Bansal, 2019) model as our baseline and imple-
ment our methods TE-D and ATE-D on top of
LXMERT for all datasets. Since VQA-CP is a re-
organization of the VQA v2 dataset and LXMERT
is pretrained on VQA v2, initializing pretrained
LXMERT model for finetuning on VQA-CP leads
to data leakage and an unreasonable increase in
accuracy. Hence, we train LXMERT-based models,
baselines from scratch in our experiments and are
not comparable to numbers in Wen et al. (2021);
Gokhale et al. (2020) affected by data leakage.



VQA-CP IVQA-CP Additional
Overall Yes/No Num other Overall Yes/No Num other #MFLOPS

LXMERT (Tan and Bansal, 2019) 41.2 44.1 13.9 47.2 35.0 43.3 12.7 36.8 -
+ IRM (Peyrard et al., 2022) 42.7 44.1 15.2 49.5 36.5 43.2 12.8 39.3 -
+ ATE-D (ours) 42.2 43.6 14.6 49.0 35.8 42.9 13.2 38.2 0.7
+ TE-D (ours) 43.4 48.3 14.4 48.8 36.7 46.5 12.8 38.1 8.8
+ CD-VQA (Kolling et al., 2022b) 42.1 42.7 14.8 49.3 36.3 44.7 12.9 38.7 -
+ GenB (Cho et al., 2023) 52.8 67.3 29.8 49.7 41.3 50.7 16.7 39.4 50.2
D-VQAf (Wen et al., 2021) 43.9 47.5 15.7 49.8 37.3 45.8 13.9 39.2 18.9
D-VQAf + ATE-D 43.9 47.2 15.9 49.9 37.4 45.7 13.9 39.3 19.6
D-VQAf + TE-D 44.6 47.8 15.7 50.8 37.8 46.2 13.9 40.1 27.7
D-VQA 52.4 65.5 29.7 51.8 44.6 62.9 26.4 39.9 25.0

Table 1: Accuracy results on the VQA-CP (Agrawal et al., 2018a) and IVQA-CP (Agarwal et al., 2020) test sets.
Higher is better. Column ‘Additional MFLOPs’ represents extra MFLOPS introduced by each method over the
LXMERT backbone. We report results using a LXMERT model free of the data leakage issue.

Figure 6: Using our sufficiency metric (λ, lower is bet-
ter), we show that our debiased models rely less on Type
2 spurious features than baseline models.

7 Results & Discussion

In this section, we discuss the results from the eval-
uation of our methods for generalization, robust-
ness, effectiveness, and efficiency, and analysis of
the learned confounder representations.

7.1 Does causal debiasing help improve
out-of-distribution generalization?

We evaluate the effect of causal debiasing on im-
proving generalization by evaluating our methods
on three multimodal datasets. First, we observe
that our methods, ATE-D and TE-D, demonstrate
1% and 2.2% gains over LXMERT on the VQA-
CP test set (see Tab. 1). TE-D improves the ac-
curacy of Yes/No category by 4.2% which has
higher bias presence as seen in Fig. 7 and outper-
forms D-VQAf , a state-of-art unimodal debiasing
method for VQA (feature perspective only), by
0.8% (p=0.04) 2 in the Yes/No category, while the
latter achieves better overall accuracy on VQA-
CP. However, our methods can be used to debias
features in any backbone and task, in contrast to D-
VQAf that has been designed for VQA. Moreover,
D-VQAf trains a debiased model from scratch
while TE-D debiases a biased model with a few
epochs of fine-tuning (see efficiency in Sec. 7.4).

2Statistical significance is computed with 100K samples
using bootstrap (Noreen, 1989; Tibshirani and Efron, 1993).
All other gains are statistically significant.

Figure 7: Most frequent answer by question type in
VQA-CP train, test, and bias predictions from TE-D.

GenB (Cho et al., 2023) achieves state-of-the-art
results on top of LXMERT by using ensembles
of distilled models but compromises on efficiency.
We see 1.8% and 2.3% gains in GQA-OOD ac-
curacy with ATE-D and TE-D over the LXMERT
baseline (see Tab. 2). The GQA-OOD dataset is fur-
ther divided into OOD-Head and OOD-Tail splits
which represent the samples containing answers
from the head and tail of the answer distributions
respectively; our methods achieve improvements in
both groups. These gains are obtained along with
gains in in-distribution (ID) accuracy on GQA (see
Tab. 2). Additionally, we see 0.4%, 0.5% gains
with ATE-D, TE-D respectively on NLVR2, an ID
evaluation setting for visual entailment task (see
Tab. 3). This shows that our methods do not hurt
in-distribution performance and are task-agnostic.

7.2 What kind of biases are captured by
confounder representations?

ATE-D. First, we find that up-weighting features
similar to the confounders learned in ATE-D, as
opposed to down-weighting (see Sec. 4.1), signifi-
cantly hurts OOD accuracy implying that the con-
founder representations indeed encode spurious
correlations. Next, we train a non-linear probe on
the confounder representations for the VQA task.
The accuracy of this probe is 25% and the distribu-



tion of predicted answers of this probe has lower
entropy than that of the predicted answer distribu-
tion from unbiased features. Lower entropy sug-
gests higher bias in the semantic concepts encoded
in the confounders.

TE-D. The bias representations in TE-D capture
the most prominent input-output biases in the VQA-
CP train set, accounting for answers in 0.34% of
the answer vocabulary but covering approximately
67% of the train questions. The classifier head con-
nected to these bias representations achieves 28%
accuracy on the VQA-CP test set, while the overall
causal model accuracy is 44%. The most frequent
answers predicted by this classifier head on the
VQA-CP test set align with those in the VQA-CP
train set, showing that the captured confounders
effectively represent dataset biases (see Fig. 7).

7.3 Does causal debiasing improve robustness
to spurious features?

Type 1 Spurious Features. In Sec. 5, we discuss
Type 1 spurious features that are irrelevant to the
target output. Our IVQA-CP test set (Sec. 6) shares
question annotations with VQA-CP but has images
edited to remove irrelevant objects (Agarwal et al.,
2020). Models trained on VQA-CP are evaluated
on this dataset, allowing assessment of their robust-
ness to spurious features. The LXMERT baseline
shows a significant drop from 41.2% to 35.0% on
IVQA-CP (Tab. 1), indicating the evaluation’s chal-
lenging nature. Our methods, ATE-D and TE-D,
achieve 0.8% and 1.7% improvements respectively
over LXMERT on the IVQA-CP test set, enhancing
robustness to Type 1 features. D-VQAf performs
explicit visual debiasing and hence, exhibits the
highest robustness to Type 1 features in IVQA-CP.

Type 2 Spurious Features. A prominent source
of Type 2 spurious features in VQA is the first few
words of a question, as seen in Fig. 5. We introduce
the sufficiency score (λ, see Eqn. 7) to understand
whether debiasing methods truly improve the ro-
bustness of models to such spurious features. We
select two question types i.e. questions starting
with “Are these” and “Is this person”, which are
strongly biased in the training set of VQA-CP, and
compute the sufficiency of the phrases for model
predictions by masking the remaining question (see
Sec 5). As shown in Fig. 6, we find that causal de-
biasing methods lower the sufficiency score of the
spurious feature for both of these question types,
suggesting that they indeed alleviate the reliance

GQA GQA OOD
ID Tail Head All

LXMERT (Tan and Bansal, 2019) 59.8 49.8 57.7 54.6
+VILLA (Gan et al., 2020) - 49.9 57.2 54.5
+MANGO (Li et al., 2020) - - - 54.9
+X-CGM (Jiang et al., 2021) - 49.9 57.5 55.6
+ATE-D (ours) 60.0 50.8 59.9 56.4
+TE-D (ours) 59.9 51.4 60.1 56.8

Table 2: Accuracy results on GQA ID and OOD datasets
for various debiasing methods. Higher is better.

Acc. Cons.
LXMERT (Tan and Bansal, 2019) 74.5 39.4
+ATE-D (ours) 74.9 39.9
+TE-D (ours) 75.0 39.6

Table 3: Accuracy (Acc.) and consistency (Cons.) re-
sults on NLVR2 ID test set. Higher is better.

of these models on spurious features for making
predictions. TE-D and D-VQAf achieve similar
sufficiency scores, suggesting that they are equally
effective at improving robustness by giving more
importance to the context. TE-D achieves lower λ
than ATE-D which aligns with its larger accuracy
gains (see Tab. 1).

7.4 Is cross-modal debiasing more effective
and efficient than unimodal debiasing?

D-VQAf outperforms cross-modal debiasing in
Table 1, but when D-VQAf is treated as the bi-
ased model in TE-D, additional improvements of
0.7% (p=0.03) are achieved, indicating that cross-
modal interactions contribute to bias not addressed
by unimodal debiasing. Cross-modal feature-based
confounders effectively mitigate biases involving
multiple modalities. Our causal debiasing methods
demonstrate higher efficiency compared to D-VQA,
with ATE-D adding 0.7 MFLOPS and TE-D adding
3% additional parameters and 8.8 MFLOPS to
LXMERT. In contrast, D-VQA adds 5% additional
parameters and 18.9 MFLOPS during training, re-
quiring more time as it is trained from scratch. Ef-
ficiency results for GQA and NLVR are the same
as those reported for VQA.

8 Conclusion

We propose ATE-D and TE-D to mitigate biases
in models by imposing causally-driven informa-
tion loss on biased features to learn confounders.
Experimental results across various multimodal
tasks, datasets, and backbones demonstrate that the
learned confounders capture biases successfully,
and our methods effectively eliminate biases from
both unimodal and multimodal interactions.



9 Limitations

While we evaluate robustness to spurious features,
we do so on specific question types for Type 2
features and specific Type 1 features (irrelevant
objects in the image). Getting an all-inclusive ro-
bustness metric for evaluating debiasing methods
would be insightful. Approaches that debias using
data augmentation or sample balancing, although
cumbersome, are more effective than feature-based
debiasing approaches, including those proposed in
our paper. More analysis is required to understand
how the merits of sample-perspective and feature-
perspective methods can be merged efficiently.

10 Broader Impact

In this work, the biases that we try to mitigate
stem from the spurious correlations present in the
dataset that lead to a drop in performance in OOD
settings. This helps models learn causal associa-
tions between inputs and targets and thus brings
them closer to real-world deployment as it helps
mitigate unethical use of these models. However,
vision-language models may encode other societal
stereotypes and biases present in the data they are
trained on and also introduce new ones. VL mod-
els explored in this paper are not immune to these
issues. We are hopeful that our focus on modeling
biases and alleviating them is a step towards more
inclusive models.
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A Causal Theory Preliminaries

In this section, we discuss our proposed causal
graph for multimodal tasks and the two causal
mechanisms relevant to our debiasing methods.

Causal Graph. Causal graphs are directed
acyclic graphs G = {V, E} where the edges E are
used to represent causal relationships between ran-
dom variables V . An example is shown in Fig. 2(a),
where M has a direct effect on A.When the vari-
able Q has an indirect effect on A through a vari-
able M i.e. Q → M → A, the variable M is said
to be a mediator in the causal graph. If a variable
C has a direct causal effect on both M and A, it is
said to be a confounder.

Causal Perspective for Multimodal Tasks.
Models developed for multimodal tasks are de-
signed to use the combined data stream of vision
(V ) and language (Q) for solving the task. How-
ever, the unimodal data variables may act as con-
founders and give rise to spurious features in the
model e.g. via Q → M,Q → A. Existing ap-
proaches that leverage causal theory for debiasing
multimodal models aim to eliminate the direct uni-
modal effects. However, consider the VQA exam-
ple in Fig. 1. A potential spurious correlation that
may lead to incorrect predictions from models on
similar examples is that in most training instances
where the question asks the color of an object, the
object is present in the center of the image. Spuri-
ous correlations arising from such multimodal in-
teractions are ignored in existing causal graphs for
multimodal tasks. Hence, we propose to model the
spurious correlation as a confounder C that affects
the mediator M and the answer A (see Fig. 2(a)).
This allows us to model the biases encoded in the
multimodal features as confounder C and eliminate
the bias using causal intervention.

In order to debias VQA models, we adopt two
causal mechanisms i.e., the Average Treatment Ef-
fect (ATE) and Total Effect (TE), which essentially
refer to the same effect but differ in how they deal
with the confounder (VanderWeele, 2015; Tang
et al., 2020a). In ATE, C is treated as a distribu-
tion, and c is sampled without assuming a causal
association with the treatment M = m. In TE, c is
causally associated with the treatment M = m in
each sample. We explore both mechanisms in our
experiments and discuss their theories below.

Average Treatment Effect. The aim of causal
inference is to estimate the independent effect of an
intervention on a treatment variable M on an out-
come of interest A i.e. to estimate the conditional
probability distribution P (A|do(M)). However,
standard models are optimized to infer the observa-
tional conditional probability P (A|M) and in the
presence of confounders i.e. variables c ∈ C that
affect both A and M

P (A|M) ̸= P (A|do(M)) (8)

where the do-operation implies the causal effect
of M → A. P (A|do(M)) can be estimated using
backdoor adjustment by controlling for all values
of the confounders c ∈ C, i.e.,

P (A|do(M)) = Ec∼C [P (A|M, c)] (9)

This translates to an empirical sum over all possible
values of the confounder in practice, also known
as average treatment effect (ATE) (see Fig. 2(b)).
When the confounders are known and observed,
the confounder values are selected using suitable
rules and heuristics (Pearl et al., 2000).

Total Effect. We need to isolate the causal effect
of M = m on A, free from the influence of the
confounders C. According to causal theory, the
total effect (TE) of treatment M = m on A can be
computed as,

TE = Am,Cm −Am∗,Cm (10)

where M = m∗ represents the "no treatment" con-
dition and Cm represents the confounder under the
treatment condition i.e M = m. By retaining the
confounder in both sides of the difference, we elim-
inate the direct effect of Cm on M (see Fig. 2(c)).

A.1 ATE-D
Step-2 of ATE-D:
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Inspired by feature reweighing (Kirichenko et al.,
2022), we instantiate backdoor adjustment by re-
calibrating ri based on confounder similarity i.e.,
Eĉ∈Dĉ

[f(R, ĉ)] (see Fig. 2(b)) as,

P (A|do(Q), do(V )) = P (A|do(M)) (11)

EC [P (A|M,C)] = Eĉ∈Dĉ
[P (A|M, ĉ)] (12)

≈ P (A|Eĉ∈Dĉ
[f(M, ĉ)]) (13)

See appendix of Huang et al. (2022) for complete
proof. In our analysis, we instantiate f(.) as the
cosine similarity function in s(.), as discussed in
Sec 4.1.

B Analysis

While OOD generalization accuracies are indica-
tive of the model learning causal relationships be-
tween the inputs and labels, another way to probe
causal learning is to investigate if the models are
robust to spurious features present in the dataset.
In order to evaluate this, in this section, we discuss
an analysis framework for probing the behavior of
models toward spurious features and propose a new
metric for evaluation. Joshi et al. (2022) define the
probability of necessity (PN) of a feature Xi for
predicting the label Y as the probability that the
ground truth label Y changes when the feature Xi

is changed. Similarly, they define the probability of
sufficiency (PS) of a feature Xi for predicting the
label Y as the probability that setting Xi = xi in a
sample where Xi ̸= xi is absent changes its ground
truth label Y . Based on this framework, spurious
features are categorized into (a) low PN, low PS
features: These features are irrelevant to the ground
truth label e.g., person in the image when the VQA
question is “How many trees are in the picture?”
(see Fig. 5) (b) High PN, low PS features: These
features are necessary but not sufficient to make
predictions i.e. the model should rely on other fea-
tures in their presence. For instance, when a model
always answers “yes” to all questions starting with
“Is the man..” irrespective of the image, the model
is biased towards the feature “Is the man..” (see
Fig. 5). Henceforth, we refer to the low PS, low
PS, and high PN, low PS features as Type 1 and
Type 2 features respectively. We use this frame-
work to analyze the various debiasing methods in
our experiments.

Sufficiency. In order to evaluate the robustness to
sufficiency of type 2 features, we propose a novel
metric for quantifying the sufficiency of a feature
towards a prediction. We define the certainty of
predictions as the KL divergence between the pre-
dicted output distribution and uniform distribution
across all samples in the group (Ying et al., 2022).
We define the sufficiency score (λ) as the certainty
of a model’s prediction when only the non-spurious
features are the input to the model. Further, in or-
der to make this metric comparable across models,
we normalize this with the certainty of the model’s
predictions when the complete sample i.e., spuri-
ous as well as non-spurious features, is the input
to the model. This results in a metric that repre-
sents the percentage of certainty of the model that
can be attributed to the non-spurious component
of the input. For a data sample (x, y), let the in-
put x be comprised of the spurious feature xs and
the remaining context xc i.e. x = [xs;xc]. The
sufficiency λ is computed as follows:

λ =

∑G
i=1 KL(f(yi|xsi )||U)∑G
i=1 KL(f(yi|xi)||U)

(14)

where U(.) represents the uniform distribution,
f(.) is the trained model, and G is a group of sam-
ples. A good debiasing technique should increase
the sufficiency of non-spurious features. For the
multimodal VQA task where xi = (qi, vi), we
focus on the type 2 features emerging in the text
modality qi. To compute f(yi|qci , vi), we mask qsi
in the query before sending it as input to f(.).

C Experiment Setup

C.1 Datasets
• VQA-CP (Agrawal et al., 2018a): It is a re-

organization of the VQAv2 (Antol et al., 2015)
such that the distribution of question type-
answer correlation is different between the
train and test splits. This evaluation helps
demonstrate the method’s ability to debias in
a setting where language bias is dominant.

• VQA-CP + IV-VQA: We evaluate it on a new
version of the VQA-CP test set where we re-
place the image in each sample with their in-
variant counterparts from the IV-VQA dataset
from (Agarwal et al., 2020). IV-VQA dataset
has images replaced with their edited version
obtained after removing irrelevant objects in a
way that the predicted answer does not change.



Hyperparameter LXMERT ATE TE
Learning Rate 5e-5 5e-5 5e-5
Epochs 20 5 5
Max Gradient Norm 1.0 1.0 1.0
Weight Decay 0.0 0.01 0.01
Batch Size 32 32 32
Max Length 128 128 128
Warmup Ratio 0.1 0.1 0.1
LR Decay Linear Linear Linear
Optimizer AdamW AdamW AdamW
Bias dimension factor - - 4
Confounder dictionary size - 10 -

Table 4: Training hyperparameters for different models trained on the VQA-CP dataset.

This adds another layer of hardness to the
benchmark along the image dimension. This
evaluation helps demonstrate the method’s
ability to debias in a setting where both lan-
guage and vision biases are dominant.

• GQA(Hudson and Manning, 2019), GQA-
OOD(Kervadec et al., 2021):
GQA evaluation helps measure visual rea-
soning as well as compositional question-
answering abilities. GQA-OOD is a re-
organization of the GQA dataset that intro-
duces distribution shift in validation and test
sets based on question type similar to VQA-
CP.

• NLVR2 (Suhr et al., 2019): It helps the gener-
alization to multimodal tasks other than ques-
tion answering. It helps evaluate reasoning
abilities about sets of objects, comparisons,
and spatial relations.

All our experiments are run with a single seed
value.

Baselines. We use D-VQAf (feature perspective
only) (Wen et al., 2021) based on LXMERT as
the baseline for experiments with VQA-CP and
train from scratch due to the aforementioned rea-
sons. We also present results from D-VQA (both
feature & sample perspective) for comparison, how-
ever, note that methods using data balancing are
not comparable to causal debiasing methods (see
Sec. 1).

D Results

D.1 Analysis of confounder features

We compare the most frequent answer in the VQA-
CP training and test sets with those from the predic-
tions of the bias classifier head in TE-D in Fig. 7.
As discussed in Sec.5, the predictions from bias
classifier head closely track the distribution of an-
swers in VQA-CP training set, even though the
VQA-CP test set distribution is significantly differ-
ent from VQA-CP train. This shows that the con-
founder representations indeed capture the strong
priors present in training set.

Explanation and proof for biases stemming
from multimodal interactions Multimodal mod-
els have been known to be brittle to linguistic biases
[1] and visual biases [2]. In this work, we demon-
strate the presence of multimodal biases and the
need for removing those biases from multimodal
features. (Proof) Many existing debiasing methods
focus on removing each unimodal bias (e.g., lin-
guistic) from multimodal features independently
of the other unimodal biases (e.g., visual). How-
ever, [3] suggest that the biases can stem from
multimodal interactions as well; they perform se-
mantic edits on images in VQA (I-VQA dataset)
that should not affect the ground truth, and show
that the answers from multimodal models change
in response to these invariant edits. (Existing Meth-
ods) Indeed, methods like D-VQA [2] leave large
room for improvement in terms of performance on
the IVQA-CP dataset [see Lines] that are designed
to test for multimodal biases, as we show in Table
1. (Our Approach) We formalize this phenomenon
through the causal graph proposed in our paper in
Fig. 2, where we explicitly model the confounders



VQA-CP IVQA-CP Additional
Overall Yes/No Num other Overall Yes/No Num other #MFLOPS

LXMERT (Tan and Bansal, 2019) 41.2 44.1 13.9 47.2 35.0 43.3 12.7 36.8 -
+ IRM (Peyrard et al., 2022) 42.7 44.1 15.2 49.5 36.5 43.2 12.8 39.3 -
+ ATE-D (ours) 42.2 43.6 14.6 49.0 35.8 42.9 13.2 38.2 0.7
+ TE-D (ours) 43.4 48.3 14.4 48.8 36.7 46.5 12.8 38.1 8.8
D-VQAf (Wen et al., 2021) 43.9 47.5 15.7 49.8 37.3 45.8 13.9 39.2 18.9
D-VQAf + ATE-D 43.9 47.2 15.9 49.9 37.4 45.7 13.9 39.3 19.6
D-VQAf + TE-D 44.6 47.8 15.7 50.8 37.8 46.2 13.9 40.1 27.7
D-VQA 52.4 65.5 29.7 51.8 44.6 62.9 26.4 39.9 25.0

Table 5: Accuracy results on the VQA-CP (Agrawal et al., 2018a)and IVQA-CP (Agarwal et al., 2020) test sets.
Higher is better. Column ‘Additional MFLOPs’ represents extra MFLOPS introduced by each method over the
LXMERT backbone. We report results using a LXMERT model free of the data leakage issue.

that affect the variable connecting multimodal rep-
resentation (M) and the outcome (A). The unimodal
biases are implicitly modeled via the multimodal
variable (Q->M->A, V->M->A). (Example) We
demonstrate an example of this phenomenon in
Fig. 1, where D-VQA fails to answer a question
from the IVQA-CP test set correctly, and our pro-
posed method, TE-D, is able to answer correctly
because of multimodal debiasing. (Empirical Re-
sults) Additionally, we show improvements on top
of unimodal debiasing methods like DVQA(f) with
our multimodal debiasing approach (see rows 6,7
in Table 1). Our goal in this work is to demonstrate
the presence of multimodal biases and the need for
multimodal debiasing along with the potential of
confounder modeling via information loss in causal
multimodal debiasing and our results support this
claim.


