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ABSTRACT

Machine learning models are routinely trained on a mixture of different data do-
mains. Different domain weights yield very different downstream performances.
We propose the Soup-of-Experts, a novel architecture that can instantiate a model
at test time for any domain weights with minimal computational cost and without
re-training the model. Our architecture consists of a bank of expert parameters,
which are linearly combined to instantiate one model. We learn the linear combi-
nation coefficients as a function of the input domain weights. To train this archi-
tecture, we sample random domain weights, instantiate the corresponding model,
and backprop through one batch of data sampled with these domain weights. We
demonstrate how our approach obtains small specialized models on several lan-
guage modeling tasks quickly. Soup-of-Experts are particularly appealing when
one needs to ship many different specialist models quickly under a model size
constraint.

1 INTRODUCTION

Large Language Models (LLMs) work well on diverse tasks because they have many parameters and
are trained on generalist datasets Brown et al. (2020); Bommasani et al. (2021). However, they are
costly to train and to serve, both in terms of memory and inference cost. Specialist language models
hold fewer parameters; they are, therefore, cheaper to store, send, and use at inference. However,
they must give up the generality of LLMs and specialize in a few specific topics.

In cases where there is an abundance of specialization data, training a small model on those data
yields a good specialist. However, in many settings, the specialization data is scarce: for instance,
it may come from a narrow topic of interest or be a small company’s internal document database. It
is, therefore, impossible to train a good-quality specialist model on such data alone.

To get a small model that performs well on the specialization data, we use a large, generic pretraining
dataset. That pre-training set contains data from several domains. A powerful method to obtain a
good specialist model is importance sampling: it adjusts the mixture weights of the pretraining
distribution to resemble the scarce specialist dataset. This method has been shown to outperform
generic pre-training (Grangier et al., 2024), but it has a major drawback: it requires pre-training a
full model for each specialization dataset available. This makes training cost scale linearly with the
number of specialized downstream tasks, which can be intractable as model size and data scales. The
goal of this paper is to answer the following question: How can we leverage a large pre-training
set to obtain specialized models that can be instantiated quickly when the specialization data is
revealed? We formalize this question by considering the two phases of serving specialist models.

Pretraining We use multiple pre-training domains to train a model. At this point, we do not know
the specific data and are unaware of what specific tasks we will need to address later on.

Specialization phase We receive a specific dataset, and using the pre-trained model, we need to
quickly instantiate a small model that works well on this specific dataset.

In Table 1, we summarize the different costs and constraints associated with these two phases and
provide a qualitative review of the strengths and weaknesses of several strategies.

In this landscape of different models, we introduce the Soup-of-Experts, which is designed to be
able to instantiate a small specialist model in a flash.
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Model Spec. size Pretrain. size Pretrain. cost Spec. Cost Spec. Loss
Large generic model Large Large Large Null Small
Mixture of Experts Large Large Small Null Med
Small generic model Small Small Small Null Large
Domain Experts Small Large Med Small Med
CRISP Small Null Null Large Small
Soup-of-Experts Small Large Small Small Small

Table 1: The different quantities that matter during the phases of serving a specialized model.
Spec. size is the number of parameters in the specialized model. Pretrain. size is the total number of
parameters of the pretrained model. Pretrain. cost is the cost of pretraining the model. Spec. cost is
the cost to obtain a specialized model when the specialized data is made available. Spec. loss is the
loss on the specialized dataset. With these constraints in mind, we compare different models. The
goal of this work is to propose the best possible model under the constraint of having a small
specialized model size. Large generic model is a generalist model, with many parameters, that
requires a long training. A mixture of Experts (Fedus et al., 2022; Krajewski et al., 2024) is a small
model with added parameters that marginally impact the latency. Since both the LLM and the MoE
have many parameters, they are discarded from our study. Small generic model is one small model
trained on a generalist distribution. Domain experts (Gross et al., 2017) train one small model per
pre-training domain. CRISP (Grangier et al., 2024) trains one model once the specialized data is
available using a data mixture that imitates the specialized data distribution. Our proposed method,
the Soup-of-Experts, trains one model with many parameters and can quickly instantiate a small
model that is good on the specialized data. The results in this table are qualitative.

Pretraining domains

Sample data  

Loss 

Model

Data

Sample domain
weights 

MLP

Figure 1: The Soup-of-Experts and its training pipeline. The Soup-of-Experts consists of shared
parameters S, n experts parameters E1, . . . , En, and an MLP that acts as a routing mechanism. At
each optimization step, we sample domain weights h from a meta-distribution π. These domain
weights have two purposes: they are passed through an MLP to give a vector of coefficients α that
instantiates a model by combining the experts’ weights, and they are used to sample a mini-batch of
data following the domain weights law. We then backpropagate through the corresponding loss to
update the parameters of the Soup-of-Experts.

Our main idea is to learn to instantiate models with any mixture of domain weights by taking a
linear combination of jointly optimized base models, called experts. We are inspired by the works
of model merging (Wortsman et al., 2022; Arpit et al., 2022; Rame et al., 2022; 2023; 2024). The
gist of model merging is that two model parameters ΘA and ΘB that are obtained by fine-tuning the
same model on different domains A and B can be merged by averaging, yielding a new model Θ∗ =
1
2 (ΘA+ΘB), sometimes called a model soup (Wortsman et al., 2022), to obtain good performances
on both datasets. An important lesson from model merging is that some models’ parameters can be
linearly combined and yield good models. A caveat of model merging is that the merged models can
only be fine-tuned versions of the same base model: for merging to work, the two models must not
be too far apart in the parameters space. Our method, Soup-of-Experts, pre-trains multiple experts
that can, by design, be linearly combined to yield a single specialized model. The linear coefficients
of the combination are learned as a function of the pre-training domain weights.
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Paper overview In Section 2, we explain the details of the Soup-of-Experts, its training pipeline,
and how it can be used to instantiate a specialist model quickly. In Section 3, we demonstrate the
promises of this approach in a standard language model pre-training setup, where we train small
110M models on Redpajamav2 (Weber et al., 2024) and specialize them on 16 domains from the
Pile (Gao et al., 2020).

2 METHODS

Figure 1 gives an overview of the proposed architecture, its interplay with data, and its training
pipeline. We first explain the training data setup.

Sampling from the pre-training set The pre-training set is composed of k domains
D1, . . . , Dk ⊂ X where X is the sample space (in the case of LLMs, this is the space of text
sequences). Each domain contains many samples, usually enough to train a model without repeat-
ing data or overfitting. We can query samples from each of these domains, therefore we can sample
from a weighted mixture of domains: for some domain weights h ∈ Rk, we define the sampling
law mix(h) =

∑k
i=1 hiDi such that P (x|mix(h)) =

∑k
i=1 hiP (x|Di). This law mixes the datasets

Di with proportions hi, where the domain weights h are non-negative and sum to one. We can
efficiently query samples from mix(h) for any domain weights h, by picking a domain i at ran-
dom following the categorical law induced by h, and then sampling an element at random from the
corresponding domain Di.

Classical generic pre-training relies on a fixed pre-training domain weights hgeneric which define a
generic dataset Dgeneric = mix(hgeneric). These weights are defined to train large generalist models
that perform well on average. Finding weights for a good average behaviour to train large models is
difficult Xie et al. (2023). For smaller models, even a good mix(hgeneric) would yield a model far
from strong specialists, i.e., giving a model good at everything but excellent at nothing.

Training with mixtures of pre-training domains We let Θ ∈ Rp the parameters of a model to
be trained on the pre-training set. We define ℓ(Θ;x) the loss function for a sample x ∈ X (the
next token prediction loss in this paper, since we focus on language modeling). The standard LLM
pretraining consists of running Adam (Kingma, 2014) to approximately minimize the generic loss
Lgeneric(Θ) = Ex∼Dgeneric

[ℓ(Θ;x)]. Alternatively, we can train a model on any given mixture with
domain weights h by running Adam on the loss L(Θ, h) = Ex∼mix(h) [ℓ(Θ;x)]

Grangier et al. (2024) showed that a powerful technique to obtain a good small model on a specific
set Dspe is to i) find domain weights hspe such that mix(hspe) ≃ Dspe and then ii) train the model by
minimizing L(Θ, hspe). This importance-sampling-based method called CRISP gives much better
specialists than generic pre-training since it trains the model on a distribution that has lots of data
and yet is close to the targeted specific distribution.

One caveat of this approach is that it requires retraining a model from scratch anytime one wants to
obtain a specialized model. While this cost might be justified in some critical applications, we study
alternative avenues to obtain specialized models at a much smaller cost: this is the purpose of the
new architecture that we propose in this paper, the Soup-of-Experts.

Soup-of-Experts The goal of the Soup-of-Experts is to amortize the training of models on multiple
different domain weights. It defines a method that, given training domain weights h ∈ Rk, quickly
instantiates a model Θ that depends on those domain weights and that yields a low loss L(Θ, h).

To do so, we enhance the base model with n experts E1, . . . , En ∈ Rp, which for ease of notation
we stack into a matrix E = [E1, . . . , En] ∈ Rn×p. We linearly combine the weights with shared
parameters S ∈ Rp. For a given set of expert coefficients α ∈ Rn, we instantiate a small model as

Θ = Combine(S,E, α) = S +

n∑
j=1

αjEj . (1)

Our main idea is to learn coefficients α as a function of the domain weights h. To be more precise,
we want to learn parameters S, E, and a function ϕ : Rk → Rn such that, for any domain weights
h ∈ Rk, the instantiated model Θ = Combine(S,E, ϕ(h)) performs well on the dataset mix(h),
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Algorithm 1 (Grangier et al., 2024) Estimating specialist domain weights that are good for a spe-
cialized dataset Dspe

Input: Specialist dataset Dspe, embedded domain centroids c1, . . . , ck.
Init: h1, . . . , hk = 0.
for x in Dspe do

Find closest centroid: i = argmin ∥Bert(x)− ci∥
Increment hi = hi + 1/#Dspe

end for
Output: Domain weights h1, . . . , hk

i.e., leads to a low loss L(Θ, h). In practice, we use a two-layer MLP for ϕ, parameterized by
parameters ω, denoted as ϕω . Although one can think of many different ways to define a mapping
from domain weights to model weights, we chose the parameterization in Equation 1 as it allows
us to easily scale the number of total parameters (by increasing the number of experts n), and we
know from the model merging literature that, perhaps surprisingly, different model parameters can
be linearly combined to yield one good model(Wortsman et al., 2022).

Training Soups of Experts with meta-distributions In order to train the Soup-of-Experts to
achieve good performance on a diversity of domain weights, we use a meta-distribution π, that is,
a sampling law over domain weights. We then train the Soup-of-Experts by minimizing the average
error of the model over this meta-distribution, which is the objective function

L(S,E, ω) = Eh∼π [L(Combine(S,E, ϕω(h)), h)] (2)

We minimize this function using Adam, where at each step, we sample domain weights h ∼ π,
instantiate the corresponding model, sample a mini-batch from mix(h), and do an optimization step
on ℓ(Combine(S,E, ϕ(h)), x). Figure 1 illustrates this training pipeline.

The choice of meta-distribution π has a critical role on the Soup-of-Experts. Ideally, it should reflect
the distribution of specific tasks that one wishes to address during the specialization phase. In our
experiments, we favor sparse domain weights and use meta-distributions π that first sample s ≪ k
domains and then take uniform random domain weights over these s domains.

Instantiating a Soup-of-Experts: Specialization in a flash After pre-training, the Soup-of-
Experts has the flexibility to quickly provide a model that is good for any data distribution do-
main weights h, simply by forming the parameters Θ = Combine(S,E, ϕ(h)). This instantia-
tion only requires a forward pass through a small MLP, and merging n parameters; it does not
require any training. To specialize a Soup-of-Experts, we obtain domain weights hspe from Dspe

so that Dspe ≃ mix(hspe). To do so, we use the nearest-neighbor method of (Grangier et al.,
2024), which is described in Algorithm 1 for completeness. We then instantiate the parameters
Combine(S,E, ϕ(hspe)). This model can then be fine-tuned on the specialization data to increase
its performance if the computational budget allows it.

3 EXPERIMENTS

We first detail the experimental setup: datasets, models, metrics, and hyperparameters.

Pretraining domains We pre-train language model on Redpajama2 (Weber et al., 2024), a widely
used curated web-crawl dataset. We obtain the pre-training domains D1, . . . , Dk with the same
clustering method as Grangier et al. (2024): we embed each document using sentence-bert (Devlin,
2018), and then use the k-means algorithm on these embeddings to split the dataset into k pre-
training domains. We use a hierarchical k-means, where we first cluster the dataset into k = 64
domains and then cluster each of these domains into 64 smaller domains, yielding in total k = 4096
domains. We also collect the k corresponding centroids c1, . . . , ck in the embedding space, in order
to use Algorithm 1 to obtain specialist domain weights.

Specialization domains We consider 16 datasets from the PILE (Gao et al., 2020) as target spe-
cialization sets: arxiv, dm mathematics, enron emails, europarl, freelaw, github, hackernews, nih
exporter, openwebtext, pg19, phil papers, pubmed, stackexchange, ubuntu, uspto, and wikipedia.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For each of these datasets, we compute the corresponding specialist domain weights using Algo-
rithm 1. We evaluate different methods on each of the specialization datasets individually, and we
report averaged losses over these domains. We defer individual domain results to the appendix. We
highlight that these specialist domains and specialist domain weights are never used or seen during
the pre-training phase for all methods except for CRISP.

Models We consider GPT-2 type transformer architectures, which we train with the next-token-
prediction loss. We consider a base model size of 110M parameters.

Metrics In this work, we measure the ability of a model on a specialization dataset with its next-
token prediction loss on that domain: we focus solely on language modeling. This loss predicts
well the downstream performance of models with more complex metrics like reasoning, question-
answering or translation ability (Gonen et al., 2022; Du et al., 2024; Gadre et al., 2024).

Training hyperparameters for the Soup-of-Experts Unless specified otherwise, we train the
Soup-of-Experts with n = 128 experts. With a base model size of 110M , these Soup-of-Experts
therefore hold a total of (128 + 1) × 110M = 14B parameters, that can be linearly combined into
small 110M models. We use a meta-distribution π with a support size of s = 4.

All the methods we compare in this work instantiate, at specialization time, a model with the same
architecture and number of parameters. As explained in Table 1 we consider the following models:

Generic Pretraining We train one generic model on the standard pre-training distribution. At spe-
cialization time, the model stays the same and is evaluated on the specialization set.

Domain experts (Gross et al., 2017) We train one model on each pretraining domain Di. At spe-
cialization time, we select the model that yields the smallest loss on the specialization set. This
technique does not scale with the number of domains. We only train k = 64 domain experts, as it
would be infeasible to train 4096 with our budget.

CRISP (Grangier et al., 2024) We train one model per specialization set on the mixture mix(hspe).
At specialization time, we use the corresponding model. This method does not scale with the number
of specialization domains; it requires one pre-training run per specialization domain.

Main results We report the training curves on the pre-training set as well as the average loss on the
specialization domains in Figure 2. The specialized loss is obtained by computing the loss on each
specialization domain for the corresponding specialist domain; each domain uses a different model
(except for the generic pretraining method, which uses the same model for each specialization set).

The x-axis corresponds to time, which in this case is close to being proportional to the computational
cost required to train the model (indeed, the cost of instantiating the experts is small in front of that
of backpropagating through the network; we get a throughput with the SoE that is 77% of that of the
generic pretraining).

For the Soup-of-Experts and the generic pre-trained models, the training time is unambiguous. For
the two other baselines, which train multiple models, we report the total training time taken by all
the models.

We observe that the Soup-of-Experts achieves the best performance among all methods on the spe-
cialized domains, and is only slightly worse than generic pre-training on the pre-training loss (while
generic pre-training explicitly minimizes this loss).

The Soup-of-Experts and the generic pretraining are the only scalable methods with respect to the
number of pretraining domains and number of specialization domains. Indeed, we consider 16
specialization domains here. Had we considered more domains, the CRISP method would have
taken more and more pre-training time. Similarly, increasing the number of domains would increase
the computational cost of the domain experts method a lot.

Complementarity to fine tuning For each of the pile domains, we instantiate the corresponding
Soup-of-Experts. We then fine-tune this model and the baseline model with different numbers of
available fine-tuning tokens. We report the validation losses in Figure 2, as well as the number of
tokens the generic pretraining method needs to use to recover a performance similar to that of the
Soup-of-Experts.
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Figure 2: Left: training curves of the different methods. The average specialized loss is the
average of the loss of the models over 16 domains from the Pile. The generic loss is the loss of the
models on the standard pre-training distribution of RedPajamav2. The x-axis is the training time.
This number is roughly proportionnal to number of tokens processed, since in this setting, the cost of
instantiating the Soup-of-Experts is small in front of that of backpropagating through the network.
The domain experts and CRISP have to train many models, so they are not competitive in this setup.
The Soup-of-Experts performs almost similarly to generic pre-training on the generic loss, which
means that it holds the general knowledge in the pre-training set, while CRISP and Domain Experts
are not good generalists (Domain Experts are even out of the figure limits on the right figure). The
Soup-of-Experts gives the best specialists, as seen on the left figure. Right: The gains of Soup-
of-Experts during pretraining are maintained during fine-tuning and sometimes lead to large
savings. On each of the 16 domains from the PILE, we fine-tune the corresponding instantiated
Soup-of-Experts and generic model, with a limited number of fine-tuning tokens. We stop fine-
tuning at the point where validation loss starts increasing. Left: Average loss over domains. We see
that the Soup-of-Experts maintains its advantage regardless of the number of available fine-tuning
tokens. Right: The number of fine-tuning tokens one needs to fine-tune the generic model to reach
the same validation loss as the base, not fine-tuned, Soup-of-Experts. For example, on uspto, one
needs 10M tokens to fine-tune the generic model and reach the same loss as the Soup-of-Experts
instantiated on uspto out of the box after pre-training.

CONCLUSION

We have introduced a novel asymmetrical architecture, the Soup-of-Experts. It holds a large set of
expert parameters that encodes a family of small, stand-alone models obtained by linear combination
of the parameters. We propose a learning algorithm so that the coefficients of the linear projection
are a function of the domain weights from which the input is sampled. A pre-trained Soup-of-
Experts can, therefore, instantiate instantly a model tailored to any mixture of domain weights. We
demonstrated the benefits of this approach on standard datasets, even when these datasets and the
corresponding domain weights are unavailable when the soup is trained.
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