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Abstract

In recent years, intrinsic reward approaches have attracted the attention of the
research community due to their ability to address various challenges in Reinforce-
ment Learning, among which, exploration and diversity. Nevertheless, the two areas
of study have seldom met. Many intrinsic rewards have been proposed to address
the hard exploration problem by reducing the uncertainty of states/environment.
Other intrinsic rewards were proposed to favor the agent’s behavioral diversity,
providing benefits of robustness, fast adaptation, generalization and hierarchical
learning. We aim to investigate whether pushing for behavioral diversity can also
be a way to favor exploration in sparse reward environments. The goal of this paper
is to reinterpret the intrinsic reward approaches proposed in the literature, providing
a new taxonomy based on the diversity level they impose on the exploration behav-
ior, and complement it with an empirical study. Specifically, we define two main
categories of exploration: “Where to explore” and “How to explore”. The former
favors exploration by imposing diversity on the states or state transitions (State and
State + Dynamics levels). The latter (“How to explore”) rather pushes the agent to
discover diverse policies that can elicit diverse behaviors (Policy and Skill levels).
In the literature, it is unclear how the second category behaves compared to the first
category. Thus, we conduct an initial study on MiniGrid environment to compare
the impact of selected intrinsic rewards imposing different diversity levels on a
variety of tasks.

1 Introduction

One of the main open problems in Reinforcement Learning is the exploration challenge [1]. When the
environment rarely provides rewards as feedback, classical exploration strategies (e.g., epsilon-greedy,
Thompson sampling, Boltzman distribution) fail to learn efficiently [2]. This is known as the hard
exploration problem [3], which is challenging due to the sparsity of the reward [3]. Intrinsic rewards
[4] have been proposed among the possible solutions to address this limitation [3, 5, 6]. They are a
part of the larger notion of intrinsic motivation defined by [7] as the tendency to “seek out novelty and
challenges, to extend and exercise one’s capacity, to explore, and to learn”. In RL, intrinsic rewards
aim to provide the agent with a bonus, which either favors exploration by reducing the uncertainty of
states [8, 9, 10, 11, 12, 13], or favors behavioral diversity, defined as learning meaningfully different
trajectories/policies to solve the task [14, 15, 16, 17]. However, these two options are not mutually
exclusive; behavioral diversity, which helps in robustness and fast adaptation to novel tasks, might be
a way to improve exploration beyond its other benefits. In a comprehensive survey on exploration
methods [3], intrinsic rewards were categorized between rewarding novel states and rewarding diverse
behaviors. This study showed that there are methods [18, 14, 19, 20] actively encouraging behavioral
diversity to improve exploration, suggesting a connection between the two areas. While extremely
interesting, this categorization is overlooked in [3] because i) the survey covers the entire literature on
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exploration, ii) authors believes that behavioral diversity is still a novel concept being developed. In
this paper, we aim to go deeper in this analysis, understanding if mechanisms that favor diversity can
also push for good exploration. In short, our goal is to answer the following question: "Do intrinsic
rewards that push toward different levels of diversity lead to different exploration and different
performance"?

To achieve this goal, in this paper we present a categorization of intrinsic rewards according to the
diversity level they impose (state, state + dynamics, policy, skill), in addition to an initial empirical
study to compare them on MiniGrid. Our empirical findings do not support the belief that behavioral
diversity, often associated with enhanced robustness, aids exploration. The reason is that behavioral
diversity focuses on distinguishing between different behaviors rather than visiting the states as
uniformly as possible. Moreover, balancing between diversity and return is tricky as it depends on
the structure of the environment and the task at hand. Too much diversity can hinder convergence and
learning efficiency.

2 Related work

We now provide an overview of the literature focused on surveys of intrinsic rewards, first, and then
cover the state-of-the-art on the empirical impact of different intrinsic rewards.

When looking at existing surveys [21, 22, 23, 3, 6, 5, 24], we are interested in understanding the
categorizations existing so far. Intrinsic rewards were commonly classified between prediction
error (curiosity), information gain, learning progress and state novelty methods. They all belong to
“reward diverse states” category, also called “knowledge acquisition”, because they aim to find new
knowledge about the environment. Interestingly, some of the works [6, 23, 24, 3] have introduced
a new category which consists of self-supervised acquisition of diverse skills/goals. [24] called
this category “competence-based intrinsic motivation” and focused on goal-conditioned RL, with
different types of goal representations and goal sampling strategies. [3] characterized this category as
“reward diverse behaviors” and summarized methods learning diverse policies, along with evolution
strategies. However, none of the surveys divided the classes that target exploration imposing different
diversity levels, and none provided any empirical understanding of the exploration behavior. Moti-
vated by this, we decide to study intrinsic rewards from a diversity aspect, and propose a different
way to categorize them according to the diversity level they impose on the exploration behavior
(state/dynamics/policy/skill).

We are now interested in the works provided in the literature aimed at benchmarking different
intrinsic rewards. Few works have compared intrinsic rewards which belong to the category that
favors visiting diverse states: [25] compared State Count, Random Network Distillation (RND)
[12], Intrinsic Curiosity Module (ICM) [10], Reward Impact Driven Exploration (RIDE) [26] on
MiniGrid environment. The study aimed to evaluate different design choices such as the impact
of weighting and scaling intrinsic rewards on their performance, as well as the effect of using
different neural network architectures. It was shown that reducing the number of parameters of neural
network architectures deteriorates performance, and there is no clear winner between the scaling
strategies. Another study [27] evaluated Pseudo-counts [8], RND, ICM and Noisy Networks [28]
within the Arcade Learning Environment (ALE), and learned that none of these methods outperform
the epsilon-greedy exploration. Authors advocated for better practices on empirical evaluation for
exploration.

Other works have looked at different comparisons of intrinsic rewards: global vs episodic bonuses.
Global bonuses are calculated using the entire training experience while episodic bonuses are
calculated using the experience from the current episode. [29] found that episodic bonuses are more
crucial than global bonuses to improve exploration in procedurally generated environments such as
MiniGrid. A later study [30] found that episodic bonuses tend to yield better results in situations
where there is minimal shared structure across various contexts in MiniHack, while global bonuses
tend to be effective in cases where there is a greater degree of shared structure.

To the best of our knowledge, none of the empirical studies have compared the category that pushes
towards diverse behaviors which we call “How to explore” to the category which pushes towards
diverse states “Where to explore”. Thus, we complement our survey with an initial empirical
study aimed at understanding the impact of different levels of diversity (state/policy/behavior) on
exploration in several MiniGrid environments.
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3 Diversity levels imposed by intrinsic rewards

Inspired by the previous study [3], we divide intrinsic rewards into two categories: “Where to
explore?” (Section 3.1) and “How to explore?” (Section 3.2) and analyze carefully each of these
classes, as described in the following and summarized in Figure 1.

Figure 1: Categorization of the different levels of diversity incurred by intrinsic rewards for explo-
ration in RL.

3.1 “Where to explore?”

This category, also called “reward novel states” in [3], encourages the agent to visit diverse states
not previously encountered, pushing the agent to explore states where its knowledge is most limited.
Moreover, we observe that the agent is pushed to acquire knowledge either from the states (State
level diversity) or from both the state and the dynamics of the environment (State + Dynamics level
diversity). In the following, we discuss in more details the works in each of these sub-categories:

State level diversity
In this subcategory, we collect all the works in which the intrinsic reward is a function of the state
only, i.e., rint = f(s). The most common method is “State Count”, which stores the visitation
count of each state, and gives high intrinsic rewards to encourage revisiting states with low counts
[31, 32, 33]. While counting works well in tabular cases, it becomes difficult in vast state spaces.
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Several methods were proposed to extend State Count to large or continuous state spaces, such as
pseudo-counts [8] and hashing [9].

Besides count-based methods, features prediction error can be used as a measure of the state novelty.
For example, in [12], authors assessed state novelty by distilling a fixed randomly initialized neural
network (target network) into another neural network (predictor network) trained on the data collected
by the agent. This technique is called Random Network Distillation (RND), and the main motivation
behind it is that the prediction error should be small for frequently visited states. Similarly, the
NovelD algorithm [34] uses RND as a measure of state novelty but it defines the intrinsic reward as
the difference in RND prediction errors at two consecutive states st and st+1 in a trajectory.

Finally, this level of diversity includes methods which aim to maximize the entropy of the state
distribution induced by the policy over finite or infinite horizon by estimating the state density
distribution [11, 35] or by relying on the K-Nearest Neighbours (KNN) distance as approximation of
state entropy [36, 37, 38].

State + Dynamics level diversity
This class also aims to visit diverse states but the difference with respect to State level is that the
agent considers the novelty of the dynamics as well (not only states) to drive exploration. The agent
either tries to build an accurate dynamical model of the environment or learns a dynamics-relevant
state representation for exploration.

This subcategory mainly includes curiosity-driven methods which use the forward dynamics predic-
tion error as intrinsic reward, such as [10] and [39]. The key intuition is to encourage the agent to
revisit the unfamiliar state transitions where the prediction error is high (high mismatch between
the expectation and true experience of the agent). Another curiosity-driven technique is Variational
Information Maximizing Exploration (VIME) [40], which pushes the agent to explore states leading
to a larger change in the dynamics model (higher information gain).

Moreover, this subcategory includes techniques that estimate the state novelty in a feature space which
captures the temporal or dynamical aspect of states. For example, Exploration via Elliptical Episodic
Bonuses (E3B) [41] and RIDE [26] both use an inverse dynamics model (ICM) to learn a state
embedding that captures the controllable dynamics of the environment. While RIDE encourages the
agent to take actions that significantly change the state embedding, E3B employs an elliptical episodic
bonus. Other examples are Never Give up (NGU) [13], Agent 57 [42], and Episodic Curiosity (EC)
[43]) which are all memory-based methods using a distance-based metric in a dynamical-aware
feature space to approximate the state + dynamics novelty. Finally, authors in [44] use the inverse of
the norm of the successor representation as intrinsic reward, capturing the transition dynamics.

3.2 “How to explore?”

We now explore the second category of intrinsic reward methods (“reward diverse behaviors” in
[3]), which focuses on how to cover the state space, by favoring the visitation of states via diverse
behaviors. This means that the agent is not driven by increasing the knowledge about states and
environment directly (as in Section 3.1) but rather it is pushed by maximizing the diversity of the
experienced behaviors. Also in this case, we identified two sub-categories depending on the level
of diversity. Policy level diversity searches in the space of actions and aims to try different actions
from given states. On the other hand, Skill level searches in the space of skills which are policies
associated with latent variables (goal embeddings z / options Ω). It aims to acquire a repertoire of
skills, which partition the state space into goals and learns policies to reach these goals.

Policy/Action level diversity
Algorithms in this subcategory aim to explore diverse actions from the same state. The intrinsic
reward is a function of the policy here: rint = f(π(·|st)). What makes it different from the State +
Dynamics algorithms introduced in Section 3.1 is that the previous category uses knowledge about
states and dynamics of the environment, and pushes for exploring the areas where the agent knows
the least (high uncertainty). In contrast, this level of diversity considers the previous exploration
behavior represented by the policy (how the agent has explored) and pushes it to explore differently,
inducing diversity on the policy learned. For example, in Maximum Entropy RL (Max Ent), the aim
is to learn the optimal behavior while acting as randomly as possible. The objective function becomes
the sum of expected rewards and conditional action entropy [16]. Soft-Actor Critic (SAC) [45] is
a popular RL algorithm implementing the Max Ent RL framework. Diversity-driven exploration
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strategy [18] is another exploration technique that encourages the agent to behave differently in
similar states. It maximizes the divergence between the current policy and prior polices. Similarly,
Adversarially Guided Actor-Critic (AGAC) [46] maximizes the divergence between the prediction of
the policy and an adversary policy trained to mimic the behavioral policy. The main motivation is
to encourage the policy to explore different behaviours by remaining different from the adversary.
Another branch which belongs to this diversity level is the population-based exploration, which
combines evolutionary strategies with Reinforcement Learning. These approaches train a population
of agents to learn diverse behaviours which are high scoring at the same time, in order to effectively
explore the environment [47, 48].

Skill level diversity
Skill level diversity disentangles diverse behaviors into different latent-conditioned policies (also
called skills). The policy π is conditioned on a latent variable z ∼ p(z), and each z defines a different
policy denoted by π(a|s, z) [19]. This category aims to discover diverse skills and the intrinsic reward
is a function of the skill: rint = f(z). Most methods falling in this category come from the domain
of unsupervised skill discovery and use a discriminator-based architecture such as Diversity is all you
need (DIAYN) [14]. DIAYN replaces the task reward with a learned discriminator term qϕ(z|s) that
infers the behavior from the current state, in order to generate diverse policies visiting different set
of states. It also uses Max Ent RL framework to learn skills which are as random as possible [14].
Maximum entropy diverse exploration (MEDE) [19] is very similar to “DIAYN + extrinsic reward”,
with the small difference of conditioning the discriminator on the state-action pair qϕ(z|s, a) instead
of the state only. Moreover, MEDE uses the discriminator term as prior in the objective function
instead of adding it as intrinsic reward. Structured Max Ent RL (SMERL) is another algorithm
with the same approach as DIAYN, but it adds the intrinsic reward to the task reward, only when
the policies have achieved at least near-optimal return [49]. DOMINO also learns diverse policies
while remaining near optimal; it uses an intrinsic reward that maximizes the diversity of policies
by measuring the distance between the expected features of the policies’ state-action occupancies
[15]. Finally, it’s important to mention that skills in the literature can be called options or goals.
Variational intrinsic control (VIC) is a framework which provides the agent with an intrinsic reward
which relies on modelling options and learning policies conditioned on these options [17]. Instead
of sampling options from a fix prior distribution as in DIAYN, VIC learns the prior distribution of
options and updates it in order to choose options with higher rewards [17]. DIAYN and VIC are part
of goal-conditioned RL methods, where goals are internally generated by agents and achieved via
self-generated rewards [24].

4 Methodology of the empirical study

After describing in the previous section the different levels of diversity that can be imposed by
intrinsic rewards, we proceed by describing the protocol of our experimental study which aims to
gain an understanding of the differences between these levels of diversity on the exploration behavior.

4.1 Exploration algorithms

We augment the task reward with an intrinsic reward such that the total reward becomes: rtotal =
rext + β ∗ rint where rext is the extrinsic reward defined according to the task, rint is the intrinsic
bonus and β is the hyper-parameter controlling the exploration-exploitation trade-off [3]. The
best values of β can be found in Table 3 of Appendix C. We select four different intrinsic reward
formulations representative of each diversity level:

1. State Count (State level diversity):
It simply adds an intrinsic reward which is inversely proportional to the state visitation count
[32]. For a transition (st, at, st+1), rint = 1/

√
N(st+1) where N(st+1) is the number of

times state st+1 has been visited so far during training.
2. Intrinsic Curiosity Module ICM (State + Dynamics level diversity):

This method uses curiosity as intrinsic reward to promote exploration. Curiosity is formu-
lated as the error in the agent’s ability to predict the outcome of its own actions in a learned
state embedding space [10]. ICM trains a state embedding network, a forward and inverse
dynamic models. For a transition tuple (st, at, st+1), the current state st and next state st+1

are embedded into the features ϕ(st) and ϕ(st+1) respectively, where ϕ is the embedding
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network. Then, the inverse dynamics model g : (ϕ(st), ϕ(st+1)) → ât takes as input the
current and next state embeddings and predicts the action. The state embedding network
is updated at the same time, such that the feature space only captures the aspects of the
environment that are controlled by the agent’s actions and ignores the uncontrollable factors.
The forward dynamics model f : (ϕ(st), at) → ϕ̂(st+1) predicts the next state embedding
given the current state embedding and current action. The intrinsic reward is generated using
the prediction error of the forward dynamics model: rint = ∥ϕ̂(st+1)− ϕ(st+1)∥22 [10].

3. Max Ent RL (Policy level diversity):
The Maximum Entropy Reinforcement Learning framework [45] favors stochastic poli-
cies by augmenting the extrinsic reward with a policy entropy bonus rint = H(π(.|st))
[50]. Hence, the agent seeks to maximize the following objective function: J(π) =

Eat∼π

[∑T
t=0 r(st, at) + β ∗H(π(.|st)

]
, where T is the horizon, r(st, at) is the extrinsic

reward and β is the hyperparameter that calibrates the entropy term [45] .

4. DIAYN + Extrinsic Reward (Skill level diversity): Diversity is all you need (DIAYN) [14]
learns a skill which is defined as a policy π(a|s, z) conditioned on the state s and discrete
latent variable z sampled from a prior distribution p(z). This latent-conditioned policy
captures diverse policies defined for each z. The goal is to partition the states between these
skills and ensure that the skills are not only distinguishable from each others but as diverse
as possible (maximum entropy). Thus, a discriminator qϕ(z|s) is trained to estimate the
skill z from the state s, and an intrinsic reward rint = log(qϕ(z|s)) − log(p(z)) is used.
An entropy regularizer takes care of maximizing the skills’ entropy. Note that DIAYN is
originally unsupervised, however, to ensure a fair comparison with other algorithms based
on intrinsic-reward, we extend DIYAN to task-extrinsic reward in this study. At the start
of each episode, a skill z is sampled from a fix uniform distribution p(z), then the agent
acts according to π(a|s, z) and gets rewarded for collecting extrinsic rewards and visiting
states that are easily distinguishable. Then the discriminator is updated to maximize the
discriminability of skills, and the policy is updated to maximize the total reward (extrinsic
and intrinsic) using any RL algorithm.

4.2 Environment

We test on MiniGrid [51], a widely used procedurally generated environment in RL exploration
benchmarks [26, 25, 29]. Since we are interested in studying the impact of different diversity levels
on exploration, we pick three commonly used sparse reward environments of MiniGrid, suitable to
study behavioral diversity due to large grid sizes, open spaces, and strategical tasks.

1. Door Key 16× 16: The agent has to pick up the key, then unlock the door to reach the goal.

2. Red Blue Doors: The agent has to open the red door then the blue door facing it on the
opposite side.

3. Four Rooms: The agent has to navigate a maze of four rooms separated by gaps, to reach
the goal randomly placed in one of the rooms.

In all three environments, the reward is collected at the end when the agent solves the task. The
observations are partially observable and consist of a grid encoding of size 7× 7× 3. More details
about the tasks, observation, and action spaces are included in Appendix A.

4.3 Experimental Protocol

We test the four exploration algorithms introduced in Section 4.1 in a systematic comparative study.
As the base learning algorithm to train the policy and value function [52], we choose the widely
used Proximal Policy Optimization (PPO) with default hyperparameters [25] listed in Table 2 of
Appendix C. This baseline algorithm comes with an entropy regularization in the objective function
to encourage a minimum level of exploration [53], which is essential to avoid overfitting [54], and
stabilize the training process [50]. The entropy regularization coefficient is set to ϵ = 0.0005 in
all simulated algorithms. We picked this value as large enough to guarantee a minimum level of
convergence, but small enough to avoid to jeopardize the study on the impact of the intrinsic reward
itself on exploration. The remaining four algorithms described in Section 4.1 are built by adding to
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this baseline algorithm the four intrinsic rewards. The network architecture for the Actor-Critic model
(PPO), as well as the state embedding network of ICM, and the discriminator network of DIAYN are
all detailed in Appendix B. We train for a total number of 4× 107 frames on all environments and we
plot the training curves averaged over five runs with different seeds.

5 Experimental Results and Discussion

To evaluate the different intrinsic rewards, we plot the episodic return during training. We analyze
which method reaches the maximum return the fastest. We also plot the observation coverage (number
of visited partial observations), state coverage (number of visited (x, y) grid positions) and the entropy
of the policy. We record the time steps at which the reward is found for the first, second and third
time. Finally, we include plots of the mean intrinsic rewards during training and further visualizations
(heatmaps) of the state visitation count ((x, y) positions) (see Appendices D and E for more detailed
results). All plots correspond to training on procedurally generated MiniGrid environments for 40M
frames, except for the state visitation heatmaps, we train on singleton environments for 10M frames
to visualize the initial exploration behavior with a fixed map of the environments.

Figure 2: Mean episodic return during training for all three environments. The shaded region show
the standard deviation between the different runs.

Figure 3: Normalised state visitation count during training for 10M frames on singleton DoorKey.
For each intrinsic reward, snapshots of the heatmap are taken at three different timesteps T1: 100K
frames, T2: 500K frames and T3: 10M frames. Refer to Figure 6a in Appendix A for the key and
door positions.
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In terms of extrinsic return (Figure 2), State Count performed the best on all three environments. On
DoorKey, which is the hardest task between the three, State Count and ICM managed to converge,
while the baseline PPO, Max Ent and DIAYN failed to solve it. On RedBlueDoors (easier environment
to solve), the baseline PPO, State Count and ICM have all managed to perfectly solve it for all runs.
Max Ent solved it, but had a worse average episodic return because it failed for one of the runs.
DIAYN had the worst average return. Similarly, on FourRooms, all algorithms managed to solve the
task, but Max Ent had a slightly worse average performance. The goal of our analysis is to understand
the differences in the exploration behavior between the different intrinsic rewards and why do some
methods explore better than others.
The high performance of State Count is explained by the fast coverage of the partial observations,
as well as the (x, y) grid positions (see Figures 3 and 4 for the results on DoorKey environment).
While PPO and Max Ent also covered the state space well on DoorKey, they did not cover it in a
homogeneous way and did not manage to learn the connection between the key and the door, which
prevented them from solving the task. State Count initially covered the state space more uniformly,
which has led to a decay of intrinsic rewards (see Appendix D, Figure 8). This is confirmed by
Figure 3 displaying the (x,y) positions in the grid occupied by the agent during training. This uniform
exploration of State Count has also helped to converge faster, as shown from the entropy of the policy,
which dropped quickly when the policy converges to a deterministic one (Figure 4). State Count was
also the first intrinsic reward method to find the sparse extrinsic reward for the first, second and third
time on DoorKey (Table 1). Regarding ICM, it showed a good performance and good state coverage
but was not as consistent as State Count in solving the task. It had generally a lower convergence
speed and higher standard deviation (shaded regions of ICM return, and policy entropy in Figures 2
and 4). This can be explained by the additional computational complexity of training the forward
and inverse dynamics models. DIAYN and Max Ent did not manage to complete the task. The main
reason of failure identifies so far are i) non-homogeneous exploration; ii) non-decreasing intrinsic
reward, most likely as a consequence of the previous cause. The non-homogenous exploration is what
to expect from the algorithm, that needs to discriminate diverse skills, but has a catastrophic effect,
among which an intrinsic reward overcoming the extrinsic one and harming the overall performance.
Max Ent also has a constant intrinsic reward and constant policy entropy; it was trying different
actions (even unused ones in the task) and getting stuck in the corners where there are walls. Even
if it found the reward for the first few times and covered most of the grid states, it did not learn to
revisit the rewarding region due to the high non decreasing stochasticity. The phenomena of ‘reward
inflation’ might have occurred here [55].

Figure 4: Mean observation coverage (grid encodings), state coverage (grid positions) and policy
entropy during training on DoorKey. The shaded region shows the standard deviation.

The observed behaviors are confirmed on the other two environments (RedBlueDoors and Four-
Rooms): Homogeneous exploration of State Count, similar exploration behavior but slower con-
vergence of ICM due to predictor network training, unstable and non uniform exploration of Max
Ent and DIAYN (see Appendices D and E). On RedBlueDoors (Section D.2 of Appendix D ) , all
intrinsic reward methods have covered the state and observation space well (no significant differences
between them). Although Max Ent found the reward the soonest in this environment (even before
State Count), the high value of the policy entropy destabilized the learning process and prevented the
agent from solving the task in one of the runs. DIAYN has also focused on the states on the edge,
then surprisingly, got stuck in the middle of the grid oscillating between four states (Figure 5). The
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reason might be, as it was mentioned by [23], that skill learning methods (such as DIAYN) don’t
learn skills that cover the whole state space, and the discriminator can be restricted to a small area.

Table 1: Frame number at which the reward is found for the first, second, and third time by each
exploration method on DoorKey environment. Results are averaged over five runs. Mean and standard
deviation (µ± σ) are reported.

DoorKey First reward Second Reward Third reward
PPO 1114489.6 ± 542609.623 2014528 ± 939959.339 2626195.2 ± 1133921.092)

PPO + State Count 496486.4 ± 550012.78) 558204.8 ± 548684.406 783075.2 ± 615917.672
PPO + Max Ent 594649.6 ± 696956.504 1067401.6 ± 743704.05 3300668.8 ± 3108002.169

PPO + ICM 1089286.4 ± 734419.413 1287632 ± 674758.334 1683612.8 ± 539173.527)
PPO + DIAYN >40M ± 12293415.172 >40M ± 12322129.862 >40M ± 12375101.418

Figure 5: Normalised state visitation count during training for 10M frames on singleton RedBlue-
Doors. For each intrinsic reward, snapshots of the heatmap are taken at three different timesteps T1:
100K frames, T2: 500K frames and T3: 10M frames. Refer to Figure 6b in Appendix A for the map
of the environment.

For FourRooms (Section D.3 of Appendix D), DIAYN exhibited the highest observation and state
coverage. It’s probably because the skills learned were not very diverse (discriminator loss not
decreasing) and the environment is easy enough, so DIAYN was similar to the baseline PPO per-
formance and solved the task. Max Ent seems to explore unnecessarily in this environment, which
delayed finding the reward and resulted in a lower state coverage due to trying out all possible actions
and getting stuck in some states (see Appendix E).

6 Perspectives and Conclusion

To sum up, in this work, we have revisited intrinsic reward techniques from the literature and proposed
to classify them between State, State + Dynamics, Policy and Skill levels of diversity. We conducted
empirical studies on MiniGrid, to understand the differences between them. Our results are limited to
partially observable, not high dimensional state space and procedurally generated framework where
each episode has a different context.

The first take home message is that the homogeneous exploration imposed by diversity on the State
level (represented by State Count) has led to the best sample efficiency on many MiniGrid tasks.
It improves the convergence speed in strategical tasks, has high state coverage and leads to a fast
decrease of policy entropy and intrinsic reward. This decreasing rate of the intrinsic reward aligned
well with finding the optimal behavior which avoided the dominance of the intrinsic reward. The
solving time is another important consideration; methods using training networks (like ICM, and
DIAYN) tend to be less sample efficient than simple State Count because the networks need to learn
how to recognise different states/skills.

The second take home message is that DIAYN combined with extrinsic reward does not help
in exploration more than State Count in the MiniGrid framework but might be helpful on other
environments/frameworks. It’s important to note that DIAYN was originally proposed as a completely
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unsupervised skill pre-training method. In our study, we combined it with the extrinsic reward in order
to compare it fairly to other intrinsic reward methods. We think that the bad performance of DIAYN
might be due to the imbalance between diversity and reward maximization. DIAYN + Extrinsic
reward is extremely sensitive to the hyperparameter β. This tradeoff between discriminability and
optimality is a problem of discriminator-based architectures. Thus, finding the perfect linear or non
linear combination between diversity and reward is crucial. In this case, DIAYN + Extrinsic reward
might be promising to exploit some structures in the environment, which State Count and other
intrinsic rewards might fail to explore. Discovering which settings / environment structures where
behavioral diversity helps in exploration is still an open question.
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Appendices
A MiniGrid environments

1. DoorKey: This is a sparse reward environment which requires a certain order of visiting
the states to solve the task; the agent needs to pick up the key, open the door then get to the
green goal square. It does not get any reward after picking up the key or unlocking the door;
it gets rewarded just at the end of the task. We use “MiniGrid-DoorKey-16x16-v0”, which
consists of a grid of size 16× 16.

2. RedBlueDoors : The agent is randomly placed in a room where there are one red and one
blue door facing opposite directions. The task consists of opening the red door before
opening the blue door. The agent must rely on its memory of whether it has previously
opened the other door to successfully complete the task, as it cannot see the door behind it.
We use “MiniGrid-RedBlueDoors-8x8-v0”.

3. FourRooms: In this environment, the agent must navigate a maze consisting of four rooms,
with both its initial position and goal position being randomized. We use “MiniGrid-
FourRooms-v0” where each of the four rooms consists of a grid of size 8× 8.

(a) Door Key 16× 16 (b) Red Blue Doors (c) Four Rooms

Figure 6: MiniGrid environments

For all tasks, a maximum number of steps tmax is assigned, to encourage the agent to solve the task
as fast as possible. When the agent succeeds after t steps, it gets a reward r = 1− 0.9t/tmax in all
three environments. The episode ends when the agent collects the final reward or when the maximum
number of steps is exceeded. By default, the observations are egocentric and partially observable.
They consist of a grid encoding of size 7× 7× 3. The first two dimensions (7× 7) compose the tile
set, and the last dimension encode the object type (wall, door, · · · ), the object color (red,green,· · · )
and the object status (door open, door closed, door locked). There are 7 actions available to the agent:
turn left, turn right, move forward, pick up an object, drop an object, toggle and done. Some of these
actions are unused in certain tasks.
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B Neural Network Architectures

The network architecture for the Actor-Critic model is a shared 2D convolutional neural networks
(CNN) to process the input observation followed by 2 separate heads (one head for the policy and one
head for the value function). Each head is made of two fully connected layers. We use the same 2D
CNN architecture to extract features in the state embedding network of ICM, and the discriminator
network of DIAYN. All network architectures are represented in Figure 7.

(a) Actor-Critic model (b) State Embedding Network

(c) Forward dynamics model (d) Inverse dynamics model

(e) Discriminator

Figure 7: Neural Network Architectures
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C Hyperparameters

For State Count, and ICM, we use the hyperparameters of the previous study [25]. Since Max
Ent + PPO and DIAYN + PPO were not tested before on MiniGrid, we run a grid search over
β ∈ [0.1, 0.01, 0.001, 0.0005] and pick the best values of β which result in the highest return during
training. The chosen values of β are summarized in Table 3. For DIAYN, we choose to train 10 skills,
which is the number used in the study by [56], and we use a discriminator learning rate of 3× e−4

following the implementation of DIAYN paper [14].

Table 2: List of hyperparameters
Number of parallel actors 16
Number of frames per rollout 128
Number of epochs 4
Batch size 256
Discount γ 0.99
Learning rate 0.0001
GAE λ 0.95
Entropy regularization coefficient 0.0005
Value loss coefficient 0.5
Clipping factor PPO 0.2
Gradient clipping 0.5

Forward dynamics loss coefficient 10
Inverse dynamics loss coefficient 0.1
Learning rates (state embedding, forward, and inverse dynamics) 0.0001
Number of skills 10
Discriminator learning rate 0.0003

Table 3: Best intrinsic reward coefficients β
DoorKey RedBlueDoors FourRooms

State Count 0.005 0.005 0.005
Max Ent 0.0005 0.0005 0.0005
ICM 0.05 0.05 0.05
DIAYN 0.01 0.01 0.01
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D Additional experimental results

D.1 DoorKey 16× 16

Figure 8: Mean intrinsic reward during training on DoorKey 16× 16

D.2 Red Blue Doors

Table 4: Frame number at which the reward is found for the first, second, and third time by each
exploration method on Red Blue Doors environment. Results are averaged over five runs. Mean and
standard deviation are reported.

RedBlueDoors First reward Second Reward Third reward
PPO 13136 ± 5647.717 17568 ± 8303.114 26553.6 ± 6733.478

PPO + State Count 13180.8 ± 8236.562) 25923.2 ± 14911.362 33545.6 ± 19115.737
PPO + Max Ent 9417.6 ± 2678.856 20464 ± 10420.749 24432 ± 10339.3

PPO + ICM 37721.6 ± 68636.525 129043.2 ± 175507.628 162060.8 ± 193005.435
PPO + DIAYN 10560 ± 11970.246 27712 ± 36493.862 44691.2 ± 37083.736
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(a) Observation coverage for RedBlueDoors (b) State coverage for RedBlueDoors

(c) Policy entropy for RedBlueDoors (d) Mean intrinsic reward for RedBlueDoors

Figure 9: Observation coverage, state coverage (grid position), policy entropy and mean intrinsic
reward during training on RedBlueDoors

D.3 Four Rooms

Table 5: Frame number at which the reward is found for the first, second, and third time by each
exploration method on Four Rooms environment. Results are averaged over five runs. Mean and
standard deviation are reported.
FourRooms First reward Second Reward Third reward

PPO 29964 ± 35604.292 97033.6 ± 41446.258 150188.8 ± 104821.884)
PPO + State Count 15465.6 ± 9712.017 34649.6 ± 11090.728 51820.8 ± 23054.047

PPO + Max Ent 2479424 ± 5498212.722 5327913.6 ± 5306632.432 6874905.6 ± 5056693.48
PPO + ICM 89433.6 ± 111832.135 197312 ± 171435.209 274883.2 ± 171782.164

PPO + DIAYN 29872 ± 28094.241 91209.6 ± 111776.431 146348.8 ± 102613.828
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(a) Observation coverage for FourRooms (b) State coverage for FourRooms

(c) Entropy for FourRooms (d) Mean intrinsic reward for FourRooms

Figure 10: Observation coverage, state coverage (grid position), policy entropy and mean intrinsic
reward during training on Four Rooms
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E Additional heatmaps

Figure 11: Normalised state visitation count during training for 10M frames on singleton FourRooms
environment. For each intrinsic reward method, snapshots of the heatmap are taken at three different
timesteps T1: 100K frames, T2: 500K frames and T3: 10M frames. Refer to Figure 6c in Appendix
A for the map of the environment.
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