
Visual Reinforcement Learning with
Self-Supervised 3D Representations

Anonymous Author(s)
Affiliation
Address
email

Figure 1: Overview of our approach. (left) We pretrain a 3D deep voxel-based auto-encoder on the
Common Objects in 3D (CO3D) dataset, a large object-centric dataset. (right) We train an RL policy
in simulation using the learned representation as initialization, and jointly finetune the representation
with 3D and RL objectives on in-domain data collected by the RL agent.

Abstract: We present a unified framework for self-supervised learning of 3D rep-1

resentations for visual reinforecment learning. Our framework consists of two2

phases: a pretraining phase where a deep voxel-based 3D autoencoder is pre-3

trained on a large object-centric dataset, and a finetuning phase where the repre-4

sentation is jointly finetuned together with RL on in-domain data. We empirically5

show that our method enjoys improved sample efficiency in simulated manipula-6

tion tasks, better sim-to-real transfer, and robustness compared to 2D representa-7

tion learning methods. Videos are available at https://3d4rl.github.io/.8

1 Introduction9

While deep Reinforcement Learning (RL) has proven to be a powerful framework for complex10

and high-dimensional control problems, it has historically been challenging to deploy in areas such11

as robotics, in part due to the complexity of controlling from high-dimensional observations. A12

prominent approach is to tackle the resulting complexity by learning a good representation of the13

world, which reduces the information gap that stems from partial observability. Yet, efforts have14

largely been focused on applying successful techniques from 2D computer vision to control prob-15

lems. However, our world is inherently 3D and agents arguably need to perceive it to tackle the16

enormous complexity of real world environments.17

In this paper, we propose a 3D representation learning framework for RL that includes both a pre-18

training phase using external data and a joint training phase using in-domain data collected by the RL19

agent. Figure 1 provides an overview of our method. In the first phase, we learn a generalizable 3D20

representation using a repurposed video autoencoder [1] that performs 3D deep voxel-based novel21

view synthesis without assuming access to ground-truth cameras, pretrained on Common Objects22

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.

https://3d4rl.github.io/


R
ea

l(
Pe

rt
ur

b)
R

ea
l

Si
m

Reach Push Peg in Box Lift Robot setup

Figure 2: Overview of sim-to-real tasks. We consider four tasks for our sim-to-real experiments:
(1) reach, where the agent needs to position the gripper at the red goal, (2) push, where the agent
needs to push a green cube to the red goal, (3) peg in box, where the agent needs to place a green
peg inside a red box, and (4) lift, where the agent needs to grasp and lift a green cube into the air.
Observations are captured by a static over-the-shoulder camera (pictured). We visualize the initial
configuration of robot and objects in simulation and the success in real world.

in 3D (CO3D) [2] – a large-scale object-centric 3D dataset. In the second phase, we finetune the23

learned representation together with policy learning on in-domain data collected by online interac-24

tion. The different views are only utilized in training and the learned model only requires a single25

view for deployment, both in simulation and on the real robot.26

To validate our method, we consider a set of vision-based Meta-World [3] tasks and four robotic ma-27

nipulation tasks with camera feedback both in simulation and the real world as shown in Figure 2.28

For the latter, we train policies in simulated environments, and transfer zero-shot to a real robot29

setup with only approximate geometric correspondence and an uncalibrated third-person RGB cam-30

era. We also demonstrate that our model is more robust to visual changes by using two variations of31

our real environment with different camera position, camera orientation, and lighting (bottom row in32

Figure 2). Compared to strong baselines that pretrain representations using 2D computer vision ob-33

jectives, our method demonstrates improved sample efficiency during policy learning and transfers34

better to the real world despite environment perturbations.35

2 Method36

We propose a 3D representation learning framework for RL that includes both a pretraining phase37

using external data and a finetuning phase using in-domain data collected by an RL agent. Figure 138

provides an overview of our approach.39

2.1 Object-Centric 3D Pretraining40

Our framework is implemented as a deep voxel-based 3D auto-encoder [1] that shares a 2D encoder41

with an RL policy. Given a view (image) of a 3D scene and an affine camera transformation, we42

task the 3D auto-encoder with reconstructing a 2D view of the scene after applying a transformation43

to the deep voxel representation. This task encourages the network to encode geometric scene44

information, which is beneficial for downstream control tasks. The training scheme is similar to [1]45

except we adopt a ResNet18 as the 2D encoder and only remain the image reconstruction loss.46

2.2 In-Domain Joint Training of 3D and RL47

After the pretraining phase, we use the learned representation as initialization for training an RL48

policy, while we continue to jointly optimize the 3D objective together with RL using in-domain49

data collected by the RL agent. Specifically, we learn a policy network πθ that takes feature maps50

from the pretrained 2D encoder as input and outputs a continuous action. During this phase, we51

optimize the 2D encoder using gradients from both the 3D objective and RL, but use a reduced52

learning rate to mitigate catastrophical forgetting. The motivation for our joint finetuning phase is53

2



0.0 0.2 0.5 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0

S
uc

ce
ss

 R
at

e

Basketball

0.0 0.2 0.5 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0
Box Close

0.0 0.2 0.5 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0
Coffee Pull

0.0 0.2 0.5 0.8 1.0
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0
Coffee Push

0.0 0.5 1.0 1.5
Environment Steps (×106)

0.0

0.2

0.5

0.8

1.0
Hammer

Scratch ImageNet MoCo 3D (ours)

Figure 3: Learning curves (Meta-World). Success rate of our method and baselines on five diverse
image-based Meta-World tasks. Mean of 5 seeds, shaded areas are 95% CIs. Our method achieves
non-trivial success rates faster than other methods. See supplementary material for samples.

two-fold: (1) finetuning with the 3D objective improves the 3D representation on in-domain data,54

and (2) finetuning with the RL objective improves feature extraction relevant for the task at hand.55

Optimizing 3D. Since our proposed 3D task requires at least two views of a scene, we design a56

static camera and another dynamic camera which moves flexibly in a predefined manner. Let Isrc57

denote the image from the static (source) view and Itgt denote the image from the dynamic (target)58

view, respectively. The 3D task is then to reconstruct Itgt from Isrc. We move the dynamic camera59

positioned with angle ϕd in a circular manner around the scene within an angle ϕ of the static camera,60

thus ϕd ∈ [0, ϕ]. We optimize the 3D network using a smaller learning rate than for RL. Formally,61

let λft denote the finetuning scale, let lr3D denote the learning rate for the 3D task, and let lrRL denote62

the learning rate for RL. We then have lr3D = λft × lrRL.63

3 Experiments64

We validate our method on a set of precision-based robotic manipulation tasks from visual inputs.65

Our 3D method and baselines are trained entirely in simulation. Evaluation of trained policies is66

conducted both in simulation and on a real robot setup. In our real-world evaluation, policies are67

transferred zero-shot. We are committed to releasing our code.68

Robot setup. Our real robot setup is shown in Figure 2 (right). We use an xArm robot equipped69

with a gripper in our real-world experiments, and observations are captured by a static third-person70

RGB camera with dimension 84× 84.71

Baselines. We implement our method and all baselines using Soft Actor-Critic (SAC; [4]) as the72

backbone RL algorithm and use the same hyperparameters whenever applicable. We consider the73

following baselines: (i) training an image-based SAC with a 4-layer ConvNet encoder from Scratch;74

(ii) replacing the encoder with a ResNet18 backbone pretrained by ImageNet classification [5]; and75

(iii) a ResNet18 pretrained on ImageNet using the self-supervised MoCo objective. All methods76

use ±4 random shift [6] and color jitter as data augmentation during RL.77

Tasks. We experiment with 5 image-based tasks from Meta-World, as well as 4 manipulation tasks78

both in simulation and on physical hardware. We consider the following tasks in our sim-to-real79

experiments: (1) reach (A ∈ R3), where the agent needs to position the gripper at the red goal,80

(2) push (A ∈ R2), where the agent needs to push a green cube to the red goal, (3) peg in box81

(A ∈ R3), where the agent needs to place a green peg inside a red box, and (4) lift (A ∈ R4), where82

the agent needs to grasp and lift a green cube into the air. We conduct an extensive set of real-world83

trials using 5 model seeds per method per task and evaluate each seed over 10 trials (5 for reach) for84

a total of 1300 trials: 700 trials for the setup close to the simulated environments and 600 trials for85

the perturbed real world setup; see Figure 2 (left) for the two setups.86

3.1 Sample-Efficiency87

We train for 1m environment steps across Meta-World tasks. Results for Meta-World tasks are88

shown in Figure 3. We find that From scratch training of SAC is generally a strong baseline, but the89

gap between this baseline and methods that use pretrained representations widens with increasing90

task difficulty. For example, the success rate of from scratch is close to that of our method in coffee91

push, while it fails to solve harder tasks like coffee pull. MoCo generally leads to better downstream92

performance than pretraining with ImageNet classification, which is consistent with observations93

made in prior work [7], while the performance gap is relatively small for most tasks. Our proposed94

3



Table 1: Robotic manipulation results (xArm). Success rate (in %) of our method and baselines.
(left) results in simulation. (right) results when transferred zero-shot to physical hardware. We report
mean and std. err. across 5 model seeds for all evaluations. Initial configurations are randomized.
Sim Scratch ImageNet MoCo 3D (ours)

Reach 100±0 100±0 100±0 100±0

Push 65±16 74±15 74±14 80±14

Peg in Box 77±22 82±18 82±17 82±17

Grasp − − − −
Lift 20±34 40±40 51±40 64±32

Real Scratch ImageNet MoCo 3D (ours)

Reach 84±12 96±4 80±11 96±4

Push 2±2 22±10 22±7 48±9

Peg in Box 40±14 62±20 50±15 76±19

Grasp 44±14 20±10 38±10 62±14

Lift 30±15 2±2 20±5 46±19

Table 2: Robotic manipulation results evaluated in perturbed environments (xArm). Success
rate (in %) of our method and baselines. (left) results in perturbed (P) simulation environments.
(right) results when transferred zero-shot to perturbed real environments. We report mean and std.
err. across 5 model seeds for all evaluations. Initial configurations are randomized.
Sim(P) Scratch ImageNet MoCo 3D (ours)

Reach 76±10 96±8 86±14 96±5

Push 12±7 12±10 14±14 24±21

Peg in Box 20±20 22±13 24±7 34±20

Grasp − − − −
Lift 0±0 10±15 10±10 16±8

Real(P) Scratch ImageNet MoCo 3D (ours)

Reach 26±12 48±12 27±12 60±12

Push 10±7 10±7 0±0 33±17

Peg in Box 18±11 28±14 20±6 52±14

Grasp 25±11 10±10 35±19 40±15

Lift 10±10 0±0 10±10 25±11

method that uses a self-supervised 3D representation outperforms both from scratch training and95

pretrained 2D representations across most tasks. Notably, our method enjoys large performance96

gains on challenging tasks such as coffee pull and hammer that require spatial understanding.97

3.2 Sim-to-Real Transfer98

We evaluate policies trained in xArm simulation environments. For the lift task, we additionally99

report the grasping success rate in real. Results are shown in Table 1. We observe a drop in success100

rates across the board when transferring learned policies to the real world relative to their simulation101

performance. However, the gap between simulation and real performances is generally lower for102

our 3D method than for baselines. For example, our method achieves a 46% success rate on lift103

(vs. 64% in sim), whereas MoCo – the second-best method in sim – achieves only 20% success104

rate (vs. 51% in sim). While baseline performances differ in simulation, we do not find any single105

2D method to consistently transfer better than the others. We thus attribute the sizable difference in106

transfer results between our method and the baselines to the learned 3D representation.107

3.3 Robustness108

We provide a more challenging evaluation in both the simulation and the real world, by adding109

more perturbation into the environment to make the observation much more out-of-distribution.110

The perturbation added to the real world includes the camera position, the camera orientation, the111

lighting, and the background, as visualized in Figure 2. The results are shown in Table 2. We observe112

a drop in success rates across all methods due to the perturbation, while the perturbation effects are113

alleviated in our method. For example, our method still achieves 95% success rate in perturbed114

simulation and 60% success rate in perturbed real on reach whereas MoCo achieves only 86% in115

sim and 27% in real respectively. We also find that for 2D baselines there is no single method that116

outperforms others consistently. For example, ImageNet pretraining leads to better generalization117

on reach while MoCo performs well on lift. The overall experiments demonstrate that our 3D visual118

representation is more robust to distribution shift and better in generalization.119

4 Conclusion120

Our proposed 3D framework for pretraining and joint learning improves sample efficiency of re-121

inforcement learning (RL) in simulation and successfully transfers to a real robot setup. We find122

learning 3D representations leads to significant gain in real robot performance and our representa-123

tion is much more robust to the visual environment changes in the real world.124

4



References125

[1] Z. Lai, S. Liu, A. A. Efros, and X. Wang. Video autoencoder: self-supervised disentanglement126

of static 3d structure and motion. ArXiv, abs/2110.02951, 2021.127

[2] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, and D. Novotny. Common128

objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In129

International Conference on Computer Vision, 2021.130

[3] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A131

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on132

Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.133

[4] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy134

deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.135

[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,136

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recog-137

nition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.138

doi:10.1007/s11263-015-0816-y.139

[6] I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep140

reinforcement learning from pixels. International Conference on Learning Representations,141

2020.142

[7] S. Parisi, A. Rajeswaran, S. Purushwalkam, and A. K. Gupta. The unsurprising effectiveness of143

pre-trained vision models for control. ArXiv, abs/2203.03580, 2022.144

5

https://arxiv.org/abs/1910.10897
http://dx.doi.org/10.1007/s11263-015-0816-y

	Introduction
	Method
	Object-Centric 3D Pretraining
	In-Domain Joint Training of 3D and RL

	Experiments
	Sample-Efficiency
	Sim-to-Real Transfer
	Robustness

	Conclusion

