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Abstract— High-speed, off-road driving demands rapid
decision-making and adaptability to diverse environments, mak-
ing it a domain where humans outperform autonomous robots.
To enable robots to meet or exceed human driving performance
in such environments, motion planners must be able to reason
about the kinodynamic limits of their platforms in the context of
the observed environment. In this paper, we present a statistics-
based method for generating kinodynamic constraint lookup
tables from human-expert demonstration. With this method,
we aim to expedite in-field development of autonomous robot
systems by eliminating lengthy model training and parameter
tuning. We present a case where our method was used to
investigate the impact of two types of kinodynamic constraints
with both physics-based models and human-expert data on
planned motions. To analyze the differences, we compare plans
generated by a recombinant motion planning search space using
the different constraint models. Data for these experiments
originates from physical tests on a field robot built from a
Polaris RZR: Side-by-Side platform outfitted with sensors and
computing for high-speed, off-road navigation. Comparisons of
solutions to 4,316 planning problems extracted from a separate
set of logs indicate that an average of 28.8% of states in each
solution generated by the physics-derived baseline exceeded the
data-driven kinodynamic limits from the expert-driven model.
Additionally, the velocity limits imposed by the expert-driven
model were less conservative in some regions of the curvature-
roll-pitch space, leading to 36.6% of solutions exhibiting higher
average speeds than the physics-derived baseline.

I. INTRODUCTION

For humans to drive safely at high speeds in off-road
environments, a vehicle operator must be able to plan paths
that prevent the vehicle from tipping over. For autonomous
ground robots, this requires established system models that
reason about the influence of roll, pitch, velocity, and steering
curvature on the magnitude and direction of centripetal
forces. In these scenarios, it is challenging to define physics-
based models that enforce kinodynamic constraints com-
pared to operations in more structured environments [7].
In practice, simplifying assumptions must be made about
these models, and the inaccuracies of the predictions are
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Fig. 1: Polaris RZR: Side by Side outfitted with sensors
and computers in a mixed-feature environment. Kinodynamic
constraints were determined via human-expert driving to
enable the vehicle to autonomously navigate off-road envi-
ronments at high speeds.

accounted for by added factors of safety. Hand-tuned al-
ternatives may also be useful for planning kinodynamic
constraint-aware trajectories, however these models may be
difficult to parameterize and require added personnel time to
tune [10], [4], [9]. This paper presents a statistical method
for generating kinodynamic constraint lookup tables without
the need for extensive data collection, model training, or
parameter tuning. The work comes as a response to recent
research leading to the development of Kinodynamic Effi-
ciently Adaptive State Lattices (KEASL), a motion planning
algorithm that applies kinodynamic constraints in a recom-
binant motion planning search space [2]. The work herein
was developed during in-field KEASL testing to enable
rapid analysis of the impact on system behavior by different
kinodynamic constraint parameters. We present a case in
which our approach was used to compare planned motions
from KEASL when a data-driven driver profile and a physics-
based profile were encoded in the search space. In this case,
roll, pitch, and steering curvature were chosen as the velocity
constraint parameters. However, other parameters, such as
terrain semantics, could be utilized to accommodate various
analysis criteria. The results from this analysis show how
the data-driven model is not simply the physics-based model
with a specific safety factor applied. In some conditions, the
physics-derived baseline generated plans that exceeded the



limits imposed by the data-driven model. In other cases, the
experiments show conditions where the physics-based model
is overly conservative and led to longer expected traversal
times compared to the data-driven model.

II. TECHNICAL APPROACH

This research presents a statistics-based method for deriv-
ing kinodynamic constraints from human-expert drivers to
enable rapid system performance analysis and development.
Previous research found success in applying similar lookup-
table methods to dynamic robot systems [8], [1]. This method
was implemented in the field during KEASL testing, where
different constraint parameter combinations were applied to
the search space. To provide a basis to compare to when
using expert-driven constraints, physics-derived constraints
were tested by using functions derived from physical in-
terpretations of the system. The equations and free-body
diagrams defining the physics-derived constraints can be
found in Appendix I [3]. Equation 1 and Figure 6a show the
resulting velocity constraints from the force balance between
gravity and the centripital force on the robot. Equations 2 and
3, and Figure 6b show the resulting velocity constraints from
ensuring a braking distance of 2 vehicle lengths.

For both the data-driven and physics-derived profiles, two
lookup tables were generated. The first is a 1-dimensional
table that applies velocity limits based on the pitch of the
vehicle, and the second is a 2-dimensional lookup table that
applies velocity constraints based on the roll and steering
curvature of the vehicle. Note that steering curvature is the
reciprocal of the radius of curvature.

A. Expert Driven Kinodynamic Constraints

The profile generation process involved scraping the ve-
hicle states and dividing the driven velocities into bins
according to the respective vehicle roll and pitch values.
Subsequently, the top 1% of values within each bin were
averaged, leading to the lookup tables containing the upper
limit of safety from the expert drivers. For this case, bins
without data were given a velocity constraint of 0m/s be-
cause the drivers either avoided those maneuvers, or there
was insufficient data to safely assign an informed velocity
constraint. While not utilized here, interpolation can fill in
missing constraint values when employing higher dimension
or higher resolution lookup tables, or when dealing with
more sparse datasets.

This method allowed us to capture the strongest aspects
of each driver’s abilities and combine them into a single
driver profile, while remaining below the absolute threshold
of safety. These resulting expert-driven constraints are shown
in Figures 2b and 2e.

The pitch-dependent velocity constraints for both the data-
driven and physics-derived driver profiles follow similar
trends of consistently higher speeds at negative pitch (uphill)
values, and lower constraints at positive (downhill) pitch val-
ues. This is expected from the expert drivers, as maintaining
momentum uphill and limiting momentum downhill are key

parts in successful traversal of steep hills on non-flat, low-
friction surfaces like dirt and sand. This is also expected
from the physics-derived model because of the aid in braking
from the gravitational component when going uphill, and the
inverse effect on braking when going downhill.

The roll and curvature dependent velocity constraint plots
differ considerably, with the expert drivers maintaining
higher speeds across primarily low roll values and all
curvature values, and the physics-derived model preferring
the opposite. While the physics-based model dictates high
allowable velocities for all roll values at zero steering
curvature, the human drivers either maintained low speeds
through those scenarios or avoided them altogether. This
nuance further motivates generating kinodynamic constraints
from human-experts instead of predicting system limitations
through physics-based models.

III. EXPERIMENTAL DESIGN

Experiments for expert-driver data collection and au-
tonomous testing were performed in multiple locations con-
sisting of trail and off-road driving with distinct hazards and
features including high grass, ditches, sloping hills, bushes,
and boulders. Figure 3 shows images of some locations
from a front-facing camera on the robot during autonomous
traversal. These locations were chosen because of the diverse
sets of environmental features.

Fig. 3: Images from the robot’s perspective of four different
environments during autonomous traversal. Top Left: An
environment in a valley containing trees, and a dried riverbed
with steep edges. Top Right: An open, sandy area, littered
with boulders and small rocks. Bottom Left: A non-flat,
sandy area with dense clusters of bushes. Bottom Right: An
obstacle-cluttered area with steep hills and drop-offs.

The first part of experimentation involved data collection
for the expert-driver kinodynamic profile. To do this, the
experts were instructed to drive quickly, while still maxi-
mizing safety, through different locations while remaining
below a velocity threshold of 12 m/s. The set of expert
driven data contained samples from driving in a wide range
of driving scenarios. Both kinodynamic constraint profiles
were generated at the same resolution, and with the same
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Fig. 2: (a) Surface plot of the physics-derived velocity constraints as a function of roll and steering curvature. (b) Surface
plot of the data-driven velocity constraints as a function of roll and steering curvature from the expert-driven demonstration.
(c) Surface plot of the differences in velocity constraints between the data-driven and physics-derived roll and curvature
dependent velocity constraints. Yellow indicates higher allowable velocities from the data-driven model. (d) Plot of the
physics-derived velocity constraints for a required braking distance of two vehicle lengths. (e) Plot of the data-driven velocity
constraints as a function of pitch from the expert-driven demonstration. (f) Plot of the differences in velocity constraints
between the data-driven and physics-derived pitch dependent velocity constraints. The green and red area indicate higher
and lower data-driven constraints, respectively.

bin edges. The physics-derived profile was subject to the
same 12 m/s max velocity constraint as the expert-drivers.

Following the lookup table generation, further field-testing
was performed to compare the performance of the data-
driven and physics-derived driver profiles. Both sets of
kinodynamic driver profiles were implemented with KEASL,
and 4,316 real-world planned trajectories were collected
from autonomous driving through the different locations. To
generate these trajectories, a primary goal point was set far
beyond the perception horizon. As the robot autonomously
traversed toward the primary goal point, a new primary plan
would be generated at 1 Hz. Accompanying every primary
plan were eight additional shorter plans toward evenly spaced
goal points around the vehicle at the perception horizon limit.
The horizon was considered a range of 150 meters from the
vehicle for these experiments. The 8 additional trajectories
generated from each planning cycle were accumulated and
used for the analysis discussed in Section IV.

KEASL was given a maximum allowable planning time of
1 second per plan. The map layers considered during search
were an obstacle map (a map indicating whether cell contains
a lethal obstacle), and a height map (a map with the ground
height at each cell). The accumulated plans were compared
using the total time of traversal as the performance metric.

IV. RESULTS

In 36.6% (1,580) of the generated trajectories, the expert
driven profile generated plans with shorter traversal times
than those from the physics-derived limits. On average 28.3%
of states in each trajectory were in violation of the roll
and curvature dependent velocity constraints, 0.7% of states
in each trajectory were in violation of the pitch dependent
velocity constraints, and 28.8% were in violation of some
combination of the two. 100% of trajectories generated by
the physics-derived profile violated kinodynamic constraints
of the expert-driven profile (1,462 pitch-dependent constraint
violations, 4,314 roll and curvature dependent constraint
violations). This shows that, although the geometric kinody-
namic limits are technically safe, the expert drivers either
treat those scenarios with more caution, or avoid them
altogether. Figures 4 and 5 depict the constraint violation
data.

Although planning time was not considered as a primary
metric for kinodynamic profile performance comparison,
it was still recorded. The plans were generated from the
expert profile in an average time of 0.85 seconds and the
physics-derived profile in an average time of 0.88 seconds.
Both profiles had median planning times of 1.00 seconds,



because Anytime A* was used as KEASL’s underlying
search algorithm [6], [5]. In 51.5% (2,221) of the cases, the
expert profile generated plans faster than the physics-derived
kinodynamic profile. This is due to the expert driven profile
restricting the velocities in more cases than the physics-
derived profile, causing KEASL to only expand from edges
containing low vehicle roll. The ranges of planning times are
similar and expected because there was no difference to the
algorithmic methods used by KEASL for the search process.
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Fig. 4: Surface plot showing the number of physics-derived
profile trajectories in violation of each expert profile roll and
curvature dependent velocity constraint.
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Fig. 5: Plot showing the number of physics-derived profile
trajectories in violation of each expert profile pitch dependent
velocity constraint.

V. DISCUSSION

The results indicate that the kinodynamic constraints gen-
erated from the expert-driven data lead to shorter traversal
times than those generated by geometric models in 36.6%
of 4,316 trajectories generated from real-world experimental

data. Although the physics-derived profile from Section II
does not account for every kinematic constraint, the un-
derlying model is meant to be a general representation
of the upper limits of vehicle safety for the autonomous
vehicle used during field-testing. Additionally, the range of
traversal times remains consistent between both the data-
driven approach and the physics-derived approach, indicating
a sound model that accurately captures the physics of the
system. Our results do not indicate a need to replace accurate
theoretical models, but they do indicate that generating
kinodynamic lookup tables from expert-driven data is an
effective method for estimating the system constraints when
there are opportunities to do so. Combining physics-derived
and data-driven kinodynamic constraints into one profile is
another area for exploration, although it is not discussed here.
100% of trajectories from the physics-derived profile violated
constraints set by the data-driven profile, and an average of
28.8% of individual vehicle states in each profile violated
the data-driven profile constraints. This percentage suggests
that there are regularly occurring gaps in what is technically
considered safe and what humans consider safe in the scope
of off-road driving. The majority of violated constraints
were those dependent on roll and curvature (28.3% of each
trajectory), with far fewer dependent on pitch (0.7% of each
trajectory). This is due to the much steeper drop-off in the
roll-curvature dependent constraints than the pitch dependent
constraints shown in Figures 2c and 2f. These results show
that, when available, human-demonstration should be used as
the basis for determining kinodynamic constraints for high-
speed, off-road motion planning.



APPENDIX I: PHYSICS-DERIVED KINODYNAMIC
CONSTRAINT EQUATIONS AND FREE-BODY DIAGRAMS
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Fig. 6: (a) A free-body diagram showing the front of a robot
sitting at a roll of ϕ. (b) A free-body diagram showing the
left side of a robot performing a braking maneuver at a pitch
of θ.

Vmax =

√∣∣∣∣g ∗ Yoffset

κ ∗ COGz

∣∣∣∣ (1)

Fbrake = g ∗ (Cfriction ∗ cos(θ)− sin(θ)) (2)

Vmax =
√
Fbrake ∗ dbrake ∗ cos(θ) ∗ 2 (3)
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