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ABSTRACT

The task of 3D shape completion involves completing missing regions of an ob-
ject from partial observation. The current methods accomplish this task by mod-
eling latent completion distributions based on an autoregressive model. However,
this approach often struggles with geometric details, as it represents 3D shapes
with variable latent sequences, leading to gaps (local missing) in the completed
shape. In this paper, we introduce a multiple 3D shape completion method using a
transformer-based autoregressive model and a fixed-length sparse irregular latent
sequence. Experiments demonstrate that our method outperforms state-of-the-art
methods in terms of both quality and fidelity.

1 INTRODUCTION

3D shape completion is becoming more important in computer vision due to challenges in acquiring
complete object scans stemming from factors like the varying angles of 3D scanning devices and
issues with object occlusion. cGAN Wu et al. (2020) addresses this challenge by using the GAN
model Goodfellow et al. (2014). However, this model encodes the 3D shape using a global latent
vector, failing to capture the fine-grained details of a 3D object, which leads to blurry completion.
ConvONet Peng et al. (2020) and IF-Net Chibane et al. (2020) present alternative methods for rep-
resenting 3D shapes using voxelized latent grids. They interpolate a 3D shape into grid-based local
latent vectors, effectively preserving the shape’s geometric details. However, they fail to make rea-
sonable generalizations for the unseen parts due to the deterministic nature of gird. On the other
hand, Pointr Yu et al. (2021) processes the 3D shape as a sequence of tokens and adopted trans-
formers Vaswani et al. (2017) to predict missing parts. However, the missing tokens predicted by
the linear projection layer overlook the contextual relationship with other tokens. To address this
issue, ShapeFormer Yan et al. (2022) utilizes an autoregressive model Van Den Oord et al. (2016)
to construct shape completion in a recurrent manner. However, since ShapeFormer represents 3D
shapes as variable-length latent sequences, it requires exploring the entire dataset to determine the
maximum sequence length. This requirement can pose challenges in generative modeling and may
result in local geometric gaps in the completed shapes.

To address the above limitation, we replace the variable representation in ShapeFormer with a sparse
irregular representation Zhang et al. (2022), which encodes the 3D shape into a fixed-length discrete
latent sequence. With this design, our model is more sensitive to local geometry variations, which
helps to accurately capture incomplete shape structures when confronted with different ambiguities.
More specifically, our transformer-based autoregressive method Radford et al. (2019) can produce a
more accurate and plausible completion conditioned on partial input. Experiments demonstrate that
our method achieves state-of-the-art results in completion quality, diversity, and fidelity.

2 METHOD

Shape Encoding: Similar to Zhang et al. (2022), we learn a fixed-length sparse irregular discrete
latent sequence S = {xi, yi, zi, vi}M−1

i=0 , which represent M local latent vectors with four different
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Figure 1: Overview of our shape completion method. Given a partial input, our method first encode
it as incomplete latent codes, then the transformer autoregressively constructs latent completion.

attributes (v, x, y, z), where xi, yi, and zi are the 3D coordinates and vi is the discrete form of each
local latent vector (refer to VQVAE Van Den Oord et al. (2017) for more details). Due to the spatial
nature of the latent sequence S, arbitrary inputs are able to keep the topology structure, which can
sensitively capture incomplete shape structure, leading to more faithful completion. With the shape
encoding, we represent the complete shape and the incomplete shape as SC and SP , respectively.

Autoregressive Sequence Completion: As we discussed above, the problem of 3D shape com-
pletion can be defined as the conditional probability distribution between partial and complete se-
quences, p(SC |SP ). Our objective is to predict the probability distribution of the next element based
on the previous elements. Therefore, the likelihood can be written as:

p(SC |SP ) =

M−1∏
i=0

p(SCi
|SC<i

,SP ) =

M−1∏
i=0

pxi
· pyi

· pzi · pvi (1)

in which pxi
= p(xi|SC<i

,SP ), pyi
= p(yi|xi,SC<i

,SP ), pzi = p(zi|yi, xi,SC<i
,SP ), pvi =

p(vi|zi, yi, xi,SC<i
,SP ). The completion process is illustrated in Figure 1.

3 EXPERIMENTS

In this section, we demonstrate that our method outperforms state-of-the-art models for shape com-
pletion in different scan ambiguities. Following Yan et al. (2022) 13 classes of the ShapeNet Chang
et al. (2015) dataset are used, and we process the data like OccNet Mescheder et al. (2019). The
qualitative and quantitative results show that our method achieves more accurate completion in the
presence of various scan ambiguities. For example, our method shows a 4.3% improvement in FPD
over ShapeFormer (SFr.) at the high ambiguity level. This success is largely due to our irregu-
lar encoding schedule, which is more sensitive to different levels of incompleteness and provides
sufficient condition perception for better completion.

Table 1: Quantitative results on ShapeNet with [Low/High] scan ambiguity. CD is scaled by 103.
OccNet CONet IF-Net Pointr cGAN SFr. Ours

CD↓ 1.48 / 2.79 0.81 / 3.14 0.79 / 18.4 0.80 / 3.11 1.33 / 3.49 0.74 / 4.72 0.72 / 3.30
F-score↑ 63.2 / 50.4 72.9 / 60.4 73.8 / 51.5 70.1 / 59.3 62.1 / 59.3 70.3 / 60.5 73.8 / 61.6

FPD↓ 0.34 / 3.12 0.23 / 2.85 0.25 / 3.66 0.23 / 3.29 1.36 / 2.55 0.24 / 1.45 0.22 / 1.39

Input cGAN Pointr OccNet ConvONet ShapeFormer Ours

Figure 2: Visual comparison for shape completion in the car category of ShapeNet.

4 CONCLUSION

We presented a new 3D shape completion method based on a sparse irregular representation. By
encoding 3D shapes into fixed-length discrete sequences, our method uses a transformer to autore-
gressively generate multiple plausible shape completions from incomplete input. The quantitative
and qualitative comparisons demonstrate that our method outperforms other approaches in terms of
completion quality and fidelity.
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A APPENDIX

A.1 EXPERIMENT SETTING

Metric: Same to ShapeFormer Yan et al. (2022), we utilize Chamfer L2 Distance (CD), F-score,
and Fréchet Point Cloud Distance (FPD) as evaluation metrics. Quantitative Evaluation: Fol-
lowing previous method Yan et al. (2022), we only generate one completion result for quantitative
comparison. Qualitative Evaluation: For qualitative comparison, we generate multiple completion
results to showcase the diversity of our model.
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Figure 3: Network architecture of our shape encoding schedule. We show the detailed module inside
our autoencoder.

A.2 TRAINING DETAILS

The training process of our encoding schedule is set to T = 800 epochs with 32 batch size. The
learning rate is linearly increased to lrmax = 1e − 3 in the first t0 = 40 epochs. Then gradu-

ally decreased using the cosine decay schedule lrmax ∗ 0.51+cos
t−t0
T−t0 , until the minimum value of

lrmin = 1e − 6. Also, Adamw optimizer is used with its default parameters. The training process
of the autoregressive model is the same as for the encoding part, but T = 400 with batch size 16.
We set top-p = 0.8 for sampling.

A.3 DATASET DETAILS

We train our model using the objects from 13 categories of the ShapeNet dataset, including [airplane,
bench, cabinet, car, chair, display, lamp, speaker, rifle, sofa, table, telephone, vessel]. We extract the
occupancy value as Mescheder et al. (2019), including 50k volume query points from the bounding
volume ([−1, 1]3) and 50k near query points from the near surface region.

A.4 NETWORK ARCHITECTURE OF SHAPE AUTOENCODER

We represent each 3D shape as a fixed-length sparse irregular discrete latent sequence as 3DILG
Zhang et al. (2022). The network architecture is shown in Figure 3. Given an input point cloud
with size N × 3, we process it into M point patches by FPS and KNN. Next, we use pointnet Qi
et al. (2017) to project each patch to an embedding vector and use a six layers transformer encoder
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Figure 4: Network architecture of our autoregressive model. Here, we show the generation process
of our autoregressive sampling.

Table 2: Quantitative comparison of computational cost with autoregressive style model Shape-
Former.

Method Training Time Inference Time / shape

ShapeFormer 144 hours 0.06
Ours 131 hours 0.075

Dosovitskiy et al. (2020) to build embedding vectors into latent vectors. Following the vector quanti-
zation Van Den Oord et al. (2017), we replace the latent vectors with the closest quantified vectors in
the codebook. By preserving the index of each quantified vector and the discrete coordinates of each
latent vector, we can represent the 3D shape as a discrete latent sequence S = {xi, yi, zi, vi}M−1

i=0 .
After being processed by another six layers transformer encoder, we interpolate quantified vectors
to each query point by:

zq =

M−1∑
i=0

exp(−β∥q− ci∥2)∑M−1
j=0 exp(−β∥q− cj∥2)

zi. (2)

In which, q is the query point used for surface reconstruction, while ci is the position of each quan-
tified vector zi (which has the same position as the latent vectors). And β is a learnable parameter
controlling the smoothness of interpolation. Consequently, we get interpolated vectors with the same
size as query points q. With a MLP we can predict the occupancy value Mescheder et al. (2019) of
each query point.

A.5 AUTOREGRESSIVE SAMPLING

We show the sampling process of the autoregressive model in Figure 4. The model Radford et al.
(2019) consists of twenty four layers of transformer modules. Given a partial sequence, the model
autoregressively generate new element based on previous elements. With M times iteration, the
model autoregressively construct sequence completion as shown in Figure 4. Note that, the training
process only runs once, since the input sequences and the ground truth sequences are trained in a
displacement manner.

A.6 EFFICIENCY ANALYSIS AND QUALITATIVE RESULTS

We show the computational experiment with autoregressive style model ShapeFormer in Table 2.
Similarly as long-range iterative generation model, our model has similar training time as Shape-
Former. However, our model has more faster inference speed than ShapeFormer which needs to
process variable-length latent decoding to 3D shapes. Furthermore, our model can achieve better
completion quality as shown in Table 1.

Moreover, in Figure 5 we have shown more completion results of our method. For each partial input,
we generate five completion results to showcase the diversity of our model. From the completion
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Input Ground Truth Completions

Figure 5: Completion results on ShapeNet dataset.

results, it can be proved that our model is capable of generating multiple high-quality completions
while remaining aligned with the input.
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