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ABSTRACT

Multimodal reasoning is a dynamic process that requires synergistic coordination
of language and vision. However, current approaches to multimodal interleaved
generation fall short of providing a generalizable recipe that productively engages
text and vision to advance reasoning. We introduce ThinkMorph, a unified think-
ing model fine-tuned on ∼24K high-quality interleaved reasoning traces. By con-
structing a pipeline for interleaved data for training unified models, we enable
ThinkMorph to generate multimodal reasoning traces where language and vision
mutually advance each other. ThinkMorph delivers substantial gains on vision-
centric reasoning, including +11.53% on visual search and +38.75% on jigsaw
assembly over the base model. It also reaches 80.33% on MMVP and 52.67%
on SAT, indicating strong generalization. The improvements are large enough to
close the gap with, and in some cases even surpass, leading large-scale or pro-
prietary VLMs. Moreover, ThinkMorph reveals emergent properties indicative
of higher-level multimodal intelligence. These include unseen visual manipula-
tion skills during finetuning, such as zoom-in and image inpainting, as well as
autonomous reasoning mode switching, wherein a model trained exclusively on
interleaved data chooses to engage in text-only reasoning due to the nature of the
task, for instance. We show that this ability to think in text, vision, and multi-
modality opens new avenues for test-time scaling, allowing ThinkMorph to effec-
tively scale and aggregate thoughts across three reasoning modes. These findings
suggest promising directions for future work to characterize the emergent capa-
bilities of unified models for multimodal reasoning.

1 INTRODUCTION

Multimodal reasoning (Lin et al., 2025) is not a single-pass perception task but an iteration between
language and vision reasoning. This process is especially challenging for current models in vision-
centric tasks such as spatial reasoning (Li et al., 2025c) and visual search (Wu & Xie, 2024), where
they must move beyond describing images to interrogating or even manipulating visual elements.
Despite the success of textual Chain-of-Thought (hereafter, “text thought”) in improving verbal rea-
soning (Wei et al., 2022; Hao et al., 2025; Jiang et al., 2025), it contributes little to multimodal
reasoning. Models continue to struggle when problems require more than mere text description.
Such limitations (Fu et al., 2024a) highlight the need to move from language-driven reasoning to-
ward cross-modal reasoning, as exemplified by the human ability to tackle complex problems via
think-and-sketch methods.

To replicate think-and-sketch style reasoning, researchers have proposed various recipes for mul-
timodal interleaved Chain-of-Thought (hereafter, “interleaved thought”), but each has limitations.
One approach adopts a tool-augmented design, relying on external visual modules like cropping
tools (OpenAI) and specialized models (Hu et al., 2024; Zhou et al., 2024), which renders inter-
leaving indirect and fragile. Another approach builds on unified models (Team, 2024; Chern et al.,
2024; Deng et al., 2025), which natively support multimodal input and output. However, such ef-
forts remain preliminary and lack a generalizable recipe for enabling text and image reasoning to
mutually advance each other. For instance, while MVoT (Li et al., 2025b) introduces interleaved
action representations to solve mazes, its textual component is limited to simplistic action labels that
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Jigsaw Assembly

Emergent Properties

ThinkMorph Multimodal Reasoning

Spatial Navigation Visual Search Chart Refocus

The image below is a 2x2 jigsaw puzzle… 
Your task is to determine the correct 
arrangement …

A. …
B. …
C. …
D. …

Your goal is to guide a 
player from the start to 
the goal on a grid map 
while avoiding holes ...
Provide your solution as 
a sequence of moves ... 

<think>Let‘s analyze the maze step 
by step: Step 1: Identify the grid and 
obstacles The player starts at the 
top-left corner (let's call this position 
(1,1))… </think>

<think>…carefully verify the path I 
plotted. The red arrows start at the 
top-left … </think> <answer>\boxed{
D,R,D,D,R,R,D,D,R,R} </answer>

Is the bell pepper in the 
picture red or yellow?
A: Red B: Yellow

(From MMVP)

<think>To determine whether the bell is red 
or yellow, I need to closely examine the 
color of the pepper shown …

<think>… I closely examine the image 
provided, which features a close-up shot 
as its central focus… Based on this detailed 
visual inspection, I can confidently conclude 
that the bell pepper is yellow… </think> 
<answer>B</answer>

Which attitude represent the smallestWhat is the color of 
the man's cap?

A: yellow  B: red 
C: gray  D: green

Given the first image with 
the lower right corner 
missing, … compare the 
edges of the images. 
Select  from the following 
choice.            (From BLINK)

A. B.

<think> … To determine the correct assembly, 
I focus on the continuity between the two 
pieces … reconstructing the seal as it would 
appear in reality.</think>

<think>… I can examine the result for visual 
coherence … overall composition looks 
natural … as in a single, unaltered 
photo….</think> <answer>A</answer> 

<think>……The red 
bounding box should 
be placed around the 
man‘s head and 
cap….</think>

<think>… now 
highlighting the man
…  focusing on the 
highlighted area, … the man's cap 
is gray, so the correct answer is C. 
</think><answer>C</answer>

<think>To answer … I focus on these 
two specific 
bars and labels
… </think>

<think> …  I analyze the highlighted 
area in the visualization that 
focuses on the second category: 
‘I don’t discriminate against … 
</think><answer>I don't 
discriminate against them, nor do I 
fear them.</answer>

<think>…  analyze the visual 
content of each piece and determine 
their correct positions based on 
natural image flow
… </think>

<think>…  There 
are no visible discontinuities … 
harmoniously unified… </think> 
<answer> C</answer>

Zoom-in Image Inpainting

Unseen Visual Manipulations❶ Autonomous Mode Switching❷

Test-Time Mode Dynamics❸

e.g., 5.3% Switch 
7.29% Gain

Number of Samples(N) on BLINK-J

Vision Space

Text Space

gap between 
women and 
men?

Figure 1: ThinkMorph Overview. ThinkMorph synergistically interleaves language and vision to advance
multimodal reasoning across four representative tasks (top). Beyond performance gains on in- and out-of-
domain benchmarks, interleaved reasoning unlocks emergent properties (bottom).

are isomorphic to the generated images. Perhaps as a result, this approach has not demonstrated
evidence of generalization beyond its training domains.

To address this gap, we introduce ThinkMorph, a thinking unified model capable of synergistically
interleaving textual and visual reasoning. Through finetuning with carefully curated interleaved
thoughts, ThinkMorph delivers substantial gains on vision-centric reasoning, including +11.53%
on visual search and +38.75% on jigsaw assembly over the base model. It also reaches 80.33%
on MMVP and 52.67% on SAT, indicating strong generalization. Moreover, ThinkMorph unlocks
emergent visual manipulation skills unseen in finetuning, such as zoom-in and image inpainting.

An even more remarkable hallmark of intelligence lies in a model’s ability to adaptively select its
reasoning mode depending on the task—whether textual, visual, or interleaved. Interestingly, we ob-
serve that interleaved reasoning can also produce text- or image-only CoTs. Under hybrid training
settings, ThinkMorph exhibits task-dependent preferences for different modes, suggesting the emer-
gence of more autonomous and context-aware multimodal reasoning abilities. For example, this
flexibility allows the model to resort to pure textual reasoning in tasks only requiring limited visual
grounding. Further, the ability to think purely in text, image, or multimodality enables ThinkMorph
to effectively scale and aggregate thoughts across three reasoning modes, providing new avenues
to exploit test-time scaling. Together, these findings suggest that scaling interleaved training not
only improves performance, but also unveils emergent properties for higher-level multimodal intel-
ligence. Overall, our work makes the following contributions:

• Effective and generalizable interleaved reasoning We present ThinkMorph and provide
the first systematic study of when and how interleaved reasoning improves general visual
reasoning, identifying settings in which it goes beyond text-only and image-only chains.
Thanks to a scalable pipeline for generating reasoning traces where text and vision mutually
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advance each other, ThinkMorph learns effective multimodal interleaved reasoning and
achieves significant gains across a suite of benchmarks.

• Emergent properties in interleaved reasoning We show that generalized interleaved rea-
soning reveals emergent behaviors, including unseen visual manipulation skills and adap-
tive modality selection, where the model dynamically chooses between text-only, image-
only, or interleaved reasoning depending on the task.

• Interleaved test-time scaling We further extend interleaved reasoning to the test-time scal-
ing setting, where interleaved chains demonstrate larger improvements than text-only or
image-only chains due to their richer exploration space. Moreover, ThinkMorph supports
scaling the diversity of modality at test time, where multiple candidate chains naturally
exhibit different modes.

2 THINKMORPH: INTERLEAVED CHAIN-OF-THOUGHT GENERALIZATION

We propose ThinkMorph, a unified thinking model that embodies three levels of “morphing”
in thinking. It first realizes multimodal interleaved Chain-of-Thought reasoning at the Token-
Level (§ 2.1), with textual and visual tokens within a single chain. It then extends to the Chain-Level
(§ 2.2), enabling models to choose between text-only, image-only, or interleaved thought. Finally, it
scales to the Test-Time Level (§ 2.3), where generating reasoning traces in different thinking modes
brings about additional gains.

Interleaved reasoning

Interleaved Thought

Text token Img token… <ST> … <image_end> Text tokenText token<ST> <image_start> Img token <ST> …

Text thought

: special token : reasoning progress : question : answer

… … …

Text thought Img thought

: MSE loss : CE loss

Figure 2: Interleaved Design for Progressive Multimodal Reasoning

2.1 INTERLEAVED CHAIN-OF-THOUGHT

Let Pθ denote a multimodal model with parameters θ. We consider a multimodal question Q =
(Qtext,Qimg) containing textual and visual elements. For reasoning tasks, the model generates a
sequence of intermediate tokens toward a final answer. Unlike conventional CoT that only produces
textual tokens t̂, ThinkMorph can also generate image tokens v̂, resulting in interleaved thoughts
combining both modalities. Formally, the thought sequence is defined as

T = (m̂1, m̂2, . . . , m̂n), m̂i ∼ Pθ(mi | x,m0, m̂1, . . . , m̂i−1), m̂i ∈ {t̂i, v̂i}. (1)

In practice, while special tokens are omitted from the notation for simplicity, modality transitions are
controlled via delimiter tokens. For instance, image thoughts are delimited by <image start>
and <image end> tokens, enabling seamless switching between modalities.

Interleaved Design Advancing multimodal reasoning through interleaved thought presents a foun-
dational challenge: defining what counts as meaningful interleaving is inherently difficult. Unlike
textual reasoning, visual thinking is hard to externalize, whether through language or sketches. For
many visual reasoning tasks (Hao et al., 2025; Li et al., 2025c; Yin et al., 2025), humans often
use arrows, rough shapes, or symbols that show relationships but not exact details. This ambiguity
makes it hard to set clear criteria and to collect data at scale.

To address this challenge, we construct an enriched dataset encompassing four representative tasks
that demand different levels of visual engagement and cross-modal interaction, as illustrated in Fig-
ure 1. Each task supports concrete, verifiable intermediate visual thoughts grounded in specific
visual manipulations. We carefully design task-specific interleaved reasoning sequences where text
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and images are not treated as isomorphic representations but provide complementary cues that pro-
gressively guide the reasoning process toward a solution, as shown in Figure 2. The following tasks
demonstrate how alternating between textual and visual tokens facilitates cross-modal reasoning:

▷ Jigsaw Assembly (Wang et al., 2025c) requires determining the correct arrangement of scrambled
image patches to reconstruct the original image. To recover the patch ordering σ⋆, the initial t̂ to-
kens provide piece-wise textual descriptions of each puzzle piece’s local content. The subsequent
v̂ tokens then visualize the re-arranged pieces according to the current ordering hypothesis σ, sup-
plying holistic spatial context that text alone cannot capture. The final t̂ tokens perform syntactic
verification of the reconstructed assembly. ▷ Spatial Navigation (Wu et al., 2024) involves finding
a safe route from a starting point to a goal on a grid map, avoiding obstacles. To determine a safe
path π⋆ ∈ P∗ through a maze, the initial t̂ tokens establish a coarse global abstraction. The v̂ tokens
then render the visual trajectory of π⋆, and the final t̂ tokens articulate and verify the corresponding
sequence of moves. ▷ Visual Search (Wu & Xie, 2024) involves answering a question about a target
object in an image Qimg. To locate the target object, the initial t̂ tokens hypothesize and describe the
area of interest. The v̂ tokens subsequently draw a bounding box, offering an explicit visual anchor.
The final t̂ tokens verbalize the object’s attributes and confirm the prediction. ▷ Chart Refocus (Fu
et al., 2025) requires answering a question about a data visualization. To do so, the initial t̂ tokens
identify relevant data elements. The v̂ tokens highlight corresponding regions of interest, and the
final t̂ tokens perform value extraction and computation.

2.1.1 INTERLEAVED TRAINING

Leveraging the curated interleaved traces from four vision-dependent tasks, in which text and images
are non-isomorphic and contribute complementary evidence, we train the unified model by viewing
each thought sequence T as a single autoregressive stream with modality delimiters.

Model architecture We adopt the Bagel architecture, combining a VAE-based visual encoder,
a ViT encoder SigLIP2 for image representation, and an autoregressive language model built on
Qwen2.5. This enables interleaved text-image generation for coherent multimodal reasoning. For
image generation, we use diffusion forcing with independent noise levels assigned to images, condi-
tioning on noised VAE tokens. During text generation, the model replaces noised VAE tokens with
clean versions and conditions on SigLIP2-extracted image features.

Loss function We supervise visual and textual generation with complementary objectives. For
image synthesis, we minimize the mean squared error (MSE) between the ground-truth image I and
the model-rendered image ÎtT ,tNI ,tSI

, generated conditionally on textual tokens tT , noised VAE
tokens tNI , and SigLIP tokens tSI :

Limg = MSE
(
I, ÎtT ,tNI ,tSI

)
. (2)

For text generation, we use a next-token negative log-likelihood summed over textual indices Itext.
The model predicts token distributions pi(· | tT , tCI , tSI) conditioned on textual tokens tT , clean
VAE tokens tCI , and SigLIP tokens tSI :

Ltext =
∑

i∈Itext

− log pi(ti | tT , tCI , tSI) . (3)

The model is trained with a dual-objective that jointly minimizes Ltext and Limg, promoting balanced
learning of both modalities within the unified sequence.

2.2 REASONING IN LANGUAGE, VISION, AND MULTIMODALITY

Because ThinkMorph is built on a unified model that inherently supports both textual and visual
input–output, it not only allows the generation of multimodal reasoning traces but also admits
purely single-modality reasoning. At the chain level, ThinkMorph autonomously determines the
modality by generating special tokens that initiate either text or image generation. A chain may
thus proceed entirely with textual tokens, entirely with visual tokens, or switch between the two
modalities, resulting in an interleaved sequence. We formalize the three situations as constrained
thought spaces: (1) Text Thought T (text) = (t1, . . . , tn), mi ≡ ti, (2) Image Thought T (image) =
(v1, . . . , vn), mi ≡ vi, (3) Interleaved Thought T (interleaved) = (m1, . . . ,mn), mi ∈ {ti, vi}.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3 TEST-TIME SCALING

For interleaved reasoning, test-time scaling follows the standard Best-of-N practice: sampling N
candidate chains and selecting the best outcome. ThinkMorph, however, introduces an additional
scaling dimension. As discussed in Section 2.2, each chain can belong to one of three reasoning
modes: textual, visual, or interleaved. Instead of sampling N homogeneous chains of a single type,
the model naturally generates a heterogeneous set across different modalities. Formally, let T (k)

denote a chain sampled from reasoning mode k ∈ {text, image, interleaved}, and let {T1, . . . , TN}
be the set of N chains generated under a fixed test-time budget. Traditional scaling corresponds to
ŷbest = argmaxTi∈{T1,...,TN} S(Ti), where S(·) is a verifier or scoring function applied to the final
outcome. With ThinkMorph, the sample set {T1, . . . , TN} spans a mixture of modality regimes, so
that Ti ∈

⋃
k T (k), k ∈ {text, image, interleaved}.

3 EXPERIMENTS

3.1 DATA SYNTHESIS

Table 1 summarizes the data sources, curation pipeline, and visual manipulations used for each task.
In total, we curate 24,990 questions spanning diverse domains. Questions for Jigsaw Assembly
and Spatial Navigation are generated using our custom synthesis pipeline, whereas those for Visual
Search and Chart Refocus are carefully curated through a human-in-the-loop MLLM filtering pro-
cess. For instance, in the Visual Search task, we observe many questions from existing Visual CoT
datasets (e.g., GQA and VSR) are ambiguously phrased, contain incorrect answers, or highlight ir-
relevant objects in the solution images. To enhance quality and difficulty, we enforce a constraint
that the target object’s bounding box must occupy between 1% and 30% of the image area. This
selective filtering reduces the dataset from 144K to 6,990 high-quality questions. In addition to
the interleaved traces, we derive two unimodal baselines: textual thoughts obtained by prompting
GPT-4.1 to solve each task step-by-step, and visual thoughts using only the image outputs from the
interleaved reasoning traces. All details are provided in Appendices B.2 and D.

Task Data Source Count Visual Manipulation Curation Steps
Jigsaw
Assembly

SAT (Ray et al., 2024),
ADE20K (Zhou et al., 2017),
Omni3D (Brazil et al., 2023)

6,000 Visualizing re-arranged
pieces

Newly generate ques-
tions from a customized
pipeline

Spatial
Navigation

N/A 6,000 Overlaying mazes with
paths highlighted with
red lines and arrows

Newly generated ques-
tions from a customized
pipeline

Visual
Search

Visual CoT (Shao et al.,
2024), GQA (Hudson & Man-
ning, 2019), VSR (Liu et al.,
2023)

6,990 Highlighting Regions
with Red Bounding
Boxes

Filtering for valid
(question, answer) with
MLLMs + other criteria

Chart
Refocus

ChartQA (Masry et al., 2022),
Refocus (Fu et al., 2025)

6,000 Highlighting Regions
with Red Bounding
Boxes or Overlays

Filtering for valid
(question, answer) with
MLLMs + other criteria

Table 1: Summary of Questions Used for Training ThinkMorph.

3.2 EXPERIMENTAL SETTING

Baselines We evaluate ten leading models to establish a strong baseline, including seven Vision-
Language Models (VLMs) and three unified multimodal models (UMMs). The VLMs tested in-
clude open-source models InternVL3.5 (8B and 38B) (Wang et al., 2025b) and Qwen2.5VL (7B and
72B) (Bai et al., 2025), as well as proprietary models GPT-4o, GPT-5, and Gemini 2.5 Flash.

Evaluation For in-domain evaluation, we use VSP-main-task (Wu et al., 2024) as the benchmark
for Spatial Navigation, our constructed VisPuzzle for Jigsaw Assembly, and the Chart Refocus (Fu
et al., 2025) test set (a subset of ChartQA (Masry et al., 2022)). For out-of-domain evaluation,
we further test on a broad suite of vision-centric multimodal benchmarks, including VStar (Wu &
Xie, 2024), BLINK (Fu et al., 2024b), MMVP (Tong et al., 2024c), SAT (Ray et al., 2024) and
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CV-Bench Tong et al., 2024a. Specifically, for BLINK, its subset BLINK-Jigsaw falls under the
jigsaw assembly task, which differs substantially from our task VisPuzzle. We treat it as a dis-
tinct metric, hereafter denoted as BLINK-J. All evaluations are conducted using the vlmevalkit
framework (Duan et al., 2024) for consistency and reproducibility. For most benchmarks, we follow
the framework’s original evaluation pipeline. For tasks where answer extraction and correctness
could not be determined by exact matching, we adopt GPT-5 as an LLM-as-a-Judge. Additional
details provided in Appendix B.3.

3.3 WHEN DOES INTERLEAVED REASONING ENHANCE MULTIMODAL REASONING?

Spatial Navigation Visual Search Jigsaw Assembly Chart Refocus

VSP VStar★ VisPuzzle BLINK-J★ ChartQA MMVP★

Bagel-7B 0.83* 55.49 35.00* 67.33 62.05 70.33

Text Reasoning 49.17 56.02 63.50 68.67 81.66 76.33
Visual Reasoning 85.50 58.63 61.25 47.33 73.08 73.00

Interleaved Reasoning 86.67 63.87 73.75 73.33 79.78 82.66
Table 2: Reasoning Mode Comparison. Bagel-7B is tested under think mode (*: no-think mode for tasks
where thinking prevents Bagel from generating answers). ChartQA results are the average performance on
horizontal and vertical bar chart questions. ★: out-of-domain benchmarks. Best , second-best .

Interleaved reasoning excels on vision-centric tasks. On tasks that demand sustained visual en-
gagement, ThinkMorph’s interleaved reasoning consistently outperforms other modes (Table 2).
The effect is most pronounced in Spatial Navigation, where the base model nearly fails at 0.83%
but interleaved reasoning reaches 86.67%, marking a dramatic 85.84% improvement. Substantial
gains appear in Jigsaw Assembly, with a 38.75% in-domain improvement and out-of-domain gen-
eralization on BLINK-J (+6.00%). For Visual Search, ThinkMorph improves performance on the
out-of-domain VStar benchmark by 8.38%. Averaged across these three vision-centric tasks, in-
terleaved reasoning yields a 34.74% improvement over the base model and surpasses the next-best
mode by 5.33%, establishing it as the most effective reasoning strategy for grounded problems.

Size VSP VisPuzzle ChartQA VStar★ BLINK-J★ MMVP★ SAT★ BLINK★ CV-Bench★

Visual Understanding-only VLM

GPT-4o - 33.50 43.75 76.34 61.78 72.67 84.67 28.00 60.28 75.61
GPT-5 - 57.33 78.00 80.85 71.73 77.33 86.33 73.30 69.86 85.46
Gemini 2.5 Flash - 59.33 47.00 83.79 70.68 66.00 80.33 56.00 67.49 85.07

InternVL3.5 8B 8.17 34.75 76.26 68.59 71.33 76.33 45.33 59.60 81.99
38B 20.16 36.50 80.44 76.96 80.67 80.33 49.33 62.65 85.96

Qwen2.5-VL 7B 2.16 34.75 78.12 76.44 59.33 77.33 51.33 55.92 75.20
72B 41.83 40.00 82.03 85.86 61.33 82.00 64.67 61.91 82.54

Unified Models

Janus-pro 7B 00.00 33.50 43.08 38.22 50.67 63.33 22.00 38.51 67.83
Chameleon 7B 00.83 30.50 5.74 28.27 00.67 47.67 10.67 16.52 36.52
Bagel 7B 00.83* 35.00* 61.82 55.49 67.33 70.33 44.67 47.66 76.03*

ThinkMorph 7B 75.83 79.00 78.10 67.02 72.00 80.33 52.67 60.07 80.82

∆ (vs Bagel) +75.00 +44.00 +16.28 +11.53 +4.67 +10.00 +8.00 +12.41 +4.79
Table 3: Comparison of ThinkMorph with Other Models. Bagel-7B is tested under think mode (*: no-think
mode for where thinking prevents Bagel from generating answers). ★: out-of-domain benchmarks.

To generalize interleaved gains to broader visual reasoning, we fine-tune ThinkMorph on 24K inter-
leaved thoughts from four tasks and evaluate it across diverse benchmarks. As shown in Table 3, two
advantages stand out. (1) ThinkMorph delivers large and consistent gains over unified baselines.
Compared to its base model, Bagel-7B, ThinkMorph achieves significant improvements across all
benchmarks, with an average gain of 20.74% over nine diverse tasks. For instance, on BLINK,
ThinkMorph improves by 12.42%, demonstrating robust interleaved reasoning that generalizes to
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unfamiliar task configurations. Other unified baselines, such as Janus-Pro-7B and Chameleon-
7B—perform notably worse (e.g., 38.22% and 28.27% on VStar, and near-zero on SAT), whereas
ThinkMorph surpasses them by margins ranging from 28.8% to 42.7%. These results indicate that
interleaved training not only strengthens multimodal coordination but also enables generation and
understanding to reinforce each other, yielding far more capable and generalizable unified models.
(2) ThinkMorph rivals or exceeds large-scale VLMs, particularly on reasoning-intensive tasks.
Despite being fine-tuned on only 24K samples, ThinkMorph achieves performance comparable to,
and in several cases exceeding, models an order of magnitude larger. It outperforms Qwen2.5-
VL-72B by 34% on VSP and 10.67% on BLINK-J, and surpasses InternVL3.5-38B on SAT while
maintaining similar 3D spatial reasoning on CV-Bench. Against proprietary systems, ThinkMorph
remains highly competitive, excelling especially on reasoning-heavy evaluations: it outperforms
GPT-4o by 24.67% on SAT (52.67% vs. 28.00%) and matches Gemini 2.5 Flash on general percep-
tion in MMVP (80.33%). Further qualitative examples are provided in Appendix C.1.

x

<think>To	answer	the	query	about	the	difference	
between	the	highest	and	second	highest	values	in	the	
chart,	it's	necessary	to	first	identify	these	bars.	The	
chart	displays	three	countries	with	their	median	
household	disposable	income,	and	the	bars	are	
sorted	in	descending	order:	Austria,	Norway,	and	
United	Kingdom.	 Austria	has	the	highest	value	
at	$24,770.5,	and	Norway	has	the	second	highest	
at	$24,688.3.	To	find	the	difference,	I	focus	on	
these	two	specific	bars	and	their	corresponding	
value	labels.	Highlighting	Austria	and	Norway	
covers	the	relevant	data	points	needed	for	the	
calculation,	as	the	query	is	only	concerned	with	
these	two	values.	Therefore,	marking	the	bars	for	
Austria	and	Norway	in	red	brings	attention	to	the	
exact	areas	where	the	highest	and	second	highest	
values	are	located.</think>

<think>…	The	edited	visualization	highlights	
Austria	and	Norway	with	red	boxes,	making	it	
clear	that	these	are	the	top	two	entries.	Austria‘s	
median	household	disposable	income	is	
$24,770.5,	and	Norway’s	is	$24,688.3.	I	subtract	
Norway‘s	value	from	Austria’s:	24770.5	- 24688.3	=	
82.2.	Therefore,	the	difference	in	the	value	of	the	
highest	and	second	highest	bar	in	the	chart	is	
82.2.</think> <answer>82.2</answer>

Q:	What	is	the	difference	in	the	
value	of	highest	and	second	
highest	bar	in	the	chart?

ChartQA

Q:	Is	this	duck	
facing	left	or	right	
from	the	camera's	
perspective?
A:	Left		B:	Right

MMVP

Front-loaded	visual	engagement:	The	initial	text	reasoning	identifies	the	solution-
critical	elements	(Austria	and	Norway	with	their	exact	values).	Subsequent	visual	
highlighting	proves	supplementary	rather	than	essential.	

<think>The	red	bounding	
box	emphasizes	the	duck‘s	
face,	where	the	beak	clearly	
points	rightward…	supports	
the	correct	answer:	B.	Right.
</think>

<think>	…
I	focus	on	its	
head	and	beak	
position…
highlighting	the	
area	around	…
</think>

Here	visual	highlighting	becomes	essential	rather	than	supplementary,	actively	
guiding	reasoning	when	text	cannot	identify	the	solution-critical	orientation	cues.

Figure 3: Visual Highlighting: Role varies from
supplementary (ChartQA) to essential (MMVP).

Discussion Chart Refocus highlights when visual
manipulation is essential versus supplementary.
On in-domain ChartQA, text-only reasoning slightly
outperforms interleaved reasoning (+1.88%), indi-
cating visual input adds little beyond text. In con-
trast, on out-of-domain MMVP, interleaved reason-
ing generalizes better, surpassing text-only reason-
ing by 6.33%. This clarifies when interleaved rea-
soning helps and how it arises.

Across vision-centric tasks, interleaved reasoning
works best when text and images continuously in-
form each other. Visual tokens enable steps text
alone cannot: in Jigsaw Assembly, re-arranged
pieces reveal mismatches; in Spatial Navigation,
overlaid arrows validate routes; and in Visual Search,
bounding boxes pinpoint object locations. Chart Re-
focus, however, shows the need for interleaving de-
pends on task demands (Figure 3). In ChartQA,
textual reasoning already identifies key elements
(e.g., Austria and Norway with their values), mak-
ing visual highlighting helpful but unnecessary. In
MMVP, visual grounding is essential for spatial cues
text cannot express, such as confirming ”the duck’s beak points rightward.” Text-only reasoning suf-
fices when additional visual information in traces is redundant, but interleaved reasoning is crucial
for generalizing to tasks requiring precise visual grounding or manipulation. In summary, inter-
leaved reasoning is most effective when tasks demand active visual engagement with high-quality
traces, and these improvements generalize across diverse benchmarks, as ThinkMorph demonstrates.

3.4 EMERGENT PROPERTIES IN INTERLEAVED REASONING

Beyond performance improvements, interleaved reasoning exhibits emergent properties that arise
naturally without explicit supervision (see lower panel of Figure 1).

EMERGENT PROPERTY 1 : Unseen Visual Manipulations The model develops accurate and
meaningful visual manipulations unseen in training data when generalizing to out-of-domain
multimodal tasks, actively advancing the reasoning process.

We identify eight distinct types of unseen visual manipulations, with zoom-in operations being the
most common. As shown in Figure 1 (lower panel) and Figure 4, these manipulations also in-
clude inpainting, multi-box generation, motion forecasting, perspective transformation, and region
cropping, among others. These emergent behaviors are not rare: on some benchmarks, unseen ma-
nipulations account for up to 10% of all visual operations produced during inference. Importantly,
these operations are not arbitrary artifacts but precise and task-effective visual actions that con-
tribute directly to problem solving. For example, when asked “Is the bell pepper red or yellow?”,
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the model automatically generates a zoomed-in view to better distinguish subtle color differences,
which closely mirroring human visual inspection without explicit prompting.

Multiple bboxes Motion Forecasting CropPerspective Shift

The image captures a 
woman running from:

A: Back view
B: Side view

<think> …I need to focus on the perspective 
… it makes sense to highlight the area that 
clearly shows the side profile, such as the 
alignment of her body, and the profile of her 
running form … </think> 

<think>… In the edited 
visualization… showing
her side silhouette, the 
alignment of legs, and the profile of her face  
in motion…</think><answer>B</answer>

Is there a knee visible in 
the image?

A: Yes B: No

<think> … to highlight the visible knee(s) in 
the image … the manipulation involves 
drawing attention to the area where the 
knee is visible … </think>

<think>… In the edited
visualization, attention is 
drawn to the area where the thigh meets 
the shin, which is the location of the knee. 
Both individuals have their knees slightly 
bent. ….</think> <answer>A</answer> 

Is the blue mask on 
the left or right 
side of the black 
mask?
A: right B: left

What is the color 
of the telephone?

A. green B. white 
C. orange D. blue

<think> … the red bounding box should 
go…The bounding box should be drawn 
around this wall-mounted device to highlight 
its color.. </think>

<think>…The object’s color is a distinct 
orange…as shown in the highlighted region, 
is orange. </think><answer>C</answer>

<think> To determine where the red 
bounding box should go, first look for the 
faces of the people in the image…</think>

<think>…it's clear he is wearing a blue mask. 
The other visible worker, positioned to his 
right.… </think>answer>left</answer>

Figure 4: Examples of More Unseen Manipulations

A deeper analysis reveals systematic patterns underlying these behaviors. Statistical evidence shows
that specific textual cues reliably trigger corresponding visual manipulations: phrases such as ”ex-
amine closely” or ”focus on” consistently elicit zoom-in operations, while terms like ”restore” and
”reconstruct” prompt image inpainting. These correlations are both consistent and contextually
appropriate, suggesting principled rather than random generation. This capability originates from
Bagel’s large-scale multimodal pretraining, which exposes the model to interleaved visual–text pat-
terns encompassing diverse manipulation. ThinkMorph’s interleaved reasoning fine-tuning then pro-
vides critical alignment by enabling the unified model to activate these manipulation skills within
structured reasoning steps for problem solving. In essence, pretraining supplies the raw manipu-
lation ability, while interleaved fine-tuning directs it toward reasoning-oriented visual behaviors.
Additional examples and analyses are provided in Appendix C.2.

EMERGENT PROPERTY 2 : Autonomous Mode Switching The model adaptively switches
from interleaved to text-only reasoning based on task complexity, despite being trained exclu-
sively on interleaved data.

on Chart Refocus on Jigsaw Assembly

Accuracy Gains

Figure 5: Autonomous Mode Switching Based on Task Complexity.

Mode switching is task-adaptive, not arbitrary. As shown in Figure 5, the model adapts its rea-
soning behavior based on visual complexity. For the question “Can you see stems of bananas in
the image?”, it maintains interleaved reasoning, generating a zoomed-in view of the upper region
where the stem would appear. The close-up enables clear stem identification, illustrating that con-
tinuous visual engagement remains essential when fine-grained details are critical to the solution.
In contrast, for “We cannot see the window on the school bus?”, the model switches to pure textual
reasoning, describing visible features such as the yellow paint and lettering, to infer the absence of
windows. This contrast reflects a form of front-loaded visual engagement: after processing the im-
age and question, the model implicitly decides whether text alone can complete the reasoning. When
the initial visual encoding captures information that text can express, it shifts to text-only reasoning
for efficiency; when fine-grained cues remain unresolved, interleaved reasoning continues.

This shows interleaved training improves multimodal coordination and enables models to dynami-
cally allocate reasoning effort based on task demands, recognizing when each modality is essential
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versus supplementary. The result is enhanced efficiency, robustness, and flexibility across diverse
task types. Further examples and analysis are provided in Appendix C.3.

3.5 SCALING INTERLEAVED REASONING AT TEST TIME
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Figure 6: Test-Time Scaling Across Reasoning Modes. Interleaved reasoning demonstrates robust scaling
advantages, particularly on challenging benchmarks where unimodal approaches plateau or decline.

Having established the effectiveness of interleaved reasoning, we next examine a more nuanced
question: how do different reasoning modes scale at test time? We compare interleaved and uni-
modal reasoning under Best-of-N sampling across four benchmarks representing a continuum of
distribution shifts (Table 4, Figure 6). VSP serves as the in-domain reference. VStar shares the
same task setup as VCoT but performs a stress test on a smaller scale of target objects. MMVP
represents a moderate shift toward general perception, containing open-ended question types similar
to those in VCoT data. Finally, BLINK-J presents the most substantial deviation, with a task setup
distinct from Jigsaw Assembly that demands stronger compositional and multimodal adaptation.

Interleaved reasoning scales more effectively, with gains amplifying under distribution
shifts. Across all benchmarks, interleaved reasoning maintains consistent improvements: +5.2%
on VSP, +1.0% on VStar, +0.7% on MMVP, and a substantial +8.0% on BLINK-J. This peak occurs
under the most demanding generalization conditions: on BLINK-J, ThinkMorph improves from
65.33% to 73.33%, while visual reasoning drops by 2.0% and text reasoning rises only 2.67%. The
10-point gap between interleaved and visual modes highlights that multimodal exploration becomes
most critical when single modalities cannot generalize effectively.

N=1
(Baseline)

N=2 N=4 N=8

Number of Samples (N)

2

0

2

4

6

Re
la

ti
ve

 Im
pr

ov
em

en
t 

ov
er

 N
=

1 
(%

)

+0.42%
+1.59%

+2.39%

+0.00%

+3.37%

+5.89%

-2.04%
-1.64%

+1.22%

-2.91% -2.91%

+0.96%

Benchmark
CVBench
VStar
MMVP
BLINK-J

Figure 7: Relative Improvement

Test-time scaling behaviors vary across task types. We
analyze ThinkMorph’s scaling trends under Best-of-N
sampling across diverse benchmarks (Figure 8). Two
distinct scaling patterns emerge. For reasoning-intensive
tasks, performance improves monotonically with larger
N : VStar shows the strongest gain of +5.89% at N = 8,
and CV-Bench follows a similar trend with a +2.39%
increase. In contrast, perception-focused benchmarks
exhibit U-shaped scaling: MMVP and BLINK-J ini-
tially decline at intermediate sampling levels, as BLINK-J
drops 2.91% from N = 2 to N = 4, before recovering at
N = 8 with modest gains of +1.22% and +0.96%, respec-
tively. These patterns indicate that the benefits of test-
time scaling depend on task characteristics: reasoning-
oriented benchmarks gain steadily from expanded mul-
timodal exploration, whereas perception-heavy tasks re-
quire larger sample sizes to escape local optima and fully
realize the benefits of diversified reasoning trajectories.

3.6 MODE SWITCHING ANALYSIS

PROPERTY 2 shows that the model can autonomously select between reasoning modes. To study this
behavior, we train a model on ∼24K examples spanning all four tasks and three reasoning modes.
Based on Table 2, we use visual reasoning for Spatial Navigation, text-only reasoning for Chart
Refocus, and interleaved reasoning for the remaining two tasks. This hybrid model enables analysis
of how multi-mode exposure influences mode-switching dynamics under test-time scaling.
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Mode Switching within Task Mode switching emerges even within individual tasks. Spatial Nav-
igation is trained only on interleaved traces, yet at inference it produces 32/300 text-only chains on
VStar. Chart Refocus is trained only on text traces, yet it generates 244/826 interleaved chains and
2/826 image chains at inference. This shows the model learns to transfer mode-switching behavior
across tasks, applying reasoning modes never seen in task-specific training data.

EMERGENT PROPERTY 3 : Test-Time Mode Dynamics During test-time scaling, a dynamic
subset of reasoning chains switch between modes, and different modes jointly contribute under
majority voting.
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Figure 8: Test-Time Mode Dynamics

This property extends autonomous mode switching
(Property 2) to test-time scaling. When generating mul-
tiple chains (e.g., N=8), a subset switches between text-
only and interleaved modes (Figure 8). As candidate solu-
tions increase, the modality distribution shifts: text-only
chains decrease from 18.8% at N=1 and N=2 to 15.2%
at N=8, while interleaved chains increase from 81.2%
to 84.8%. This shift correlates with accuracy improve-
ments from 51.3% at N=1 to 58.6% at N=8, consistent
with modality diversity modeling in § 2.3.

To further analyze this dynamic behavior, we evaluate
the hybrid model on three out-of-domain benchmarks:
MMVP, VStar, and BLINK-J. For each benchmark, we apply test-time scaling by sampling eight
responses per question. Figure 9 summarizes the resulting reasoning-mode distribution, grouping
questions by the number of purely textual responses. Overall, 6.38%, 8.64%, and 1.25% of re-
sponses are purely textual on MMVP, VStar, and BLINK-J, respectively. Interestingly, performance
tends to improve when the model selects to reason purely in text. On questions where ThinkMorph
produces both textual and interleaved responses, textual reasoning achieves 9.75% and 1.84% higher
accuracy than interleaved reasoning on MMVP and VStar, respectively, but 2.98% lower accuracy
on BLINK-J. These findings suggest that mode diversity amplifies the benefits of test-time scal-
ing: when models can flexibly switch between reasoning modes, they not only explore multiple
reasoning trajectories but also alternate between modality strategies, unlocking potential for more
effective and efficient scaling in future multimodal systems.
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Figure 9: Distribution of textual reasoning traces out of eight generated responses on three OOD benchmarks.

4 CONCLUSION

We introduce ThinkMorph, a unified model capable of synergistically interleaving language and
vision to perform multimodal reasoning. Through high-quality training data where textual and visual
elements advance each other, ThinkMorph delivers substantial improvement across vision-centric
tasks and demonstrates robust generalization to out-of-domain benchmarks. In addition, despite
being trained exclusively on interleaved data, ThinkMorph sometimes generates text-only reasoning
chains at test time based on the nature of the task. We further demonstrate that interleaved reasoning
outperforms unimodal approaches in test-time scaling due to its richer exploration space. These
findings open new avenues for test-time scaling across multiple reasoning modes and point toward
rich opportunities to characterize and incentivize emergent abilities in unified models.
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5 ETHICS STATEMENT

This work addresses the challenge of generating synergistic textual and visual reasoning traces to
improve multimodal reasoning skills in unified models. While we do not foresee direct ethical issues,
we acknowledge the possibility of misuse in generating deceptive or misleading reasoning content.
Nonetheless, we believe that the overall impact of our work will be positive, as it has tremendous
potential in enabling various decision-making and problem-solving tasks.

6 REPRODUCIBILITY STATEMENT

We provide details on the curation of training data in Appendix B.2 and D and training details in
Appendix B.4. We further submit our source code, based on Bagel’s implementation, along with our
submission. At the time of acceptance, we will open-source all of our training data.
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A OVERVIEW OF THE APPENDIX

This Appendix is organized as follows:

• Section B provides detailed experimental specifications and results;

• Section C showcases qualitative case studies across tasks and benchmarks;

• Section D provides all prompts used to generate finetuning data.

B EXPERIMENT DETAILS

B.1 TEST-TIME SCALING RESULTS

N = 1 N = 2 N = 4 N = 8
VSP

Text Reasoning 48.67 48.33 51.33 56.83
Visual Reasoning 83.83 83.83 88.50 91.33

ThinkMorph-Spatial Navigation 87.17 87.33 90.67 92.33

VStar★

Text Reasoning 61.26 60.73 63.87 63.35
Visual Reasoning 56.02 56.54 58.64 61.26

ThinkMorph-Visual Search 65.97 67.02 67.54 67.02

BLINK-J★

Text Reasoning 65.33 64.67 67.33 68.00
Visual Reasoning 51.33 51.33 52.00 49.33

ThinkMorph-Jigsaw Assembly 65.33 64.00 70.00 73.33

MMVP★

Text Reasoning 74.67 75.33 78.67 80.33
Visual Reasoning 74.33 73.00 74.00 75.00

ThinkMorph-Chart Refocus 81.33 78.67 82.00 82.00
Table 4: Test-Time Scaling Across Reasoning Modes. Interleaved reasoning demonstrates robust scaling ad-
vantages.

N = 1 N = 2 N = 4 N = 8

MMVP ★ 81.67 80.00 80.33 82.67
VStar ★ 62.30 62.30 64.40 65.97
BLINK-J ★ 68.67 66.67 66.67 69.33
CVBench ★ 81.31 81.65 82.60 83.25

Table 5: ThinkMorph Results under Test-Time Scaling.

B.2 DETAILS ON QUESTION CONSTRUCTION AND FINETUNING DATA CURATION

Jigsaw Assembly We construct a scalable pipeline that converts images into multiple-choice jigsaw
puzzles with two to four pieces across grid configurations (1×2, 2×1, 1×3, 3×1, and 2×2), presenting
multiple arrangement options as answers. Two-piece jigsaw puzzles offer two arrangement options,
while three- and four-piece puzzles provide four sampled arrangement options including the correct
configuration. We source 6,000 images from three datasets—3,300 from SAT (Ray et al., 2024),
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1,900 from ADE20K (Zhou et al., 2017), and 800 from Omni3D (Brazil et al., 2023)—spanning
synthetic spatial scenes, real-world environments, and 3D perspectives. This yields 6,000 questions
distributed evenly across the five layout configurations. To construct finetuning data, we first prompt
GPT-4.1 with the original question and ground truth answer, requesting it to describe the visual
content of each piece and reason about the correct assembly without revealing in its response that
it was provided the answer.1 For three- and four-piece puzzles, we find that textual descriptions of
individual pieces are particularly helpful for guiding arrangement decisions, as they eliminate many
implausible configurations. We then provide the original natural image and prompt the model to
verify the proposed arrangement by analyzing factors such as object continuity, lighting consistency,
and perspective alignment.

Visual Search We begin by collecting 144k visual search problems from GQA (Hudson & Man-
ning, 2019), VSR (Liu et al., 2023), and Open Images (Kuznetsova et al., 2020). To ensure problems
are challenging while keeping target objects discernible, we filter for images whose target object’s
bounding box occupies 1%-30% of the total image size. After manually reviewing the problems,
we observe that many problems suffer from ambiguous phrasing, incorrect answers, or misplaced
bounding boxes. We distill these error patterns into a prompt and develop a filtering pipeline using
Gemini 2.5 Pro and GPT-5 to remove questions deemed inappropriate by either model. This pipeline
yields 6,990 visual search problems in total. To construct interleaved reasoning, we prompt GPT-4.1
to parse the query to identify where to place the bounding box. This is akin to how humans first map
the textual query to localize the area of interest. We also provide the image with the target object
highlighted and prompt the model to name the target object.

Spatial Navigation We create a pipeline that generates Frozen Lake navigation problems using
OpenAI Gym (Brockman et al., 2016). These problems range from 3×3 to 6×6 grid sizes, with
1,500 problems generated for each size. To visualize intermediate reasoning steps, our pipeline
depicts potential paths with red lines and arrows. Similar to how humans first scan the maze to
identify the starting position, goal position, and hole positions, we prompt GPT-4.1 to first describe
the maze layout. Then, we pass in the maze image overlaid with a correct path found via A* search.
Finally, we prompt the model to verify the path in the image and articulate the moves.

Chart Refocus We collect chart question answering problems on horizontal and vertical bar charts
originally from ChartQA (Masry et al., 2022), which are subsequently processed by Fu et al. (2025)
to highlight or draw bounding boxes around areas relevant to answering the questions. To ensure
that not too much of the chart is emphasized, we filter for questions whose solutions require only one
highlighting or drawing operation. After manually reviewing the remaining 8.4k questions, we find
that a small portion contain errors in answers or highlighting, so we filter these using GPT-5. This
leaves us with 8.1k questions, from which we sample 6,000 to achieve as balanced a distribution as
possible across highlighting and drawing operations. Similar to the visual search task, we structure
our prompts so that we first ask the model to identify a region of interest, then pass in the processed
image with the region called attention to, and finally request the model to provide the answer given
the scaffolding.

B.3 EVALUATION DETAILS

For answer prompting, we use the official prompts for all tasks except VSP-main, where we adopt
the official prompt used in VSP for baseline models but apply our custom prompt for our trained
model, provided below.

1To ensure the generated reasoning leads to the correct answer, we provide the ground truth to the model
while instructing it not to reveal this information in its reasoning trace. We follow this same process for
subsequent tasks but omit these details for brevity.
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VSP Custom Prompt

You are a maze solver. Your goal is to guide a player from the start to the goal on a grid
map while avoiding holes. The player can move one square at a time in the directions left
(L), right (R), up (U), or down (D). The frozen lake is not slippery; the player will always
move in the intended direction. Moving off the edge or falling into a hole results in failure.
Reaching the goal means success. Provide your solution as a sequence of moves wrapped in
\boxed{}, such as \boxed{L,R,U,D}. The moves should be comma-separated.”

For answer judging, we follow either the official judging pipelines or the standard VLMEvalkit
pipeline for Vstar, VSP-main, BLINK-J, BLINK, VisPuzzle, MMVP, SAT and CV-Bench to ensure
consistency and reproducibility, all excuted within the VLMEvalkit framework. SAT is evaluated
under its standard circular setting.

For ChartQA, we first perform answer extraction with GPT-5 as an LLM-as-a-Judge using our cus-
tom prompt and then accurately match the extracted answer with the ground truth, following the
official pipeline.

ChartQA Answer Extraction Prompt

Role: You are an “Answer Extraction Assistant.” You are given a question and a model’s
response. The response contains the final answer to the question.
Task: Extract only the final answer from the response and output it. Do not include any
extra words, punctuation, or units. If the final answer does not appear in the response,
output: None.
Rules: 1. Output only the answer itself—no explanations, labels, or extra text. 2. If the
answer is numeric, remove units and extra symbols (e.g., %, currency); keep the minus sign
and decimal point.
Examples: [example1] Question: What is the difference in value between mutton and corn?
Model’s response: I subtract the value of corn from the value of mutton: 103.7 - 103.13 =
0.57. Therefore, the difference in value between mutton and corn is 0.57. Your output: 0.57
[example2] Question: Is the average of all bars in 55 to 64 age group greater than average of
25 to 64 age group? Model’s response: No Your output: No
[example3] Question: How much does the value of Approve decrease from Jul 2015 to Sep
2015? Model’s response: the value of ”Approve” decreased by 12 percentage points from
July 2015 to September 2015. Your output: 12
Question:
Model’s response:
Your output:

B.4 TRAINING AND INFERENCE DETAILS

We train Bagel-7B on curated interleaved traces as unified autoregressive streams using two nodes
with 16×A100 80GB GPUs. In our training setup, we modify the official Bagel codebase to support
both training and inference, with hyperparameters varying across different experimental settings,
see in Table 6. Except for the parameters described in the table, all other parameters use the default
settings.

Additionally, since the original Bagel does not natively support generating interleaved outputs, we
introduce two special tokens, <image start> and <image end>, to enable autonomous modal-
ity switching. When the model outputs <image start>, it triggers the image generation process.
Furthermore, we wrap the text reasoning traces with <think> and </think> and the final answer
with <answer> and </answer>.

For inference, a single-pass run uses temperature=0 with max tokens=4096, whereas un-
der test-time compute scaling we set the temperature to 0.7 while keeping max tokens number un-
changed.
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Table 6: Hyperparameters used in different training setting. ”N/A” indicates that the parameter was not
applicable to that stage.

Hyperparameter Text Visual Interleaved ThinkMorphReasoning Reasoning Reasoning
Optimizer & Scheduler
Learning Rate (LR) 1× 10−5 1× 10−5 1× 10−5 1× 10−5

LR Scheduler Cosine Decay Cosine Decay Cosine Decay Cosine Decay
Total Training Steps 3,000 3,000 3,000 8,000

Model & Loss
CE Loss Weight 1.0 (Implicit) 1.0 1.0 1.0
MSE Loss Weight N/A 1.0 1.0 1.0
Frozen Components Generation Expert None None None

Batching & Tokenization
Max Tokens per Batch 10240 32768 32768 32768

Regularization (Dropout)
Text Condition Dropout N/A 0 0 0.1
ViT Condition Dropout N/A 0 0 0.3
VAE Condition Dropout N/A 0.3 0.3 0.3
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C CASE STUDY

C.1 INTERLEAVED REASONING CASES

Figure 10: A sample correct case in BLINK Jigsaw
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Figure 11: A sample correct case in BLINK Jigsaw
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Figure 12: A sample correct case in VisPuzzle
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Figure 13: A sample correct case in Vstar
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Figure 14: A sample correct case in VSP
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C.2 EMERGENT MANIPULATIONS

Figure 15: A sample correct case with zoom-in
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Figure 16: A sample correct case with zoom-in
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Figure 17: A sample correct case with motion prediction
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Figure 18: A sample correct case with perspective shifting.
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Figure 19: A sample correct case with elimination.
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Figure 20: A sample correct case with inpainting.
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C.3 MODE SWITCHING

Figure 21: A sample correct case with mode switching
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Figure 22: A sample correct case with mode switching
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Figure 23: A sample correct case with mode switching
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Figure 24: A sample correct case with mode switching
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Figure 25: A sample incorrect case with mode switching
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D PROMPTS

This section provides prompts for generating finetuning data for all four tasks.

Visual Search Text Thought Prompt

System Prompt: You are given a visual reasoning problem and the answer.
Your task is to produce a standalone, easy-to-understand explanation of how to solve the
problem. Your reader will not have access to the answer like you do. Your explanation will
be used as a direct output to users, so it must read naturally and independently.

Guidelines:
- Include specific visual details about objects, their locations, colors, relationships, etc.
- Make reasoning concrete and grounded in what is visible in the image
- Build up logically from observations to the final answer
- Do not reveal or hint that you were given the right answer–your reasoning should read as
if it independently arrived at the right answer
- End by stating the answer clearly

User Prompt: Question: {question}
Answer: {answer}
Please analyze the image and provide detailed reasoning for how to arrive at this answer.
Focus on what can be observed in the image and explain how these visual clues lead to the
correct answer. Remember that you should not hint or mention that you were given the right
answer.
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Visual Search Interleaved Thought Prompt

System Prompt: You are given a visual reasoning problem consisting of:

- A textual question
- The original image
- A set of reasoning steps
- A modified version of the image with a red bounding box highlighting an item critical to
solving the problem
- The correct answer

Your task is to produce a standalone, easy-to-understand explanation of how to solve the
problem. Your reader will not have access to the intermediate materials (e.g., answer,
reasoning steps, or the fact that an image was modified). Your explanation will be used as a
direct output to users, so it must read naturally and independently.

Your output must follow this structure and be formatted as a JSON object:

{
“image cot”: “Step-by-step reasoning that explains how to determine where the red
bounding box should go in the original image. Do not reveal the final answer here. Only
focus on how to derive the bounding box. Do not include details on subsequent steps, which
fall into the next section.”,
“edited image analysis”: “Detailed explanation of how the highlighted region helps solve
the question and leads to the correct answer. This is where you reveal the final answer, with
enriched and image-grounded reasoning. Only provide the answer in the last sentence.”
}

Guidelines:

Part 1: “image cot”
- Describe how to identify the key item or region in the original image that should be
highlighted with a red bounding box.
- Focus on the visual cues or relationships that would guide someone to find this item.
- Use natural and logical steps to guide the reader’s focus—these should align with the early
steps in the provided reasoning.
- You must NOT reveal or mention the answer to the question in this part.
- The end of this section should smoothly introduce the appearance of the bounding box.
- Make sure to include detailed descriptions and locations of items. The reasoning steps
likely do not include these, but you should add them.

Part 2: (implicit)
- The modified image with the red bounding box will be displayed here. You do not need to
generate or describe it beyond what’s mentioned in Part 1.

Part 3: “edited image analysis”
- Now that the key visual element is highlighted, explain how it leads to the correct answer.
- Build on the provided reasoning steps, but significantly enrich them:
- Reference specific locations, appearances, and relationships in the image.
- Make the reasoning concrete and visually grounded.
- Avoid vague statements—clearly describe how the evidence in the image leads to the
answer.
- Reveal the final answer naturally at the end of this explanation.

User Prompt:
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ChartQA Text-Thought Prompt

System Prompt: You are an expert in visual reasoning and chart analysis. Your goal
is to provide a clear, step-by-step thought process to answer a given query based on a
visualization.

User Prompt: You are provided with an image containing a visualization and a query about
it.

Your task is to generate a detailed, step-by-step reasoning that leads to the correct answer for
the query. You will be provided with the ground truth answer to help guide your reasoning
process.

It is crucial that you do not reveal, hint, or imply that the ground truth answer was provided
to you. Your reasoning should read as though you are independently analyzing the image
and arriving at the conclusion yourself. Your entire response should feel like an inner
monologue.

The query is: “{query}”
The answer to this question is: {answer}

Note that the longer your response is, the better. Try to gradually build towards the correct
answer. And ensure that the answer you give is the provided answer. You do not need to
emphasize the answer by wrapping it in **.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

ChartQA Interleaved Thought Prompt

System Prompt: You are an expert in visual reasoning and chart analysis.

First-Round Prompt: You are provided with two images and a query. Both images contain
a visualization. The first image contains the original visualization that is paired with the
query, and the second image contains the same visualization but with a red bounding box or
highlight that emphasizes part(s) of the chart that helps answer the query.

Your task is to generate step-by-step reasoning for deciding which area(s) in the chart to
highlight. Your reasoning should naturally lead to the manipulation as indicated by the
second image. You will be provided with the ground truth answer to the question to further
help guide you to identify the area(s) of interest. Note that your goal is not to produce the
answer in your response, but to identify the area and the manipulation.

The query is: “{query}”

The answer to this question is: {answer}

Please provide your analysis as a JSON object with the key “image cot” containing your
detailed reasoning. It is crucial that you do not reveal, hint, or imply that the edited image
or the ground truth answer is provided to you. Your reasoning should read as though you
independently identified the manipulation on the visualization. The introduction of the
manipulation should be smooth. Do not say “the manipulation should be...” out of the
blue; ensure you first briefly motivate highlighting parts of the visualization. Overall, your
entire response should feel like an inner monologue, so do not mention “the viewer” or “the
reader” as if you were writing for someone else.

Before we elicit the second-round response, we “sanitize” the conversation history by
replacing the first-round prompt above with the original question, so that the model is
unaware that its response in the first round was guided by the ground truth answer. This
replacement makes the second-round response more natural and maintains better coherence
across the two rounds of reasoning.

Second-Round Prompt: Looking at this edited visualization, provide detailed reasoning to
arrive at the answer for the original query.

The answer to this question is: answer. Make sure this is the answer you provide at the end.
I am providing this to you so that you generate accurate reasoning. Note, however, that you
must not mention or imply that you are provided with the edited visualization or the answer.
Your reasoning should read as though you generated the previous image editing reasoning
and the edited image yourself, and now you are relying on them to arrive at the final answer.

Please provide your response as a JSON object with the key “final reasoning” containing
how you arrive at the answer given the edited visualization.
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Jigsaw Puzzle Interleaved Thought Prompts
Jigsaw Puzzle Text-Thought Training Data are First-Round TIT Responses

System Prompt: You are an expert specializing in solving jigsaw puzzles. Your task is
to solve a jigsaw puzzle. You must present your entire analysis as a coherent, multi-turn
monologue that reads as a single, independent thought process. You will be guided, but
your responses must never reveal the guidance you receive. Your final output for each turn
must be a JSON object with the specified key.

First-Round Prompt:
{question}

The goal is to arrive at the answer \boxed{provided answer}.
You are given two images: the first shows the separate pieces, and the second shows
their **correct assembly**. Your task is to construct a line of reasoning that explains how
to arrive at the correct assembly, as if you were deducing it from the separate pieces yourself.

**Crucial Instructions:**
- Present your analysis as if you are solving the puzzle independently from scratch.
- **Do not mention or imply that the answer or the assembled image was provided to you.**
- Your whole response must be a JSON object with the key “image cot”.
- Describe the visual content of each piece in detail.
- Provide compelling reasoning for your conclusion.
- Consider visual cues like object continuity, lighting, perspective, and natural boundaries.
- Conclude with your reasoning with the answer \boxed{provided answer}.

Before we elicit the second-round response, we “sanitize” the conversation history by
replacing the first-round prompt above with the original question, so that the model
is unaware that its response in the first round was guided by the ground truth answer.
This replacement makes the second-round verification more natural and maintains better
coherence across the two rounds of reasoning.

Second-Round Prompt: Your initial analysis appears correct. As a next step, you will
analyze the resulting assembled image. You should act as if you are examining the result of
your own work to confirm its coherence.

**Crucial Instructions:**
- The image provided shows the assembled result based on your reasoning.
- Your response must read as if **you** created the visualization for verification, so do not
say things like “the provided visualization”, which implies it is given to you and disrupts the
coherence of the whole reasoning process.
- Even though this arrangement is visually sound and coherent, your analysis must not reveal
that you were told your answer is correct. Instead, produce detailed visual reasoning as if
you were independently reaching this conclusion.
- Your response should read as if you initiated this verification, so that it reads like a seamless
continuation of your thought process.
- Consider visual continuity, object boundaries, and overall naturalness by comparing back
to the original pieces you analyzed.
- End by restating the answer in the specified format; do not call it the “final answer”, just
“the answer”.
- Your whole response must be a JSON object with the key **“edited image analysis”**.
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Frozen Lake Interleaved Thought Prompt

We adopt two versions of the user prompt when generating training data with GPT-4.1
to enable the model to learn complementary abilities for solving the maze. Each prompt
generates half of the training data. The crucial difference between the two versions is that
one requires the model to first repeat the textual maze map, while the other forbids this step.
We posit that the former encourages the trained model to first transcribe the maze and then
reason textually based on this transcription, while the latter encourages the model to reason
more “visually” without needing to transcribe the maze map.

User Prompt Version 1:
{question}

Here is the precise maze layout and the required final answer to guide your analysis:
- Maze Text Map: {formatted map}
- Required Final Answer: \boxed{correct path}

**Very Important Instructions for Your Reasoning:**
The text map and the answer are provided to you so that you can leverage them to produce
accurate reasoning. Your response must be a completely self-contained analysis that reads
naturally to a user who can only see the maze image.
- **You should include the text map in your response** to ground your explanation.
However, you **must** first define the symbols (S, G, H, F) in plain language and
explicitly go through the process of transcribing the text map.
- **Do not mention or hint that the solution or the text map was provided to you.** Your
reasoning should appear to be your own independent work.
- Using coordinates to aid reasoning is encouraged, as long as your reasoning is clear to a
user who only sees the maze image.

Provide a step-by-step reasoning that logically leads to the given answer.

User Prompt Version 2:
{question}

Here is the precise maze layout and the required final answer to guide your analysis:
- Maze Text Map: {formatted map}
- Required Final Answer: \boxed{correct path}

**Very Important Instructions for Your Reasoning:**
The text map and the answer are provided to you so that you can leverage them to produce
accurate reasoning. Your response must be a completely self-contained analysis that reads
naturally to a user who can only see the maze image.
- **Crucially, do not repeat the text map in your response.** However, you can use
coordinates to make your step-by-step reasoning precise.
- Describe the start, goal, and holes in plain language (e.g., “the starting square,” “the goal,”
“the ice holes”).
- **Do not mention or hint that the solution or the text map was provided to you.**

Provide a step-by-step reasoning that logically leads to the given answer as if you are solving
it independently.
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Frozen Lake Interleaved Thought Prompt

First-Round Prompt: {question}

Here is the precise maze layout to guide your analysis: {formatted map}

Legend:
- S = Start
- G = Goal
- H = Hole
- F = Frozen Surface

In your response, DO NOT provide the answer to the question (i.e., the path). You will be
given a chance to answer it later. Now, your goal is to provide a description of the whole
maze, including where the starting point, the goal, and the ice holes are located. Begin by
saying something to the effect of “Let’s first map out the maze”. Do not say this verbatim
though.

**Important Instructions for Your Response:**
The text map is provided to you so that you can accurately describe the maze. However,
your output must be clear to a user who only sees the maze image.
- Do not mention or imply that you are given this textual maze map.
- Describe the start, goal, and holes in plain language (e.g., “the starting square,” “the goal,”
“the ice holes”) instead of using the symbols S, G, or H.
- Using coordinates to describe the maze map is encouraged, as long as you clearly define
everything so that a user who only sees the maze image can still understand it.
- Once you finish describing the maze, you should say something to the effect of “Now let’s
solve the problem and draw out the path”, but not verbatim. DO NOT end the response by
repeating the rules or instructions, such as the “player must go from the start to the goal or
that they must avoid all holes”, or “with this overview, you have a complete understanding
of the positions of the starting square, the goal, and all ice holes in the maze.” Simply end
with a short paraphrase of “Now let’s solve the problem and draw out the path”. Make sure
to mention the action of “plotting”, “visualizing”, or “drawing”.
- You should not sound like you are writing this for another person. This should read like an
inner monologue.

Second-Round Prompt: The image above visualizes a solution path in red. The path is
{correct path}. Your task is to perform a verification.

Your response must be a self-contained analysis that reads as if *you* solved the problem
and created the visualization for a final check, so do not say things like “the provided
visualization”, which implies it is given to you and disrupts the coherence of the whole
reasoning process. Instead, call it “my solution”. Visually analyze the path in the image and
check if the path is correct.

**Do not act as if you were responding to a user or knew the correct answer beforehand.**
Your initial response, the visualized path, and your next response should read like a stan-
dalone, coherent solution. Visually analyze the path in the image, check if it is correct (even
though you know it is), and output the correct path again in a \boxed{}. It is crucial that
you output **exactly** the provided answer in the provided format.
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E RELATED WORK

Multimodal Chain-of-Thought Explicit multimodal Chain-of-Thought (CoT) approaches can be
broadly divided into two lines. The first adopts a tool-augmented design (OpenAI; Zheng et al.,
2025; Su et al., 2025; Zhou et al., 2025; 2024; Gao et al., 2025), in which interleaving remains
indirect and fragile. The second line builds on unified models. Within this category, one direction
emphasizes enhanced image generation guided by textual CoT (Chern et al., 2025; Qin et al., 2025;
Huang et al., 2025), while another explores preliminary forms of interleaving. However, these at-
tempts remain shallow. MetaMorph (Tong et al., 2024b) introduces visual thinking data but collapses
into fixed textual outputs into pretraining. Zebra-CoT (Li et al., 2025a) creates a large-scale inter-
leaved dataset without effectively exploring its quality and generalization. There also exists implicit
multimodal CoT research, which aims to adapt understanding-only VLMs by introducing intermedi-
ate image representations as visual tokens. Such representations include perception tokens (Bigverdi
et al., 2025; Yu et al., 2025) and latent visual tokens (Yang et al., 2025), which provide additional
visual cues for text-based reasoning without explicit interleaving. In summary, prior work highlights
the potential of multimodal CoT. However, it leaves open the question of when multimodal CoT can
extend beyond text-only and image-only CoT, specifically regarding how to achieve effective and
generalizable interleaved reasoning.

Multimodal Understanding and Generation Most existing works on unified multimodal mod-
els frequently report that optimizing diffusion-based generative objectives tends to degrade under-
standing capabilities (Team, 2024; Wang et al., 2025a) and learned representations, and vice versa,
making joint training fragile and brittle. MetaMorph (Tong et al., 2024b) demonstrated that vi-
sual understanding and generation are nevertheless deeply synergistic: during training, increasing
data for either capability often benefits both simultaneously. Furthermore, for generative tasks,
leveraging the model’s deep understanding and reasoning abilities further contributes to improved
image generation (Pan et al., 2025; Deng et al., 2025; Yan et al., 2025; Qin et al., 2025). However,
when it comes to reasoning tasks, this synergy remains elusive. We introduce ThinkMorph, a uni-
fied thinking model designed to enable effective and genuinely interleaved reasoning, where visual
generation actively supports and refines textual reasoning. The interleaved training allows unified
models to jointly leverage their dual capacities for generation and understanding, with each rein-
forcing the other to deliver stronger multimodal reasoning performance. As a result, we provides a
generalizable recipe for advancing multimodal reasoning, demonstrating that generative processes
can directly enhance understanding under an interleaved Chain-of-Thought framework.
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