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Abstract

Large Language Models (LLMs) are increasingly used as powerful tools for a1

plethora of natural language processing (NLP) applications. A recent innovation,2

in-context learning (ICL), enables LLMs to learn new tasks by supplying a few3

examples in the prompt during inference time, thereby eliminating the need4

for model fine-tuning. While LLMs have been utilized in several applications,5

their applicability in explaining the behavior of other models remains relatively6

unexplored. Despite the growing number of new explanation techniques, many7

require white-box access to the model and/or are computationally expensive,8

highlighting a need for next-generation post hoc explainers. In this work, we9

present the first framework to study the effectiveness of LLMs in explaining other10

predictive models. More specifically, we propose a novel framework encompassing11

multiple prompting strategies: i) Perturbation-based ICL, ii) Prediction-based12

ICL, iii) Instruction-based ICL, and iv) Explanation-based ICL, with varying levels13

of information about the underlying ML model and the local neighborhood of14

the test sample. We conduct extensive experiments with real-world benchmark15

datasets to demonstrate that LLM-generated explanations perform on par with16

state-of-the-art post hoc explainers using their ability to leverage ICL examples17

and their internal knowledge in generating model explanations. On average,18

across four datasets and two ML models, we observe that LLMs identify the most19

important feature with 72.19% accuracy, opening up new frontiers in explainable20

artificial intelligence (XAI) to explore LLM-based explanation frameworks.21

1 Introduction22

Over the past decade, machine learning (ML) models have become ubiquitous across various indus-23

tries and applications. With their increasing use in critical applications (e.g., healthcare, financial24

systems, and crime forecasting), it becomes essential to ensure that ML developers and practition-25

ers understand and trust their decisions. To this end, several approaches [18, 17, 21, 22, 12, 19]26

have been proposed in XAI literature to generate explanations for understanding model predic-27

tions. However, these explanation methods are highly sensitive to changes in their hyperparame-28

ters [25, 2], require access to the underlying black-box ML model [12, 18], and/or are often com-29

putationally expensive [20], thus impeding reproducibility and the trust of relevant stakeholders.30

More recently, generative models such as LLMs [16] have steered ML research into new directions31

and shown exceptional capabilities, allowing them to surpass state-of-the-art models at complex32

tasks like machine learning translation [6], language understanding [4], and commonsense reason-33

ing [9, 24]. However, there is very little work on systematically analyzing the reliability of LLMs34

as explanation methods. While recent research has used LLMs to explain what patterns in a text35

cause a neuron to activate, they simply explain correlations between the network input and specific36

neurons and do not explain what causes model behavior at a mechanistic level [3]. Thus, the37

ability of LLMs to act as reliable explainers to understand predictive models remains unexplored.38
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Figure 1: Overview of our framework. Given a dataset and model to explain, we provide 1) different
prompting strategies to generate explanations using LLMs, 2) functions to parse LLM-based explanations,
3) utility functions to support new LLMs, and 4) diverse metrics to evaluate the faithfulness of explanations.

Present work. In this work, we present the first framework to study the effectiveness of LLMs39

in explaining other predictive models (see Fig. 1). More specifically, we introduce four broad40

prompting strategies — Perturbation-based ICL, Prediction-based ICL, Instruction-based ICL, and41

Explanation-based ICL — for generating post hoc explanations using LLMs. Our first three strate-42

gies entail providing local neighborhood samples and labels of a given instance whose prediction we43

want to explain, before asking an LLM to identify features that are key drivers in the model’s pre-44

dictions. In our last approach, we leverage the in-context learning (ICL) [11] behavior of LLMs by45

providing a small set of instances and their corresponding explanations (output by state-of-the-art46

post hoc explanation methods) as input to an LLM and ask it to generate feature importance-47

based explanations for new samples. We also explore different prompting and design choices, such48

as increasing the level of information in each, to generate more faithful explanations using LLMs.49

We conduct extensive experimentation with four benchmark datasets, two black-box models, and50

two GPT models to analyze the efficacy of our proposed framework. Our empirical studies reveal51

the following key findings. 1) LLMs, on average, accurately identify the most important feature52

with 72.19% accuracy across different datasets, with performance drop for larger values of top-𝑘53

features. 2) LLMs can mimic the behavior of six state-of-the-art post hoc explanation methods us-54

ing the proposed Explanation-based ICL prompting strategy and only four ICL samples. On average,55

LLMs behave as post hoc explainers by providing explanations that are on par with existing meth-56

ods, such as LIME and gradient-based methods, in terms of their faithfulness. 3) LLMs struggle to57

retrieve relevant information from longer prompts, resulting in a decrease in the faithfulness of the58

explanations generated using a large set of ICL samples. 4) Our proposed framework paves the way59

for a new paradigm in XAI research, where LLMs can aid in explaining black-box model predictions.60

2 Our Framework61

Next, we describe our framework that aims to generate explanations using LLMs. To achieve this62

goal, we outline four distinct prompting strategies — Perturbation-based ICL (Sec. 2.1), Prediction-63

based ICL (Sec. 2.2), Instruction-based ICL (Sec. 2.3), and Explanation-based ICL (Sec. 2.4).64

Notation. Let 𝑓 : R𝑑 → [0, 1] denote a black-box ML model that takes an input x ∈ R𝑑 and65

returns the probability of x belonging to a class 𝑐 ∈ C and the predicted label 𝑦. Following66

previous XAI works [18, 21], we randomly sample points from the local neighborhood N𝑥 of67

the given input x to generate explanations, where N𝑥 = N(x, 𝜎2) denotes the neighborhood of68

perturbations around x using a Normal distribution with mean 0 and variance 𝜎2.69

2.1 Perturbation-based ICL70

In the Perturbation-based ICL prompting strategy, we use an LLM to explain 𝑓 , trained on tabular71

data, by querying the LLM to identify the top-𝑘 most important features in determining the output72

of 𝑓 in a rank-ordered manner. To tackle this, we sample input-output pairs from the neighborhood73

N𝑥 of x and generate their respective strings following a serialization template; for instance, a74

perturbed sample’s feature vector x′ = [0.058, 0.632,−0.015, 1.012,−0.022,−0.108], belonging75

to class 0 in the Recidivism dataset, is converted into a natural-language string as:76

# Serialization template
Input: A = 0.058, B = 0.632, C = -0.015, D = 1.012, E = -0.022, F = -0.108
Output: 0
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While previous post hoc explainers suggest using a large number of neighborhood samples [18, 21],77

it is impractical to provide all samples from N𝑥 in the prompt for an LLM due to their constraint78

on the maximum context length and performance loss when given more information [10].79

Consequently, we select 𝑛ICL samples from N𝑥 to use in the LLM’s prompt. In the interest of80

maintaining a neutral and fundamental approach, we employ two primary sampling strategies,81

both selecting balanced class representation within the neighborhoods defined by N𝑥 . The first82

strategy selects samples randomly, while the second chooses those with the highest confidence83

levels, aiding the LLM in generating explanations centered on model certainty.84

Given 𝑛ICL input-output pairs from N𝑥 and the test sample x to be explained, we add context with85

respect to the predictive model, dataset, and task description in our prompt to aid the LLM in86

behaving like a post hoc explanation method. Motivated by the local neighborhood approximation87

works in XAI, the Perturbation-based ICL prompting strategy presumes that the local behavior of88

𝑓 is a simple linear decision boundary, contrasting with the often globally exhibited complex non-89

linear decision boundary. Hence, assuming a sufficient number of perturbations in N𝑥 , the LLM is90

expected to accurately approximate the black box model’s behavior and utilize this information to91

identify the top-𝑘 most important features. The final prompt structure is given below, where the92

“Context” provides the LLM with the background of the underlying ML model, the number of93

features in the dataset, and model predictions, “Dataset” denotes the 𝑛ICL instances sampled from94

the neighborhood N𝑥 of x, “Question” is the task we want our LLM to perform, and “Instructions”95

are the guidelines we want the LLM to follow while generating the output explanations.96

# Perturbation-based ICL Prompt Template
Context: “We have a two-class machine learning model that predicts based on 6 features: [‘A’, ‘B’,
‘C’, ‘D’, ‘E’, ‘F’]. The model has been trained on a dataset and has made the following predictions.”
Dataset:
Input: A = -0.158, B = 0.293, C = 0.248, D = 1.130, E = 0.013, F = -0.038
Output: 0
. . .
Input: A = 0.427, B = 0.016, C = -0.128, D = 0.949, E = 0.035, F = -0.045
Output: 1
Question: “Based on the model’s predictions and the given dataset, what appears to be the top
five most important features in determining the model’s prediction?”
Instructions: “Think about the question. After explaining your reasoning, provide your answer as
the top five most important features ranked from most important to least important, in descending
order. Only provide the feature names on the last line. Do not provide any further details on the
last line.”

2.2 Prediction-based ICL97

Here, we devise Prediction-based ICL, a strategy closer to the traditional ICL prompting style,98

where the primary objective remains the same — understanding the workings of the black-box99

model 𝑓 by identifying the top-𝑘 most important features. This strategy positions the LLM to first100

emulate the role of the black-box model by making predictions, staging it to extract important101

features that influenced its decision. We follow the perturbation strategy of Sec. 2.1 and construct102

the Prediction-based ICL prompt using 𝑛ICL input-output pairs from N𝑥 . The main difference in the103

Prediction-based ICL prompting strategy lies in the structuring of the prompt (see Appendix A.1104

for prompt template). Here, we construct the prompt using the task description followed by the105

𝑛ICL ICL samples and then ask the LLM to provide the predicted label for the test sample x and106

explain how it generated that label. The primary motivation behind the Prediction-based ICL107

prompting strategy is to investigate whether the LLM can learn the classification task using the108

ICL set and, if successful, identify the important features in the process. This approach aligns more109

closely with the traditional ICL prompting style, offering a different perspective on the problem.110

2.3 Instruction-based ICL111

The Instruction-based prompting transitions from specifying task objectives to providing detailed112

guidance on the strategy for task execution. Rather than solely instructing the LLM on what the113

task entails, this strategy delineates how to conduct the given task. The objective remains to un-114

derstand the workings of the black-box model and identify the top-𝑘 important features. However,115

3



in using step-by-step directives, we aim to induce a more structured and consistent analytical pro-116

cess within the LLM to target more faithful explanations (see Appendix A.2 for prompt template).117

Here, we provide some general instructions to the LLM for understanding the notion of important118

features and how to interpret them through the lens of correlation analysis. To achieve this, we119

instruct LLMs to analyze each feature sequentially and ensure that both positive and negative corre-120

lations are equally emphasized. The LLM assigns an importance score for each feature in the given121

dataset and then positions it in a running rank. This rank is necessary to differentiate features and122

avoid ties in the LLM’s evaluations. The final line ensures that the LLM’s responses are strictly an-123

alytical, minimizing non-responsiveness or digressions into tool or methodology recommendations.124

2.4 Explanation-based ICL125

Recent studies show that LLMs can learn new tasks through ICL, enabling them to excel in new126

downstream tasks by merely observing a few instances of the task in the prompt. In the Explanation-127

based ICL prompting strategy, we leverage the ICL capability of LLMs to alleviate the computation128

complexity of some post hoc explanation methods. In particular, we investigate whether an LLM129

can mimic the behavior of a post hoc explainer by looking at a few input, output, and explanation130

examples. We generate explanations for a given test sample x using LLMs by utilizing the ICL131

framework and supplying 𝑛ICL input, output, and explanation examples to the LLM, where the132

explanations in the ICL can be generated using any post hoc explanation method. For constructing133

the ICL set, we randomly select 𝑛ICL input instances XICL from the ICL split of the dataset and134

generate their predicted labels yICL using model 𝑓 . Next, we generate explanations EICL for samples135

(XICL, yICL) using any post hoc explainer. Using the above input, output, and explanation samples,136

we construct a prompt by concatenating each pair (see Appendix A.3 for prompt template).137

Using the Explanation-based ICL prompting strategy, we aim to investigate the learning capability138

of LLMs such that they can generate faithful explanations by examining the 𝑛ICL demonstration139

pairs of inputs, outputs, and explanations generated by state-of-the-art post hoc explainer.140

3 Experiments141

Next, we evaluate the effectiveness of LLMs as post hoc explainers. More specifically, we focus142

on the following questions: Q1) Can LLMs generate faithful post hoc explanations? Q2) Do LLM-143

Augmented post hoc explainers achieve similar faithfulness vs. their vanilla counterpart? Q3) Are144

LLMs better than state-of-the-art post hoc explainers at identifying the most important feature?145

3.1 Datasets and Experimental Setup146

We first describe the datasets and models used to study the reliability of LLMs as post hoc147

explainers and then outline the experimental setup.148

Datasets. Following previous LLM works [5], we performed analysis on four real-world tabular149

datasets: Blood [26] having four features, Recidivism [15] having six features, Adult [7] having150

13 features, and Default Credit [23] having 10 features. The datasets come with a random151

train-test split, and we further subdivide the train set, allocating 80% for training and the152

remaining 20% for ICL sample selection, as detailed in Sec. 2.4. We use a random set of 100153

samples from the test split to generate explanations for all of our experiments.154

Models. We consider two predictive models in our experiments: i) Logistic Regression (LR) and155

ii) Artificial Neural Networks (ANN). We use PyTorch [14] to implement the models with the fol-156

lowing configurations: one layer of size 16 for the LR model; and three layers of size 64, 32, and 16157

for the ANN, using ReLU for the hidden layers and Softmax for the output (see Table 1 for pre-158

dictive performances). Further, we consider GPT-3.5 and GPT-4 as LLMs for our experiments.159

Baseline Explanation Methods. We use six post hoc explainers as baselines to investigate the160

effectiveness of explanations generated using LLMs: LIME [18], SHAP [12], Vanilla Gradients [27],161

SmoothGrad [21], Integrated Gradients [22], and Gradient x Input (ITG) [19].162

Performance Metrics. We employ four metrics to measure the faithfulness of an explanation. To163

quantify the faithfulness of an explanation where there exists a ground-truth top-𝑘 explanation for164

each test input (i.e., LR model coefficients), we use the Feature Agreement (FA) and Rank Agree-165
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ment (RA) metrics introduced in Krishna et al. [8], which compares the LLM’s top-𝑘 directly with166

the model’s ground-truth. The FA and RA metrics range from [0, 1], where 0 means no agreement167

and 1 means full agreement. However, in the absence of a top-𝑘 ground-truth explanation (as is168

the case with ANNs), we use the Prediction Gap on Important feature perturbation (PGI) and the169

Prediction Gap on Unimportant feature perturbation (PGU) metrics from OpenXAI [1]. While PGI170

measures the change in prediction probability that results from perturbing the features deemed as171

influential, PGU examines the impact of perturbing unimportant features. Here, the perturbations172

are generated using Gaussian noise N(0, 𝜎2). See Appendix A.4 for implementation details.173

3.2 Results174

Next, we discuss experimental results to answer key questions (Q1-Q3) about LLMs as explained.175

See Appendix A.5 for additional results on our ablation studies.176

1) LLMs can generate faithful explanations. We compare our proposed LLM explanation strate-177

gies to existing post hoc explainers on the task of identifying important features for understanding178

ANN (Fig. 2) and LR (Fig. 3) model predictions across four real-world datasets (see Table 2). For179

the ANN model, the LLM-based explanations perform on par with the gradient-based methods180

(despite having white-box access to the underlying black-box model) and LIME (that approximates181

model behavior using a surrogate linear model). In particular, our proposed prompting strategies182

perform better than ITG, SHAP, a Random baseline, and a 16-sample version of LIME, namely183

LIME16, which is analogous to the number of ICL samples used in the LLM prompts. We observe184

that LLM explanations, on average, achieve 51.74% lower PGU and 163.40% higher PGI than185

ITG, SHAP, and Random baseline for larger datasets (more number of features) like Adult and186

Credit compared to 25.56% lower PGU and 22.86% higher PGI for Blood and Recidivism datasets.187

While our prompting strategies achieve competitive PGU and PGI scores among themselves across188

different datasets for ANN models, the Instruction-based ICL strategy, on average across datasets,189

achieves higher FA and RA scores for the LR model. We find that gradient-based methods and190

LIME achieve almost perfect scores on FA and RA metrics as they are able to get accurate model191

gradients and approximate the model behavior with high precision. Interestingly, the LLM expla-192

nations perform better than ITG, SHAP, and Random baseline methods, even for a linear model.193

P3: Instruction-based ICL   P2: Prediction-based ICL   P1: Perturbation-based ICL  
Figure 2: PGU and PGI scores of explanations generated using post hoc methods and LLMs
(Instruction-based, Prediction-based, and Perturbation-based ICL prompting strategies) for an ANN
model. On average, across four datasets, we find that LLM-based explanations perform on par with
gradient-based and LIME methods and outperform LIME16, ITG, and SHAP methods.

P3: Instruction-based ICL   P2: Prediction-based ICL   P1: Perturbation-based ICL  
Figure 3: FA and RA scores of explanations generated using post hoc methods and LLMs (Instruction-,
Prediction-, and Perturbation-based ICL prompting strategies) for an LR model. On average, across four
datasets, we find that gradient-based and LIME methods (with 1000 samples) outperform all other methods
and Instruction-based ICL explanations outperform the other two prompting strategies across all datasets.

2) LLM-augmented explainers achieve similar faithfulness to their vanilla counterparts. We194

evaluate the faithfulness of the explanations generated using the Explanation-based ICL prompting195

strategy. Our results show that LLMs generate explanations that achieve faithfulness performance196

on par with those generated using state-of-the-art post hoc explanation methods for LR and large197

ANN predictive models across all four datasets (Fig. 4; see Table 3 for complete results) and four198

evaluation metrics. We demonstrate that very few in-context examples (here, 𝑛ICL=4) are sufficient199
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to make the LLM mimic the behavior of any post hoc explainer and generate faithful explanations,200

suggesting the effectiveness of LLMs as an explanation method. Interestingly, for low-performing201

explanation methods like ITG and SHAP, we find that explanations generated using their LLM202

counterparts achieve higher feature and rank agreement (Fig. 4) scores in the case of LR models,203

hinting that LLMs can use their internal knowledge to improve the faithfulness of explanations.
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Figure 4: Faithfulness metrics on the Recidivism dataset for six post hoc explainers and their LLM-
augmented counterparts for a given LR and ANN model. LLM-augmented explanations achieve on-par
performance w.r.t. post hoc methods across all four metrics (see Table 3 for results on other datasets).

204

3) LLMs accurately identify the most important feature. To demonstrate the LLM’s capability205

in identifying the most important feature, we show the faithfulness performance of generated206

explanations across four datasets. Our results in Fig. 5 demonstrate the impact of different top-𝑘207

feature values on the faithfulness of explanations generated using our prompting strategies. We208

observe a steady decrease in RA scores (0.722 for top-𝑘 = 1 vs. 0.446 for top-𝑘 = 2 vs. 0.376209

for top-𝑘 = 4) across three datasets (Blood, Credit, and Adult) as the top-𝑘 value increases.210

Interestingly, the RA value for top-𝑘 = 1 for the Recidivism dataset is almost zero, though this can211

be attributed to the LLM’s handling of the two primary features, whose LR coefficients have nearly212

identical magnitudes; the LLM generally places them both within the top two but, due to their213

similar importance, defaults to alphabetical order. However, when employing our Instruction-based214

ICL running-rank strategy, we find that the RA value rises from 0 to 0.5, highlighting the influence215

of nuanced prompts on the LLM’s ranking mechanism. Further, we observe that LLMs, on average216

across four datasets and three prompting strategies, faithfully identify top-𝑘 = 1 features with217

72.19% FA score (see Fig. 9), and their faithfulness performance takes a hit for higher top-𝑘 values.
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Figure 5: Effects of top-𝑘 value on the RA metric using Perturbation-, Prediction-, and Instruction-based
ICL prompting strategies. Shown are the results for three prompting strategies and four datasets using the
LR model. On average, LLMs successfully achieve high scores in identifying the most important feature
(top-𝑘=1) and the performance decreases as we increase the top-𝑘 value (see Fig. 9 for results on FA).

218

4 Conclusion219

We introduce and explore the potential of using state-of-the-art LLMs as post hoc explainers. To220

this end, we propose four prompting strategies — Perturbation-based ICL, Prediction-based ICL,221

Instruction-based ICL, and Explanation-based ICL— with varying levels of information about the222

local neighborhood of a test sample to generate explanations using LLMs for black-box model223

predictions. We conducted several experiments to evaluate LLM-generated explanations using224

four benchmark datasets. Our results across different prompting strategies highlight that LLMs225

can generate faithful explanations and consistently outperform methods like ITG and SHAP. Our226

work paves the way for several exciting future directions in explainable artificial intelligence (XAI)227

to explore LLM-based explanation frameworks.228
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A Appendix: Additional results and Experimental details296

A.1 Prompt Structure: Prediction-based ICL297

# Prediction-based ICL Prompt Template
Context: “We have a two-class machine learning model that predicts based on 6 features: [‘A’, ‘B’,
‘C’, ‘D’, ‘E’, ‘F’]. The model has been trained on a dataset and has made the following predictions.”
Dataset:
Input: A = 0.192, B = 0.240, C = 0.118, D = 1.007, E = 0.091, F = 0.025
Output: 0
. . .
Input: A = 0.709, B = -0.102, C = -0.177, D = 1.056, E = -0.056, F = 0.015
Output: 1
Input: A = 0.565, B = -0.184, C = -0.386, D = 1.003, E = -0.123, F = -0.068
Output:
Question: “Based on the model’s predictions and the given dataset, estimate the output for the
final input. What appears to be the top five most important features in determining the model’s
prediction?”
Instructions: “Think about the question. After explaining your reasoning, provide your answer as
the top five most important features ranked from most important to least important, in descending
order. Only provide the feature names on the last line. Do not provide any further details on the
last line.”

A.2 Prompt Structure: Instruction-based ICL298

# Instruction-based ICL Prompt Template
Context: “We are analyzing a fixed set of perturbations around a specific input to understand
the influence of each feature on the model’s output. The dataset below contains the change in
features ‘A’ through ‘F’ (with negative values denoting a decrease in a feature’s value) and the
corresponding outputs.”
Dataset:
Change in Input: A: -0.217, B: 0.240, C: 0.114, D: 0.007, E: 0.091, F: 0.025
Change in Output: -1
. . .
Change in Input: A: 0.185, B: -0.185, C: -0.232, D: -0.130, E: -0.020, F: 0.015
Change in Output: 0
Instructions: “For each feature, starting with ‘A’ and continuing to ‘F’:
1. Analyze the feature in question:
a. Compare instances where its changes are positive to where its changes are negative and explain
how this difference correlates with the change in output.
b. Rate the importance of the feature in determining the output on a scale of 0-100, considering
both positive and negative correlations. Ensure to give equal emphasis to both positive and
negative correlations and avoid focusing only on absolute values.
2. After analyzing the feature, position it in a running rank compared to the features already
analyzed. For instance, after analyzing feature ‘B’, determine its relative importance compared
to ‘A’ and position it accordingly in the rank (e.g., BA or AB). Continue this process until all
features from ‘A’ to ‘F’ are ranked.
Upon completion of all analyses, provide the final rank of features from ‘A’ to ‘F’ on the last line.
Avoid providing general methodologies or suggesting tools. Justify your findings as you go.”
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A.3 Prompt Structure: Explanation-based ICL299

# Explanation-based ICL Prompt Template
Input: A = 0.172, B = 0.000, C = 0.000, D = 1.000, E = 0.000, F = 0.000
Output: 1
Explanation: A,C,B,F,D,E
. . .
Input: A = 0.052, B = 0.053, C = 0.073, D = 0.000, E = 0.000, F = 1.000
Output: 0
Explanation: A,B,C,E,F,D
Input: A = 0.180, B = 0.222, C = 0.002, D = 0.000, E = 0.000, F = 1.000
Output: 0
Explanation:

Table 1: Results of the machine learning models trained on four datasets. Shown are the
accuracy of the LR and ANN models trained the datasets. The best performance is bolded.

Dataset LR ANN
Blood
Recidivism
Default Credit
Adult

70.59%
76.90%
87.37%
77.37%

64.71%
76.90%
88.34%
80.11%

A.4 Implementation Details300

To generate perturbations for each ICL prompt, we use a neighborhood size of 𝜎 = 0.1 and gener-301

ate local perturbation neighborhoods N𝑥 for each test sample x. We sample n𝑥 = 10, 000 points302

for each neighborhood, where the values for 𝜎 and n𝑥 were chosen to give an equal number of sam-303

ples for each class, whenever possible. We present perturbations in two main formats: as the raw304

perturbed inputs alongside their corresponding outputs (shown in Sec. 2.1 and Appendix A.1 tem-305

plates); or as the change between each perturbed input and the test sample, and the corresponding306

change in output (shown in Appendix. A.2 template). The second approach significantly aids the307

LLM in discerning the most important features (Fig. 8), providing only the changes relative to the308

test sample, and bypassing the LLM’s need to internally compute these differences. As a result,309

the consistent value of the original test point becomes irrelevant, and this clearer, relational view310

allows the LLM to focus directly on variations in input and output. Note that both of these formats311

are absent from Sec. 2.4, which uses test samples directly and does not compute perturbations.312

For the LLMs, we use OpenAI’s text generation API with a temperature of 𝜏 = 0 for our main313

experiments. To evaluate the LLM explanations, we extract and process its answers to identify the314

top-𝑘 most important features. We first save each LLM query’s reply to a text file and use a script315

to extract the features. We added explicit instructions like “. . . provide your answer as a feature316

name on the last line. Do not provide any further details on the last line.” to ensure reliable317

parsing of LLM outputs. In rare cases, the LLM won’t follow our requested response format or318

it replies with “I don’t have enough information to determine the most important features.”319

The median number of occurrences for cases where the LLM didn’t follow our requested response320

format or it replies with “I don’t have enough information to determine the most important321

features” is 3 for Perturbation-based ICL, 0.5 for Prediction-based ICL, and 0 for Explanation-based322

ICL. We use the LLM’s top-𝑘 features to calculate explanation faithfulness using four evaluation323

metrics. For calculating PGU and PGI metrics, we use perturbation mean 𝜇𝑃𝐺=0, standard324

deviation 𝜎𝑃𝐺=0.1, and the number of perturbed samples 𝑚𝑃𝐺=10, 000. We follow the default325

hyperparameters from OpenXAI for generating explanations from standard post hoc explainers.326

A.5 Additional Results327

Here, we include additional and detailed results of the experiments discussed in Sec. 3.328
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Ablation Study. We conduct ablations on several components of the prompting strategies, namely329

the number of ICL samples, perturbation format, and temperature values. Results show that our330

choice of hyperparameter values is important for the prompting techniques to generate faithful post331

hoc explanations (Figs. 6,7). Our ablation on the number of ICL samples (Fig. 6) shows that fewer332

and larger numbers of ICL samples are not beneficial for LLMs to generate post hoc explanations.333

While fewer ICL samples provide insufficient information to the LLM to approximate the predictive334

behavior of the underlying ML model, a large number of ICL samples increases the input context,335

where the LLM struggles to retrieve relevant information from longer prompts, resulting in336

a decrease in the faithfulness of the explanations generated by LLMs. In contrast to LIME,337

the faithfulness of LLM explanations deteriorates upon increasing the number of ICL samples338

(analogous to the neighborhood of a given test sample). Across all four prompting strategies, we339

observe a drop in FA, RA, and PGI scores as we increase the number of ICL samples to 64. Further,340

our ablation on the temperature parameter of the LLMs shows that the faithfulness performance341

of the explanations does not change much across different values of temperature (see Appendix342

Fig. 7). Finally, results in Fig. 8 show that our prompting strategies achieve higher faithfulness343

when using the difference between the perturbed and test sample as input in the ICL sample.344
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Figure 6: FA, RA, and PGI performance of LIME and four proposed prompting strategies as we increase
the number of ICL samples (analogous to neighborhood samples in LIME) for the LR model trained on the
Adult dataset. In contrast to LIME, the faithfulness of LLM explanations across different metrics decreases
for a higher number of ICL samples, likely due to the limited capabilities of LLM for longer prompt length.
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Figure 7: Metric performances of LLM-based explanations for different temperatures (𝜏) with an
LR model (left) and a Neural Network (right) model. LLM-based explanations perform almost
consistently across different temperature values, but LLMs will more often reply along the lines
of “not enough information to determine the most important features,” for higher temperatures.
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Figure 8: Faithfulness performance of explanations generated using Perturbation-based ICL (left)
and Prediction-based ICL (right) on using perturbed samples vs difference between perturbed
samples and the input sample (raw perturbations) in the ICL prompts for LR models trained
on the Adult dataset. Across both prompting strategies, we find that using ICL samples using
the raw perturbation style results in significantly better faithfulness performance across all four
metrics.
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Perturbation-based ICL Prediction-based ICL Instruction-based ICL
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Figure 9: Effects of top-𝑘 value on the FA explanation faithfulness metric when using Perturbation-
based ICL, Prediction-based ICL, and Instruction-based ICL prompting strategies. Shown are the
results for three prompting strategies and four datasets using the LR model. On average, LLMs
successfully achieve high scores in identifying the most important feature (top-𝑘 = 1) and the
performance decreases as we increase the top-𝑘 value. For the Blood and Recidivism datasets,
FA increases for top-𝑘 ≥ 4 because they have four and six features in their dataset, respectively.

GPT-3.5 vs. GPT-4. An interesting question is how the reasoning capability of an LLM affects345

the faithfulness of the generated explanations. Hence, we compare the output explanations346

from GPT-3.5 and GPT-4 models to understand black-box model predictions. Results in347

Figs.10- 12 show that explanations generated using GPT-4, on average across four datasets,348

achieve higher faithfulness scores than explanations generated using the GPT-3.5 model. Across349

four prompting strategies, GPT-4, on average, obtains 4.53% higher FA and 48.01% higher RA350

scores than GPT-3.5 on explanations generated for the Adult dataset. We attribute this increase351

in performance of GPT-4 to its superior reasoning capabilities compared to the GPT-3.5352

model [13]. In Figure 11, we find that Instruction-based ICL, on average across four datasets,353

outperforms the Perturbation-based ICL and Prediction-based ICL strategies on the RA metric.354

Further, our results in Fig. 12 show that the faithfulness performance of GPT-4 and GPT-3.5355

are on par with each other when evaluated using our Explanation-based ICL strategy, which356

highlights that both models are capable of emulating the behavior of a post hoc explainer by357

looking at a few input, output, and explanation examples.358
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Figure 10: FA metric performances of explanations generated using Perturbation-based ICL,
Prediction-based ICL, and Instruction-based ICL prompting strategies on four real-world datasets.
Explanations from GPT-4, on average, achieve higher FA scores than GPT-3.5 counterparts.
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Figure 11: RA faithfulness metric of explanations generated using Perturbation-based ICL, Prediction-
based ICL, and Instruction-based ICL prompting strategies on four real-world datasets. Explanations
from GPT-4, on average, achieve higher RA scores than their GPT-3.5 counterparts (see Figures 12-10
for similar plots on Feature Agreement metric and Explanation-based ICL strategy).
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Figure 12: FA and RA metric performances for six LLM-augmented post hoc explainers when gener-
ating explanations for a given LR model using GPT-3.5 vs. GPT-4. Explanations from GPT-4,
on average, outperform those generated using GPT-3.5 on both metrics on the Adult dataset.
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Table 2: Here we provide the average and standard error faithfulness metric values of explanations
calculated across 100 instances in the test set. The results are generated using Perturbation-based
ICL, Prediction-based ICL, Instruction-based ICL, six post hoc explanation methods, and a random
baseline. For the LLM methods, we queried the LLM for the top 𝑘 = 5 (𝑘 = 4 for Blood) most
important features and calculated each metric’s area under the curve (AUC) for 𝑘 = 3 (where
the AUC is calculated from 𝑘 = 1 to 𝑘 = 3). This will help us better understand the model’s
(Logistic Regression and Artificial Neural Network) predictions trained on four datasets. Arrows
(↑, ↓) indicate the direction of better performance.

LR ANN
Dataset Method FA (↑) RA (↑) PGU (↓) PGI (↑) PGU (↓) PGI (↑)

Grad 1.000±0.000 1.000±0.000 0.010±0.000 0.042±0.000 0.060±0.009 0.115±0.013
SG 1.000±0.000 1.000±0.000 0.010±0.000 0.042±0.000 0.060±0.009 0.115±0.013
IG 1.000±0.000 1.000±0.000 0.010±0.000 0.042±0.000 0.061±0.009 0.116±0.013
ITG 0.722±0.019 0.563±0.037 0.019±0.001 0.037±0.001 0.081±0.010 0.100±0.012
SHAP 0.723±0.020 0.556±0.037 0.019±0.001 0.036±0.001 0.085±0.011 0.098±0.012
LIME 1.000±0.000 1.000±0.000 0.010±0.000 0.042±0.000 0.061±0.009 0.116±0.013
Random 0.502±0.022 0.232±0.032 0.029±0.001 0.026±0.001 0.091±0.011 0.090±0.012
Perturbation-based ICL 0.790±0.011 0.656±0.018 0.015±0.000 0.041±0.001 0.064±0.010 0.110±0.013
Prediction-based ICL 0.789±0.009 0.638±0.018 0.014±0.000 0.041±0.000 0.063±0.010 0.110±0.013

Blood

Instruction-based ICL 0.802±0.015 0.578±0.037 0.014±0.000 0.040±0.001 0.068±0.010 0.106±0.013

Grad 1.000±0.000 1.000±0.000 0.059±0.003 0.106±0.005 0.095±0.008 0.149±0.011
SG 1.000±0.000 1.000±0.000 0.059±0.003 0.106±0.005 0.095±0.008 0.149±0.011
IG 1.000±0.000 1.000±0.000 0.059±0.003 0.106±0.005 0.096±0.008 0.149±0.011
ITG 0.493±0.021 0.214±0.030 0.090±0.005 0.078±0.004 0.129±0.011 0.122±0.010
SHAP 0.473±0.023 0.217±0.032 0.092±0.005 0.076±0.004 0.130±0.011 0.122±0.010
LIME 1.000±0.000 1.000±0.000 0.059±0.003 0.106±0.005 0.096±0.008 0.149±0.011
Random 0.308±0.023 0.127±0.024 0.101±0.005 0.063±0.005 0.146±0.011 0.092±0.009
Perturbation-based ICL 0.744±0.004 0.084±0.003 0.060±0.003 0.104±0.005 0.096±0.008 0.148±0.011
Prediction-based ICL 0.744±0.008 0.120±0.017 0.061±0.003 0.103±0.005 0.096±0.008 0.146±0.011

Recidivism

Instruction-based ICL 0.811±0.017 0.478±0.044 0.063±0.003 0.103±0.005 0.102±0.009 0.146±0.011

Grad 0.999±0.001 0.999±0.001 0.056±0.006 0.221±0.011 0.081±0.011 0.228±0.014
SG 0.999±0.001 0.999±0.001 0.056±0.006 0.221±0.011 0.080±0.011 0.227±0.014
IG 1.000±0.000 1.000±0.000 0.056±0.006 0.221±0.011 0.082±0.011 0.228±0.014
ITG 0.385±0.012 0.099±0.019 0.215±0.011 0.061±0.007 0.227±0.014 0.075±0.010
SHAP 0.387±0.012 0.150±0.020 0.215±0.011 0.061±0.007 0.225±0.014 0.075±0.010
LIME 0.963±0.012 0.953±0.015 0.056±0.006 0.221±0.011 0.078±0.011 0.229±0.014
Random 0.130±0.017 0.053±0.015 0.198±0.012 0.054±0.008 0.213±0.014 0.064±0.010
Perturbation-based ICL 0.589±0.018 0.516±0.027 0.079±0.007 0.212±0.012 0.101±0.012 0.216±0.013
Prediction-based ICL 0.598±0.017 0.505±0.029 0.080±0.008 0.210±0.011 0.106±0.014 0.207±0.014

Adult

Instruction-based ICL 0.748±0.020 0.716±0.027 0.069±0.007 0.217±0.011 0.097±0.012 0.219±0.014

Grad 1.000±0.000 1.000±0.000 0.065±0.005 0.195±0.009 0.072±0.008 0.173±0.011
SG 1.000±0.000 1.000±0.000 0.065±0.005 0.195±0.009 0.072±0.008 0.172±0.011
IG 1.000±0.000 1.000±0.000 0.065±0.005 0.195±0.009 0.074±0.008 0.172±0.010
ITG 0.211±0.026 0.157±0.026 0.150±0.006 0.106±0.012 0.155±0.009 0.089±0.011
SHAP 0.212±0.026 0.161±0.026 0.150±0.006 0.107±0.012 0.150±0.008 0.098±0.012
LIME 0.988±0.005 0.985±0.007 0.065±0.005 0.195±0.009 0.071±0.008 0.173±0.010
Random 0.173±0.020 0.095±0.020 0.185±0.010 0.054±0.006 0.176±0.011 0.053±0.007
Perturbation-based ICL 0.609±0.006 0.595±0.006 0.077±0.006 0.192±0.009 0.077±0.008 0.170±0.011
Prediction-based ICL 0.577±0.009 0.565±0.010 0.080±0.007 0.189±0.009 0.081±0.009 0.166±0.011

Default
Credit

Instruction-based ICL 0.628±0.014 0.587±0.020 0.080±0.007 0.188±0.010 0.085±0.009 0.163±0.011
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Table 3: Results of explanations generated using Explanation-based ICL and six post hoc
explanation methods for understanding model (Logistic Regression and Artificial Neural Network)
predictions trained on three datasets. Shown are average and standard error metric values
computed across 100 test samples. Arrows (↑, ↓) indicate the direction of better performance.
Evaluation metrics were computed for the top-𝑘, 𝑘 being set to the number of features in each
respective dataset.

LR ANN
Dataset Method FA (↑) RA (↑) PGU (↓) PGI (↑) PGU (↓) PGI (↑)

LLM-Lime 0.708±0.006 0.465±0.009 0.013±0.000 0.041±0.001 0.074±0.009 0.099±0.012
Lime 1.000±0.000 1.000±0.000 0.008±0.000 0.043±0.000 0.044±0.006 0.121±0.013
LLM-Grad 0.997±0.003 0.996±0.004 0.008±0.000 0.043±0.000 0.058±0.009 0.116±0.012
Grad 1.000±0.000 1.000±0.000 0.008±0.000 0.043±0.000 0.044±0.006 0.120±0.013
LLM-SG 0.990±0.006 0.983±0.011 0.008±0.000 0.043±0.000 0.055±0.008 0.116±0.012
SG 1.000±0.000 1.000±0.000 0.008±0.000 0.043±0.000 0.044±0.006 0.120±0.013
LLM-IG 0.989±0.005 0.982±0.009 0.008±0.000 0.043±0.000 0.046±0.007 0.120±0.013
IG 1.000±0.000 1.000±0.000 0.008±0.000 0.043±0.000 0.044±0.006 0.120±0.013
LLM-Shap 0.684±0.013 0.401±0.025 0.020±0.001 0.034±0.001 0.069±0.009 0.102±0.012
Shap 0.773±0.014 0.516±0.033 0.015±0.001 0.038±0.001 0.066±0.009 0.107±0.012
LLM-ITG 0.702±0.013 0.387±0.029 0.017±0.001 0.036±0.001 0.069±0.010 0.105±0.012

Blood

ITG 0.774±0.014 0.532±0.034 0.014±0.001 0.038±0.001 0.063±0.008 0.108±0.012

LLM-Lime 0.990±0.001 0.958±0.005 0.029±0.001 0.115±0.002 0.048±0.001 0.165±0.004
Lime 1.000±0.000 1.000±0.000 0.029±0.002 0.116±0.006 0.044±0.004 0.164±0.012
LLM-Grad 0.997±0.001 0.990±0.003 0.029±0.001 0.115±0.002 0.048±0.001 0.165±0.004
Grad 1.000±0.000 1.000±0.000 0.029±0.002 0.116±0.006 0.043±0.004 0.165±0.012
LLM-SG 0.997±0.001 0.990±0.003 0.029±0.001 0.115±0.002 0.047±0.001 0.165±0.004
SG 1.000±0.000 1.000±0.000 0.029±0.002 0.116±0.006 0.043±0.004 0.165±0.012
LLM-IG 0.996±0.001 0.988±0.003 0.029±0.001 0.115±0.002 0.048±0.001 0.166±0.004
IG 1.000±0.000 1.000±0.000 0.029±0.002 0.116±0.006 0.044±0.004 0.165±0.012
LLM-Shap 0.666±0.004 0.216±0.008 0.057±0.001 0.098±0.002 0.082±0.002 0.151±0.004
Shap 0.670±0.012 0.200±0.024 0.058±0.003 0.099±0.005 0.087±0.008 0.146±0.011
LLM-ITG 0.690±0.004 0.247±0.008 0.056±0.001 0.099±0.002 0.085±0.002 0.148±0.004

Recidivism

ITG 0.689±0.011 0.195±0.022 0.056±0.003 0.100±0.005 0.078±0.007 0.149±0.011
LLM-Lime 0.909±0.001 0.632±0.005 0.023±0.001 0.222±0.003 0.035±0.002 0.230±0.004
Lime 0.907±0.005 0.743±0.017 0.018±0.002 0.224±0.011 0.029±0.005 0.235±0.014
LLM-Grad 0.938±0.000 0.801±0.001 0.022±0.001 0.223±0.003 0.035±0.002 0.230±0.004
Grad 0.999±0.001 0.997±0.003 0.018±0.002 0.224±0.011 0.029±0.004 0.234±0.014
LLM-SG 0.938±0.000 0.802±0.001 0.022±0.001 0.223±0.003 0.035±0.002 0.230±0.004
SG 0.999±0.001 0.997±0.003 0.018±0.002 0.224±0.011 0.029±0.004 0.234±0.014
LLM-IG 0.938±0.000 0.804±0.000 0.022±0.001 0.223±0.003 0.033±0.002 0.231±0.004
IG 1.000±0.000 1.000±0.000 0.018±0.002 0.224±0.011 0.031±0.005 0.235±0.014
LLM-Shap 0.676±0.002 0.069±0.003 0.109±0.002 0.148±0.003 0.123±0.003 0.153±0.004
Shap 0.662±0.007 0.107±0.012 0.139±0.009 0.127±0.009 0.144±0.011 0.149±0.013
LLM-ITG 0.665±0.002 0.039±0.002 0.107±0.002 0.150±0.003 0.132±0.003 0.146±0.004

Adult

ITG 0.627±0.006 0.068±0.010 0.175±0.010 0.099±0.009 0.170±0.011 0.130±0.013
LLM-Lime 0.954±0.001 0.787±0.003 0.030±0.001 0.189±0.003 0.042±0.002 0.178±0.003
Lime 0.977±0.004 0.878±0.015 0.030±0.003 0.201±0.009 0.037±0.004 0.186±0.010
LLM-Grad 0.984±0.000 0.896±0.001 0.029±0.001 0.189±0.003 0.042±0.002 0.178±0.003
Grad 1.000±0.000 1.000±0.000 0.030±0.003 0.201±0.009 0.038±0.005 0.185±0.011
LLM-SG 0.984±0.000 0.897±0.000 0.029±0.001 0.189±0.003 0.072±0.003 0.165±0.003
SG 1.000±0.000 1.000±0.000 0.030±0.003 0.201±0.009 0.037±0.004 0.185±0.011
LLM-IG 0.984±0.000 0.896±0.001 0.029±0.001 0.189±0.003 0.041±0.002 0.179±0.003
IG 1.000±0.000 1.000±0.000 0.030±0.003 0.201±0.009 0.041±0.005 0.185±0.010
LLM-Shap 0.543±0.003 0.067±0.004 0.088±0.002 0.140±0.003 0.094±0.003 0.126±0.003
Shap 0.525±0.009 0.086±0.012 0.088±0.005 0.163±0.010 0.091±0.006 0.146±0.011
LLM-ITG 0.526±0.003 0.052±0.003 0.088±0.002 0.139±0.003 0.091±0.002 0.129±0.003

Default
Credit

ITG 0.516±0.010 0.076±0.012 0.086±0.005 0.165±0.010 0.084±0.006 0.152±0.010
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