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Abstract

Recent research analyzing the sensitivity of nat-001
ural language understanding models to word-002
order perturbations has shown that neural mod-003
els are surprisingly insensitive to the order of004
words. In this paper, we investigate this phe-005
nomenon by developing order-altering pertur-006
bations on the order of words, subwords, and007
characters to analyze their effect on neural mod-008
els’ performance on language understanding009
tasks. We experiment with measuring the im-010
pact of perturbations to the local neighborhood011
of characters and global position of characters012
in the perturbed texts and observe that pertur-013
bation functions found in prior literature only014
affect the global ordering while the local or-015
dering remains relatively unperturbed. We em-016
pirically show that neural models, invariant of017
their inductive biases, pretraining scheme, or018
the choice of tokenization, mostly rely on the019
local structure of text to build understanding020
and make limited use of the global structure.021

1 Introduction022

Recent research has shown that neural language023

models have an understanding of well-formed En-024

glish syntax in recurrent neural networks, convo-025

lutional neural networks, and in large pretrained026

(PT) Transformers (Gulordava et al., 2018; Zhang027

and Bowman, 2018; Chrupała and Alishahi, 2019;028

Lin et al., 2019a; Belinkov and Glass, 2019; Liu029

et al., 2019a; Jawahar et al., 2019; Rogers et al.,030

2020). Other studies, however, take a critical stance031

with experiments suggesting that models may be in-032

sensitive to word-order perturbations (Pham et al.,033

2021; Sinha et al., 2021, 2020; Gupta et al., 2021;034

O’Connor and Andreas, 2021), showing that shuf-035

fled word-order has little to no impact during036

training or inference with neural language mod-037

els. While some research show that models learn038

some abstract notion of syntax, further probing into039

their insensitivity to the perturbation of syntax is040

necessary. Specifically, What are the underlying041

mechanisms causing those unintuitive, or unnat- 042

ural, results from neural models is still a largely 043

unanswered question. 044

Recent research exploring the sensitivity to syn- 045

tax of pretrained models has primarily been apply- 046

ing perturbations to text through perturbing the or- 047

der of words (Pham et al., 2021; Sinha et al., 2021, 048

2020; Gupta et al., 2021; O’Connor and Andreas, 049

2021). Perturbations applied and quantified at this 050

granularity of text offer only a limited understand- 051

ing of the learning dynamics of the neural language 052

models. Analyzing perturbations at a finer granular- 053

ity such as subwords (Bojanowski et al., 2017) or 054

characters (Gao et al., 2018; Ebrahimi et al., 2018), 055

may provide a deeper insight into the insensitivity 056

to word-order of neural models. 057

In this paper, we define two types of structure1 058

in text, global which relates to the absolute posi- 059

tion of characters, and local, which relates to the 060

relative position of characters to their immediate 061

neighbors. We observe from our experiments (§ 5) 062

that most perturbations proposed and analyzed in 063

the literature will perturb the global structure with 064

different reordering of words, while the amount of 065

disturbance to the local structure remains limited. 066

We hypothesize that the local structure, more so 067

than the global structure, is necessary for under- 068

standing in natural language tasks. By applying 069

perturbations of varying degrees to the local struc- 070

ture, while controlling for the amount of global 071

perturbations, we are able to measure how essen- 072

tial it is to a neural model understanding of text. 073

We demonstrate the sensitivity to local structure of 074

model performances in English natural language 075

understanding (NLU) (GLUE (Wang et al., 2019a)) 076

and their relative insensitivity to the global struc- 077

ture, and control for many potential confounding 078

factors that would otherwise provide an alternative 079

explanation to our results. 080

1Structure here relates to the organization of characters in
the text.
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Our contributions are as follows:081

• We show that the performance of neural mod-082

els – Transformers and others, pretrained or083

not – on perturbed input strongly correlates084

with the amount of preserved local structure085

of text.086

• We identify possible confounding factors for087

this phenomenon and construct experiments088

controlling for them.089

• We provide analysis on implications derived090

from our large array of empirical findings.091

2 Related Work092

Importance of Syntax Discussions on seman-093

tics (Culbertson and Adger, 2014; Futrell et al.,094

2020) agree on specific orders of words to be nec-095

essary for comprehending text. Psycholinguistic096

research (Hale, 2017) corroborates this through097

evaluating sentence comprehension mechanisms098

of humans. Hence, interpreting language as a099

bag-of-words could limit the expressions conveyed100

through the word-orders (Harris, 1954; Le and101

Mikolov, 2014) and understanding syntax2 be-102

comes an essential artifact. Recently, Mollica et al.103

(2020) found that humans were robust to word-104

ordering perturbations in text as long as local or-105

dering of text was roughly preserved.106

Prior works have explored the relationship107

between neural models and syntax. Goldberg108

(2019); Hewitt and Manning (2019) both show109

that BERT (Devlin et al., 2019) models have some110

syntactic capacity. Lin et al. (2019b) show that111

BERT represents information hierarchically and112

concludes that BERT models linguistically relevant113

aspects in a hierarchical structure. Tenney et al.114

(2019); Liu et al. (2019b) show that the contextual115

embeddings that BERT outputs contain syntactic in-116

formation that could be used in downstream tasks.117

While it seems that syntax is both important, and118

to an extent, understood by the recent family of PT119

models, it is unclear how much use they make of it.120

Glavaš and Vulić (2020) showed that pretraining121

BERT on syntax does not seem to improve down-122

stream performance much. Warstadt et al. (2020)123

showed that while models such as BERT do un-124

derstand syntax, they often prefer not to use that125

2Preference to a specific word-order over the other and the
preference complying with the choices of an average human
speaking that language.

information to solve tasks. Ettinger (2020); Pham 126

et al. (2019); Sinha et al. (2020); Gupta et al. (2021) 127

show that large language models are insensitive to 128

minor perturbations highlighting the lack of syn- 129

tactic knowledge used in syntax rich NLP tasks. 130

Sinha et al. (2021) show that pretraining models 131

on perturbed inputs still obtain reasonable results 132

on downstream tasks, showing that models that 133

have never been trained on well-formed syntax can 134

obtain results that are close to their peers. 135

While syntactic information seems vital to lan- 136

guage, and large PT models seem to be at least 137

aware of syntax, the lack of sensitivity of neural 138

models to perturbation of syntax motivates further 139

probing. 140

Text Perturbations Several different types of re- 141

ordering perturbation functions and schemes have 142

been explored to understand and study neural archi- 143

tectures’ (in)sensitivity to word-order. The class of 144

perturbation analysis could broadly be split into 145

three categories: deletion, paraphrase injection, 146

and reordering of tokens. Sankar et al. (2019) ex- 147

plore utterance and word-level perturbations ap- 148

plied to generative dialogue models to highlight 149

their insensitivity to the order of conversational 150

history. On natural language classification tasks, 151

Pham et al. (2021) define n-grams for different 152

values of n and shuffle them to highlight the insen- 153

sitivity of PT models. They show that shuffling 154

larger n-grams has a lesser effect than shuffling 155

smaller n-grams, suggesting that preserving more 156

local structure causes less performance degrada- 157

tion. Studying textual entailment tasks, Sinha et al. 158

(2020) perform perturbations on the position of the 159

words, with the criteria that no word remains in its 160

initial position. 161

Hsieh et al. (2019) propose a suite of adversar- 162

ial attacks that replace one word in the input to 163

cause a model to flip its correct prediction. Gupta 164

et al. (2021) combine several types of destructive 165

transformations — such as sorting, reversing, shuf- 166

fling words — towards removing all informative 167

signals in a text. Along similar lines, Wang et al. 168

(2019b) inject noise by reordering or deleting ar- 169

ticles towards injecting artificial noise to measure 170

the robustness of PT language models. Character- 171

level perturbations that perform minimal flips to 172

cause a degenerate response have been explored by 173

Ebrahimi et al. (2018); Gao et al. (2018). Gao et al. 174

(2018) quantify the perturbation in Levenshtein dis- 175

tance and draw a correlation to the model’s perfor- 176
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mance. This work is closely related to our own. We177

demonstrate that our hypothesis, the importance of178

local ordering, is a much more robust explanation179

of the degradation in performance of models than180

the Levenshtein distance.181

Quantifying Perturbations Several popular sim-182

ilarity metrics can be used to measure perturba-183

tions. Metrics like BLEU (Papineni et al., 2002)184

and ROUGE (Lin, 2004) will treat text as a se-185

quence of words, from which a measure of overlap186

is computed. The Levenshtein distance (Leven-187

shtein, 1966; Yujian and Bo, 2007), or the edit188

distance, measures the minimum amount of single-189

character edits (insertions, deletions, or substitu-190

tions) necessary to match two strings together. In191

the context a shuffling text, it will roughly count192

the amount of characters that have been displaced.193

Parthasarathi et al. (2021) observed that learned194

metrics like BERT-Score (Zhang et al., 2019) and195

BLEURT (Sellam et al., 2020) are often unaffected196

by minor perturbations in text which limits their197

usefulness in measuring perturbations. Character-198

level metrics, such as the character n-gram F-score199

(chrF) (Popović, 2015) offer a character-aware ap-200

proach to measuring similarity of n-gram overlap201

between two texts. In the context of shuffling this,202

this will represent roughly the amount of character203

n-gram that have been changed by the shuffling.204

3 Measuring Local and Global205

Pertubations206

To properly analyze different perturbations to the207

local and global structure of text, we first require208

a way to measure perturbations to said structures.209

The global structure here relates to the absolute po-210

sition of characters in a text, and the local structure211

relates to the neighboring character of any other212

character in a text.213

3.1 Character bigram F-score (chrF-2)214

To measure local perturbations, we use the215

chrF (Popović, 2015) metric. chrF is an n-gram216

overlap metric that is applied to characters. The217

goal here is to isolate the smallest unit of local218

structure that we can quantify, character 2-grams219

being preserved after perturbations. We therefore220

use a minimal and maximal n-gram length of 2.221

We use the default β value of 3. Our metric is222

equivalent to calculating the F3-score of character223

2-gram overlap between the unperturbed text and224

the perturbed text, taking whitespaces into account.225

3.2 Levenshtein Distance (Lev) 226

To measure perturbations to the global structure, 227

we will use the Levenshtein Distance, normalized 228

by the length of the text. This measure of perturba- 229

tion only takes into account the change in absolute 230

positions of characters and not its local neighbor- 231

hood, which makes it ideal to measure the changes 232

to the global structure. With the normalization, a 233

levenshtein distance of 0.8 would imply that 80% 234

of characters need to be edited once to retrieve the 235

original text. 236

3.3 Compression Rate (Comp) 237

Finally, to measure local perturbations to words 238

and subwords, we could count the rate of out-of- 239

vocabulary (OOV) tokens introduced by the pertur- 240

bations. As our experiments make use of a subword 241

vocabulary (Sennrich et al., 2015) which can repre- 242

sent any string of English characters without OOV 243

tokens, the compression rate (Xue et al., 2021), as 244

measured by the length of the original string in char- 245

acters divided by the length of the tokenized string, 246

will serve as a proxy to measuring OOV tokens. 247

As more local perturbations are applied, more and 248

more subwords will be broken into smaller sub- 249

words which will yield a lesser compression of 250

text through tokenization. The tokenizer of the 251

RoBERTa-Base model (Liu et al., 2019c) is used 252

to calculate the compression rate in all cases. 253

4 Perturbation Functions 254

Towards conducting a detailed analysis on the ef- 255

fect of perturbations on the performance of neu- 256

ral language models, we define three granularities 257

of perturbation functions — word-level, subword- 258

level and character-level. The subwords are taken 259

from the RoBERTa-Base vocabulary. We define 260

the perturbation functions as generic operations 261

that can be applied across the different levels of 262

granularity3. 263

Full Shuffle randomly shuffles the position of 264

every word, sub-word, or character, according to 265

the level it is applied to. This transformation should 266

cause a great amount of perturbation to the global 267

and local structure for the specific granularity. 268

Phrase Shuffle creates chunks of contiguous to- 269

kens of variable length, controlled by a parameter 270

ρ , and shuffles the phrases of word, subword, or 271

3Pseudo-code and examples for all perturbations are shown
in Appendix B.
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The scholar is typesetting.

scholar typesetting is The.

Figure 1: Example for word-level full shuffling. The
perturbed sentence has a Levenshtein Distance of 0.58
and a chrF-2 of 0.92.

characters. This perturbation has, on average, the272

same impact as the full shuffling on the global273

structure as the absolute positions of characters274

tend to change just as much as full shuffling while275

preserving a controllable amount of local structure.276

The scholar is typesetting.

is typeThe schosetting lar.

Figure 2: Subword-level phrase shuffling. The per-
turbed sentence has a Levenshtein Distance of 0.8 and a
chrF-2 of 0.84.

277

To randomly define our phrases, we traverse the278

text sequentially on the desired granularity. The279

entire text is assumed as a single large phrase and is280

truncated at a token with probability ρ into smaller281

phrases.282

A lower value of ρ leads to longer on average283

phrases, thus preserving more of the local struc-284

ture while destroying roughly the same amount of285

global structure. In the extreme case with ρ = 1.0,286

phrase shuffling will be equivalent to full shuffling287

as phrases will all be one token long.288

Neighbor Flip Perturbations flip tokens of the289

chosen granularity with the immediate right neigh-290

bor with probability, ρ . This function has, on aver-291

age, a smaller impact on the global structure, as the292

absolute positions of tokens do not change much293

but can have an arbitrary large effect on disturbing294

the local structure.295

The scholar is typesetting.

heT cshlori sa typeesttnig.

Figure 3: Character-level neighbor flip. The perturbed
sentence has a Levenshtein Distance of 0.54 and a chrF-
2 of 0.32. Due to a greater distortion to the local order,
the model has a greater chance to be sensitive to this
perturbation.

The perturbation is applied by traversing the296

string from left-to-right on the desired granular-297

ity and, with a probability ρ , switching the current 298

attended token with the following token. The lower 299

the ρ is, the less perturbation happens, thus preserv- 300

ing more of the local structure. This transformation 301

has a limited impact on the global metric, thus let- 302

ting us isolate the impact of perturbations to the 303

different structures. 304

5 Experiments 305

5.1 Dataset 306

We experiment with the GLUE Benchmark (Wang 307

et al., 2019a) datasets, a popular NLU benchmark. 308

We create perturbed versions of the validation set 309

for all tasks with the different perturbation func- 310

tions defined in § 4. In total, 50 different variations 311

of our perturbation functions are applied by varying 312

the granularity as well as the ρ values, including 313

an unperturbed benchmark version4. 314

5.2 Confounding Variables 315

We have identified several confounding variables 316

that we will attempt to control for in our experi- 317

mental setup. 318

Inductive Biases of the neural architecture may 319

yield models that rely on different types of struc- 320

ture. Intuitively, it may be that Transformer-based 321

models, through global self-attention, rely more on 322

global structure than ConvNets which are limited 323

to local information. 324

Pretraining may have a large impact on the level 325

of sensitivity to different types of structure. It 326

may be that global structure simply requires more 327

training to be understood and that pretrained mod- 328

els leverage it to a much higher degree than non- 329

pretrained (NPT) models. The specific method 330

used for pretraining may also impact the sensitiv- 331

ity to different types of structures, such as adding 332

permutations to the pretraining objectives. 333

Tokenization schemes may be the most signifi- 334

cant confounding variable. By perturbing the local 335

ordering of characters, we also perturb the vocab- 336

ulary of models that rely on the precise order of 337

characters. 338

5.3 Models 339

We experiment with BiLSTMs (Schuster and Pali- 340

wal, 1997), Transformers (Vaswani et al., 2017), 341

4The hyperparameters used for the perturbation functions
are detailed in Appendix A.
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Figure 4: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of PT RoBERTa-Base model tested on the perturbed data. Left is more perturbed, up is better
performance. The X-axis of the Levenshtein Distance is inverted for clearer comparison.

and ConvNets to have an appropriate breadth of342

neural inductive biases. We experiment with three343

flavor of PT Transformers (RoBERTa-Base (Liu344

et al., 2019c), BART-Base (Lewis et al., 2019) and345

CharBERT-Base (Ma et al., 2020)), and a NPT346

Transformer (RoBERTa-Base architecture) to ver-347

ify the impact of pretraining. We also experiment348

with different tokenization schemes, using byte-349

pair encoding (BiLSTMs, ConvNet, RoBERTa-350

Base, BART-Base, NPT Transformer) as well as351

character-level tokenization (BiLSTMs, ConvNet,352

CharBERT-Base (Ma et al., 2020)), to isolate the353

impact of the destruction of a model’s vocabulary.354

The tokenization for PT Transformer models355

use their corresponding vocabulary, while NPT356

models (BiLSTM, ConvNet, Transformer) use the357

RoBERTa-Base vocabulary and the character-level358

models use characters exclusively as vocabulary5.359

Training is done once on the unperturbed dataset360

until convergence and evaluation is done on the361

perturbed version of the validation datasets. The362

training details can be found in Appendix A.363

6 Analysis364

6.1 Metrics and GLUE Performance365

We compute the average GLUE score of different366

models applied to the validation data perturbed367

with our different perturbation functions. The PT368

RoBERTa-Base results are plotted in Figure 46.369

First, we observe that word and subword-level370

perturbations are very limited in their impact on371

the local structure, but can affect the whole spec-372

trum of global structure. We observe the general373

trend that the chrF-2 metric strongly correlates with374

5The CharBERT model uses a mix of characters and sub-
word vocabulary.

6Results for all individual models can be found in Ap-
pendix C
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Figure 5: Rank correlation matrix between the models’
performance to perturbed samples on the GLUE bench-
mark and the perturbation quantified by the different
metrics. The higher the value the better the metric ex-
plains the degradation in performance.

neural models’ loss in performance on the GLUE 375

benchmark tasks across all perturbations and gran- 376

ularity of perturbations. While the Levenshtein 377

distance correlates somewhat with performance, it 378

fails to distinguish between neighbor flipping per- 379

turbations and phrase shuffle perturbations. The 380

compression rate is strongly correlated with per- 381

formance on character-level perturbations but does 382

not hold explanatory power for word and subword- 383

level perturbations, as they do not affect the vocab- 384

ulary, leading to the overall lower rank correlation 385

with performance degradation. 386

By computing the rank correlation between the 387

GLUE score of the different models on the per- 388

turbed samples and the metric measuring the per- 389

turbations (Figure 5), we see that the correlation 390

of GLUE score with the chrF-2 metric holds for 391

every single architecture and setting tested. On the 392

other hand, the Levenshtein distance is only weakly 393

correlated with performance decay. This implies 394

that local structure, more so than global structure, 395

is necessary for models to perform NLU. A model 396

being evaluated on a perturbed text with a chrF-2 397
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of 0.7 can be assumed to have much lower perfor-398

mance than on a perturbed text with a chrF-2 of399

0.95, irrespective of the granularity or the type of400

perturbations that yielded those metrics. This is not401

true of any of the other metrics.402

MRPC CoLA RTE STS-B SST-2 QNLI MNLI QQP

Le
v

Co
m

p
ch

rF

0.47 0.63 0.54 0.30 0.62 0.59 0.56 0.44

0.74 0.43 0.74 0.74 0.54 0.68 0.59 0.82

0.87 0.79 0.84 0.91 0.84 0.87 0.88 0.95
0.50

0.75

Figure 6: Rank correlation matrix between perturbations
measured by different metrics and the performance on
the different GLUE tasks of the PT RoBERTa model.

Looking at the individual tasks more closely, as403

in Figure 6, we see that the conclusions regarding404

the overall GLUE benchmark do hold for every405

task individually.406

6.2 Effect of Perturbations on Metrics407

As intended, the different perturbations have dif-408

ferent impact on our metrics, as shown in Figure 4.409

Thee neighbor flip perturbations objective was to410

obtain an arbitrary amount of local perturbation411

for a relatively small amount of global perturba-412

tion. We can observe that the Levenshtein distance,413

which measures the impact to the global structure,414

is smaller for the neighbor flip than for the phrase415

shuffle, even when the amount of local perturba-416

tion, as measured by the chrF-2 metric, is roughly417

equivalent. The compression rate is closely tied to418

the measure of local structure on character-level419

perturbations, but is static for word and subword420

perturbations as the tokens are never impacted.421

6.3 Correlation between metrics422

To confirm that the chrF-2 metric and the Leven-423

shtein Distance do measure orthogonal aspects of424

structure, we compute their pairwise pearson cor-425

relation in the GLUE validation set in Figure 77426

We also include the compression rate. Specifically,427

for every sample in the validation set of the GLUE428

tasks, we perturb them using the different pertur-429

bation functions and compute their scores with the430

different metrics.431

7For every correlation, we inverted the value of the Leven-
shtein Distance by flipping its signs to make the comparison of
the different correlations more straightforward. It is a measure
of perturbation and not similarity and is therefore inversely
correlated to the GLUE score and the other metrics.
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Figure 7: Correlation matrix between the different met-
rics on the GLUE tasks.

We observe that chrF-2 and the Levenshtein Dis- 432

tance have a fairly low correlation, suggesting that 433

the metrics measure different aspects of the pertur- 434

bations. We also observe a very high correlation 435

between the chrF-2 measure and the compression 436

rate, which motivates experiments that perturb one 437

without impacting the other to isolate the main 438

component causing the performance degradation. 439

6.4 Model specific analysis 440

The loss in performance of models in GLUE tasks 441

shows a greater degree of correlation with the chrF- 442

2 metric than any other metric, as shown in Fig- 443

ure 5, with the exception of the NPT Transformer 444

which we discuss in § 6.4.2. 445

6.4.1 Pretrained vs Non-Pretrained models 446

Figure 5 demonstrates that perturbations to the lo- 447

cal structure explain much of the degradation in 448

performance for both PT and NPT models. De- 449

spite the different pretraining schemes used, the 450

PT RoBERTa and BART model have a compara- 451

ble level of degradation across the different per- 452

turbations, showing that the choice of pretraining 453

scheme has a relatively small impact on perturba- 454

tion resistance. 455

All NPT models exhibit a strong correlation be- 456

tween the chrF-2 metric and their degradation in 457

performance on the GLUE tasks, which indicates 458

that the sensitivity to local structure is not an arti- 459

fact of pretraining. 460

6.4.2 NPT Transformer and Positional 461

Embeddings 462

Interestingly, the NPT Transformer bucks the over- 463

all trend by having very little correlation between 464

its performance and the Levenshtein Distance and 465

being more correlated to the compression rate than 466
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to the chrF-2 metric. As the Levenshtein Distance467

will roughly measure the amount of characters hav-468

ing their initial position perturbed, it having little469

correlation with performance in NPT Transform-470

ers implies that the absolute position of tokens is471

not taken into account by the NPT Transformers.472

We hypothesize that learning the positional embed-473

dings requires much more data than is present in474

a single NLU task, leading the NPT model to act475

as a bag-of-words model. This would explain why476

perturbations to the vocabulary are so impactful477

to the NPT Transformer, as it is unable to correct478

minor disturbances in words with the context of479

neighboring words.480

Towards studying this, we conduct an ablation481

study on the impact of positional embeddings with482

NPT and PT Transformers. We freeze the weights483

of the positional embeddings to 0, making them484

have no contribution to the overall output of the485

model. As we are interested in the marginal util-486

ity of positional embeddings with relation to NPT487

Transformers, we report the difference in perfor-488

mance between the model that has access to those489

embeddings and the model that does not (∆ GLUE490

Score). Without positional embeddings, a model491

has no information on the relative position of inputs492

and is forced to use only the bag-of-word informa-493

tion. In Figure 8, we can see that the performance494

of the NPT Transformer without positional em-495

bedding varies about ±2%, consistent across all496

levels of perturbations, while the PT model per-497

formance is strongly improved by the presence of498

the positional embeddings. This suggests that NPT499

Transformers barely make any use of the positional500

embeddings on those tasks8.501

6.5 Character-Level Experimentation502

As the results presented from experiments so far503

use subword tokenization, it is possible that the504

local perturbations being directly correlated with505

performance decay could be caused by the pertur-506

bation to the vocabulary. To control for vocabulary507

destruction as a possible explanation for the ob-508

served phenomenon, we train character-level BiL-509

STMs, ConvNets and finetune a PT CharBERT510

model on all tasks to evaluate whether the cor-511

relations between metrics and performance hold512

without multi-character vocabulary. Results shown513

in Figure 5 demonstrate that even when using a514

single-character vocabulary, the correlations be-515

8Further analysis is presented in Appendix C.2

tween performance for ConvNets, BiLSTMs, and 516

PT Transformers remains roughly static. This im- 517

plies that the destruction of the specific tokens used 518

by the model is not the main driver for the degra- 519

dation in performance leaving perturbation to the 520

local structure as the most likely explanation. 521

7 Discussion 522

Significance of Results While our results at the 523

extremes may be trivial, such that completely shuf- 524

fling the order of characters of a text removes all 525

the structure necessary for understanding, and that 526

destroying the local structure to an extreme also 527

prohibits models from building a useful represen- 528

tation of the text, it is not trivial that performance 529

correlates to this degree to local structure across 530

the whole spectrum of perturbations. In Figure 4, 531

fully shuffling the subwords of a text and randomly 532

flipping characters with their neighboring character 533

10% of the time obtains roughly the same GLUE 534

score and chrF-2 metric despite much different per- 535

turbations being applied and much different Lev- 536

enshtein distance and compression rate. The re- 537

moval of any amount of local structure correlating 538

directly to an equivalent drop in performance, with 539

little concern for the granularity or mechanics of 540

that removal of local structure, allows us to make 541

interesting conclusions on the kind of structure that 542

is used by neural models to build understanding. 543

Adversarial Attacks By better understanding 544

the specific mechanics that can induce failure in 545

neural language models, it is possible to develop 546

models that are more resistant to adversarial attacks. 547

As current models performances can be directly re- 548

lated to the preservation of character 2-grams in all 549

studied variations, this study demonstrates a very 550

likely vector of adversarial attacks that may be im- 551

portant to explore further. Gao et al. (2018) use 552

the Levensthein distance to measure and limit per- 553

turbations of black box adversarial attacks, similar 554

research relying on chrF-2 instead may be interest- 555

ing. 556

Tokenization Our results on the importance of 557

local structure could bear some implications for 558

tokenization. Recent research trends (Xu et al., 559

2021; Clark et al., 2021) look at alternatives and 560

improvements to BPE. The current research ap- 561

pears to be pushing towards smaller vocabulary at 562

finer granularity, even exploring simple byte-level 563

representations (Xue et al., 2021; Tay et al., 2021). 564
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Figure 8: Difference in GLUE scores between a Transformer and the same Transformer trained and tested with
positional embeddings frozen at 0. Results for NPT and PT models are shown.

We find that local clumps of characters contain565

the most essential structural information required566

to solve several NLU problems. As a large part567

of the complexity of NLU seems to be contained568

within the meaning of the specific order of clumps569

of characters, by having more of that local structure570

fixed through tokenization, it is possible to inject571

additional useful inductive biases into the model.572

The perturbation analysis discussed in our work573

could be used for better construction of vocabulary574

with improved heuristics.575

8 Conclusion576

Our results on the relative importance of local struc-577

ture in relation to global structure hint at the pos-578

sibility that much of the tested NLU tasks can579

be solved with a bag-of-words formulation. In-580

tuitively, local structure mainly relates to building581

meaningful words from the characters of a text582

whereas the global structure relates to the gen-583

eral order and word-level syntax being maintained.584

From our experiments, we observe that as long as585

the local structure is roughly maintained, a majority586

of NLU tasks can be solved without requiring the587

global structure. This correlates with similar find-588

ings by O’Connor and Andreas (2021). In essence,589

the structure required to build words seems to be590

necessary, but much of NLU can be solved with591

the information of which words (or subwords) are 592

present in the text, without regard to their relative 593

positions. 594

In this work, we have provided empirical results 595

demonstrating that, for deep learning models in 596

English NLU, perturbations to the local structure, 597

as measured by the chrF-2 metric, is highly cor- 598

related to downstream model performance which 599

implies that much of the information obtained from 600

the structure of text comes from the local struc- 601

ture. Perturbations to the global structure, as mea- 602

sured by the Levenshtein Distance, seems to only 603

have a limited correlation to performance, imply- 604

ing that models don’t generally rely on it to build 605

understanding. Reflecting on our results, we ob- 606

serve that perturbations on a local level explains 607

the (in)sensitivity of neural language models to 608

perturbations at different granularities on a variety 609

of NLU tasks. This paper hopefully provides use- 610

ful intuitions on the importance of different types 611

of structures in text for researchers looking into 612

tokenization, neural architectures and adversarial 613

attacks. Although the paper primarily focuses on 614

the effects of perturbations on English texts, extend- 615

ing the study to neural models on other languages 616

will be beneficial. 617
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A Experiment Details 953

Model Hyperparameters The results in the paper are averaged over 5 random seeds. We train 5 954

individual model on all tasks and apply a different random seed to the perturbations to each trained model 955

once. Early stopping was performed after 2 full epochs not resulting in better results on the validation set. 956

All models had similar model sizes, containing between 100 million and 130 million parameters. The 957

ConvNet architecture is the one described in Collobert and Weston (2008) and the BiLSTM architecture is 958

the one described in Zhao et al. (2015). The character embedding ConvNet uses a kernel of size 12 instead 959

of 3, to offset the much longer character sequences. Both the ConvNet and BiLSTM use the same hidden 960

size, dropout and word embedding size as the RoBERTa-Base model. Pretrained models used a learning 961

rate of 2e-5, a batch size of 32, a maximum of 5 epochs and a weight decay of 0.1. Non-pretrained 962

models used a learning rate of 1e-4, a batch size of 128, a maximum of 50 epochs and a weight decay 963

of 1e-6. All experiments used a warmup ratio of 0.06, as described in Liu et al. (2019c). Experiments 964

using characters as input used a maximum sequence length of 2048 inputs. All other experiments used a 965

maximum sequence length of 512. The Winograd Schema Challenge (WNLI) task was omitted from all 966

experiments as it contains well known issues and is often omitted (Liu et al., 2019c; Devlin et al., 2019; 967

Radford and Narasimhan, 2018). The validation set, instead of the test set, is used as the test set is kept 968

private for the GLUE benchmark. 969

Perturbations Subword-level perturbations were all done with the RoBERTa-Base tokenization. On 970

all level of granularity, we perform one experiment with in the full shuffling setting. On the word and 971

subword-level perturbations we perform phrase-shuffling with ρ values of: [0.8, 0.65, 0.5, 0.35, 0.2] and 972

neighbour-flip shuffling with ρ values of: [0.8, 0.6, 0.5, 0.4, 0.2]. On the character-level perturbations we 973

perform phrase-shuffling with ρ values of: [0.975, 0.95, 0.9, 0.8, 0.65, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.075, 974

0.05] and neighbour-flip shuffling with ρ values of: [0.8, 0.65, 0.5, 0.4, 0.3, 0.2, 0.1, 0.075, 0.05, 0.035, 975

0.025, 0.01]. A total of 11 word-level experiments, 11 subword-level experiments, 27 character-level 976

experiments and the unperturbed benchmark are evaluated for a grand total of 50 different perturbation 977

settings. 978

B Pseudocode for Metric and Perturbations 979

Function PhrasePerturbation(ρ ← 0.5, text←list):
all_phrases← list();
phrase← list(text[0])
for token in text[1 :] do

p ∼Uni f ([0,1]);
if p < ρ then

all_phrases.append(phrase);
phrase← list(token)

else
phrase← [phrase, token];

end
end
all_phrases.append(phrase);
perturbed_text← ‘’.join(shuffle(all_phrases))

return perturbed_text
Algorithm 1: Pseudocode for PhraseShuffle.
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Function NeighborFlip(ρ ← 0.5,text←list):
perturbed_tokens← list();
held_token← list(text[0])
for token in text[1 :] do

p ∼Uni f ([0,1]);
if p < ρ then

perturbed_tokens.append(held_token);
held_token← list(token)

else
perturbed_tokens← [perturbed_tokens, token];

end
end
perturbed_tokens.append(held_token);
perturbed_text← ‘’.join(perturbed_tokens)

return perturbed_text
Algorithm 2: Pseudocode for NeighborFlip.

C Other Results980

In this section, we add for all other tested models the results that were presented for the RoBERTa-Base981

model. They were not included in the main paper for simple economy of space.982

C.1 PT BART983

The PT BART model has results that are very much inline with the PT RoBERTa model.984
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Figure 9: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of PT BART-Base model tested on the perturbed data.
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Figure 10: Rank correlation matrix between perturbations measured by different metrics and the performance on the
different GLUE tasks of the PT BART model.
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C.2 NPT Transformer 985

The NPT Transformer has many interesting results that warrant additional analysis. In Figure 11, we 986

can observe that no word or subword-level perturbation have any effect on the models performance, 987

which implies that it considers inputs containing the same subwords in any order as equivalent. In other 988

words, it makes not use of the position of inputs. Looking at individual tasks in Figure 12, we further 989

observe that the correlations to the MRPC, CoLA and RTE tasks are all flat. By observing those tasks 990

performance individually in 13, we can see that the low correlation is simply caused by the fact that the 991

model is incapable to obtain above-chance performances on any of the tasks. Adding the results of the 992

NPT Transformer with positional embeddings frozen to 0, in Figure 14 and Figure 15, we can see little 993

difference between the NPT Transformer with and without positional embedding. 994
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Figure 11: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of NPT Transformer model tested on the perturbed data. The model does not seem to
consider the position of tokens which explains why word and subword-level perturbation do not seem to affect the
performances.
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Figure 12: Rank correlation matrix between perturbations measured by different metrics and the performance on the
different GLUE tasks of the NPT Transformer model. The model obtains a static chance score on the RTE task
and extremely low scores on the MRPC and CoLA tasks which explains the strange correlations. Those three tasks
have seen the greatest improvement on the GLUE benchmark from the introduction of PT models. Those are also
the three smallest tasks in the GLUE benchmark lending credence to the idea that positional embeddings are data
hungry.
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(a) NPT Transformer MRPC
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(b) NPT Transformer CoLA
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(c) NPT Transformer RTE

Figure 13: Plotted are the offending task for the strangeness in the NPT Transformer correlation. Those tasks seem
to rely on the position of inputs more then other tasks which would explain the comparatively poor performance of
the NPT Transformer.
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Figure 14: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of NPT Transformer with positional embeddings frozen at 0. We observe very similar results
to the NPT Transformers with positional embeddings.
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Figure 15: Rank correlation matrix between perturbations measured by different metrics and the performance on
the different GLUE tasks of with the NPT Transformer with positional embeddings frozen at 0. We observe very
similar results to the NPT Transformers with positional embeddings.

C.3 PT CharBERT 995

The PT CharBERT seem roughly inline with the other PT models, with generally more importance to the 996

chrF-2 and somewhat less importance to the compression rate. 997
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Figure 16: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of PT CharBERT model tested on the perturbed data.
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Figure 17: Rank correlation matrix between perturbations measured by different metrics and the performance on the
different GLUE tasks of the PT CharBERT model.
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C.4 ConvNet998

The ConvNet is inline with other models, with the exception that it fails to obtain any kind of performance999

on the RTE task.1000
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Figure 18: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of ConvNet model tested on the perturbed data.
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Figure 19: Rank correlation matrix between perturbations measured by different metrics and the performance on
the different GLUE tasks of the ConvNet model. Much like the NPT Transformer, it is unable to obtain above
chance-level on the RTE task.

C.5 BiLSTM1001

The BiLSTM is inline with other models performances.1002
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Figure 20: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of BiLSTM model tested on the perturbed data.
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Figure 21: Rank correlation matrix between perturbations measured by different metrics and the performance on the
different GLUE tasks of the BiLSTM model.

C.6 ConvNet Character Embeddings 1003
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Figure 22: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of BiLSTM model tested on the perturbed data.
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Figure 23: Rank correlation matrix between perturbations measured by different metrics and the performance on the
different GLUE tasks of the BiLSTM model.

C.7 BiLSTM with Character Embeddings 1004

The BiLSTM with Character Embeddings results seem roughly inline with the other models, with some 1005

failures on the CoLA, MRPC and RTE tasks. 1006
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Figure 24: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the performance of BiLSTM with character embeddings model tested on the perturbed data.
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Figure 25: Rank correlation matrix between perturbations measured by different metrics and the performance on the
different GLUE tasks of the BiLSTM with character embeddings model. In this case, the model struggles on the
RTE and CoLA task.
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