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Abstract: While imitation learning on large-scale robot data produces robot poli-
cies with impressive task performance, these policies are typically reactive and
lack the ability to adapt to novel conditions at test time. This limitation stands
in stark contrast to Large Language Models (LLMs), which excel at in-context
learning and adaptation. In this work, we take the first steps toward bridging this
gap, exploring how imitation learning can instill in-context adaptation into robot
policies. We specifically address the challenge of varying action dynamics, a sce-
nario requiring online inference and adjustment. Our experiments with Diffusion
Policy reveal that enabling such adaptation hinges on two critical components:
conditioning the policy on histories of both observations and actions, and train-
ing on a diverse sampling of action dynamics. The resulting method successfully
generalizes to unseen, out-of-distribution dynamics in context, representing a key
advancement toward behavioral generalization in imitation learning.
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1 Introduction

The ability to swiftly adapt to new tasks and environments is a defining characteristic of human
intelligence and a significant milestone in the pursuit of artificial general intelligence [1, 2]. While
the current paradigm of imitation learning on large-scale expert data has produced generalist robot
policies with impressive generalization capabilities [3, 4, 5, 6, 7, 8], these policies are predominantly
reactive. They lack the memory and mechanisms to improve on the fly, thus often failing when faced
with novel scenarios where reactive control is inadequate for generalization.

In contrast, Large Language Models (LLMs) have demonstrated a remarkable capacity not only
for strong generalization from pretrained domain knowledge, but also for adapting to new tasks
from experience—given a few interactions with environments [9]. Crucially, this adaptation occurs
entirely “in-context” without requiring gradient-based weight updates, a process analogous to hu-
man episodic memory [10]. A natural question arises: Can this powerful paradigm of in-context
adaptation be unlocked for robotics? The hope is that, by processing a recent context history of
interactions, the policy can implicitly infer the environment’s latent dynamics and then modulate its
behavior accordingly.

In fact, the principle of in-context adaptation has been successfully leveraged to address the sim-to-
real challenge in state-based robotic tasks, primarily through reinforcement learning (RL). In this
line of work, the prevailing approaches [11, 12, 13, 14, 15] combine training on a wide distribu-
tion of simulated environments (domain randomization) with architectures that possess memory,
such as LSTMs or Transformers. This enables the policy to learn an adaptation mechanism online,
effectively adjusting to the discrepancies between simulation and reality. Nevertheless, applying
this methodology to current vision-based systems like Vision-Language-Action (VLA) models [4]
presents significant hurdles. Unlike the physical parameters targeted by domain randomization in
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Figure 1: An illustration of in-context adaptation. When encountering a new environment with
unknown dynamics, the policy with in-context adaptation leverages its history of observations
(o0:k) and actions (a0:k−1) to infer the new dynamics and successfully adapt its subsequent ac-
tions (ak:2k−1). In contrast, a policy without this capability fails to adjust its behavior.

robotics, the visual complexity of the real world creates a sim-to-real gap that is far more difficult
to close [16]. Furthermore, the reliance on RL, which often requires millions of environmental
interactions for convergence, makes training directly in the real world an impractical endeavor.

In this paper, we explore the possibility of directly instilling the capability for in-context adaptation
into vision-based robot policies via imitation learning. Unlike RL, imitation learning is substantially
more sample-efficient and inherently safer during data collection, rendering it a more viable path-
way for real-world robotics. As an initial step, we design a controlled experimental setting where
the model’s generalization ability can be achieved only through online adaptation. Specifically, we
introduce variations in the robot’s action dynamics during evaluation, simulating a common deploy-
ment challenge where a policy operates under potentially different physical constraints for different
trials. In this scenario, the robot must infer the underlying dynamics from its contextual history (i.e.,
recent observations and actions) and modulate its behavior accordingly to complete the given tasks.
Within this framework, our investigation centers on two primary research questions: (1) How does
history contexts influence the policy’s adaptive performance? and (2) What characteristics must the
training data possess to enable generalization to unseen action dynamics at test time?

Our results demonstrate that for a policy to adapt in context, it must have access to both historical
observations and actions to identify the characteristics of a new environment. Furthermore, we find
that the training data must be sufficiently randomized along the specific axes of variation to which
the robot must adapt, enabling generalization to unseen dynamics. While this study is exploratory
in nature, the results offer initial validation for the core hypothesis that imitation learning is suffi-
cient for acquiring complex adaptive behaviors. This work provides the necessary groundwork for
subsequent research to scale this methodology to larger datasets and a wider spectrum of real-world
environmental variations.

2 Related Work

Recent efforts on imitation learning of robots focus on building large-scale robot datasets [17, 18,
19, 20, 21, 22] and the training of high-capacity models [17, 4, 23, 24, 25, 26, 27] on these datasets,
especially Vision-Language-Action models [4, 26, 5, 28, 6, 7]. A critical characteristic of most of
these models is that they are trained end-to-end for outputting task planning [29, 30] or raw low-
level actions in response to immediate sensory observations without accessing histories of memory.
This is partly due to long contexts of histories as input introduce comparable computation cost at
inference, especially for large VLA models [21], and that recent works [31, 32] empirically found
that image-conditioned policies degrade with history. However, this kind of “reactive” control can
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be insufficient for generalization tasks where adaptation is required to figure out some unknown
environmental factors or improve existing skills on the fly.

Introducing memories or context of high-dimensional observations like vision into robot policies
has been a long-standing problem in robot learning. Under the assumption that historical obser-
vations are highly redundant, several works discard parts of the past information via adversarial
regularization [33], information bottlenecks [34], or selecting salient subsets through techniques
like keyframes [35] and motion tracks [36]. However, such methods may fail in temporally complex
tasks. Some recent vision-based robot policies use consecutive history visual observations as in-
puts [31, 37, 17, 38], but they only use history to improve general performance and do not consider
self-adaptation capabilities.

Recent works [39, 40] consider injecting in-context learning capabilities into vision-based robot
policies through imitation learning. Different from in-context adaptation, the context of policies is
filled with expert-level demonstrations instead of past experience of interactions. We argue that the
ability of in-context adaptation is more demanding in real-world scenarios where demonstrations
are hard to obtain, and is more natural for robots which can obtain knowledge from environment by
themselves [9], which is more of a sign of intelligence.

Our work is closely related to Behavioral Exploration (BE) by Wagenmaker et al. [41], which ap-
plies the concept of in-context adaptation to imitation learning from offline data. Methodologically,
both our approach and BE condition a transformer-based diffusion policy on a history of past ob-
servations to enable online adaptation. The fundamental distinction, however, lies in the purpose of
this adaptation. BE adapts its policy based on its history to intentionally maximize coverage over
the expert demonstration space and perform targeted exploration. Conversely, our work employs
adaptation to infer the underlying dynamics from its contextual history and modulate its behavior
accordingly to complete the given tasks, aiming for zero-shot generalization rather than comprehen-
sive exploration.

3 Problem Setup

We frame our problem of in-context adaptation within the context of imitation learning in a distri-
bution of environments, formalized as a collection of Markov Decision Processes (MDPs). Each
task or episode corresponds to interacting with a specific MDP, Mϵ = (S,A, Pϵ, p0), sampled from
a family of MDPs parameterized by a latent dynamics variable ϵ ∈ RD. At the beginning of each
episode, ϵ is drawn from a fixed distribution and remains constant throughout the episode. All MDPs
in this family share the same state space S, action space A, and initial state distribution p0. Their
distinction lies in the transition kernel, Pϵ : S × A → ∆S , where the same state s and action a can
potentially lead to different probabilities of future states.

The variation in dynamics is manifested as a perturbation on the actions. The policy, π, outputs an
intended action at at timestep t. However, the action executed in the environment, aexec

t , is a function
of the policy’s output and the latent variable for that episode: aexec

t = f(at, ϵ). The environment
then transitions to the next state according to this executed action, st+1 ∼ Pϵ(st, at) ≡ P (st, a

exec
t ).

This setup models various real-world scenarios where a discrepancy exists between the intended and
executed action, such as errors from inverse kinematics or physical limitations of the robot.

The core challenge is that the dynamics parameter ϵ is latent, placing the policy in a partially ob-
servable environment where its visual observation ot is only an incomplete view of the true state
st. Consequently, a purely reactive policy π(at|ot) is insufficient. To succeed, the policy must be
history-aware, using the sequence of past observations and actions to infer the latent dynamics pa-
rameter ϵ and adapt its behavior in-context. As an initial exploration, we instantiate this framework
with a simple additive perturbation on the first action dimension (i.e., the x-direction displacement).
Specifically, aexec

t = at + ϵ, where the noise vector is ϵ = [ϵx, 0, . . . , 0]
T with ϵx ∼ U [−δ, δ]. The

policy must use its interaction history to implicitly estimate ϵx and adjust its subsequent actions to
counteract the perturbation.
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Figure 2: Training and inference of our method that triggers in-context adaptation. (Left)
During training, the policy is given a history context of observations and perturbed actions (a + ϵ)
and learns to predict a compensated target action. (Right) During inference, the policy uses a context
window of its own past actions and observations to continually adapt its behavior in an environment
with unknown dynamics.

4 Method

Our goal is to train a policy that can adapt its behavior in-context to unseen action dynamics during
deployment. To achieve this, we build upon a history-conditioned diffusion policy (§4.1) and intro-
duce a specific training strategy that exposes the model to a wide distribution of action dynamics
(§4.2). This enables the policy to learn to infer the latent dynamics from its recent interaction history
and modulate its following actions accordingly.

4.1 History-Conditioned Diffusion Policy

We adopt Diffusion Policy (DP) [31], as it is renowned for its capacity to model complex, multi-
modal action distributions. To effectively process historical context, a capability central to our goal
and well-aligned with the architecture of large language models, we utilize a transformer as the
backbone of our policy network. The policy, denoted as πθ, is explicitly conditioned on a history
of both past observations and past actions to predict a chunk of future actions. Formally, at each
timestep t, the policy takes as input the sequence of the last K+1 observations, ot−K:t, and the last
K executed actions, at−K:t−1. It then outputs a distribution over the sequence of the next H actions,
at:t+H−1, where H is known as the prediction horizon. The policy is trained as a conditional de-
noising diffusion model, learning to reverse a noising process that gradually corrupts expert actions
into Gaussian noise. This training paradigm allows the policy to capture the underlying structure of
the expert action distribution, conditioned on its recent interaction history.

4.2 Learn to Adapt In-Context

Our training strategy is designed to instill the capability for in-context adaptation by teaching the
policy to infer and counteract latent environmental dynamics from a short history of interactions.
To this end, we augment the training data by simulating a wide distribution of action dynamics, a
principle analogous to domain randomization. This procedure compels the policy to actively use its
history context to identify the specific dynamics of an episode and modulate its behavior accordingly,
rather than overfitting to any single, deterministic condition.

The training process, illustrated in Figure 2 (Left), is structured as follows. For each expert trajectory
(. . . , ot, at, . . . ) sampled from the dataset D, we first sample a latent dynamics parameter ϵ ∈ RD

from a predefined distribution (e.g., ϵ ∼ U([−δ, δ]D)). This parameter remains fixed for the entire
trajectory, representing a consistent but unobserved physical perturbation. The policy πθ must learn
to compensate for this dynamic. It is conditioned on a history context ct comprising past observa-
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Figure 3: Comparison of success rate when trained with different perturbation ranges. In both
scenarios, the policy is conditioned on a history of 2 observations and 1 past action. (Left.) Policy
A. Training with a narrow perturbation range, ϵ ∼ U [−0.5, 0.5). (Right.) Policy B. Training with
a wider perturbation range, ϵ ∼ U [−1, 1). The shaded region indicates the in-distribution range.
We plot the i.i.d success rate (solid line) and the o.o.d success rate (bold dashed line), and the red
percentages stand for relative extrapolation distance

tions and the executed actions that resulted from the perturbation: ct = (ot−K:t, a
exec
t−K:t−1). The

historical actions fed to the policy are constructed by applying the perturbation to the ideal expert
actions, i.e., aexec

i = ai + ϵ.

The policy’s objective is to produce a compensated action ât that matches the perturbed expert
action. Therefore, the training target for the policy is the compensated action atarget

t = at + ϵ. The
policy is trained to minimize the prediction error, governed by a loss function such as:

L(θ) = Eτ∼D,ϵ∼p(ϵ)

[∑
t

∥πθ(ct)− (at + ϵ)∥2
]

By training over a diverse range of sampled ϵ, the model learns a general mechanism to implicitly
infer the underlying dynamic from its history and produce the correctly compensated action.

During inference, as depicted in Figure 2 (Right), the policy is deployed in an environment with
an unknown but fixed action dynamic ϵtest. At each timestep t, the policy conditions on a sliding
context window of its own recent interactions, comprising the latest observations and the actions it
previously commanded: ct = (ot−K:t, ât−K:t−1). The policy then outputs the next action ât, which
the environment executes. At the start of an episode, the history buffer is empty and the policy’s
behavior is unadapted. As the robot interacts with the world, the growing context ct accumulates
evidence about the effects of the unknown dynamic ϵtest. This allows the policy to implicitly deduce
the perturbation and progressively refine its outputs to better counteract it, thereby achieving the
task goal. This adaptation occurs entirely in-context, without requiring any gradient-based weight
updates.

5 Experiments and Analyses

To validate our approach, we conduct a series of simulation experiments to evaluate the in-context
adaptation capabilities of our policy. Our experiments use LIBERO[42] benchmark, choosing the
’pick up the black bowl on the left and put it in the tray’ as our task. We process the expert data
following the OpenVLA, filtering out unsuccessful trials and removing no-op actions, which yields
a final dataset of 49 trajectories.

For training, we adopt the hyperparameter configuration of DP but use only third-person images,
ensuring partial observability. A dedicated projector aligns the actions in the history with the trans-
former’s input space. During inference, the policy generates a compensated action â. To simulate
unknown dynamics in the environment, we execute the action â − ϵ in the simulator, where ϵ is
the perturbation for that episode. The simulator which can execute precise actions combined with
sampled perturbations jointly build a realistic action dynamic setting.
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When evaluating generalization, as a policy’s success rate depends heavily on the perturbation range
used during training and testing, it is misleading to compare them directly. To overcome this, we
introduce a normalized metric called relative extrapolation distance. This metric quantifies to what
extent the extrapolation can be extended beyond the training distribution when out-of-distribution
success rates fall to 50% average in-distribution ones. This metric is a strong indicator of a policy’s
adaptability, as it measures how well it withstands increasingly severe perturbations.

We begin by presenting the generalization of our in-context adaptation strategy in §5.1, and then
answer the two questions raised in §1. We investigate what training data characteristics are required
for generalization (Q2) in §5.2, and how the history context influences the policy’s performance
(Q1) in §5.3 and §5.4.

5.1 In-Context Adaptation can Generalize well

To evaluate whether our training strategy endows the policy with a generalizable in-context adapta-
tion capability, we investigate its ability to extrapolate to action dynamics. Therefore, we train two
policies, policy A and policy B, on different uniform distributions of the perturbation parameter ϵ.
Our goal is to determine if the policies can generalize to values of ϵ they have never encountered.

The results, presented in Fig. 3, demonstrate that both policies achieve stable in-distribution success
rates of approximately 40%, confirming the effectiveness of our training method within the seen
dynamics. More importantly, both policies exhibit a remarkable capacity to extrapolate to out-
of-distribution fields. policy A achieves a relative extrapolation distance of 55%, while policy B
achieves 20%. Intriguingly, although policy B is exposed to a wider training distribution, its relative
extrapolation distance is considerably smaller than that of policy A. This finding suggests that a
broader training distribution does not necessarily lead to better extrapolation performance. We will
further analyze this in §5.4.
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Figure 4: History components ablation study.
Ablation study on the performance impact of re-
moving key components during training: past ac-
tions aexec

t−K:t−1, past observations ot−K:t−1 and
action perturbations ϵ. The x-axis stands for the
range of perturbation ϵ.

In the preceding experiments, the action dy-
namic parameter, ϵ, was held constant through-
out each test episode. This setup represents an
idealized scenario, however in real-world appli-
cations, a robot’s dynamics can fluctuate within
a single task execution due to various factors.
For instance, prolonged motor operation can
lead to increased thermal noise, introducing
variations of dynamic. Similarly, mechanical
components may experience a ”running-in” pe-
riod, where friction changes as parts become
more lubricated over time, causing a drift in dy-
namic.

To assess our policy’s robustness in more realis-
tic conditions, we designed experiments where
the action dynamics are no longer static but
vary at each timestep. We evaluated the pol-
icy under two time-varying dynamic distribu-
tions, Gaussian noise which simulates the ef-
fect of continuous, random electronic or ther-
mal noise, and power-law drift that models a decaying drift, akin to a mechanical running-in pro-
cess. Specially, in each timestep t, the perturbation follows ϵt ∼ N (0, 0.32) in Gaussian sampling
and ϵt = −0.2 · t−1/4 in power-law drift. Remarkably, despite never being exposed to time-varying
dynamics during training, the policy achieves a success rate of 46.7% under the Gaussian noise and
55.1% under the power-law drift. These results strongly indicate that our training strategy enables
the policy to learn a true, generalizable adaptation mechanism.
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5.2 Ablation for the History Components

In this section, we investigate the essential characteristics of training data required to enable in-
context adaptation. Our central hypothesis is that two factors are critical: the completeness of the
history and the diversity of dynamics experienced during training.

First, for the policy to infer the latent action dynamics, the history context, ct = (ot−K:t, a
exec
t−K:t−1),

must contain all necessary information. The sequence of past observations, ot−K:t, implicitly cap-
tures the state transitions that result from the executed actions. Meanwhile, the past executed actions,
aexec
t−K:t−1, represent the robot’s intended actions within its logical action space. A discrepancy be-

tween the intended action and the actual state transition reveals the effect of the underlying action
dynamics, ϵ. The absence of either past actions or past observations would prevent the policy from
correlating its commands with their outcomes, thereby making it impossible to infer the latent dy-
namics. As shown in Fig. 4, policies fail to generalize if they are not given access to the history of
past actions or observations. Despite being trained on a wide (−0.5, 0.5) perturbation range, they
cannot handle even the small disturbances within (−0.1, 0.1).

Second, to ensure the policy can adapt to arbitrary action dynamics when deployment, it must be
exposed to a sufficiently diverse range of dynamics during training, like domain randomization.
By training the policy on trajectories perturbed by a wide distribution of ϵ, we compel the model to
learn a general adaptation mechanism rather than rote responses to some perturbations. For instance,
when trained without any dynamic variations, the policy performs well only near zero perturbation
and fails to generalize beyond a narrow (−0.15, 0.1) range.

5.3 History Context: More isn’t always Better

In our previous experiments, the history context was consistently set to two observations and one past
action. A natural question arises: would a longer history context, which provides more information,
enhance the policy’s ability to infer latent dynamics? To investigate this, we explored how varying
the length of the history context affects adaptation performance.

First, we examined the standard single-variable additive perturbation aexec = a + ϵ. Intuitively, a
longer history might be expected to improve performance. However, as shown in the Fig. 5(Left)
, we observed that extending the history context did not yield better results. In fact, some policies
exhibited a slight performance degradation. This finding suggests that for simple, single-variable dy-
namics, a short history already provides sufficient information for the policy to infer the dynamic. In
this case, additional history context may introduce unnecessary complexity and hinder the network
optimization.
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Figure 5: Left. Comparison of in-context adaptation training strategy with different history context
size. A longer history context does not bring performance improvement. Right. (Dual variable
perturbation, e.g. k × a+ b, etc.) However, when incorporating more than one variable, it performs
better.
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To further test this hypothesis, we designed a more challenging scenario with a two-variable per-
turbation, defined as aexec = k × a + b. Here, the policy must infer both a multiply factor (k)
and an additive bias (b). To identify two unknown variables, the policy must implicitly solve a set
of equations, which requires more data points from a longer interaction history. As predicted, the
results for this task, shown in the right panel of Fig. 5, demonstrate that a longer history context
leads to better in-context adaptation. This confirms that the optimal history length is coupled with
the complexity of the latent dynamics. While a short context is sufficient for simple dynamics, a
longer one becomes crucial for adapting to more complex environmental variations.

5.4 Not all ϵ works well
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Figure 6: The effect of the action-to-
perturbation magnitude ratio on in-context
adaptation.

In our experiments, we observed that the gener-
alization performance of the policy is sensitive
to the range of the perturbation ϵ. This suggests
that the relationship between the magnitude of
the action, a, and the perturbation, ϵ, is a crit-
ical factor for adaptation. We hypothesize that
a significant mismatch in scale between these
two signals can degrade the learning process.

To investigate this hypothesis, we designed an
experiment to analyze the impact of the rela-
tive scale between actions and perturbations.
We scaled the expert action data by factors of
0.1, 1, 2, 5, respectively, and trained new poli-
cies on these modified datasets while keep-
ing the perturbation distribution fixed at ϵ ∼
U [−0.5, 0.5). As illustrated in Fig. 6, when
the action magnitudes were either significantly
smaller (0.1×) or larger (5×) than the perturbation range, the policies failed to learn almost entirely,
with success rates dropping to near zero. In contrast, the policy trained with the original action data
(1×) achieved robust performance.

This result highlights that the effective learning of in-context adaptation is contingent on a balanced
signal-to-noise ratio between the actions and the dynamic perturbations. When the perturbation ϵ is
excessively large relative to the action a, it dominates the training target a+ ϵ, causing the policy to
neglect the underlying action signal. Conversely, when ϵ is too small, it may be treated as negligible
noise, preventing the policy from learning the adaptation mechanism. Therefore, for the policy to
effectively infer and counteract unknown dynamics, the training data must present the action signal
and the perturbation signal at comparable scales. This finding underscores the importance of careful
data normalization and curriculum design when training policies for in-context adaptation.

6 Conclusion

Our work demonstrates that imitation learning can instill in-context adaptation into robot policies,
enabling them to generalize to novel action dynamics at test time. The key findings indicate that this
capability is contingent upon two critical components: the policy must be conditioned on a complete
history of both observations and actions, and it must be trained across a diverse sampling of action
dynamics. The resulting policy not only adapted to unseen, fixed perturbations but also successfully
generalized to time-varying dynamics. We provide foundational evidence that imitation learning is
sufficient for acquiring complex adaptive behaviors, paving the way for future research to scale this
methodology to more factors and more varied real-world applications.
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