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ABSTRACT

Vision Transformer (ViT) has been used in many computer vision tasks with
excellent results by providing representations for a whole image or image patches.
However, ViT lacks detailed localized image representations at arbitrary positions
when applied to geospatial tasks that involve multiple geospatial data modalities,
such as overhead remote sensing (RS) data, ground-level imagery, and geospatial
vector data. Here high-resolution localized representations are vital for model-
ing geospatial relationships and alignments across modalities. We proposed to
solve this representation problem with an implicit neural representation (INR)
module extending ViT with Neural Implicit Local Interpolation, which produces a
continuous RS image representation covering arbitrary location in the RS image.
Based on the INR module, we propose GAIR, a multimodal Geo-Foundation
Model (GeoFM) integrating overhead RS data, street view (SV) imagery, and
their geolocation metadata. GAIR utilizes three factorized neural encoders to
project different modalities into the embedding space, and the INR module is
used to further align these representations geographically, which are trained with
contrastive learning objectives from unlabeled data. We evaluate GAIR across
9 geospatial tasks and 22 datasets spanning RS image-based, SV image-based,
and location embedding-based benchmarks. Experimental results demonstrate that
GAIR outperforms state-of-the-art geo-foundation models and alternative training
objectives (e.g., MoCo-V2 and MAE) that do not use fine-grained geo-aligned
spatial representations. Our results highlight the effectiveness of GAIR in learn-
ing generalizable geospatial representations across tasks, spatial scales, and
temporal contexts.

1 INTRODUCTION

Figure 1: Overview of the GAIR architecture. The
model encodes three modalities: street view im-
age si, geolocation xi, and remote sensing image
ri. ViT-based encoders extract features g(si) and
f(ri), while an implicit location encoder maps
xi to e(xi). An INR module refines f(ri) into a
geo-aligned embedding zqi , which is used for con-
trastive learning with g(si) and e(xi).

In the geospatial domain, there is a vast amount
of unlabeled geospatial datasets such as satel-
lite images, street view images, and user-
generated geo-tagged data (e.g., Flickr images,
geo-tagged tweets, iNaturelist species images,
etc). In contrast, labeled geospatial data is typ-
ically scarce and highly imbalanced in terms
of spatial, temporal, and class coverage (Mai
et al., 2023a; Klemmer et al., 2023) due to the
high cost of data annotation and the specialized
domain expertise required. This scarcity of la-
beled data significantly limits the usage of these
multimodal geospatial data in critical geospatial
applications such as economic development pre-
diction (Jean et al., 2016), species distribution
modeling (Mai et al., 2023b; Cole et al., 2023), crop yield estimation (Azzari et al., 2017; You et al.,
2017), urban dynamics monitoring (Cai et al., 2020), geographic question answering (Mai et al.,
2020a; Yu et al., 2025), and climate extreme event detection (Ham et al., 2019). Furthermore, training
AI models on these limited labeled datasets constrains their generalizability across space (Li et al.,
2022a; 2023a; Wu et al., 2024), time, and task (Cong et al., 2022; Mai et al., 2025). Meanwhile, in-
spired by the recent advancements of language and vision foundation models, geo-foundation models
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(GeoFMs) (Mai et al., 2024; Hsu et al., 2024; Janowicz et al., 2025) are developed as task-agnostic
pre-trained models to tackle the issue of limited supervision information. However, existing GeoFMs
heavily rely on overhead remote sensing (RS) tasks (Cong et al., 2022; Guo et al., 2024; Hong
et al., 2024), e.g., RS foundation models (RSFMs). Although multiple multimodal GeoFMs (Fuller
et al., 2024; Astruc et al., 2024) have been developed, they primarily focus on integrating different
modalities of overhead RS data (e.g., optical, synthetic aperture radar (SAR), etc.) and/or language
modality (Kuckreja et al., 2024; Zhang et al., 2024) while overlooking other important geospatial data
modalities such as ground-level images and geospatial vector data. This practice significantly limits
the spatial reasoning capabilities of these models and hampers their generalizability across different
tasks, regions, spatial scales, and temporal contexts. Furthermore, existing GeoFMs mainly rely on
conventional language and vision foundation model objectives like temporal or spatial augmented
embeddings (Ayush et al., 2021; Stojnic & Risojevic, 2021; Guo et al., 2024) or image reconstruction
(Cong et al., 2022; Sun et al., 2022; Jain et al., 2022), without explicitly considering the geospatial
relationships across different data modalities, leading to suboptimal results for geospatial applications.

A key challenge for the current RS-based GeoFMs is aligning geospatial data across diverse spatial
scales. For instance, overhead satellite imagery provides a broad spatial contextual view, while street
view (SV) images capture fine-grained ground-level details. A single 256×256 overhead Sentinel-2
RS image can correspond to hundreds or even thousands of SV images at different geolocations,
which makes it extremely difficult to create valuable geo-aligned RS-SV image pairs for the self-
supervised learning (SSL) purpose. Traditional SSL paradigms (He et al., 2020; 2022) struggle to
effectively align these disparate scales effectively, hindering the integration of multimodal geospatial
data. Moreover, these SV images may not be located at the exact RS image pixel/patch centers while
commonly used Vision Transformer (ViT) encoders (Dosovitskiy, 2020) only produce representations
for a whole image or image patches, lacking detailed localized image representations needed to align
geospatial data across diverse spatial scales.

In this paper, inspired by resolution-agnostic image super-resolution methods such as LIIF (Chen
et al., 2021b), we proposed to leverage neural implicit functions(Sitzmann et al., 2020; Chen et al.,
2021b; Gao et al., 2023) to learn a continuous image representation of an RS image and extract a
localized neural representation that is geographically colocated with a ground-level image. By further
projecting the SV image and its geolocation into an SV image embedding and a location embedding
(Mai et al., 2020c; 2023a; Klemmer et al., 2023; Wu et al., 2024) with respective neural encoders, we
can form a self-supervised learning objective by performing multi-objects contrastive learning on
these three geo-aligned embeddings. Based on this geo-aligned contrastive learning framework, we
develop a multimodal geo-foundation model called GAIR as shown in Figure 1.

The contributions of this paper are as follows:

• We propose GAIR, a GeoFM capable of handling diverse geospatial modalities, including remote
sensing imagery, street view imagery, and geo-locations. By integrating these modalities, GAIR
can perform a more comprehensive geospatial understanding and reasoning.

• The design of GAIR involves three key technical components: a) Factorized multimodal encoder
design allows the model to retain modality-specific information while effectively learning cross-
modal relationships. b) Neural implicit functions learn continuous representations on RS images
and extract fine-grained localized embeddings that are geographically co-located with ground-level
images. c) Contrastive learning is utilized on these geo-aligned neural embeddings from three
distinct modalities in order to learn generalizable geospatial representations across different tasks.

• We pre-train GAIR on a globally sampled dataset named Streetscapes1M with 1 million sampled
tuples. The pre-trained GAIR is adapted to a wide range of geospatial tasks via few-shot learning
or fully fine-tuning. Experimental results show that GAIR outperforms all baselines and achieves
state-of-the-art (SOTA) performance across all 9 geospatial tasks and 22 datasets, including street
view imagery tasks, remote sensing imagery tasks, and location embedding tasks.

• Further analysis shows that geo-alignment SSL is crucial to achieving superior performance
on single-modal tasks, and multimodal fusion can further add 4-20% performance gain. While
Streetscapes1M is biased towards urban areas, by further pretraining GAIR on an urban-rural
balanced dataset, the geographic bias of GAIR can be significantly reduced without sacrificing
performance. Further qualitative and quantitative analysis show that GAIR can capture spatial
relations across modalities, which is critical for diverse tasks such as image geolocalization.
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2 RELATED WORK

Geo-Foundation Models. Many recent Geo-Foundation Models (GeoFMs) draw inspiration from
Vision Foundation Models (Deng et al., 2009; Chen et al., 2020; Caron et al., 2021; Grill et al., 2020;
Liu et al., 2021; Chen et al., 2021a; He et al., 2022; Oquab et al., 2023) and Vision-Language Models
(Radford et al., 2021; Zhang et al., 2021; Wang et al., 2023). Unlike traditional vision datasets,
geospatial data inherently integrates spatial and temporal information, requiring specialized model
architectures. Current GeoFMs can be roughly categorized into (1) Remote Sensing Foundation
Models (RSFMs), (2) Weather and Climate Foundation Models, and (3) geospatial vision-language
foundation models (GeoVLFMs). RSFMs leverage contrastive learning or masked image modeling
(MIM) to learn task-agnostic neural representations. GASSL (Ayush et al., 2021) and SeCo (Manas
et al., 2021) use temporal augmentations with a MoCo v2 (He et al., 2020) self-supervised learning
(SSL) objective, while Dino-MC (Wanyan et al., 2023) and Skysense (Guo et al., 2024) extend DINO
(Caron et al., 2021) to multi-scale and multi-modal settings. SatMAE (Cong et al., 2022), CROMA
(Fuller et al., 2024), OmniSat (Astruc et al., 2024), and DOFA (Xiong et al., 2024) apply MIM
for SSL on RS imagery. Climate FMs such as ClimaX (Nguyen et al., 2023) were pretrained on
multi-source climate data using MIM. GeoVLFMs such as GeoChat (Kuckreja et al., 2024) and
EarthGPT (Zhang et al., 2024) are vision-language foundation models by using aligned pairs of RS
images and text which are trained using common masked language model objectives and LoRA
(Hu et al., 2022). However, most existing GeoFMs focus on overhead RS images and/or language
modality while overlooking other geospatial data modalities, including ground-level imagery and
geospatial vector data, thus lacking precise spatial reasoning and understanding capabilities. Our
work addresses these issues by integrating RS imagery, SV imagery, and geolocation into the same
SSL framework by using a geo-alignment-based contrastive learning objective.

Implicit Neural Representations. Implicit Neural Representations (INR) have been widely applied
across various domains, including image regression (Tancik et al., 2020), compression (Dupont et al.,
2021), 3D reconstruction (Mescheder et al., 2019), image super-resolution (Chen et al., 2021b; Gao
et al., 2023), etc. The core idea behind INR is to learn a continuous function that maps spatial
coordinates to corresponding signals, enabling flexible, resolution-independent data representation. A
common approach is to transform spatial coordinates into multi-scale features using Fourier feature
mappings (Tancik et al., 2020), which are then processed by a multi-layer perceptron (MLP) to learn
a continuous representation for downstream tasks. This technique has been particularly effective
in image super-resolution such as LIIF (Chen et al., 2021b) and CiaoSR (Cao et al., 2023), which
directly learn pixel-wise feature mappings for image restoration. In the geospatial domain, implicit
neural representations have been utilized for POI type prediction (Mai et al., 2020b), geo-aware
species fine-grained recognition (Mac Aodha et al., 2019; Mai et al., 2023a;b; Sastry et al., 2025),
species distribution modeling (Cole et al., 2023; Lange et al., 2023; Hamilton et al., 2024), image
geolocalization (Vivanco Cepeda et al., 2024; Wang et al., 2025), satellite image classification and
regression (Klemmer et al., 2023; Wu et al., 2024), and geographic question answering (Mai et al.,
2020a; Li et al., 2023b; 2022b). In this work, a novel implicit neural representation module is proposed
to refine the RS representations f(ri) into a localized RS embedding r̂i(x) that is geographically
aligned with SV image embedding g(si) and the location embedding e(xi). Three embeddings –
r̂i(x), g(si), and e(xi) – are trained in a self-supervised manner through contrastive learning.

3 METHODS

3.1 FACTORIZED ENCODER FOR GEOSPATIAL MODALITIES

We define an unlabeled geo-tagged image dataset as X = {(ri, si, xi) | i = 1, . . . ,M}, where ri is a
remote sensing image, si a street view image, and xi the location (longitude and latitude) of si. Here,
xi is within the spatial footprint A(ri) of ri but might not be the geometric center or pixel/patch
center of ri. Inspired by recent contrastive pretraining models (Radford et al., 2021; Mai et al., 2023a;
Guo et al., 2024), we adopt a factorized encoder architecture to extract modality-specific features
independently, as shown in Figure 2. Specifically, we introduce a remote sensing image encoder
f(·), a street view image encoder g(·), and a location encoder e(·). This modular design allows each
encoder to capture unique spatial and semantic characteristics with the pretrained encoder of that
modality, while forming the basis of multimodal geographically alignment in a later stage.

The location encoder e(·) is defined as a function eθ(xi) : S2 → Rd, parameterized by θ, which maps
any coordinate xi = (λi, ϕi) on the spherical surface S2 to a d-dimensional vector representation.
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(a) The GAIR Framework (b) The NILI Module

Figure 2: (a) GAIR architecture: three encoders map geolocation xi, street view image si, and RS
image ri into embeddings. A Neural Implicit Local Interpolation (NILI) module refines f(ri) into a
localized embedding ẑi at xi, and contrastive learning aligns all modalities. (b) NILI illustration:
for a query location x

(q)
i , four neighboring patch embeddings z(k)i are used by a shared MLP Hθ with

coordinate offsets. The weighted sum of predictions yields the final embedding ẑi.

Here, the longitude λi ∈ [−π, π) and latitude ϕi ∈ [−π/2, π/2]. We leverage existing 2D location
encoders (Wu et al., 2024), specifically the Random Fourier Features (RFF) implemented from
GeoCLIP (Vivanco Cepeda et al., 2024), due to its strong performance in prior works. The location
encoding is represented as e(xi). Accurate geolocation plays a critical role in enabling cross-modal
alignment. If the coordinates are perturbed (e.g., GPS noise), the alignment between modalities
becomes less reliable and th emodel performance degrades.We analyze this effect in Appendix A.6.

The remote sensing image encoder f(·) is deployed as a Vision Transformer (ViT) (Dosovitskiy,
2020) due to its remarkable performance and generalizability across diverse computer vision tasks in
recent vision foundation works (Cong et al., 2022; Fuller et al., 2024; Guo et al., 2024). Motivated by
this, we employ a ViT as the RS image encoder f(·). For stable training, f(·) is initialized with a
pretrained RSFM checkpoint. To retain a rich spatial representation for the follow-up neural implicit
local interpolation operation, the output f(ri) is a patch-wise feature map, i.e., f(ri) ∈ RP×P×D,
where P 2 is the number of patches in the ViT backbone, preserving the spatial structure of ri.

The street view image encoder g(·) is also a ViT model. Since we do not need the path-level
representation, we directly perform an average pooling on the patch-wise feature map to output a
global image-level embedding g(si).

3.2 NEURAL IMPLICIT LOCAL INTERPOLATION

Since si’s location xi might not be at the geometric center of ri or any of ri’s patch/pixel, g(si)
and f(ri) are not directly geographically aligned for the contrastive learning purpose. Thus, we
need to perform spatial interpolation based on f(ri) at location xi ∈ A(ri) to produce a new
geo-aligned localized RS image embedding z

(q)
i . To do that, we propose a special INR module Ω(·)

called neural implicit local interpolation which can interpolate and extract a detailed localized RS
representation at any location x ∈ A(ri).

Formally, given an overhead RS image ri, our RS image encoder f(·) extract an image representation
f(ri) ∈ RP×P×D. Each patch embedding z

(k)
i ∈ RD corresponds to a real-world geographic

location x
(k)
i ∈ A(ri) as the geometric center of this image patch, where k is an index for any image

patches which will be used in our Ω(·) function.

To extract a localized RS image embedding at the location xi of an SV image si, we develop a novel
INR module Ω(·) on top of the RS image representation f(ri) inspired by LIIF (Chen et al., 2021b).
Ω(·) can learn a continuous representation of an RS image across space and be able to extract image
embeddings at any query geolocation x

(q)
i ∈ A(ri). Instead of directly retrieving a single latent

code z
(q)
i at coordinate x

(q)
i by using grid sample function (Jaderberg et al., 2015), we generate

z
(q)
i by interpolating from the four nearest patch embeddings z(k)i (top-left, top-right, bottom-left,
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bottom-right) of location x
(q)
i to ensure smooth transitions across space:

z
(q)
i = Ω(f(ri), x

(q)
i ) =

∑
k∈{00,01,10,11}

Sk

S
·Hθ(z

(k)
i ,Ψ(x

(q)
i )−Ψ(x

(k)
i )) (1)

Here, z(k)i ∈ f(ri) (k ∈ {00, 01, 10, 11}) denote the four nearest image patch embeddings of query
location x

(q)
i . x(k)

i denotes the geographic coordinates of z(k)i . Sk is the area of the rectangle formed
between x

(k)
i and xq

i . Ψ(·) is a projection function that transforms the geographic coordinates (e.g.,
x
(q)
i and x

(k)
i ) into the image coordinate space. Hθ is a multilayer perception (MLP) modulated by

the latent code z(k)i which takes the projected coordinate difference between Ψ(x
(q)
i ) and Ψ(x

(k)
i ) and

predict the localized RS embedding at location xq
i . The final localized RS embedding z

(q)
i is computed

as the weighted sum of the four independent predictions based on Sk/S where S =
∑

k Sk. This
approach ensures local feature continuity by enabling overlapping representations from neighboring
latent codes. At each query location, four independent predictions are ensembled, leading to smooth
and spatially coherent feature synthesis. Our NILI module Ω(·) is agnostic to the implementation of
f(·), which can be ViT- or CNN-based encoders as long as they can produce a 2D image feature map
f(ri) ∈ RP×P×D for spatial interpolation. Please refer to Figure 2b and Appendix A.2 for details.
3.3 GEO-ALIGNED CONTRASTIVE OBJECTIVE

Given e(xi), z
(q)
i , and g(si), we can leverage their geospatial relationships to form SSL objectives to

learn generalizable neural representations. Here, we mainly use two contrastive learning objectives:
Implicit Neural Contrastive Learning (INCL). The key idea of INCL is performing contrastive
learning between two geo-aligned image representations – localized RS embedding z

(q)
i at x(q)

i and
its corresponding SV embedding g(si):

LINCL = − 1

2N

N∑
i=1

[
log

exp(D(z
(q)
i , g(si))/τ)

N∑
j=1

exp(D(z
(q)
i , g(sj))/τ)

+ log
exp(D(g(si), z

(q)
i )/τ)

N∑
j=1

exp(D(g(si), z
(q)
j )/τ)

]
(2)

where D(·, ·) denotes a cosine similarity function, N is the batch size, and τ is a temperature
parameter. This contrastive loss enforces positive pairs between the matched embeddings while
discouraging alignment with non-matching locations (Radford et al., 2021). The first term ensures
that the extracted localized RS embedding z

(q)
i is aligned with the corresponding co-located SV

embedding g(si), while the second term enforces the inverse alignment, treating g(si) as the anchor.
Spatially Explicit Contrastive Learning (SECL). To further reinforce the geospatial consistency
across data modalities, we introduce SECL, which incorporates explicit location encoding e(xi) into
the contrastive learning framework. We construct a memory bank M (He et al., 2020; Vivanco Cepeda
et al., 2024) to store location embeddings e(xi) from past mini-batches. The SECL objective consists
of two separate contrastive losses: one aligning location embeddings with RS embeddings, and
another aligning location embeddings with SV embeddings. The SECL loss is defined as:

LSECL = − 1

2N

N∑
i=1

[
log

exp(D(e(xi), z
(q)
i )/τ)∑

j∈M
exp(D(e(xj), z

(q)
i )/τ)

+ log
exp(D(e(xi), g(si))/τ)∑

j∈M
exp(D(e(xj), g(si))/τ)

]
(3)

Finally, GAIR’s pre-training objective is the sum of two objectives, where λ is a hyperparameter to
control the contribution of SECL:

L = LINCL + λLSECL (4)
3.4 TRANSFER LEARNING

To assess the performance of the pre-trained GAIR, we employ it both as a feature extractor for
linear probing and as a model parameter initialization for model fine-tuning. GAIR comprises three
encoders: two image encoders dedicated to remote sensing and street view images, and a location
encoder responsible for location data representation.
Fine-Tuning the StreetView Image Encoder g(·). For the SV image encoder g(·), we remove the
projection layer and introduce a new head hg(·) to process the extracted SV image feature vectors.
We perform different experimental setups – hg(·) is a single linear layer for linear probing and two
linear layers for non-linear probing.
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Task 4: Imaging Platform Classification
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ViT
𝑔
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Street View Imagery Benchmark

Task 1: Burn Scars Segmentation
Burn scars and non-burn scars.

Task 3: Crop Type Multi-temporal Segmentation
Maize, Groundnut, Rice, Soya Bean

Task 2: Cropland Polygon Segmentation
Cropland and non-cropland

ViT
𝑓

Remote Sensing Imagery Benchmark

UPerNet

Street View Images

Remote Sensing Images
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Image Encoder (Inception V3)
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• iNat2018

Task 1 Remote Sensing Image Regression
• Evaluation
• Nightlight Luminosity
• Forest Cover
• Population Density 

MLP

C

Location Benchmark

/

Figure 3: The evaluation pipelines of three benchmarks (9 tasks). After pretraining GAIR, we
fine-tune the street view image encoder g to tackle the street view imagery benchmark, the RS image
encoder f for remote sensing imagery benchmark, and the location encoder e for location benchmark.

Fine-Tuning the Remote Sensing Image Encoder f(·). Similarly, we remove the projection
layer and introduce a new head hf (·). For RS image semantic segmentation tasks, we use UPerNet
(Xiao et al., 2018) as hf (·), while for RS image change detection, we adopt a Siamese UPerNet as
hf (·) to capture temporal changes. For multi-temporal datasets, we experiment with two temporal
aggregation strategies: (1) a naive linear mapping, and (2) a lightweight spatial-temporal encoder
(L-TAE) (Garnot & Landrieu, 2020) to better integrate temporal information.
Fine-Tuning the Location Encoder e(·). We also introduce a new head he(·) for the location
encoder e(·). Following standard protocols for the geo-aware image classification (Mac Aodha
et al., 2019; Wu et al., 2024), given a location-image pair (x, I), where I denotes an image, the
model predicts the category y by factorizing the probability as P (y|I, x) ∝ P (y|I)P (y|x). Here,
P (y|I) is estimated using an image encoder; in this paper, we utilize Inception V3 network (Szegedy
et al., 2016) following the standard implementation (Mai et al., 2020b; Wu et al., 2024), while
e(x) contributes to P (y|x). The location encoder is fine-tuned using cross-entropy loss for the
geo-aware image classification tasks. For geo-aware image regression tasks, we concatenate the
image embedding and location embedding and feed the result into a linear layer for regression. We
also use MSE as the loss function.

4 EXPERIMENTS
Pretraining. We construct a large-scale pretraining dataset, Streetscapes1M, containing 1M
triples (ri, si, xi). Street view images are uniformly sampled from the Global Streetscapes dataset
(Hou et al., 2024), and for each sampled location, we collect the corresponding Sentinel-2 remote
sensing imagery from Google Earth Engine (GEE) (Gorelick et al., 2017). Following Ayush et al.
(2021), we obtain monthly temporal augmentations of Sentinel-2 data (12 surface reflectance bands,
with the cirrus band removed). The street view images are resized to 400 × 400 and RS crops to
120× 120. All pretraining, fine-tuning, and ablations are conducted with ViT-B on a Linux server
with 4 NVIDIA RTX A6000 GPUs. Further dataset construction and implementation details are
provided in Appendix A.3 and A.8, and computation cost analysis in Appendix A.9.
Model Fine-Tuning. For street view imagery tasks, we adopt three fine-tuning strategies: 1) Linear
probing, where the encoder remains frozen, and only a linear layer is trained; 2) Non-linear probing,
where the encoder is fixed, and a two-layer MLP head with a sigmoid activation function is optimized;
and 3) Full fine-tuning, where all model parameters are updated. For remote sensing benchmarks, we
fine-tune only the UPerNet while keeping the pretrained backbone frozen. For location-based tasks,
we apply full fine-tuning to optimize all parameters. A comprehensive overview of the fine-tuning
pipeline, baselines, and task configurations is provided in Figure 3 and Appendix A.4.
Benchmarks. To comprehensively evaluate our GAIR, we conduct experiments on 9 different
geospatial tasks and 22 datasets. These tasks include 4 street view image tasks – 1) Human perception
regression, 2) Socio-economic indicator regression, 3) View direction classification, and 4) Imaging
platform classification; 3 remote sensing tasks – 1) Burn scars segmentation, 2) Crop Type Mapping-
South Sudan, and 3) Cropland polygon segmentation; 2 geolocation tasks – 1) Species recognition,
and 2) Remote sensing image regression. Please refer to Figure 3 and Appendix A.7 for detailed
descriptions of different tasks and datasets.
Baselines. To thoroughly evaluate the performance of GAIR, we select different sets of baselines
for each benchmark category, ensuring a fair and comprehensive comparison.

For street view imagery benchmarks, we compare GAIR against three representative and reproducible
GeoFMs: SatMAE (Cong et al., 2022), CROMA (Fuller et al., 2024), PIS (An et al., 2024) and the
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Table 1: Comparisons of model performance across street view imagery benchmark. RMSE ↓ is
reported for socio-economic indicator regression and human perception regression, while F1 score
↑ is reported for view direction classification and imaging platform classification. The best and
second-best results are denoted as Bold and Underline. The detailed results are in Appendix A.12

Model Socio-Eco. Indic. (RMSE ↓) Human Perception (RMSE ↓) View Direction (F1 ↑) Imaging Platform (F1 ↑)
Linear Non-Linear All Linear Non-Linear All Linear Non-Linear All Linear Non-Linear All

SatMAE(Cong et al., 2022) 0.9671 0.9421 0.7690 2.1681 2.1196 1.8812 0.0000 0.0202 0.3885 0.1916 0.1596 0.2114
CROMA(Fuller et al., 2024) 0.9550 0.9295 0.7927 2.0768 2.0219 1.9387 0.0064 0.0640 0.2133 0.1733 0.1832 0.2369
PIS(An et al., 2024) 0.9290 0.8911 0.6797 1.9858 1.8865 1.6166 0.1937 0.2442 0.3537 0.2315 0.2796 0.3328
TaxaBind(Sastry et al., 2025) 0.8819 0.8296 0.6654 1.7960 1.7108 1.6067 0.2617 0.3971 0.5088 0.2323 0.2541 0.3052

Random Init. 0.9700 0.9524 0.9035 2.2000 2.1534 2.1839 0.0000 0.0000 0.3954 0.1834 0.1895 0.1970
ImageNet Init.(Wu et al., 2020) 0.8929 0.8489 0.7012 1.7473 1.6439 1.5271 0.5328 0.4186 0.5850 0.3229 0.3275 0.3540
MoCo v3(Chen et al., 2021a) 0.8760 0.8441 0.6779 1.7590 1.6599 1.5821 0.2106 0.6262 0.4976 0.2584 0.3171 0.3161
MAE-ImageNet(He et al., 2022) 0.8816 0.8373 0.7150 1.8730 1.7592 1.5788 0.4298 0.6426 0.4961 0.2619 0.3257 0.2195

MoCo v3-Streetscapes 0.8863 0.8429 0.6707 1.7601 1.7084 1.5800 0.3508 0.5988 0.5032 0.3439 0.3308 0.3639
MAE-Streetscapes 0.8940 0.8416 0.6872 1.8514 1.7701 1.5774 0.3451 0.6102 0.4921 0.3335 0.3482 0.3050

GAIR-MAE 0.9485 0.9011 0.8048 2.1254 2.0495 1.9611 0.0272 0.0895 0.3029 0.2124 0.2582 0.3249
GAIR w/o Loc 0.8823 0.8352 0.6725 1.7473 1.6782 1.5960 0.5290 0.6052 0.6078 0.3676 0.3709 0.3892
GAIR 0.8803 0.8349 0.6612 1.7141 1.6489 1.5072 0.5457 0.6495 0.6102 0.3793 0.3782 0.4071

ground image encoder from TaxaBind (Sastry et al., 2025). To benchmark against general-purpose
vision models, we also include several Vision Transformers (ViTs) with different initializations,
including randomly initialized weights (Random Init.), supervised pretrained on ImageNet (ImageNet
Init.) (Deng et al., 2009; Wu et al., 2020),pretrained on ImageNet using MoCo-v3 (MoCo v3-
ImageNet) (Chen et al., 2021a), and pretrained using MAE-based objective (MAE-ImageNet) (He
et al., 2022). Finally, to specifically analyze the benefits of domain-adapted pretraining, we train two
models, MoCo-v3-Streetscapes and MAE-Streetscapes, on our Streetscapes1M dataset.

For RS imagery benchmarks, we adopt PANGAEA-Bench (Marsocci et al., 2024), which includes
12 GeoFM baselines. We refer to their work for detailed settings. In addition, we also include the
TaxaBind satellite encoder Sastry et al. (2025). For location benchmarks, we employ the LocBench
from TorchSpatial (Wu et al., 2024) to evaluate the effectiveness of different initialization strategies
for RFF. We compare three initialization methods: 1) Random Init., where the model is trained from
scratch, 2) GeoCLIP Init., which leverages a pretrained checkpoint from GeoCLIP (Vivanco Cepeda
et al., 2024), 3) TaxaBind Init., which uses the location encoder in TaxaBind. , and 4) GAIR Init.,
initialized by our pretrained checkpoint. Additionally, we include a No Prior baseline, which uses
only image features and omits location embeddings entirely.

Ablation Study. We conduct ablation studies to analyze the impact of different components in
GAIR, including two variants (see Appendix A.5 for detailed illustrations and results):
• GAIR-MAE – In this setting, we replace GAIR’s contrastive learning objective with a masked

autoencoder (MAE) objective (He et al., 2022). Specifically, the street view image is treated as a
special masked patch of the RS image, allowing the model to reconstruct missing image patches.

• GAIR w/o Loc – To assess the significance of geolocation encoding, we remove the location
embedding e(xi) from GAIR.

4.1 STREET VIEW IMAGERY RESULTS

Socio-economic Indicator Regression. This task aims at predicting socio-economic indicators
from street view images, a widely studied problem in urban analytics (Fan et al., 2023). We evaluate
models on 10 socio-economic indicators: population density, educational attainment, health condition
rates, racial demographics, median household income, proximity to public transportation, percentage
of people who walk or bike, proportion of the population over 65 years old, crime rates, and visible
sky area, and report RMSE across different fine-tuning settings in Table 1. GAIR achieves the lowest
RMSE in the Fine-Tune All settings and the 2nd best in Non-Linear Probing settings.

Human Perception Regression. This task assesses human perceptions of urban environments,
which are widely used in urban planning, psychology, and social studies (Wei et al., 2022). We
perform regression on six perceptual attributes: ’Beautiful’, ’Boring’, ’Depressing’, ’Lively’, ’Safe’,
and ’Wealthy’. As shown in Table 1, we can see that GAIR achieves the best performance on linear
probing and fine-tuning settings, and remains the 2nd best model on the non-linear probing setting.
Notably, the explicit integration of geolocation into contrastive learning significantly enhances model
performance, as seen in the substantial improvement from GAIR w/o Loc to GAIR.

View Direction Classification. View direction reflects the model’s ability to capture geospatial
context. This task involves classifying images into two categories: "front/back" and "side". As shown
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in Table 1, existing GeoFMs struggle with view direction estimation, whereas GAIR consistently
outperforms all baselines, demonstrating its superior spatial awareness.
Imaging Platform Classification. Different imaging platforms offer distinct perspectives on the
built and natural environment. For this task, we include 6 platform types, including driving surface,
walking surface, cycling surface, tuner, open fields, and railway. As shown in Table 1, GAIR
outperforms all baselines on all settings.

4.2 REMOTE SENSING RESULTS
Table 2: Performance comparison (mIoU ↑) of GAIR
and other Geo-Foundation Models (GeoFMs) across
four remote sensing semantic segmentation (SS) tasks.
Linear and L-TAE (Garnot & Landrieu, 2020) represent
two different multi-temporal augmentation strategies

Task Single Temp. SS Multi Temp. SS

Burn Scars Crop. Poly. Crop Type
Model Linear L-TAE
CROMA (Fuller et al., 2024) 81.95 25.65 47.02 49.38
DOFA (Xiong et al., 2024) 78.96 27.07 49.81 51.33
GFM-Swin (Mendieta et al., 2023) 76.17 27.19 39.72 46.98
Prithvi (Jakubik et al., 2023) 82.67 26.86 39.92 43.07
RemoteCLIP (Liu et al., 2024) 75.55 25.12 46.50 52.05
SatlasNet (Bastani et al., 2023) 79.69 25.13 46.97 46.97
Scale-MAE (Reed et al., 2023) 76.71 21.47 21.39 25.42
SpectralGPT (Hong et al., 2024) 80.47 26.75 53.50 46.95
TaxaBind (Sastry et al., 2025) 75.84 38.46 44.80 43.52
S12-Data2Vec (Stewart et al., 2023) 81.14 24.23 54.01 54.03
S12-DINO (Stewart et al., 2023) 81.44 25.62 46.56 48.66
S12-MAE (Stewart et al., 2023) 80.86 24.69 46.28 45.80
S12-MoCo (Stewart et al., 2023) 80.76 25.38 44.22 48.58
GAIR-MAE 74.15 22.77 34.18 40.44
GAIR w/o Loc 82.94 43.28 55.41 54.32
GAIR 83.26 43.35 55.53 54.01

Table 2 presents the evaluation results of
GAIR across three remote sensing tasks.

Single Temporal Semantic Segmenta-
tion. We evaluate GAIR on two single-
temporal segmentation tasks: burn scar seg-
mentation using the HLS Burns dataset
(Jakubik et al., 2023) and cropland poly-
gon delineation using the AI4SmallFarms
dataset (Persello et al., 2023), both based
on Sentinel-2 imagery. GAIR achieves
a mean Intersection over Union (mIoU)
of 83.26% for burn scars and 43.35% for
cropland segmentation, outperforming all
baselines. Notably, GAIR improves perfor-
mance by 0.5% for burn scars and 16.16%
for cropland segmentation, demonstrating
its capability in extracting meaningful geospatial features for land cover classification.
Multi Temporal Semantic Segmentation. For this task, we utilize the crop type mapping dataset
(M Rustowicz et al., 2019), which consists of Sentinel-2 imagery from 2017. To utilize temporal
information, we employ two widely used feature aggregation strategies: linear aggregation and
L-TAE aggregation. GAIR consistently outperforms other baselines, particularly in the simpler linear
aggregation setting, achieving a 1% mIoU improvement.

Table 3: The location benchmark results (LocBench) for image regression and species recognition.
The “PopDen”, “ForCov”, “NightLum”, and “Elev.” columns indicate regression prediction results
on population density, forest coverage, nightlight luminosity, and elevation.

Init. Model Image Regression (R2 ↑) Species Recognition (Top-1 accuracy ↑)

PopDen ForCov NightLum Elev. BirdSnap NABirds iNat17 iNat18

Rand (Wu et al., 2024) No Prior 0.38 0.52 0.33 0.27 70.07 76.08 63.27 60.20
RFF 0.57 0.84 0.35 0.76 70.07 81.63 67.73 71.66

GeoCLIP (Vivanco Cepeda et al., 2024) RFF 0.61 0.84 0.37 0.78 70.56 81.65 67.78 71.93
TaxaBind (Sastry et al., 2025) RFF 0.60 0.77 0.38 0.72 72.15 80.58 68.18 71.71
GAIR RFF 0.67 0.86 0.40 0.82 72.07 81.76 67.84 72.48
GAIR Debias RFF 0.67 0.84 0.41 0.81 72.03 81.88 67.84 72.17

4.3 LOCATION BENCHMARK RESULTS

Here, we evaluate 2 location tasks. Table 3 shows all the experimental results.
Geo-Aware Image Regression. We evaluate the effectiveness of location priors using the datasets
from MOSAIKS (Rolf et al., 2021), which includes four regression tasks: population density, forest
cover, nightlight luminosity, and elevation estimation. The results indicate that incorporating location
information significantly enhances model performance, yielding up to a 50% improvement over
models without location priors. Furthermore, using pretrained checkpoints further refines the learned
geospatial representations. In particular, pretraining with GAIR provides the greatest gains, achieving
improvements of 0.06, 0.02, 0.03, and 0.04 in R2 for population density, forest cover, nightlight
luminosity, and elevation regression, respectively.
Geo-Aware Species Recognition. This task aims to classify images of different animal species. We
use four datasets: BirdSnap (Berg et al., 2014), NABirds (Van Horn et al., 2015), iNat2017 (Van Horn
et al., 2018), and iNat2018 (Van Horn et al., 2018). Using a pretrained GeoCLIP encoder provides
a moderate performance boost over random initialization. Notably, GAIR achieves the best results
on NABirds and iNat2018 while remaining strongly competitive on BirdSnap and iNat2017 with
TaxaBind. Noteably, GAIR is pretrained on our Streetscapes1M dataset that does not contain any
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species images but streetview images, whereas TaxaBind (Sastry et al., 2025) was pretrained on 2.55
million colocated satellite and ground-level species image pairs, giving TaxaBind a strong advantage
for this task. These results clearly demonstrate the effectiveness of GAIR’s pretraining strategy and
strong out-of-domain generalizability.

5 DISCUSSIONS

(a) Image Regression (b) Species Recognition
Figure 4: Geo-Bias Score on the LocBench.

Multi-Modal Pretraining. GAIR uses
geo-aligned contrastive learning across
three modalities, yielding notable gains
even in single-modal tasks. As shown
in Table 1, it outperforms MoCo v3 and
MAE trained on Streetscapes1M by up
to 0.1 RMSE and 0.2 F1 score. Despite
using only 0.1M RS images (Appendix
A.10), GAIR achieves strong results in
RS tasks, surpassing GeoFMs trained
on much larger datasets (Table 2). Mul-
timodal fusion further improves perfor-
mance by 4–20% (Appendix A.13)

(a) Alignment between g(si) and z
(q)
i

Great London, UK

(b) Alignment between g(si) and e(xi)

Figure 5: Visualization of cross-modal
alignment in GAIR via heat maps. Red
stars mark the SV image location xi.
(a) Cosine similarity between g(si) and
localized RS embeddings ẑi. (b) Co-
sine similarity between g(si) and loca-
tion embeddings e(xi) sampled across
Greater London.

Model Debias. Street view imagery is biased toward ur-
ban regions, as rural areas have limited coverage. Thus,
pretraining GAIR exclusively on Streetscapes1M risks am-
plifying geographic bias. In order to debias GAIR across
space, we further collected urban-rural balanced RS–Loc
pairs to continue pretraining GAIR’s RS and location en-
coders. We denote the resulting model as GAIR Debias.
From Table 3 and Figure 4, we can see that this approach
notably reduces geographic bias as measured by the Geo-
Bias Score (Wu et al., 2024) without sacrificing model
performance. Details are provided in Appendix A.14.

5.1 ANALYSIS OF MULTIMODAL GEO-ALIGNMENT

We evaluate whether GAIR captures spatial relations
across modalities by computing cosine similarities be-
tween an SV image embedding g(si) ∈ RD and different
localized RS image embedding z

(q)
i generated by Ω at

different locations x(q)
i . As shown in Figure 5(a), GAIR

successfully learns to geographically align these two repre-
sentations. We further compare g(si) ∈ RD with location
embeddings e(xi) sampled on a uniform mesh around the
image location, and observe consistent alignment with
street-level features (Figure 5(b)). See Appendix A.16
for more visual examples. By leveraging GAIR’s geo-
alignment across modalities, we also conduct an SV im-
age geolocalization experiment. Results show that GAIR
can outperform GeoCLIP (Vivanco Cepeda et al., 2024)
across all distance thresholds. Please see Appendix A.15
for detailed quantitative results.

6 CONCLUSION

We introduce GAIR, a new GeoFM that integrates remote sensing imagery, street view imagery,
and geolocation data to enhance geospatial representation learning. By using neural implicit local
interpolation, GAIR explicitly aligns different representations geographically whose effectiveness has
been shown in 9 downstream tasks and 22 datasets. However, GAIR does not consider view direction
information (e.g., SV v.s. RS images), which should be addressed in future work.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of model architecture, objectives, datasets, and hyperparameters
in Section 3 and 4 and Appendix A.3, A.7 and A.8. To support replication, we have uploaded
anonymized source code as supplementary materials.

ETHICS STATEMENT

We use only publicly available datasets: street-view images paired with Sentinel-2 from GEE for
pretraining, and established benchmarks for evaluation; experiments operate at regional/task level
rather than individual profiling. All datasets are used under their licenses, and results are reported for
scientific benchmarking only. We adhere to the ICLR Code of Ethics throughout submission, review,
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REFERENCES

Xiao An, Wei He, Jiaqi Zou, Guangyi Yang, and Hongyan Zhang. Pretrain a remote sensing
foundation model by promoting intra-instance similarity. IEEE Transactions on Geoscience and
Remote Sensing, 2024.

Guillaume Astruc, Nicolas Gonthier, Clement Mallet, and Loic Landrieu. Omnisat: Self-supervised
modality fusion for earth observation. In European Conference on Computer Vision, pp. 409–427.
Springer, 2024.

Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke, David Lobell, and
Stefano Ermon. Geography-aware self-supervised learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10181–10190, 2021.

George Azzari, Meha Jain, and David B Lobell. Towards fine resolution global maps of crop yields:
Testing multiple methods and satellites in three countries. Remote Sensing of Environment, 202:
129–141, 2017.

Favyen Bastani, Piper Wolters, Ritwik Gupta, Joe Ferdinando, and Aniruddha Kembhavi. Sat-
laspretrain: A large-scale dataset for remote sensing image understanding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 16772–16782, 2023.

Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W Jacobs, and Peter N
Belhumeur. Birdsnap: Large-scale fine-grained visual categorization of birds. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 2011–2018, 2014.

Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui Zhu. Traffic transformer: Capturing
the continuity and periodicity of time series for traffic forecasting. Transactions in GIS, 24(3):
736–755, 2020.

Jiezhang Cao, Qin Wang, Yongqin Xian, Yawei Li, Bingbing Ni, Zhiming Pi, Kai Zhang, Yulun
Zhang, Radu Timofte, and Luc Van Gool. Ciaosr: Continuous implicit attention-in-attention
network for arbitrary-scale image super-resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1796–1807, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. arXiv preprint arXiv:2104.02057, 2021a.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8628–8638, 2021b.

Elijah Cole, Grant Van Horn, Christian Lange, Alexander Shepard, Patrick Leary, Pietro Perona,
Scott Loarie, and Oisin Mac Aodha. Spatial implicit neural representations for global-scale species
mapping. In International Conference on Machine Learning, pp. 6320–6342. PMLR, 2023.

Yezhen Cong, Samar Khanna, Chenlin Meng, Patrick Liu, Erik Rozi, Yutong He, Marshall Burke,
David Lobell, and Stefano Ermon. Satmae: Pre-training transformers for temporal and multi-
spectral satellite imagery. Advances in Neural Information Processing Systems, 35:197–211,
2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.
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A APPENDIX

A.1 LLM USAGE

Large Language Models (LLMs) are used only to polish the writing of this paper, for example
improving grammar and phrasing. LLMs are not involved in research idea exploration, methodology
design, data analysis, or experimental results. All technical content and claims are originally written
by the authors.

A.2 NEURAL IMPLICIT LOCAL INTERPOLATION

We parameterize the continuous function with a small neural network Hθ (a multilayer perceptron).
This implicit decoder Hθ is shared across all RS images and takes two inputs: (a) a latent code (patch
embedding) z, and (b) a continuous 2D coordinate offset ∆x within that latent code’s cell. If we
only encode the latent code by using the nearest patch embedding to the query location xq

i , this
could lead to discontinuities at cell boundaries (Chen et al., 2021b). To ensure smooth transitions
across space, we use neural implicit local interpolation. Instead of relying on a single latent code,
we query the four nearest image patches and get their latent codes z

(k)
i (k ∈ {00, 01, 10, 11})

corresponding to the cell corners surrounding the continuous coordinate. Each code produces a
prediction Hθ(z

(k)
i ,Ψ(x

(q)
i ) − Ψ(x

(k)
i )), and we blend these outputs with weights proportional to

the area of the cell corner (or equivalently, bilinear interpolation weights based on the coordinate’s
fractional position within the cell) (see Equation 1).

A.3 STREETSCAPES1M DATASET CONSTRUCTION DETAILS

Figure 6: An illustration on the pipeline to construct our Streetscapes1M GeoFM pretraining dataset.
(a) The geographic distributions of cities we used to construct our Streetscapes1M dataset. (b) The
pipeline we use to construct the Streetscapes1M dataset.

In order to construct a global scale geospatial aligned multimodal dataset for GAIR model pre-
training, we collect a dataset called Streetscapes1M based on the Global Streetscapes dataset (Hou
et al., 2024). Figure 6 illustrates the dataset construction process of Streetscapes1M which can be
divided into three steps:

1. Study Area Selection: As shown in Figure 6 (a), we sample 1 million street view images
in the Global Streetscapes dataset across 688 cities globally.

2. Remote Sensing Image Data Collection: For each city, as shown in Figure 6 (b), we
define the spatial scope and temporal scope of the study area and download Sentinel-2
multispectral remote sensing images based on the defined spatial and temporal scope. We
download Sentinel-2 imagery from Google Earth Engine with the following criteria: (i)
Level-2A (L2A) atmospherically corrected products, (ii) maximum cloud cover < 20%,
and (iii) spatial resolution of 10m for all selected bands. Following prior RS foundation
models such as SatMAE (Cong et al., 2022) and CROMA (Fuller et al., 2024), we exclude
atmospheric bands (e.g., cirrus, water vapor) to reduce noise. For each location in our
pretraining set, we retrieve a time series of monthly images that satisfy the above conditions,
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and randomly select one timestamp during training as temporal augmentation. This ensures
diversity in surface conditions while controlling for cloud contamination.

3. Geospatial Alignment Among Data Modalities: As shown in Figure 6 (b), based on the
spatial footprints of the collected overhead RS images and street view images, we establish
their geospatial alignment between them and make them ready for GAIR model pre-training.

A.4 BASELINES

To comprehensively evaluate GAIR, for the street view image encoder, we compare it against multiple
baselines spanning geo-foundation models, general vision models, and self-supervised learning
frameworks. Our baseline models are categorized as follows:

Geo-Foundation Models. These models are specifically designed for geospatial image prediction,
leveraging pretraining strategies tailored to remote sensing and multimodal spatial data.

• SatMAE (Cong et al., 2022) – A transformer-based masked autoencoder pre-trained on large-
scale remote sensing imagery, leveraging self-supervised learning to extract generalized
spatial features.

• CROMA (Fuller et al., 2024) – A contrastive learning model designed for multimodal
geospatial representation learning, incorporating spatially-aware feature alignment.

• PIS (An et al., 2024) – A geospatial self-supervised pretraining approach that integrates
intra-instance similarity.

• TaxaBind (Sastry et al., 2025) – A multimodal framework that unifies six ecological
modalities using species images as the binding modality, with multimodal patching enabling
zero-shot and cross-modal ecological tasks.

General Vision Models. These models serve as broad benchmarks by assessing the performance
of standard vision pretraining techniques when applied to geospatial tasks.

• ImageNet Initialization – ViT pretrained on ImageNet using standard self-supervised
training.

• Random Initialization – A control setting where models are trained from scratch without
any pretraining.

Self-Supervised Learning Models. These models leverage contrastive and masked image pre-
training paradigms to learn generalizable representations without labeled supervision.

• MoCo v3-ImageNet – A ViT trained on ImageNet using MoCo v3.

• MAE-ImageNet – A ViT trained on ImageNet using a masked autoencoder (MAE) objective
(He et al., 2022).

• MoCo v3-Streetscapes – A ViT model pre-trained on Global Streetscapes data, capturing
scene-level geospatial information using MoCo v3.

• MAE-Streetscapes – A ViT model pre-trained on Global Streetscapes using MAE.

A.5 ABLATION STUDIES ON GAIR

To further analyze the contribution of key components in GAIR, we design four ablation settings,
results are shown in Table 4:

• GAIR-MAE – In this setup, we adopt a Masked Autoencoder (MAE) pretraining strategy
(He et al., 2022) in place of GAIR’s contrastive learning objective. Here, the model learns
to reconstruct missing image patches by treating the street view image as a masked region
of the remote sensing image. Figure 7 provides a detailed visualization of this approach.

• GAIR w/o Loc – To assess the significance of geolocation encoding, we remove the location
embedding e(xi) from GAIR.
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Figure 7: The architecture of one ablation setting, GAIR-MAE. In this variant, feature representations
are extracted independently using two encoders, producing separate patch embeddings for remote
sensing and street view modalities. Modality fusion is performed via a self-attention mechanism
applied to both sets of patch embeddings. Finally, a masked autoencoder (MAE) decoder processes
the fused representation to compute the reconstruction loss between the reconstructed masked regions
and the input remote sensing images.

• GAIR w/o NILI: This variant removes the neural implicit representation (INR) module
for spatially aligning remote sensing features with street view images. Instead, we apply
global average pooling over the feature map produced by the remote sensing encoder f(ri)
to obtain a single latent vector. This representation is then used directly for contrastive
learning without the geospatial alignment step.

• GAIR w/o NILI and Loc: In this setting, both the INR module and the location encoder
branch are removed. The model performs contrastive learning only between remote sensing
and street view embeddings. This baseline is conceptually similar to (Huynh et al., 2025).
The difference is that (Huynh et al., 2025) used the embeddings of species images instead of
streetview images to contrast with the remote sensing image embeddings.

Table 4: Ablation study results on Street View and Remote Sensing benchmarks.

Ablation Settings Street View Imagery Benchmark Remote Sensing Benchmark
Socio-economic Regression (RMSE ↓) Crop Type Classification (mIoU ↑)

GAIR-MAE 0.9011 34.18
GAIR w/o Loc 0.8352 55.41
GAIR w/o NILI 0.8588 55.01
GAIR w/o NILI and Loc (Huynh et al., 2025) 0.8451 52.78
GAIR 0.8349 55.53

Table 4 compares GAIR with all its variants on two representative tasks – streetview image-based
socio-economic regression and RS image-based crop type classification. We can see that deleting
some components of GAIR (e.g., INR module, location encoding module, etc.) or switching to other
objectives (e.g., MAE) will lead to performance degradation on both the SV image encoder and
RS image encoder. We notice that the performance of GAIR-MAE is significantly worse than other
variants while GAIR w/o Loc are usually the second best. In the following, we will use both GAIR
variants in other ablation studies and evaluations.

A.6 IMPACT OF GEOLOCATION NOISE ON GEO-ALIGNMENT

A central idea of GAIR is that accurate geolocation provides the spatial anchor for aligning heteroge-
neous geospatial modalities. If the location metadata is corrupted, the alignment between SV and
RS embeddings becomes unreliable, which should directly affect downstream task performance. To
verify this, we introduce controlled noise into the GPS coordinates and measure the degradation.
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Table 5: Effect of geolocation noise on GAIR for the socio-economic regression tasks. A lower
RMSE reflects better performance.

Noise Level No noise κ = 300 κ = 100 κ = 1

RMSE 0.8349 0.8360 0.8488 0.8517

Noise Injection. We use the von Mises–Fisher (vMF) distribution to simulate the location noise,
because it is the standard choice for modeling random perturbations on a spherical surface. The
concentration parameter κ controls the noise level: a larger κ means less GPS noise (a tighter vMF
distribution), while a smaller κ injects stronger positional errors. Then, starting from a pretrained
checkpoint (100 epochs) of GAIR, we continue pretraining GAIR for 2 additional epochs with noisy
coordinates, which are derived by adding a GPS noise to the ground truth locations drawn from vMF
distributions with different κ values. We then evaluate GAIR trained on noisy locations with different
noise levels on the socio-economic indicator regression benchmark using non-linear probing.

Results and Discussions. Table 5 shows that increasing location noise (corresponding to smaller κ
values) consistently leads to lower model performance. This trend highlights that geo-alignment is
not optional but essential: when the model cannot align RS and SV features to the correct spatial
anchor, its predictive power deteriorates. The performance degradation under higher noise highlights
the importance of precise geo-alignment: accurate coordinates enable consistent cross-modal fusion,
whereas noisy locations disrupt this alignment. This experiment empirically supports our design
choice of explicitly using geolocations to align different modalities in GAIR.

A.7 BENCHMARK DETAILS

To comprehensively evaluate the performance of GAIR, we construct multiple benchmark tasks
spanning street view imagery, remote sensing data, and geolocation-based predictions. The details of
each benchmark are as below.

A.7.1 STREET VIEW IMAGERY TASKS

These tasks use ground-level imagery to predict socio-economic indicators, human perception metrics,
and image metadata.

• Socio-Economic Indicator Regression: This task is predicting ten socio-economic indica-
tors using 410,286 street view images from Los Angeles and Boston. The indicators include
population density, educational attainment (percentage of people with a bachelor’s degree or
higher), health condition rates, racial demographics (percentage of people of color), median
household income, proximity to public transportation, percentage of people who walk or
bike, proportion of the population over 65 years old, crime rates, and visible sky area.

• Human Perception Regression: Using labels from the Global Streetscapes dataset (Hou
et al., 2024), this task predicts human perception ratings for six attributes—’Beautiful’,
’Boring’, ’Depressing’, ’Lively’, ’Safe’, and ’Wealthy’. These scores range from 0 to 1 and
capture subjective assessments of urban environments.

• View Direction Classification: This classification task, based on the Global Streetscapes
dataset, involves predicting the viewing direction of a street view image. The dataset
provides two labels: "Front/Back" and "Side."

• Imaging Platform Classification: This task classifies the type of imaging platform used
to capture a street view image, using labels from the Global Streetscapes dataset. There 6
classes including driving surface, walking surface, cycling surface, tunnel, open fields, and
railway.

A.7.2 REMOTE SENSING TASKS.

These benchmarks evaluate the performance of models on various remote sensing-based tasks.
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• Burn Scars Estimation: This task uses the HLS Burn Scars dataset (Jakubik et al., 2023),
which contains Sentinel-2 imagery of burn scars with burn scars masks for the years 2018-
2021 in the United States. The dataset contains 804 scenes, each of size 512 × 512 pixels
with six spectral bands (Blue, Green, Red, NIR, SW1, SW2). The masks contain a single
band, where pixels labeled 1 represent burn scars, and 0 indicate unaffected areas. The
dataset is randomly split into 2/3 for training and 1/3 for validation.

• Crop Type Mapping (South Sudan): This task uses a crop-type semantic segmentation
dataset from South Sudan (M Rustowicz et al., 2019), based on Sentinel-2 imagery from
2017. The dataset covers 837 agricultural fields and includes four crop types. Each Sentinel-
2 image is of 64 × 64 pixels and consists of 10 spectral bands (B2-B8, B8A, B11, and
B12).

• Cropland Boundary Delineation: We employ the AI4SmallFarms dataset (Persello et al.,
2023) for cropland boundary detection. This dataset includes 439,001 manually annotated
agricultural field polygons distributed across 62 non-overlapping tiles. Each tile is derived
from Sentinel-2 imagery, utilizing four spectral bands (B2, B3, B4, and B8) for delineation.

A.7.3 LOCATION-BASED TASKS

These benchmarks incorporate both geolocation information and remote sensing imagery to evaluate
geospatial representation learning:

• Geo-Aware Image Regression: For image regression tasks, we mainly use the MOSAIKS
dataset (Rolf et al., 2021; Yeh et al., 2021), which provides large-scale geospatial observa-
tions. The specific tasks include:

– Population Density: This task estimates population density from daytime satellite
imagery using the MOSAIKS dataset. The dataset originally consists of 100,000
records, but after preprocessing, we retain 425,637 geographically distributed samples.
A log transformation is applied to normalize zero-valued cases.

– Forest Cover: Leveraging remote sensing data, this task predicts the percentage of
land covered by forests, defined as vegetation exceeding 5 meters in height. The dataset
includes 498,106 observations globally.

– Nightlight Luminosity: This task utilizes nighttime satellite images to predict the
average radiance at night, as measured by the Visible Infrared Imaging Radiometer
Suite (VIIRS) in 2015. The dataset contains 492,226 observations.

– Elevation: Using remote sensing RGB bands, this task predicts elevation levels based
on data from the Shuttle Radar Topography Mission (SRTM) at NASA’s Jet Propulsion
Laboratory (JPL) and other sources. The MOSAIKS dataset provides 498,115 elevation
records.

• Geo-Aware Species Recognition: Geo-Aware fine-grained species recognition aims to
classify images of different species into different fine-grained categories using both images
and their location metadata. We include four datasets for evaluation:

– BirdSnap: A dataset focused on bird species in North America, BirdSnap (Berg
et al., 2014) contains 19,567 images across 500 species, with geolocation annotations
provided by Mac Aodha et al. (2019).

– NABirds: NABirds (Van Horn et al., 2015) includes 23,699 images spanning 555
bird species from North America. The location information is derived from the eBird
dataset (Sullivan et al., 2009), which aggregates citizen-science bird observations.

– iNat2017: This dataset, sourced from the iNaturalist 2017 challenge (Van Horn et al.,
2018), contains 675,170 images across 5,089 species categories. Each image is associ-
ated with a location, covering global regions.

– iNat2018: Similar to iNat2017, this dataset is part of the iNaturalist 2018 challenge
(Van Horn et al., 2018), featuring 461,939 images across 8,142 species categories. It
has a similar global distribution and data structure.
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A.8 IMPLEMENTATION DETAILS

Model Pretraining. We train our model on a Linux server equipped with 4 NVIDIA RTX A6000
GPUs (48GB). The training is conducted with a batch size of 256, a base learning rate of 1.5× 10−6,
and a warm-up of the first 5% of total epochs. We apply two types of data augmentations: (1) standard
augmentations for both Sentinel-2 imagery and street view images, including random horizontal
flipping and color jittering, and (2) temporal augmentation for Sentinel-2 imagery, where images
from different timestamps are randomly selected as Ayush et al. (2021) did. We fix the input size
of remote sensing image to be 96 × 96 and street view image to be 224 × 224; handling dynamic
input sizes is left for future work. The loss balancing parameter λ is set to 0.5. We use the AdamW
optimizer with β1 = 0.9, β2 = 0.999, and a weight decay of 0.01. All models, including baselines
and GAIR, adopt the ViT-B backbone; for the remote sensing encoder specifically, we use a smaller
patch size of 8× 8 to better capture fine-grained textures.

Model Fine-Tuning. In this work, we evaluate GAIR across three benchmarks: street view imagery
benchmarks, remote sensing imagery benchmarks, and location benchmarks.

For street view imagery benchmarks, we apply three fine-tuning strategies to adapt the pretrained
model to downstream tasks: 1) Linear probing: The encoder remains frozen, and only a single-layer
MLP head is fine-tuned. 2) Non-linear probing: The encoder remains frozen, while the head consists
of two MLP layers with a sigmoid activation function. 3) Full fine-tuning: All model parameters,
including the encoder, are fine-tuned. For the remote sensing imagery benchmark, we evaluate the
representation quality of the pretrained models by evaluating them with frozen encoders without
further fine-tuning. For location benchmarks, given the smaller capacity of the location encoder, we
use the pretrained model as parameter initialization and then perform full fine-tuning to evaluate its
performance. All baselines follow the same experimental setup, the batch size is of 256, 50 training
epochs, a learning rate of 1× 10−3, and all images are resized to match the input requirements of
each baseline model.

Due to the lack of official model implementations for the street view image benchmark, we reimple-
ment all the street view image baselines. For the remote sensing benchmark, we directly use remote
sensing baselines from PANGAEA-Bench (Marsocci et al., 2024). Similarly, we use the location
encoding baselines from TorchSpatial (Wu et al., 2024).

A.9 COMPUTATION COST

In this section, we will analyze the computation cost of the proposed NILI module in detail.

Where the NILI cost appears. The Neural Implicit Local Interpolation (NILI) module is only
used during pretraining to learn geo-aligned representations. For downstream tasks, we discard the
module and only keep the pretrained encoders f(·) (RS), g(·) (SV), and e(·) (Loc), incurring no NILI
overhead at inference time. If one chooses optional joint multi-modal inference (Appendix A.13),
NILI is re-enabled and introduces a small latency increase (Table 6).

Overhead versus a pooling baseline. Relative to a baseline that uses simple average pooling on
the RS encoder feature map, NILI adds only 0.02 GFLOPs during pretraining. In our setup this
overhead is negligible compared to the ViT backbones and data I/O.

Table 6: Compute comparison for the core encoders with and without NILI. Inference time is
measured per sample (batch-normalized) on a single A6000. Note that NILI is removed in all
downstream tasks by default; the “multi-modal” line reports the optional joint inference case.

Model GFLOPs Inference mode Latency (ms)

GAIR w/o NILI 23.10 Encoders only (default) 10.34
GAIR with NILI 23.12 Joint multi-modal (optional) 16.01
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Figure 8: Comparison of the number of remote sensing patches used during model pretraining.

End-to-end training cost. Table 7 summarizes the per-epoch wall clock and the marginal overhead
introduced by NILI during pretraining. As NILI runs only for coordinate-aligned contrastive pairs
and uses constant-size neighborhoods, its added time remains a small fraction of the epoch time.

Table 7: Pretraining epoch time on 2×A6000 (batch size 256).

Configuration Epoch time (h) Extra GFLOPs vs. GAIR w/o NILI

GAIR w/o NILI ≈ 3.5 –
GAIR with NILI ≈ 3.5 +0.02

A.10 THE COMPARISONS OF REMOTE SENSING TRAINING SAMPLES IN DIFFERENT GEOFMS

Figure 8 presents a comparative analysis of the number of remote sensing patches utilized during
pretraining across various GeoFMs. Notably, GAIR is pretrained with only 0.1 million samples,
significantly fewer than other models. Despite this reduced dataset size, GAIR achieves competitive
performance, demonstrating the effectiveness of its joint training paradigm that integrates street view
imagery with remote sensing data.

A.11 RECONSTRUCTION LOSS AND CONTRASTIVE LOSS

Figure 9: The loss curve of GAIR-MAE and GAIR during model pretraining.

Existing GeoFMs primarily adopt two pretraining objectives: reconstruction loss (Cong et al., 2022;
Hong et al., 2024; Fuller et al., 2024; Xiong et al., 2024; Astruc et al., 2024) and contrastive loss
(Hong et al., 2024; Jain et al., 2024). To investigate the effectiveness of these approaches, we
introduce an ablation setting where the model learns to reconstruct missing image patches by treating
the street view image as a masked region of the remote sensing image (Figure 7 in Appendix A.5).
However, we observe that during pretraining, the loss remains unstable (Figure 9). ultimately leading
the model to perform worse in downstream tasks.
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A.12 COMPREHENSIVE EVALUATIONS ON THE STREET VIEW BENCHMARK

To provide a more comprehensive analysis of model performance beyond the overall metrics reported
in the main paper (Table 1), we presents a detailed, per-indicator evaluation on the street view
benchmark, as shown in Tables 8 to 13 which include experimental results for 6 human perception
indicators and 10 socio-economic indicators.

Table 8: Detailed non-linear probing results on human perception prediction (RMSE ↓). Bold
indicates the best result.

Model Wealthy Safe Beautiful Depressing Boring Lively Average
SatMAE 2.1279 2.0132 2.2863 1.9920 2.0173 2.2809 2.1196
CROMA 2.0435 1.9309 2.1340 1.9417 1.9464 2.1350 2.0219
PIS 1.8885 1.8291 1.9605 1.8354 1.8693 1.9362 1.8865
Random Init. 2.1763 2.0402 2.3127 2.0057 2.0397 2.3458 2.1534
ImageNet Init. 1.6020 1.5974 1.7198 1.6543 1.6659 1.6240 1.6439
MoCo v3-ImageNet 1.6168 1.6058 1.7301 1.6868 1.6893 1.6306 1.6599
MAE-ImageNet 1.7267 1.7162 1.8373 1.7507 1.7696 1.7547 1.7592
MoCo v3-Streetscapes 1.7234 1.6883 1.7289 1.6943 1.6595 1.7560 1.7084
MAE-Streetscapes 1.7489 1.7014 1.8499 1.7891 1.7933 1.7379 1.7701
GAIR-MAE 2.1034 1.9379 2.2049 2.0911 2.0021 1.9576 2.0495
GAIR w/o Loc 1.6299 1.6252 1.7392 1.6687 1.6673 1.7389 1.6782
GAIR 1.6046 1.5837 1.7044 1.6533 1.6609 1.6865 1.6489

Table 9: Detailed fully fine-tune results on human perception prediction (RMSE ↓). Bold indicates
the best result.

Model Wealthy Safe Beautiful Depressing Boring Lively Average
SatMAE 1.8675 1.8129 1.9498 1.9920 1.8515 1.8134 1.8812
CROMA 1.8911 1.8487 1.9577 1.9417 1.8650 2.1280 1.9387
PIS 1.5791 1.5985 1.6760 1.8354 1.6270 1.3835 1.6166
Random Init. 2.1840 2.0950 2.3662 2.0057 2.1149 2.3376 2.1839
ImageNet Init. 1.4851 1.5008 1.5831 1.6543 1.5466 1.3929 1.5271
MoCo v3-ImageNet 1.5503 1.5532 1.6372 1.6868 1.5913 1.4938 1.5821
MAE-ImageNet 1.5508 1.5442 1.6407 1.7507 1.5897 1.3966 1.5788
MoCo v3-Streetscapes 1.5683 1.5453 1.6292 1.6943 1.5882 1.4547 1.5800
MAE-Streetscapes 1.5524 1.5299 1.6288 1.7891 1.5813 1.4830 1.5774
GAIR-MAE 1.9277 1.8892 1.9837 1.9758 1.9023 2.0879 1.9611
GAIR w/o Loc 1.5033 1.5473 1.6044 1.6613 1.6144 1.6453 1.5960
GAIR 1.4790 1.5021 1.5582 1.6321 1.5253 1.3465 1.5072

Table 10: Detailed linear probing results on human perception prediction (RMSE ↓). Bold indicates
the best result.

Model Wealthy Safe Beautiful Depressing Boring Lively Average
SatMAE 2.1928 2.0501 2.3379 2.0167 2.0441 2.3669 2.1681
CROMA 2.1004 1.9736 2.2198 1.9784 1.9861 2.2026 2.0768
PIS 2.0057 1.9110 2.0706 1.9257 1.9353 2.0665 1.9858
Random Init. 2.2451 2.0706 2.3478 2.0294 2.0647 2.4424 2.2000
ImageNet Init. 1.7000 1.7063 1.8411 1.7430 1.7598 1.7337 1.7473
MoCo v3-ImageNet 1.7229 1.7181 1.8588 1.7701 1.7583 1.7259 1.7590
MAE-ImageNet 1.8577 1.8164 1.9840 1.8410 1.8608 1.8781 1.8730
MoCo v3-Streetscapes 1.7395 1.7325 1.8688 1.7801 1.7666 1.6731 1.7601
MAE-Streetscapes 1.8489 1.7901 1.9501 1.8633 1.8418 1.8142 1.8514
GAIR-MAE 2.0091 2.4948 2.2232 2.0929 2.0375 1.8949 2.1254
GAIR w/o Loc 1.6822 1.6932 1.8342 1.7483 1.7400 1.7859 1.7473
GAIR 1.6854 1.6901 1.8201 1.7299 1.7428 1.6163 1.7141
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A.13 ABLATION STUDIES ON THE BENEFITS OF MULTIMODAL FUSION

In addition, we investigate the impact of different modality combinations on the model prediction
accuracy for these 10 socio-economic indicators. More specifically, we compare three single-modality
models by using the street view image encoder alone, denoted as GAIR-MAE, GAIRw/o Loc, and
GAIR, and the single-modality model by using the RS image encoder alone, denoted as GAIR- (RS
Only), against multimodal fusion approaches including GAIR (RS+SV), GAIR (SV+Loc), and GAIR
(SV+Loc+RS). GAIR (RS+SV) indicates that we use GAIR’s RS image encoder and streetview
image encoder to extract geographically colocated RS image embedding and SV image embedding at
location xi. These two image embeddings are concatenated and fed into a probing head for socio-
economic indicator prediction. Similarly, GAIR (SV+Loc) indicates using the SV image encoder
and location encoder to perform the prediction, and GAIR (SV+Loc+RS) uses all three encoders for
these prediction tasks.

Due to computational constraints, this modality analysis focuses on the socio-economic tasks. The
experimental results are shown in Tables 11, 12, and 13. The results consistently demonstrate the
benefit of integrating multiple data sources. Specifically, the full multimodal fusion, i.e., GAIR
(SV+Loc+RS), achieves the lowest average RMSE across all three evaluation settings: non-linear
probing (0.6611), full fine-tuning (0.6012), and linear probing (0.6678). This represents a significant
error reduction compared to single or dual modality approaches. For instance, compared with
GAIR (RS only), and SV only baseline denoted as GAIR, the full fusion reduces the average
RMSE by approximately 20% across all settings. Even when compared against the strongest dual-
modality baseline in each setting – GAIR (SV+Loc), the full SV+Loc+RS fusion approach, GAIR
(SV+Loc+RS), provides a further average RMSE reduction ranging from 4% to 15.1%, indicating
the benefits of multimodal fusion

Table 11: Detailed non-linear probing results on socio-economic indicator prediction (RMSE ↓).
Multi-model results are also included here. Bold indicates the best result. “Health Con.” indicates
health condition rate. “Pop. Den.” indicates population density. “Edu. Att.” indicates educational
attainment. “Racial” indicates the racial demographics. “Med. Income” indicates the median
household income. “Pub. Tra.” indicates the proximity to public transportation. “Pop. > 65” indicates
Population over 65. “% walk/bike” indicates the percentage of walking or biking.

Model Health
Con. Pop. Den. Edu. Att. Racial Med.

Income Pub. Tra. Crime
Rate

Sky
Area Pop. > 65 % walk

/bike Average

SatMAE 1.0076 0.9503 0.8924 0.9611 0.9263 0.9782 0.9699 1.0727 0.9621 0.9504 0.9671
CROMA 1.0060 0.9232 0.8829 0.9471 0.9118 0.9588 0.9573 1.0741 0.9546 0.9341 0.9550
PIS 0.9982 0.8591 0.8429 0.9112 0.8712 0.9087 0.9129 1.1550 0.9328 0.8979 0.9290
Random Init. 1.0082 0.9637 0.9109 0.9691 0.9395 0.9901 0.9753 1.0225 0.9671 0.9537 0.9700
ImageNet Init. 0.9675 0.7970 0.7639 0.8500 0.8038 0.8317 0.8251 1.3712 0.8965 0.8224 0.8929
MoCo v3-ImageNet 0.9737 0.7906 0.7523 0.8414 0.7972 0.8282 0.8242 1.2318 0.8956 0.8249 0.8760
MAE-ImageNet 0.9783 0.8021 0.7723 0.8587 0.8123 0.8441 0.8398 1.1624 0.9058 0.8403 0.8816
MoCo v3-Streetscapes 0.9746 0.8011 0.7684 0.8499 0.8030 0.8293 0.8346 1.2715 0.8994 0.8312 0.8863
MAE-Streetscapes 0.9898 0.7967 0.7747 0.8694 0.8011 0.8341 0.8292 1.3039 0.9018 0.8393 0.8940
GAIR-MAE 1.0050 0.9602 0.9011 0.9713 0.9270 0.9895 0.9502 0.8840 0.9456 0.9510 0.9485
GAIR w/o Loc 0.9788 0.8013 0.7534 0.8552 0.7971 0.8213 0.8523 1.2323 0.9012 0.8301 0.8823
GAIR 0.9613 0.7981 0.7412 0.8688 0.8053 0.8246 0.8255 1.2423 0.9017 0.8342 0.8803
GAIR (RS only) 0.9845 0.8526 0.8160 0.8917 0.8456 0.8805 0.8573 0.7865 0.9202 0.8512 0.8686
GAIR (RS+SV) 0.9827 0.7998 0.7646 0.8637 0.8000 0.8552 0.8293 0.7158 0.9051 0.8298 0.8346
GAIR (SV+Loc) 0.8978 0.7266 0.5031 0.6287 0.6518 0.3934 0.7319 1.7467 0.8358 0.6742 0.7790
GAIR (SV+Loc+RS) 0.8857 0.7077 0.4933 0.6215 0.6384 0.3916 0.7023 0.6815 0.8284 0.6607 0.6611

A.14 GEOGRAPHIC BIAS QUANTIFICATION AND DEBIASING OF GAIR

Our Streetscapes1M dataset consists of tuples containing street view images, their geolocations,
and corresponding RS images. Due to the data collection process of street view imagery, its ge-
ographic coverage is much denser in urban areas and considerably sparser in rural regions. This
imbalance results in a strong urban–rural skew within Streetscapes1M. Consequently, pretraining
GAIR exclusively on this dataset risks amplifying geographic bias Wu et al. (2024); Manvi et al.
(2024). Thus, to debias GAIR across the geographic space, we collect additional 200,000 training
samples from remote sensing imagery and corresponding location metadata to form a complementary
pretraining dataset with urban-rural balanced RS-location pairs (as shown in Figure 10). We further
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Table 12: Detailed fully fine-tune results on socio-economic indicator prediction (RMSE ↓). Multi-
model results are also included here. Bold indicates the best result. The column names indicate the
same meaning as those in Table 11.

Model Health
Con. Pop. Den. Edu. Att. Racial Med.

Income Pub. Tra. Crime
Rate

Sky
Area Pop. > 65 % walk

/bike Average

SatMAE 0.8968 0.7684 0.6929 0.7779 0.7488 0.7419 0.7440 0.7042 0.8504 0.7647 0.7690
CROMA 0.9174 0.7849 0.7185 0.8046 0.8650 0.7723 0.7907 0.6230 0.8650 0.7857 0.7927
PIS 0.8001 0.6895 0.5940 0.6915 0.7922 0.6391 0.6445 0.5034 0.7922 0.6505 0.6797
Random Init. 0.9991 0.8906 0.8499 0.9206 0.8840 0.9262 0.9320 0.7820 0.9413 0.9093 0.9035
ImageNet Init. 0.8207 0.7056 0.6167 0.7056 0.6854 0.6573 0.6831 0.6583 0.8001 0.6793 0.7012
MoCo v3-ImageNet 0.7846 0.6886 0.5957 0.6886 0.6687 0.6290 0.6552 0.6358 0.7831 0.6497 0.6779
MAE-ImageNet 0.8335 0.7056 0.6356 0.7203 0.7027 0.6798 0.6942 0.6711 0.8145 0.6927 0.7150
MoCo v3-Streetscapes 0.7934 0.7035 0.6093 0.6903 0.7044 0.6895 0.6395 0.4288 0.7889 0.6593 0.6707
MAE-Streetscapes 0.8042 0.7185 0.6286 0.7094 0.7293 0.6663 0.6499 0.5243 0.7813 0.6601 0.6872
GAIR-MAE 0.9001 0.7785 0.7081 0.7832 0.7934 0.7933 0.8088 0.8038 0.8694 0.8092 0.8048
GAIR w/o Loc 0.7732 0.6945 0.6204 0.7012 0.6684 0.6103 0.6234 0.5974 0.7763 0.6597 0.6725
GAIR 0.7843 0.7051 0.5982 0.6783 0.6589 0.6295 0.6300 0.4960 0.7894 0.6422 0.6612
GAIR (RS only) 0.8666 0.7595 0.6594 0.7305 0.7468 0.6331 0.7790 0.7293 0.8342 0.6785 0.7417
GAIR (RS+SV) 0.7653 0.7578 0.6531 0.7245 0.7394 0.6325 0.7774 0.6271 0.7340 0.6079 0.7019
GAIR (SV+Loc) 0.7216 0.7501 0.5175 0.6396 0.6646 0.5845 0.7830 0.8608 0.5110 0.5063 0.6539
GAIR (SV+Loc+RS) 0.7453 0.7023 0.5022 0.5422 0.6012 0.4577 0.6922 0.7383 0.5012 0.5293 0.6012

Table 13: Detailed linear probing results on socio-economic indicator prediction (RMSE ↓). Multi-
model results are also included here. Bold indicates the best result. The column names indicate the
same meaning as those in Table 11.

Model Health
Con. Pop. Den. Edu. Att. Racial Med.

Income Pub. Tra. Crime
Rate

Sky
Area Pop. > 65 % walk

/bike Average

SatMAE 1.0079 0.9674 0.9270 0.9745 0.9501 0.9932 0.9787 0.9308 0.9725 0.9690 0.9671
CROMA 1.0067 0.9468 0.9155 0.9645 0.9363 0.9770 0.9696 0.9111 0.9652 0.9574 0.9550
PIS 1.0025 0.8916 0.8832 0.9377 0.9012 0.9339 0.9456 0.9191 0.9450 0.9303 0.9290
Random Init. 1.0083 0.9718 0.9359 0.9784 0.9538 0.9981 0.9816 0.9273 0.9738 0.9710 0.9700
ImageNet Init. 0.9927 0.8520 0.8457 0.9150 0.8673 0.8968 0.9145 0.8100 0.9321 0.9031 0.8929
MoCo v3-ImageNet 0.9916 0.8344 0.8148 0.8957 0.8454 0.8849 0.9083 0.7760 0.9217 0.8873 0.8760
MAE-ImageNet 0.9928 0.8432 0.8251 0.9034 0.8578 0.8867 0.9030 0.7882 0.9267 0.8892 0.8816
MoCo v3-Streetscapes 0.9888 0.8235 0.8283 0.8955 0.8479 0.8685 0.8982 0.8928 0.9399 0.8794 0.8863
MAE-Streetscapes 1.0004 0.8185 0.8385 0.9102 0.8422 0.8677 0.8900 0.9696 0.9288 0.8740 0.8940
GAIR-MAE 0.9996 0.9574 0.9267 0.9725 0.9807 0.9767 0.9422 0.8292 0.9699 0.9300 0.9485
GAIR w/o Loc 0.9783 0.8623 0.8300 0.8868 0.8357 0.8881 0.8872 0.8528 0.9252 0.8766 0.8823
GAIR 0.9844 0.8254 0.8585 0.8863 0.8289 0.8883 0.8810 0.8513 0.9278 0.8710 0.8803
GAIR (RS only) 0.9928 0.8742 0.8422 0.9120 0.8638 0.9008 0.9127 0.9056 0.9275 0.8862 0.8918
GAIR (RS+SV) 0.9877 0.8228 0.7889 0.8848 0.8227 0.8720 0.8940 0.7292 0.9101 0.8609 0.8573
GAIR (SV+Loc) 0.9299 0.7460 0.5245 0.8481 0.6763 0.8085 0.7849 0.0997 0.8481 0.7094 0.6976
GAIR (SV+Loc+RS) 0.9241 0.7310 0.5149 0.6425 0.6617 0.8051 0.7700 0.0873 0.8408 0.7009 0.6678

pretrain the remote sensing encoder and location encoder of GAIR on this dataset for 10 epochs while
excluding the SV encoder due to the unavailability of SV images in rural areas. The resulting model,
namely GAIR Debias, is compared with the original GAIR, and other baselines (e.g., GeoCLIP
(Vivanco Cepeda et al., 2024) and Taxabind (Sastry et al., 2025)) on multiple location benchmark
datasets used in Table 3. We evaluate the overall model performance of these models as well as their
geographic bias with the established Geo-Bias score, namely the marked SSI score, proposed by Wu
et al. (2024).

Figure 10: The distribution of additional training sam-
ples. We randomly generate 1,000 global locations, and
for each location collect 200 remote sensing patches
with their coordinates to form the training dataset.

While the overall accuracy on the location
benchmark remains largely unchanged (see
Table 3), we observe a clear reduction in ge-
ographic bias, measured by the Geo-Bias
Score (Wu et al., 2024) as shown in Fig-
ure 4. Here, lower geo-bias, i.e., lower
marked SSI scores, indicates less dispar-
ity of model performance across different
places. This demonstrates that leveraging
broader RS and location data can mitigate
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Table 14: Zero-shot geolocalization accuracy of GAIR on 15k sampled SV queries.

Method Acc@1km Acc@25km Acc@200km Acc@750km Acc@2500km

GeoCLIP(Vivanco Cepeda et al., 2024) 9.45% 18.48% 30.11% 38.99% 45.17%
GAIR 10.04% 21.35% 33.15% 40.11% 51.65%

geographic bias even without the supervi-
sion signal of street view images.

Note that we decided to use these location
benchmark datasets from the LocBench (Wu et al., 2024) for geographic bias evaluation instead of the
remote sensing benchmark datasets shown in Table 2. The reason is that all these location benchmark
datasets have global geographic coverage, making them suitable for geographic bias evaluation. In
contrast, most datasets used for RS image semantic segmentation and instance segmentation only
cover a limited geographic area and thus unsuitable for this purpose, including the HLS Burns dataset
for burn scar segmentation (Jakubik et al., 2023), the cropland polygon delineation dataset (Persello
et al., 2023), and the crop type mapping dataset (M Rustowicz et al., 2019) listed in Table 2.

A.15 ZERO-SHOT GEOLOCALIZATION EXPERIMENT

Task Definition. We design a zero-shot image geolocalization evaluation to test whether the
pretrained encoders of GAIR can recover the approximate location of a street view (SV) image
without task-specific fine-tuning. Given a query SV image si, the goal is to predict its geographic
coordinate xi by comparing the embedding of si with a gallery of location embeddings.

Evaluation Protocol. We randomly sample 15,000 SV images from the Streetscapes1M dataset as
queries. For each query, we:

1. Use the SV encoder g(·) to extract an image embedding g(si).
2. Use the location encoder e(·) to encode the GPS coordinates of all gallery images into a

location embedding set {e(xj)}.
3. Compute cosine similarity between g(si) and each e(xj).
4. Select the top-1 most similar location embedding as the predicted location x̂i.

We compute the great-circle distance d(xi, x̂i) between the ground-truth location xi and the predicted
location x̂i using the haversine formula. Accuracy is reported under multiple distance thresholds:

Acc@ r =
1

N

N∑
i=1

1 [d(xi, x̂i) < r] (5)

where r ∈ {1, 25, 200, 750, 2500} km. This follows common practice in global image geolocalization
models such as GeoCLIP (Vivanco Cepeda et al., 2024).

Results and Discussions. Table 14 summarizes results on the sampled subset. GAIR achieves
higher accuracy than GeoCLIP across all distance thresholds. Performance is particularly strong
at coarse spatial scales (> 200 km), while fine-grained localization at the 1 km level remains very
strong. These results demonstrate that GAIR learns transferable, location-aware representations
effective for retrieval-based geospatial tasks.

A.16 MORE VISUALIZATION RESULTS OF SPATIAL ALIGNMENT

Figure 11 and 12 show more visualization results of spatial alignment.
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Figure 11: More results of cosine similarities between a SV image embedding g(si) and different
localized RS image embeddings z(q)i . The spatial scale of the similarity map is 100× 100 pixels
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Figure 12: More results of cosine similarities between a SV image embedding g(si) and location
embeddings e(xi).
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