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Abstract: While imitation learning on large-scale robot data produces robot poli-1

cies with impressive task performance, these policies are typically reactive and2

lack the ability to adapt to novel conditions at test time. This limitation stands3

in stark contrast to Large Language Models (LLMs), which excel at in-context4

learning and adaptation. In this work, we take the first steps toward bridging this5

gap, exploring how imitation learning can instill in-context adaptation into robot6

policies. We specifically address the challenge of varying action dynamics, a sce-7

nario requiring online inference and adjustment. Our experiments with Diffusion8

Policy reveal that enabling such adaptation hinges on two critical components:9

conditioning the policy on histories of both observations and actions, and train-10

ing on a diverse sampling of action dynamics. The resulting method successfully11

generalizes to unseen, out-of-distribution dynamics in context, representing a key12

advancement toward behavioral generalization in imitation learning.13

Keywords: In-Context Adaptation, Imitation Learning, Zero-Shot Generalization14

1 Introduction15

The ability to swiftly adapt to new tasks and environments is a defining characteristic of human16

intelligence and a significant milestone in the pursuit of artificial general intelligence [1, 2]. While17

the current paradigm of imitation learning on large-scale expert data has produced generalist robot18

policies with impressive generalization capabilities [3, 4, 5, 6, 7, 8], these policies are predominantly19

reactive. They lack the memory and mechanisms to improve on the fly, thus often failing when faced20

with novel scenarios where reactive control is inadequate for generalization.21

In contrast, Large Language Models (LLMs) have demonstrated a remarkable capacity not only22

for strong generalization from pretrained domain knowledge, but also for adapting to new tasks23

from experience—given a few interactions with environments [9]. Crucially, this adaptation occurs24

entirely “in-context” without requiring gradient-based weight updates, a process analogous to hu-25

man episodic memory [10]. A natural question arises: Can this powerful paradigm of in-context26

adaptation be unlocked for robotics? The hope is that, by processing a recent context history of27

interactions, the policy can implicitly infer the environment’s latent dynamics and then modulate its28

behavior accordingly.29

In fact, the principle of in-context adaptation has been successfully leveraged to address the sim-to-30

real challenge in state-based robotic tasks, primarily through reinforcement learning (RL). In this31

line of work, the prevailing approaches [11, 12, 13, 14, 15] combine training on a wide distribu-32

tion of simulated environments (domain randomization) with architectures that possess memory,33

such as LSTMs or Transformers. This enables the policy to learn an adaptation mechanism online,34

effectively adjusting to the discrepancies between simulation and reality. Nevertheless, applying35

this methodology to current vision-based systems like Vision-Language-Action (VLA) models [4]36

presents significant hurdles. Unlike the physical parameters targeted by domain randomization in37
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Figure 1: An illustration of in-context adaptation. When encountering a new environment with
unknown dynamics, the policy with in-context adaptation leverages its history of observations
(o0:k) and actions (a0:k−1) to infer the new dynamics and successfully adapt its subsequent ac-
tions (ak:2k−1). In contrast, a policy without this capability fails to adjust its behavior.

robotics, the visual complexity of the real world creates a sim-to-real gap that is far more difficult38

to close [16]. Furthermore, the reliance on RL, which often requires millions of environmental39

interactions for convergence, makes training directly in the real world an impractical endeavor.40

In this paper, we explore the possibility of directly instilling the capability for in-context adaptation41

into vision-based robot policies via imitation learning. Unlike RL, imitation learning is substantially42

more sample-efficient and inherently safer during data collection, rendering it a more viable path-43

way for real-world robotics. As an initial step, we design a controlled experimental setting where44

the model’s generalization ability can be achieved only through online adaptation. Specifically, we45

introduce variations in the robot’s action dynamics during evaluation, simulating a common deploy-46

ment challenge where a policy operates under potentially different physical constraints for different47

trials. In this scenario, the robot must infer the underlying dynamics from its contextual history (i.e.,48

recent observations and actions) and modulate its behavior accordingly to complete the given tasks.49

Within this framework, our investigation centers on two primary research questions: (1) How does50

history contexts influence the policy’s adaptive performance? and (2) What characteristics must the51

training data possess to enable generalization to unseen action dynamics at test time?52

Our results demonstrate that for a policy to adapt in context, it must have access to both historical53

observations and actions to identify the characteristics of a new environment. Furthermore, we find54

that the training data must be sufficiently randomized along the specific axes of variation to which55

the robot must adapt, enabling generalization to unseen dynamics. While this study is exploratory56

in nature, the results offer initial validation for the core hypothesis that imitation learning is suffi-57

cient for acquiring complex adaptive behaviors. This work provides the necessary groundwork for58

subsequent research to scale this methodology to larger datasets and a wider spectrum of real-world59

environmental variations.60

2 Related Work61

Recent efforts on imitation learning of robots focus on building large-scale robot datasets [17, 18,62

19, 20, 21, 22] and the training of high-capacity models [17, 4, 23, 24, 25, 26, 27] on these datasets,63

especially Vision-Language-Action models [4, 26, 5, 28, 6, 7]. A critical characteristic of most of64

these models is that they are trained end-to-end for outputting task planning [29, 30] or raw low-65

level actions in response to immediate sensory observations without accessing histories of memory.66

This is partly due to long contexts of histories as input introduce comparable computation cost at67

inference, especially for large VLA models [21], and that recent works [31, 32] empirically found68

that image-conditioned policies degrade with history. However, this kind of “reactive” control can69
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be insufficient for generalization tasks where adaptation is required to figure out some unknown70

environmental factors or improve existing skills on the fly.71

Introducing memories or context of high-dimensional observations like vision into robot policies72

has been a long-standing problem in robot learning. Under the assumption that historical obser-73

vations are highly redundant, several works discard parts of the past information via adversarial74

regularization [33], information bottlenecks [34], or selecting salient subsets through techniques75

like keyframes [35] and motion tracks [36]. However, such methods may fail in temporally complex76

tasks. Some recent vision-based robot policies use consecutive history visual observations as in-77

puts [31, 37, 17, 38], but they only use history to improve general performance and do not consider78

self-adaptation capabilities.79

Recent works [39, 40] consider injecting in-context learning capabilities into vision-based robot80

policies through imitation learning. Different from in-context adaptation, the context of policies is81

filled with expert-level demonstrations instead of past experience of interactions. We argue that the82

ability of in-context adaptation is more demanding in real-world scenarios where demonstrations83

are hard to obtain, and is more natural for robots which can obtain knowledge from environment by84

themselves [9], which is more of a sign of intelligence.85

Our work is closely related to Behavioral Exploration (BE) by Wagenmaker et al. [41], which ap-86

plies the concept of in-context adaptation to imitation learning from offline data. Methodologically,87

both our approach and BE condition a transformer-based diffusion policy on a history of past ob-88

servations to enable online adaptation. The fundamental distinction, however, lies in the purpose of89

this adaptation. BE adapts its policy based on its history to intentionally maximize coverage over90

the expert demonstration space and perform targeted exploration. Conversely, our work employs91

adaptation to infer the underlying dynamics from its contextual history and modulate its behavior92

accordingly to complete the given tasks, aiming for zero-shot generalization rather than comprehen-93

sive exploration.94

3 Problem Setup95

We frame our problem of in-context adaptation within the context of imitation learning in a distri-96

bution of environments, formalized as a collection of Markov Decision Processes (MDPs). Each97

task or episode corresponds to interacting with a specific MDP, Mϵ = (S,A, Pϵ, p0), sampled from98

a family of MDPs parameterized by a latent dynamics variable ϵ ∈ RD. At the beginning of each99

episode, ϵ is drawn from a fixed distribution and remains constant throughout the episode. All MDPs100

in this family share the same state space S, action space A, and initial state distribution p0. Their101

distinction lies in the transition kernel, Pϵ : S × A → ∆S , where the same state s and action a can102

potentially lead to different probabilities of future states.103

The variation in dynamics is manifested as a perturbation on the actions. The policy, π, outputs an104

intended action at at timestep t. However, the action executed in the environment, aexec
t , is a function105

of the policy’s output and the latent variable for that episode: aexec
t = f(at, ϵ). The environment106

then transitions to the next state according to this executed action, st+1 ∼ Pϵ(st, at) ≡ P (st, a
exec
t ).107

This setup models various real-world scenarios where a discrepancy exists between the intended and108

executed action, such as errors from inverse kinematics or physical limitations of the robot.109

The core challenge is that the dynamics parameter ϵ is latent, placing the policy in a partially ob-110

servable environment where its visual observation ot is only an incomplete view of the true state111

st. Consequently, a purely reactive policy π(at|ot) is insufficient. To succeed, the policy must be112

history-aware, using the sequence of past observations and actions to infer the latent dynamics pa-113

rameter ϵ and adapt its behavior in-context. As an initial exploration, we instantiate this framework114

with a simple additive perturbation on the first action dimension (i.e., the x-direction displacement).115

Specifically, aexec
t = at + ϵ, where the noise vector is ϵ = [ϵx, 0, . . . , 0]

T with ϵx ∼ U [−δ, δ]. The116

policy must use its interaction history to implicitly estimate ϵx and adjust its subsequent actions to117

counteract the perturbation.118
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Figure 2: Training and inference of our method that triggers in-context adaptation. (Left)
During training, the policy is given a history context of observations and perturbed actions (a + ϵ)
and learns to predict a compensated target action. (Right) During inference, the policy uses a context
window of its own past actions and observations to continually adapt its behavior in an environment
with unknown dynamics.

4 Method119

Our goal is to train a policy that can adapt its behavior in-context to unseen action dynamics during120

deployment. To achieve this, we build upon a history-conditioned diffusion policy (§4.1) and intro-121

duce a specific training strategy that exposes the model to a wide distribution of action dynamics122

(§4.2). This enables the policy to learn to infer the latent dynamics from its recent interaction history123

and modulate its following actions accordingly.124

4.1 History-Conditioned Diffusion Policy125

We adopt Diffusion Policy (DP) [31], as it is renowned for its capacity to model complex, multi-126

modal action distributions. To effectively process historical context, a capability central to our goal127

and well-aligned with the architecture of large language models, we utilize a transformer as the128

backbone of our policy network. The policy, denoted as πθ, is explicitly conditioned on a history129

of both past observations and past actions to predict a chunk of future actions. Formally, at each130

timestep t, the policy takes as input the sequence of the last K+1 observations, ot−K:t, and the last131

K executed actions, at−K:t−1. It then outputs a distribution over the sequence of the next H actions,132

at:t+H−1, where H is known as the prediction horizon. The policy is trained as a conditional de-133

noising diffusion model, learning to reverse a noising process that gradually corrupts expert actions134

into Gaussian noise. This training paradigm allows the policy to capture the underlying structure of135

the expert action distribution, conditioned on its recent interaction history.136

4.2 Learn to Adapt In-Context137

Our training strategy is designed to instill the capability for in-context adaptation by teaching the138

policy to infer and counteract latent environmental dynamics from a short history of interactions.139

To this end, we augment the training data by simulating a wide distribution of action dynamics, a140

principle analogous to domain randomization. This procedure compels the policy to actively use its141

history context to identify the specific dynamics of an episode and modulate its behavior accordingly,142

rather than overfitting to any single, deterministic condition.143

The training process, illustrated in Figure 2 (Left), is structured as follows. For each expert trajectory144

(. . . , ot, at, . . . ) sampled from the dataset D, we first sample a latent dynamics parameter ϵ ∈ RD145

from a predefined distribution (e.g., ϵ ∼ U([−δ, δ]D)). This parameter remains fixed for the entire146

trajectory, representing a consistent but unobserved physical perturbation. The policy πθ must learn147

to compensate for this dynamic. It is conditioned on a history context ct comprising past observa-148
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Figure 3: Comparison of success rate when trained with different perturbation ranges. In both
scenarios, the policy is conditioned on a history of 2 observations and 1 past action. (Left.) Policy
A. Training with a narrow perturbation range, ϵ ∼ U [−0.5, 0.5). (Right.) Policy B. Training with
a wider perturbation range, ϵ ∼ U [−1, 1). The shaded region indicates the in-distribution range.
We plot the i.i.d success rate (solid line) and the o.o.d success rate (bold dashed line), and the red
percentages stand for relative extrapolation distance

tions and the executed actions that resulted from the perturbation: ct = (ot−K:t, a
exec
t−K:t−1). The149

historical actions fed to the policy are constructed by applying the perturbation to the ideal expert150

actions, i.e., aexec
i = ai + ϵ.151

The policy’s objective is to produce a compensated action ât that matches the perturbed expert
action. Therefore, the training target for the policy is the compensated action atarget

t = at + ϵ. The
policy is trained to minimize the prediction error, governed by a loss function such as:

L(θ) = Eτ∼D,ϵ∼p(ϵ)

[∑
t

∥πθ(ct)− (at + ϵ)∥2
]

By training over a diverse range of sampled ϵ, the model learns a general mechanism to implicitly152

infer the underlying dynamic from its history and produce the correctly compensated action.153

During inference, as depicted in Figure 2 (Right), the policy is deployed in an environment with154

an unknown but fixed action dynamic ϵtest. At each timestep t, the policy conditions on a sliding155

context window of its own recent interactions, comprising the latest observations and the actions it156

previously commanded: ct = (ot−K:t, ât−K:t−1). The policy then outputs the next action ât, which157

the environment executes. At the start of an episode, the history buffer is empty and the policy’s158

behavior is unadapted. As the robot interacts with the world, the growing context ct accumulates159

evidence about the effects of the unknown dynamic ϵtest. This allows the policy to implicitly deduce160

the perturbation and progressively refine its outputs to better counteract it, thereby achieving the161

task goal. This adaptation occurs entirely in-context, without requiring any gradient-based weight162

updates.163

5 Experiments and Analyses164

To validate our approach, we conduct a series of simulation experiments to evaluate the in-context165

adaptation capabilities of our policy. Our experiments use LIBERO[42] benchmark, choosing the166

’pick up the black bowl on the left and put it in the tray’ as our task. We process the expert data167

following the OpenVLA, filtering out unsuccessful trials and removing no-op actions, which yields168

a final dataset of 49 trajectories.169

For training, we adopt the hyperparameter configuration of DP but use only third-person images,170

ensuring partial observability. A dedicated projector aligns the actions in the history with the trans-171

former’s input space. During inference, the policy generates a compensated action â. To simulate172

unknown dynamics in the environment, we execute the action â − ϵ in the simulator, where ϵ is173

the perturbation for that episode. The simulator which can execute precise actions combined with174

sampled perturbations jointly build a realistic action dynamic setting.175
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When evaluating generalization, as a policy’s success rate depends heavily on the perturbation range176

used during training and testing, it is misleading to compare them directly. To overcome this, we177

introduce a normalized metric called relative extrapolation distance. This metric quantifies to what178

extent the extrapolation can be extended beyond the training distribution when out-of-distribution179

success rates fall to 50% average in-distribution ones. This metric is a strong indicator of a policy’s180

adaptability, as it measures how well it withstands increasingly severe perturbations.181

We begin by presenting the generalization of our in-context adaptation strategy in §5.1, and then182

answer the two questions raised in §1. We investigate what training data characteristics are required183

for generalization (Q2) in §5.2, and how the history context influences the policy’s performance184

(Q1) in §5.3 and §5.4.185

5.1 In-Context Adaptation can Generalize well186

To evaluate whether our training strategy endows the policy with a generalizable in-context adapta-187

tion capability, we investigate its ability to extrapolate to action dynamics. Therefore, we train two188

policies, policy A and policy B, on different uniform distributions of the perturbation parameter ϵ.189

Our goal is to determine if the policies can generalize to values of ϵ they have never encountered.190

The results, presented in Fig. 3, demonstrate that both policies achieve stable in-distribution success191

rates of approximately 40%, confirming the effectiveness of our training method within the seen192

dynamics. More importantly, both policies exhibit a remarkable capacity to extrapolate to out-193

of-distribution fields. policy A achieves a relative extrapolation distance of 55%, while policy B194

achieves 20%. Intriguingly, although policy B is exposed to a wider training distribution, its relative195

extrapolation distance is considerably smaller than that of policy A. This finding suggests that a196

broader training distribution does not necessarily lead to better extrapolation performance. We will197

further analyze this in §5.4.198
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Figure 4: History components ablation study.
Ablation study on the performance impact of re-
moving key components during training: past ac-
tions aexec

t−K:t−1, past observations ot−K:t−1 and
action perturbations ϵ. The x-axis stands for the
range of perturbation ϵ.

In the preceding experiments, the action dy-199

namic parameter, ϵ, was held constant through-200

out each test episode. This setup represents an201

idealized scenario, however in real-world appli-202

cations, a robot’s dynamics can fluctuate within203

a single task execution due to various factors.204

For instance, prolonged motor operation can205

lead to increased thermal noise, introducing206

variations of dynamic. Similarly, mechanical207

components may experience a ”running-in” pe-208

riod, where friction changes as parts become209

more lubricated over time, causing a drift in dy-210

namic.211

To assess our policy’s robustness in more realis-212

tic conditions, we designed experiments where213

the action dynamics are no longer static but214

vary at each timestep. We evaluated the pol-215

icy under two time-varying dynamic distribu-216

tions, Gaussian noise which simulates the ef-217

fect of continuous, random electronic or ther-218

mal noise, and power-law drift that models a decaying drift, akin to a mechanical running-in pro-219

cess. Specially, in each timestep t, the perturbation follows ϵt ∼ N (0, 0.32) in Gaussian sampling220

and ϵt = −0.2 · t−1/4 in power-law drift. Remarkably, despite never being exposed to time-varying221

dynamics during training, the policy achieves a success rate of 46.7% under the Gaussian noise and222

55.1% under the power-law drift. These results strongly indicate that our training strategy enables223

the policy to learn a true, generalizable adaptation mechanism.224
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5.2 Ablation for the History Components225

In this section, we investigate the essential characteristics of training data required to enable in-226

context adaptation. Our central hypothesis is that two factors are critical: the completeness of the227

history and the diversity of dynamics experienced during training.228

First, for the policy to infer the latent action dynamics, the history context, ct = (ot−K:t, a
exec
t−K:t−1),229

must contain all necessary information. The sequence of past observations, ot−K:t, implicitly cap-230

tures the state transitions that result from the executed actions. Meanwhile, the past executed actions,231

aexec
t−K:t−1, represent the robot’s intended actions within its logical action space. A discrepancy be-232

tween the intended action and the actual state transition reveals the effect of the underlying action233

dynamics, ϵ. The absence of either past actions or past observations would prevent the policy from234

correlating its commands with their outcomes, thereby making it impossible to infer the latent dy-235

namics. As shown in Fig. 4, policies fail to generalize if they are not given access to the history of236

past actions or observations. Despite being trained on a wide (−0.5, 0.5) perturbation range, they237

cannot handle even the small disturbances within (−0.1, 0.1).238

Second, to ensure the policy can adapt to arbitrary action dynamics when deployment, it must be239

exposed to a sufficiently diverse range of dynamics during training, like domain randomization.240

By training the policy on trajectories perturbed by a wide distribution of ϵ, we compel the model to241

learn a general adaptation mechanism rather than rote responses to some perturbations. For instance,242

when trained without any dynamic variations, the policy performs well only near zero perturbation243

and fails to generalize beyond a narrow (−0.15, 0.1) range.244

5.3 History Context: More isn’t always Better245

In our previous experiments, the history context was consistently set to two observations and one past246

action. A natural question arises: would a longer history context, which provides more information,247

enhance the policy’s ability to infer latent dynamics? To investigate this, we explored how varying248

the length of the history context affects adaptation performance.249

First, we examined the standard single-variable additive perturbation aexec = a + ϵ. Intuitively, a250

longer history might be expected to improve performance. However, as shown in the Fig. 5(Left)251

, we observed that extending the history context did not yield better results. In fact, some policies252

exhibited a slight performance degradation. This finding suggests that for simple, single-variable dy-253

namics, a short history already provides sufficient information for the policy to infer the dynamic. In254

this case, additional history context may introduce unnecessary complexity and hinder the network255

optimization.256
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To further test this hypothesis, we designed a more challenging scenario with a two-variable per-257

turbation, defined as aexec = k × a + b. Here, the policy must infer both a multiply factor (k)258

and an additive bias (b). To identify two unknown variables, the policy must implicitly solve a set259

of equations, which requires more data points from a longer interaction history. As predicted, the260

results for this task, shown in the right panel of Fig. 5, demonstrate that a longer history context261

leads to better in-context adaptation. This confirms that the optimal history length is coupled with262

the complexity of the latent dynamics. While a short context is sufficient for simple dynamics, a263

longer one becomes crucial for adapting to more complex environmental variations.264

5.4 Not all ϵ works well265
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Figure 6: The effect of the action-to-
perturbation magnitude ratio on in-context
adaptation.

In our experiments, we observed that the gener-266

alization performance of the policy is sensitive267

to the range of the perturbation ϵ. This suggests268

that the relationship between the magnitude of269

the action, a, and the perturbation, ϵ, is a crit-270

ical factor for adaptation. We hypothesize that271

a significant mismatch in scale between these272

two signals can degrade the learning process.273

To investigate this hypothesis, we designed an274

experiment to analyze the impact of the rela-275

tive scale between actions and perturbations.276

We scaled the expert action data by factors of277

0.1, 1, 2, 5, respectively, and trained new poli-278

cies on these modified datasets while keep-279

ing the perturbation distribution fixed at ϵ ∼280

U [0.5, 0.5). As illustrated in Fig. 6, when281

the action magnitudes were either significantly282

smaller (0.1x) or larger (5x) than the perturbation range, the policies failed to learn almost entirely,283

with success rates dropping to near zero. In contrast, the policy trained with the original action data284

(1x) achieved robust performance.285

This result highlights that the effective learning of in-context adaptation is contingent on a balanced286

signal-to-noise ratio between the actions and the dynamic perturbations. When the perturbation ϵ is287

excessively large relative to the action a, it dominates the training target a+ ϵ, causing the policy to288

neglect the underlying action signal. Conversely, when ϵ is too small, it may be treated as negligible289

noise, preventing the policy from learning the adaptation mechanism. Therefore, for the policy to290

effectively infer and counteract unknown dynamics, the training data must present the action signal291

and the perturbation signal at comparable scales. This finding underscores the importance of careful292

data normalization and curriculum design when training policies for in-context adaptation.293

6 Conclusion294

Our work demonstrates that imitation learning can instill in-context adaptation into robot policies,295

enabling them to generalize to novel action dynamics at test time. The key findings indicate that this296

capability is contingent upon two critical components: the policy must be conditioned on a complete297

history of both observations and actions, and it must be trained across a diverse sampling of action298

dynamics. The resulting policy not only adapted to unseen, fixed perturbations but also successfully299

generalized to time-varying dynamics. We provide foundational evidence that imitation learning is300

sufficient for acquiring complex adaptive behaviors, paving the way for future research to scale this301

methodology to more factors and more varied real-world applications.302
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