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ABSTRACT

We propose Pullback Flow Matching (PFM), a novel framework for generative
modeling on data manifolds. Unlike existing methods that assume or learn re-
strictive closed-form manifold mappings for training Riemannian Flow Matching
(RFM) models, PFM leverages pullback geometry and isometric learning to pre-
serve the underlying manifold’s geometry while enabling efficient generation and
precise interpolation in latent space. This approach not only facilitates closed-
form mappings on the data manifold but also allows for designable latent spaces,
using assumed metrics on both data and latent manifolds. By enhancing isomet-
ric learning through Neural ODEs and proposing a scalable training objective,
we achieve a latent space more suitable for interpolation, leading to improved
manifold learning and generative performance. We demonstrate PFM’s effective-
ness through applications in synthetic data, protein dynamics and protein sequence
data, generating novel proteins with specific properties. This method shows strong
potential for drug discovery and materials science, where generating novel sam-
ples with specific properties is of great interest.

1 INTRODUCTION

Data manifold (D) Latent manifold (M)

Figure 1: An example of isometric learning,
where the goal is to create a latent space that al-
lows for interpolation. The shortest paths (in red)
on the data manifold D ⊂ R3 correspond to the
shortest paths on the latent manifold M.

Since the rise of machine learning in the sci-
entific domain, researchers have focused on
developing larger models trained on increas-
ingly massive datasets, as in weather forecast-
ing (Bodnar et al., 2024) and protein structure
prediction (Hayes et al., 2024). However, rely-
ing on such scaling laws is not feasible in many
scientific fields where data is limited and pre-
cise modeling of physical phenomena is cru-
cial. In such cases, incorporating prior knowl-
edge about the geometry of the data as an induc-
tive bias enables models to make accurate inter-
polations between data points, which is essen-
tial for reliable predictions and realistic repre-
sentations of complex systems. Current meth-
ods, however, lack the mathematical founda-
tions to accurately interpolate in latent space
(Arvanitidis et al., 2017) and do not capture the underlying geometric structure of the data (Wessels
et al., 2024). Our goal is to develop mappings that enable precise interpolation in latent space, lever-
aging geometry as an inductive bias to facilitate efficient and accurate generation on data manifolds,
thereby advancing the ability to model complex physical phenomena with limited data.

We consider modeling the data under the manifold hypothesis, which states that high-dimensional
data lies on a lower dimensional manifold. This has been successfully applied to several downstream
tasks in various fields across the scientific domain (Vanderplas & Connolly, 2009; Dsilva et al., 2016;
Noé & Clementi, 2017). Modeling the data in its intrinsic dimension allows for efficient analysis
Diepeveen et al. (2024) and generation Rombach et al. (2022). Furthermore, accurately capturing the
geometry of the data manifold in the learning problem has shown to improve several down-stream
tasks such as clustering (Ghojogh et al., 2022), classification (Kaya & Bilge, 2019; Hauberg et al.,
2012) and generation (Arvanitidis et al., 2020; Sun et al., 2024).
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One way to achieve a latent manifold that supports interpolation is to have a structured Riemannian
geometry, such as the one from pullback geometry, which provides closed-form manifold mappings
(Diepeveen et al., 2024). This requires constructing an invertible and differentiable mapping—
diffeomorphism—between the data manifold and the latent manifold. Interpolation on manifolds is
then performed through geodesics, shortest paths, and thus to achieve our goal we require geodesics
on the data manifold to match geodesics on the latent manifold. This motivates our consideration of
isometries, that is, metric-preserving diffeomorphisms φ. These mappings preserve the distances of
points on the data manifold on the latent manifold, and thereby ensure proper interpolation.

Related-Work. In the literature, low-dimensional generation and generation on manifolds have typ-
ically been addressed as separate problems. Low-dimensional approaches, such as latent diffusion
(Rombach et al., 2022) or latent flow-matching (Dao et al., 2023), often overlook the geometric
structure of the data, leading to inaccuracies in tasks requiring a faithful representation of the un-
derlying manifold. Conversely, manifold generation methods either assume geodesics on the data
manifold for simulation-free training (Chen & Lipman, 2024)—an approach flawed when closed-
form mappings are unavailable—or attempt to learn a metric that forces the generative trajectories
to have data support (Kapusniak et al., 2024).

Using a pullback framework presents challenges, such as task-specific learning problems that limit
generality and prevent the learning of isometries across broader data manifolds Cuzzolin (2008);
Gruffaz et al. (2021); Lebanon (2006). Geometrically regularized latent space methods, like Lee
et al. (2022) and Duque et al. (2022), work in practice but lack solid mathematical grounding in
isometries, particularly guaranteeing diffeomorphism in architectural design. Diepeveen (2024) ad-
dresses isometry challenges with a more general mathematically grounded framework, but its learn-
ing objective’s expressivity and computational feasibility limit its application to high-dimensional
real-world datasets.

Our approach bridges these gaps by modeling data on a lower-dimensional latent manifold with
known geometry through a diffeomorphisms parameterized and trained in a scalable and expressive
way. By doing so we preserve the intrinsic properties of the data manifold and enable accurate and
efficient generation through simulation-free training.

Contributions. We propose Pullback Flow Matching (PFM), a novel framework for latent manifold
learning and generation through isometries. This method respects the geometry of the data manifold,
even when closed-form manifold mappings are not available. Second, learning can be performed in
the intrinsic dimension of the data manifold resulting in efficient and effective learning of the gener-
ative model with fewer parameters. Building on Diepeveen (2024), we leverage pullback geometry
to define a new metric on the entire ambient space, Rd, by learning an isometry φ that preserves the
geometric structure of the data manifold D on the latent manifold M. We use the corresponding
metric of the assumed latent manifold M to perform Riemannian Flow Matching (RFM) on the
latent manifold that supports interpolation. Our contributions are as follows:

1. We introduce PFM, a novel framework that enables accurate and efficient data generation
on manifolds. PFM leverages the pullback geometry to preserve the underlying geometric
structure of the data manifold within the latent space, facilitating precise interpolation and
generation.

2. We improve the parameterization of diffeomorphisms, used to learn isometries, in both ex-
pressiveness and training efficiency through neural ordinary differential equations (Neural
ODEs).

3. We introduce a scalable and stable isometric learning objective. This objective relies solely
on a distance measure on the data manifold, simplifying the training process compared to
Diepeveen (2024) while maintaining geometric fidelity.

4. We demonstrate our methods’ effectiveness through experiments on synthetic data, high-
dimensional molecular dynamics data, and experimental peptide sequences. Our frame-
work utilizes designable latent spaces to generate novel proteins with specific properties
closely matching reference samples. This directed generation showcases the significant ap-
plicability of isometric learning and PFM in accurate physical modeling and interpolation,
advancing generative modeling techniques in drug discovery and materials science. 1

1The anonymized code for the experiments on the synthetic data is available in the supplementary material.
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2 NOTATION

We give a brief summary of the notation used in the paper, and give a more extensive background
on Riemannian and pullback geometry in Appendix A.

A manifold M is a topological space that locally resembles Euclidean space. A d-dimensional
manifold M around a point p ∈ M is described by a chart ψ : U → Rd, where U ⊆ M is a
neighborhood of p. The chart provides a local coordinate system for the manifold. The tangent
space at a point p ∈ M, denoted TpM, is the vector space of all tangent vectors at that point.

A smooth manifold M equipped with a Riemannian metric is called a Riemannian manifold and
is denoted by (M, (·, ·)M). The Riemannian metric (·, ·)M is a smoothly varying inner product
defined on the tangent spaces TpM for all points p ∈ M, and it defines lengths and angles on the
manifold. A geodesic, γp,q(t) is the shortest path between two points p, q ∈ M, generalizing the
notion of a straight line in Euclidean space.

The exponential map expp : TpM → M maps a tangent vector Ξp to a point on the manifold by
following the geodesic in the direction of Ξp starting from p. The inverse of the exponential map is
the logarithmic map, denoted by logp : M → TpM, which returns the tangent vector corresponding
to a given point on the manifold.

In this work, we consider a d-dimensional Riemannian manifold
(
M, (·, ·)M

)
, and a smooth dif-

feomorphism φ : Rd → M, such that φ
(
Rd
)
⊆ M is geodesically convex, meaning that any pair

of points within this subset are connected by a unique geodesic. This mapping allows us to pullback
the geometric structure of M to Rd by defining the pullback metric on Rd. Specifically, for tangent
vectors Ξp,Φp ∈ TpRd, the pullback metric is defined as

(Ξp,Φp)
φ :=

(
φ∗[Ξp], φ∗[Φp]

)M
φ(p)

, (1)

where φ∗ is the pushforward of tangent vectors under φ. Through this construction, various geomet-
ric objects in M, such as distances and geodesics, can be expressed in terms of their counterparts in
Rd with respect to the pullback metric. The distance function dφRd : Rd × Rd → R on Rd with the
pullback metric is given by,

dφRd(xi,xj) = dM
(
φ(xi), φ(xj)

)
, (2)

where dM denotes the Riemannian distance on M. The length-minimizing geodesic connecting xi

and xj in Rd with respect to the pullback metric γφxi,xj
: [0, 1] → Rd is given by,

γφxi,xj
(t) = φ−1

(
γMφ(xi),φ(xj)

(t)
)
, (3)

here γM denotes the geodesic in M connecting φ(xi) and φ(xj). This enables computation of
geodesics and distances in Rd using the geometry of M, as stated in Prop. 2.1 of Diepeveen (2024).

Data manifold (D) Latent manifold (M)

Figure 2: Isometric learning for the rotated Swiss
roll in 3D. The learned geodesic path (in black)
on the data manifold D ⊂ R3 correspond to the
shortest paths on the latent manifold M = R3.

In this paper we will assume the standard Eu-
clidean metric (·, ·)2 and a Euclidean latent
manifold M = Rd. Hence, the pullback metric
will be defined as

(Ξp,Φp)
φ :=

(
φ∗[Ξp], φ∗[Φp]

)Rd

φ(p)
. (4)

We will calculate distances on the latent mani-
fold M = Rd through,

dφRd(xi,xj) = ∥φ(xi)− φ(xj)∥2, (5)

and the geodesic calculation will boil down to

γφxi,xj
(t) = φ−1

(
φ(xi)(1−t)+tφ(xj)

)
. (6)

An example of a pullback geodesic γφxi,xj
(t) on

the data manifold based on a geodesic on a latent Euclidean manifold can be viewed in Figure 2.

3
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3 PULLBACK FLOW MATCHING

We propose Pullback Flow Matching (PFM), a novel framework for generative modeling on data
manifolds using pullback geometry. Our goal is to transform samples from a simple distribution
x0 ∼ p on the data manifold D into a complex target distribution x1 ∼ q, also on D. Ideally, we
would perform this transformation using Riemannian Flow Matching (RFM), see Appendix A for a
summary, on

(
D, (·, ·)D

)
by optimizing the objective from Chen & Lipman (2024),

LRFM (η) = Et,q(x1),p(x0)

(∥∥∥vt(γDx1,x0
(t);η

)
− γ̇Dx1,x0

(t)
∥∥∥D
γD
x1,x0

(t)

)2
, (7)

where η represents the learnable parameters of the parameterized vector field vt(x;η). Solving this
objective on data manifolds becomes intractable as the training of RFM is no longer simulation-
free (Chen & Lipman, 2024). Existing methods address this challenge by employing restrictive and
computationally intensive manifold mappings (Kapusniak et al., 2024). We overcome this limitation
by defining a new metric on the ambient space Rd using the pullback metric (Diepeveen, 2024) and
assume a learned isometry φθ that approximates geodesics γφθ on

(
Rd, (·, ·)φθ

)
to those γD on(

D, (·, ·)D
)
. Rewriting the RFM objective under the pullback framework yields the objective,

LPFM (η) = Et,q(x1),p(x0)

(∥∥∥vt(γφθ
x1,x0

(t);η
)
− γ̇φθ

x1,x0
(t)
∥∥∥φθ

γ
φθ
x1,x0

(t)

)2
, (8)

By applying Equation 3, we reformulate the PFM objective in terms of manifold mappings on M,

LPFM (η) =

Et,q(x1),p(x0)

(∥∥∥vt(γMφθ(x1),φθ(x0)
(t);η

)
− γ̇Mφθ(x1),φθ(x0)

(t)
∥∥∥M
γM
φθ(x1),φθ(x0)

(t)

)2
, (9)

Assuming a latent manifold M with closed-form mappings enables simulation-free training on data
manifolds. For efficiency, we model the d-dimensional latent manifold as a product manifold, M =

Md′×Rd−d′
. By encoding samples close to the submanifold Md′ ⊂ M, isometric learning ensures

geodesics Md′ closely match geodesics on M. As a result, we formulate the d′-PFM objective,

Ld′−PFM (η) =

Et,q(x1),p(x0)

(∥∥∥vt(γMd′
φθ(x1),φθ(x0)

(t);η
)
− γ̇

Md′
φθ(x1),φθ(x0)

(t)
∥∥∥Md′

γ
M

d′
φθ(x1),φθ(x0)

(t)

)2
, (10)

The d′-PFM objective offers two key benefits. First, defining the objective on the submanifold Md′

results in computational speed-ups during training. Second, the known geometry on the submanifold
simplifies the training dynamics of the vector field vt(·;η), requiring fewer parameters η to learn
the sampling trajectories of the data manifold, see Table 3.

CFM

PFM

1-PFM

Figure 3: Trajectories of continous normalizing flows (CNF) (left) trained with Conditional Flow
Matching (CFM), PFM and 1-PFM objectives on the ARCH dataset compared to the data manifold
D (right). At t = 0 the trajectory starts with a standard normal distribution in the data space for
CFM and latent submanifold for (1-)PFM mapped back to the data space through φ−1

θ .
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Figure 4: Isometric learning for
coarse-grained protein confor-
mation data of adynalate kinase.
We define a new metric (·, ·)φ
on the entire ambient space, Rd

(d = 214 × 3), by learning
a diffeomorphism φ : Rd →
M that preserves a locally Eu-
clidean metric (·, ·)D on the la-
tent manifold M = Md′ ×
Rd−d′

for d′ = 1.

4 LEARNING ISOMETRIES

The motivation for learning isometries φθ—metric-preserving diffeomorphisms—is to enable a la-
tent (sub)manifold that supports interpolation with closed-form geometric mappings, facilitating
simulation-free training of PFM. Building on the framework of Diepeveen (2024), summarized
in Appendix A, we propose a more expressive parameterization of learnable diffeomorphisms φθ

through Neural ODEs and enhance the objective for scalable isometric learning on data manifolds.

4.1 PARAMETERIZING DIFFEOMORPHISMS

We parameterize diffeomorphisms, invertible and differentiable functions between two manifolds,
specifically φ : Rd → M. In practice, we construct the latent manifold as a product manifold,
M = Md′ × Rd−d′

and the diffeomorphism φ as,
φ := [ψ−1, Id−d′ ] ◦ ϕ ◦ Tµ, (11)

where ψ : U → Rd′
a chart on a geodesically convex subset U ⊂ Md′ of the d′-dimensional latent

submanifold
(
Md′ , (·, ·)Md′

)
, ϕ : Rd → Rd a diffeomorphism and Tµ(x) = x − µ, with µ the

average of the datapoints. We choose this construction because the manifold hypothesis translates to
assuming the data manifold is homeomorphic to Md′ . In such case, the rest of the latent manifold
should be mapped close to zero, e.g. φ(xi) is close to Md′ × 0d−d′

in terms of the metric on M.

We generate the diffeomorphism ϕ by solving a Neural ODE (Chen et al., 2018). The advantage
of this approach is threefold, i) this parameterization of diffeomorphisms is more expressive and
efficient to train compared to Invertible Residual Networks (Behrmann et al., 2019) as chosen by
Diepeveen (2024), ii) based on some mild technical assumptions a Neural ODE can be proven to
generate proper diffeomorphisms, see Appendix B for the proof, and iii) numerically the accuracy
and invertibility of the generated flow can be controlled through smaller step-sizes and higher-order
solvers.

To define the diffeomorphism ϕθ : Rd → Rd, we start with the Neural ODE governing the flow:
dz(t)

dt
= f(z(t);θ), (12)

where f : Rd → Rd is a vector field parameterized by a multilayer perceptron (MLP) with Swish
activation functions and a sine-cosine time embedding and θ denotes the parameters of the MLP.
Given an initial condition z(0) = x, the solution to this Neural ODE is:

ϕθ(x) := x+

∫ 1

0

f(z(t);θ) dt. (13)

To obtain the inverse ϕ−1
θ one has to integrate the differential equation backwards in time with

initial condition z(1). To solve the Neural ODE we implemented a Runge-Kutta solver in JAX, see
Appendix E for further architectural and training related details.

5
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4.2 LEARNING OBJECTIVE

The primary objectives of learning isometries are i) to map the data manifold
(
D, (·, ·)D

)
into a low-

dimensional geodesic subspace of
(
M, (·, ·)M

)
, specifically Md′ ⊂ M, and ii) to preserve local

isometry, as motivated by Proposition 2.1 and Theorems 3.4, 3.6, and 3.8 from Diepeveen (2024).

We build on the training objective from Diepeveen (2024) (summarized in Appendix A) and use
global isometry loss and submanifold loss to map the data manifold D to the lower-dimensional
geodesic subspace Md′ . We enhance this with the graph matching loss for isometric learning,
which enforces global isometry between the data and latent manifolds (Zhu et al., 2014), ensuring
that each sample is equally isometric to all others.

The original objective enforces local isometry—preserving geodesic distances in small neighbor-
hoods—via the pullback metric’s Riemannian tensor (·, ·)φ. However, this is computationally in-
tractable and poorly scalable. We address this by using the regularization in stability regulariza-
tion from Finlay et al. (2020), which more efficiently enforces local isometry, leading to a scalable
objective,

L(θ) = α1
1

n2

n∑
i=1

n∑
j=1

∥dφθ

Rd (xi,xj)− di,j∥2 (global isometry loss)

+ α2
1

n

n∑
i=1

∑
j ̸=i

∥(dφθ

Rd (xi,x·)− dφθ

Rd (xj ,x·))− (di,· − dj,·)∥2 (graph matching loss)

+ α3
1

n

n∑
i=1

∥∥∥∥[0d′ ∅
∅ Id−d′

]
(ϕθ ◦ Tµ)(xi)

∥∥∥∥
1

(submanifold loss)

+ α4
1

n

n∑
i=1

∫ 1

0

∥εT∇fθ(zi(t))∥2 dt. (stability regularization)

Here, ε ∼ N (0, I) and dφθ

Rd (xi,x·) and di,· denote the columns of the distance matrices induced
by (·, ·)φ and (·, ·)D. The benefit of this formulation is that it only requires approximating geodesic
distances di,j on the data manifold D, without needing to calculate or differentiate the metric tensor.
In section 5, we demonstrate the effectiveness of the graph matching loss and stability regularization
through an ablation study on synthetic and high-dimensional protein dynamics trajectories. We
do not include an ablation of the global isometry loss and submanifold losses, as these have been
thoroughly examined in Diepeveen (2024), and our experiments showed consistent results with those
previously reported.

5 EXPERIMENTS

The goal of this paper is to learn interpolatable latent (sub)manifolds for generation on data man-
ifolds. We achieve this through isometric learning in the framework of pullback geometry. In this
section we validate our methods on synthetic, simulated and experimental datasets, for full descrip-
tions see Appendix D. For details on the training procedure and hyperparameter settings we refer
the reader to Appendix E.

We begin our experiments with an ablation study of graph matching loss and stability regu-
larization, demonstrating the benefits of including both terms for learning isometries. Second,
we compare (latent) interpolation methods with interpolation on the latent manifold M, (·, ·)M-
interpolation, and on the latent submanifold Md′ , (·, ·)Md′ -interpolation. We demonstrate that we
can accurately interpolate on the data manifold by interpolating on the latent (sub)manifold 2. Third,
we validate PFM as a generative model on data manifolds and discuss how sample generation is im-
proved by generating on the submanifold Md′ . Finally, we inspect the designability of the latent
manifold through the choice of metric (·, ·)D in the task of small protein design.

2In these experiments we do not report interpolation through the Riemannian Auto-Encoder (RAE) by
Diepeveen (2024) due to the intractability of the training objective for the higher-dimensional datasets.
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5.1 ABLATION STUDY

The goal of the ablation study is to evaluate the effectiveness of the reformulated objective
function for learning isometries. To this end, we perform an ablation study for both the
graph matching loss and stability regularization on a synthetic ARCH dataset (n = 500,
d = 2) in the spirit of Tong et al. (2020) and a coarse-grained protein dynamics datasets
of intestinal fatty acid binding protein (I-FABP) (n = 500, d = 131 × 3). We report
three metrics on the validation set of 20 % of the data, invertibility εinv = 1

n

∑n
i=1 ∥xi −

φ−1
θ

(
φθ(xi)

)
∥2, low-dimensionality εld = 1

n

∑n
i=1

∥∥∥∥[0d′ ∅
∅ Id−d′

]
ϕθ(xi)

∥∥∥∥2
1

and isometry εiso =

1
n2

∑n
i=1

∑n
j=1 ∥di,j − dM

(
φ(xi), φ(xj)

)
∥2.

Table 1: Ablation study of isometric learning for ARCH dataset and I-FABP protein dynamics
datasets for graph matching loss (GM) and stability regularization (Stability). In both cases we
choose Md′ = R. We report the means for invertibility (↓), low-dimensionality (↓) and isometry
(↓) with standard devations denoted by ±. The distance (·, ·)D we assume on the data manifold D
is a locally Euclidean distance based on Isomap (Tenenbaum et al., 2000).

Data Metric None GM Stability Both

A
R

C
H

Invertibility 7.637 · 10−1 3.585 · 10−2 8.198 · 10−5 1.011 · 10−4

±9.872 · 10−1 ±1.939 · 10−2 ±1.061 · 10−5 ±6.069 · 10−5

Low-Dimensionality 6.520 · 10−4 4.531 · 10−4 1.407 · 10−2 1.373 · 10−2

±9.521 · 10−5 ±3.341 · 10−5 ±8.414 · 10−4 ±6.768 · 10−4

Isometry 2.334 · 10−3 1.464 · 10−3 2.018 · 10−3 1.544 · 10−3

±1.466 · 10−4 ±1.221 · 10−4 ±5.791 · 10−5 ±2.025 · 10−4

I-
FA

B
P Invertibility 2.995 · 10−5 2.891 · 10−5 2.973 · 10−5 2.809 · 10−5

±8.945 · 10−6 ±4.968 · 10−6 ±7.560 · 10−6 ±8.982 · 10−6

Low-Dimensionality 1.378 · 10−1 1.379 · 10−1 1.379 · 10−1 1.378 · 10−1

±1.952 · 10−4 ±1.424 · 10−4 ±1.788 · 10−4 ±1.981 · 10−4

Isometry 2.889 · 10−3 2.898 · 10−3 2.919 · 10−3 2.887 · 10−3

±1.384 · 10−4 ±1.667 · 10−4 ±1.571 · 10−4 ±1.387 · 10−4

Result. Table 1 demonstrates that incor-
porating both the graph matching loss and
stability regularization improves the invert-
ibility and isometry metrics across both
datasets, with the combined approach yield-
ing both a low εinv and εiso values, indi-
cating enhanced model performance in pre-
serving the geometry of the data in the syn-
thetic dataset as well as the more noisy and
high dimensional simulated dataset.

5.2 INTERPOLATION EXPERIMENTS

The goal of isometric learning is to learn
an interpolatable latent (sub)manifold of the
data manifold with closed-form manifold
mappings. To evaluate whether interpola-
tion on the latent (sub)manifold accurately
reflects interpolation on the data manifold,
we conduct an interpolation experiment us-
ing the synthetic ARCH dataset, as well as
the molecular dynamics datasets of Adeny-
late Kinase (AK) (n = 100, d = 214 × 3)
and I-FABP.

Figure 5: Example of (·, ·)Md′ -interpolation for
ARCH dataset in red. In blue the dataset {xi}ni=1,
black the true submanifold Md′ , the half circle,
and in orange the Isomap geodesic between orange
points.

In both cases we choose Md′ = R, see Appendix C for guidance on latent manifold and metric
selection. We approximate the metric on the data manifold (·, ·)D through the length of Isomap’s
geodesics Tenenbaum et al. (2000), see Figure 5 for an example. We compare the accuracy of the
100 longest geodesics between points in the test set for multiple (latent) interpolation methods.
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Table 2: Root mean square error (RMSE) (↓) of the 100 longest isomap geodesics between points in
the test set for 3 different seeds for different latent interpolation methods. We compare our methods,
(·, ·)M-interpolation and (·, ·)Md′ -interpolation, with variational autoencoders (VAEs) (Kingma &
Welling, 2013), β−VAEs (Higgins et al., 2017) and GRAE (Duque et al., 2022).

Interpolation Latent ARCH Swiss Roll AK I-FABP

Linear ✗ 0.331±0.049 0.573±0.018 0.554±0.131 0.494±0.022

VAE ✓ 0.526±0.024 0.596±0.085 1.235±0.477 0.405±0.023

β-VAE ✓ 0.527±0.025 0.640±0.066 0.919±0.631 0.368±0.009

GRAE (Isomap) ✓ 0.426±0.076 0.568±0.024 2.030±0.579 0.442±0.005

GRAE (PHATE) ✓ 0.128±0.052 0.660±0.150 1.012±0.395 0.474±0.040

(·, ·)M ✓ 0.097±0.030 0.159±0.054 0.296±0.058 0.415±0.025

(·, ·)Md′ ✓ 0.109±0.026 0.159±0.055 0.219±0.012 0.292±0.006

Result. The (·, ·)Md′ - and (·, ·)M-interpolation achieves superior interpolation accuracy with lower
root mean square error (RMSE) variablity compared to other models, indicating more robust and
reliable interpolation. (·, ·)Md′ -interpolation specifically demonstrates improvements over other
methods in the more stochastic and seemingly higher dimensional AK (d = 639) and I-FABP
(d = 642) datasets. This improvement suggests that compressing the latent representation into a
lower-dimensional space reduces the noise while accurately capturing the underlying data manifold.
Our findings demonstrate that accurate interpolation of protein dynamics trajectories of AK and I-
FABP can be achieved using a single-dimensional latent manifold. This method shows promise for
improving protein dynamics simulations, ultimately advancing understanding of protein dynamics.

5.3 GENERATION EXPERIMENTS

We demonstrate the effectiveness of our proposed method PFM for generation on data manifolds D.
We train two PFMs, one using the latent manifold M and one using the lower dimensional latent
submanifold Md′ , named PFM and d′-PFM respectively. Additionally, we train a Conditional Flow
Matching (CFM) model on the raw data as a comparison. A visual example of the learned generative
flows over time for the ARCH dataset can be viewed in Figure 3. To evaluate our generative methods,
we use the 1-nearest neighbour (NN) accuracy (Lopez-Paz & Oquab, 2016), which measures how
well the generated point clouds match the reference point clouds. Each point cloud is classified
by finding its nearest neighbor in the combined set of generated and reference point clouds. The
accuracy reflects how similar the generated point clouds are to the reference set, with an accuracy
close to 50% indicating successful learning of the target distribution.

Table 3: Evaluation of generative model performance across dimensionality of (latent)
(sub)manifold (↓), number of model parameters, denoted by # pars (↓), and 1-NN accuracy (1-
NN→ 0.5). The 1-NN metric measures the generative quality, with values closer to 0.5 indicating
better performance.

ARCH Swiss

Model dim # pars 1-NN dim # pars 1-NN

CFM 2 50562 0.295±0.031 2 50691 0.870±0.016

PFM 2 50562 0.262±0.025 2 50691 0.795±0.011

1-PFM 1 5697 0.487±0.027 1 16066 0.789±0.019

AK I-FABP

Model dim # pars 1-NN dim # pars 1-NN
CFM 642 4682325 0.386±0.000 393 1789941 0.365±0.004

PFM 642 4682325 0.356±0.097 393 1789941 0.452±0.017

1-PFM 1 5697 0.464±0.022 1 5697 0.508±0.006

Result. Figure 3 we see that the learned isometry to the latent manifold M acts as a strong man-
ifold prior, capturing the manifold structure at the start of the continous normalizing flows (CNF)
trajectory (t = 0.0). Additionally, the learned isometry to the latent submanifold Md′ captures
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the noiseless manifold revealing the underlying manifold used to generate the data. Through this
strong (noiseless) manifold prior, we see that both PFM and 1-PFM approximate the distribution
on the manifold earlier in the trajectory and better. Table 3 highlights the effectiveness of the 1-
PFM model in generative tasks. The 1-PFM model leverages the lower-dimensional isometric latent
manifold Md′ , significantly reducing the number of parameters required. Training the 1-PFM is
significantly faster due to the reduction in parameters and the dimensionality of the training sam-
ples. The 1-NN accuracy for 1-PFM approaches the ideal 0.5 across all datasets, indicating that this
model better captures the underlying distribution on the data manifold compared to CFM and PFM.

5.4 DESIGNABLE LATENT MANIFOLDS FOR NOVEL PROTEIN ENGINEERING

The goal of these experiments is to design a latent manifold that captures biologically relevant
properties of protein sequences, enabling the generation of novel proteins with specific character-
istics. By leveraging our method’s flexibility in defining the metric on the data manifold (·, ·)D,
we structure the latent space such that it captures protein properties, such as sequence similarity,
hydrophobicity, hydrophobic moment, charge, and isoelectric point.

To achieve this, we use protein sequences of up to 25 amino acids from the giant repository of AMP
activities (GRAMPA) dataset (see Appendix D for details). We construct the following custom
metric on the data manifold,

dD(xi, xj) = dLevenshtein(xi, xj) + dhydrophobicity(xi, xj) (14)
+ dhydrophobic moment(xi, xj) + dcharge(xi, xj) (15)
+ disoelectric point(xi, xj), (16)

where the Levenshtein distance measures the number of single-character edits (insertions, deletions,
or substitutions) required to transform one sequence into another.

For the remaining four properties—hydrophobicity, hydrophobic moment, charge, and isoelectric
point—distances are computed using the difference in property values between sequences. Specifi-
cally, for each property, we define the (pseudo)distance as,

d[property](xi, xj) = |fproperty(xi)− fproperty(xj)|. (17)
These (pseudo)distances are standardized by dividing by the maximum observed distance in the
training data. Since the Levenshtein distance is a proper metric, we ensure that the combined dis-
tance dD(xi, xj) remains a valid distance metric.

We use the designed metric (·, ·)D on the space of protein sequences with at most 25 amino acids in
the GRAMPA dataset to learn an isometry that preserves this metric on the latent manifold M and
latent submanifold Md′ .

To generate protein sequences with specific properties, we sample from a normal distribution around
the data points in the latent manifold z ∈ M or latent submanifold z ∈ Md′ . The variability of
this sampling process is aligned with the latent variability of the training data σztrain

, scaled by a
temperature factor τ , resulting in the following expression,

z
(analogue)
i = zi + τN (0, σztrain

I), and (18)

x
(analogue)
i = φ−1

θ (zi) for i = 1, . . . , ntest. (19)
This sampling methodology is referred to as analogue generation, as it does not involve explicitly
learning the distribution over the latent manifold. Instead, it generates novel sequences by sampling
around existing data points on the latent (sub)manifold of the test set.

We apply this process to both the latent manifold M and its submanifold Md′ . To evaluate the
effectiveness of the generated sequences, we measure the number of unique sequences that were not
present in the original dataset and compare the properties of the generated samples to the properties
of their base points. For further specifics on hyperparameters and training procedures, refer to
Appendix E.

Results. The application of our designed latent manifold facilitated the generation of diverse novel
protein sequences, demonstrating the effectiveness of the analogue generation methodology. As il-
lustrated in Table 4, increasing the temperature parameter, τ , directly influenced the diversity of gen-
erated sequences. At lower temperatures (τ ≤ 0.1), many unique sequences emerged while main-
taining similarity to their base points, as indicated by non-significant KS test values. Conversely,
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Table 4: Unique protein sequences generated via analogue generation on the latent manifold M and
its submanifold Md′ at various temperatures (τ ). The table presents the total sequences generated
(Total), those already in the dataset (In Data), and the number of novel sequences (Novel). We
perform a Kolmogorov-Smirnov test at a 5% significance level to compare novel sequences with
their base points. Non-significant Kolmogorov-Smirnov values are shown as X/Y, where X is the
number of non-significant properties and Y is the total properties tested.

M Md′

τ Total In Data Novel Non-Sign. KS Total In Data Novel Non-Sign. KS

0.01 689 652 37 5/5 687 5 682 2/5
0.05 689 103 586 5/5 689 4 685 2/5
0.1 689 35 654 5/5 689 4 685 2/5
0.2 689 12 677 2/5 689 0 689 2/5
0.5 689 1 688 1/5 689 0 689 1/5
1 689 0 689 0/5 689 0 689 0/5

higher temperatures (τ > 0.1) resulted in a significant increase in novel sequences, accompanied by
significant KS values suggesting greater divergence from base sequences. This observation supports
the hypothesis that novel sequences generated close to the base points are structurally similar, high-
lighting the effectiveness of isometric learning in structuring the latent space. Overall, our results
indicate that temperature manipulation can strategically balance novelty and similarity, paving the
way for innovative applications in protein engineering.

Figure 6: Latent interpolation between a protein
with a high hydrophobic moment and low charge
and a protein with a low hydrophobic moment and
high charge.

Latent interpolation experiments, illustrated
in Figure 6, further demonstrate the poten-
tial of our approach. By interpolating be-
tween sequences with contrasting properties,
we revealed a smooth transition of character-
istics within the latent space, reinforcing our
method’s capability to fine-tune specific protein
attributes. This smooth transition indicates that
our latent manifold can be effectively navigated
to explore a continuum of properties such as
hydrophobicity, hydrophobic moment, charge,
and isoelectric point, which are essential for de-
termining protein solubility, stability, and inter-
action behavior. This capability allows for the
targeted design of protein sequences that could
be optimized for specific biochemical contexts,
potentially enhancing their performance in ap-
plications like enzyme catalysis or therapeu-
tic development. In summary, the efficacy of
our designed latent manifold not only expands
the repertoire of available protein sequences but
also ensures retention of biologically relevant properties, positioning this approach as a valuable tool
for precision in protein engineering.

6 CONCLUSION

We introduce Pullback Flow Matching (PFM), a novel framework for simulation-free training of
generative models on data manifolds. By leveraging pullback geometry and isometric learning, PFM
allows for closed-form mappings on data manifolds while enabling precise interpolation and efficient
generation. We demonstrated the effectiveness of PFM through applications in synthetic protein dy-
namics and small protein generation, showcasing its potential in generating novel, property-specific
samples through designable latent spaces. This approach holds significant promise for advancing
generative modeling in fields like drug discovery and materials science, where precise and efficient
sample generation is critical.
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A BACKGROUND

To achieve an interpolatable latent manifold we take a Riemannian geometric perspective. We start
by introducing the notation and key concepts of differential and Riemannian geometry, for a formal
description see Lee (2012). Second, we explain prior work on RAEs Diepeveen (2024), a framework
for constructing interpolatable latent manifolds. Third, we summarize CFM for generative modeling
Lipman et al. (2022), a scalable way to train generative models in a simulation-free manner. Finally,
we discuss how RFM Chen & Lipman (2024) generalize CFM to Riemannian manifolds.

A.1 RIEMMANIAN GEOMETRY

A d-dimensional smooth manifold M is a topological space that locally resembles Rd, such that for
each point p ∈ M, there exists a neighborhood U of p and a homeomorphism ψ : U → Rd, called
a chart. Then the tangent space TpM at a point p ∈ M is a vector space consisting of the tangent
vectors at p representing the space of derivations at p.

A Riemannian manifold
(
M, (·, ·)M

)
is a smooth manifold M equipped with a Riemannian metric

(·, ·)M, which is a smoothly varying positive-definite inner product on the tangent space TpM at
each point p. The Riemannian metric (·, ·)M defines the length of tangent vectors and the angle
between them, thereby inducing a natural notion of distance on M based on the lengths of tangent
vectors along curves between two points.

The shortest path between two points on M is called a geodesic, which generalizes the concept of
straight lines in Euclidean space to curved manifolds. Geodesics on Riemannian manifold are found
by minimizing

E(γ) =
1

2

∫ 1

0

(
γ̇(t), γ̇(t)

)
γ(t)

dt, (20)

whereas

L(γ) =

∫ 1

0

√(
γ̇(t), γ̇(t)

)
γ(t)

dt (21)

defines the distance between two points on the manifold. The exponential map,

expp : TpM → M, (22)

at p maps a tangent vector Ξp ∈ TpM to a point on M reached by traveling along the geodesic
starting at p in the direction of Ξp for unit time. The logarithmic map,

logp : M → TpM, (23)

is the inverse of the exponential map, mapping a point q ∈ M back to the tangent space TpM at p.

These names, ’exponential’ and ’logarithmic’ map, are geometric extensions of familiar calculus
concepts. Just as the exponential function maps a number to a point on a curve, the exponential
map on a manifold maps a direction and starting point to a location along a geodesic. Similarly,
the logarithm in calculus reverses exponentiation, and the logarithmic map on a manifold reverses
the exponential map, returning the original direction and distance needed to reach a specified point
along the geodesic.

Assume
(
M, (·, ·)M

)
is a d-dimensional Riemannian manifold and a smooth diffeomorphism φ :

Rd → M, such that φ(Rd) ⊆ M is geodesically convex, i.e., geodesics are uniquely defined on
φ(Rd). We can then define the pullback metric as

(Ξp,Φp)
φ
p :=

(
φ∗[Ξp], φ∗[Φp]

)
φ(p)

, (24)

for tangent vectors Ξp and Φp, where φ∗ is the pushforward. These mappings allow us to define all
relevant geometric mappings in Rd in terms of manifold mappings on M, see e.g. Proposition 2.1
of Diepeveen (2024):

1. Distances dφRd : Rd × Rd → R on
(
Rd, (·, ·)φ

)
are given by,

dφRd(xi,xj) = dM
(
φ(xi), φ(xj)

)
, (25)
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2. Length-minimizing geodesics γφxi,xj
: [0, 1] → Rd on

(
Rd, (·, ·)φ

)
are given by,

γφxi,xj
(t) = φ−1

(
γMφ(xi),φ(xj)

(t)
)

(26)

3. Logarithmic maps logφxi
: Rd → Txi

Rd on
(
Rd, (·, ·)φ

)
are given by,

logφxi
(xj) = φ−1

∗

[
logMφ(xi)

(
φ(xj)

)]
(27)

4. Exponential maps expφxi
: Gxi

→ Rd for Gxi
:= logφxi

(Rd) ⊂ Txi
Rd on

(
Rd, (·, ·)φ

)
are

given by
expφxi

(Ξxi
) = φ−1

(
expMφ(xi)

(φ∗[Ξxi
])
)

(28)

A visual example of pullback geometry is given in Figure 7. Pullback geometry allows us to
remetrize all of space Rd, including the data manifold D ⊂ Rd, through the pullback metric. We
can use it to define geometric mappings on

(
Rd, (·, ·)φ

)
, including geodesics (see Equation 26),

through geometric mappings on the latent manifold M. Next, we summarize work on Riemannian
Auto-Encoders, that leverage pullback geometry to create an interpolatable latent manifold.

Figure 7: Example of pullback geometry for φ : Rd → M with M = Md′×Rd−d′
for Md′ = Rd′

,
d = 3 and d′ = 2. Samples φ(xi) are close to elements of Md′ × 0d−d′

.

A.2 RIEMANNIAN AUTO-ENCODER

The goal of RAEs is to create a interpolatable latent representation of the data. This is achieved
through data-driven (pullback) Riemannian geometry, encoding the data onto a latent manifold with
known geometry. The benefit of this, is that interpolation on the data manifold corresponds to
interpolation on the latent manifold. Resulting in a more interpretable latent space compared to
traditional auto-encoders.

Similar as in Diepeveen (2024), we define a RAE as a Riemannian Encoder RE : Rd → Rr and
Riemannian Decoder RD : Rr → Rd,

RAE(x) := (RD ◦RE)(x) s.t., (29)

RE(x)k := (logφz (x),v
k
z)

φ
z for k = 1, . . . r, (30)

RD(a) := expφz

(
r∑

k=1

akv
k
z

)
(31)

where z denotes a base point and (·, ·)φz the pullback metric at z. Furthermore,

vk
z :=

d∑
l=1

WlkΦ
l
z, (32)

represents the basis vectors of the latent space in the tangent space TzRd. Let Φl
z ∈ TzRd be an

orthonormal basis in the tangent space at z with respect to (·, ·)φz and define

Xi,l =
(
logφz (x

i),Φl
z

)φ
z

for i = 1, . . . , n and l = 1, . . . , d. (33)
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We can compute W through a Singular Value Decomposition (SVD) of X .

X = UΣW T , (34)

where U ∈ RN×R, Σ = diag(σ1, . . . , σR) ∈ RR×R with σ1 ≥ · · · ≥ σR, W ∈ Rd×R and where
R := rank(X). The first r columns of W , corresponding to the largest singular values, are selected
to form the matrix W ∈ Rd×r. This parameter r allows one to set the dimensionality of the latent
representation of the RAE, if r = d then the RAE reduces to RAE(x) = expφz

(
logφz (x)

)
.

To learn a RAE, one needs to first construct a diffeomorphism and define an objective function. In
Diepeveen (2024) diffeomorphisms are constructed by,

φ := [ψ−1, Id−d′ ] ◦ ϕ ◦O ◦ Tz, (35)

where ψ : U → Rd′
is a chart on a (geodesically convex) subset U ⊂ Md′

of a d′-dimensional
Riemannian manifold (Md′

, (·, ·)M′
d
), ϕ : Rd → Rd is a real-valued diffeomorphism, O ∈ O(d) is

an orthogonal matrix, and Tz : Rd → Rd is given by Tz(x) = x−z. The learnable diffeomorphism
φ := φθ is constructed through parameterizing ϕ := ϕθ by an invertible residual network Behrmann
et al. (2019).

A.3 LEARNING ISOMETRIES WITH RIEMANNIAN AUTO-ENCODERS

After constructing the diffeomorphism and Riemannian Auto-Encoder, one can learn an isometry by
find the parameters θ of φθ in Diepeveen (2024) through minimizing the objective,

L(θ) = 1

N(N − 1)

N(N−1)∑
i,j=1,i̸=j

(
dφθ

Rd (xi,xj)− di,j
)2

(global isometry loss)

+ αsub
1

N

N∑
i=1

∥∥∥∥[Id−d′ ∅
∅ 0d′

]
(ϕθ ◦O ◦ Tz)(xi)

∥∥∥∥
1

(submanifold loss)

+ αiso
1

N

N∑
i=1

∥∥∥∥∥
((

ej , ej
′
)φθ

xi

)d

j,j′=1

− Id

∥∥∥∥∥
2

F

, (local isometry loss)

where ∥ · ∥F is the Frobenius norm and
((

ej , ej
′
)φθ

xi

)d

j,j′=1

denotes a d-dimensional matrix just

as (Aij)
d
i,j=1 denotes a matrix.

First, the global isometry loss takes global geometry into account, ensuring that the learned dis-
tances under the diffeomorphism φθ approximate the true pairwise distances di,j between data
points. Second, the submanifold loss enforces that the data manifold is mapped to M =

Md′ × Rd−d′
, preserving the submanifold structure of the data in the latent space. Finally, the

local isometry loss enforces local isometry, ensuring that small-scale distances and local geome-
try are preserved under the transformation, which is critical for maintaining the intrinsic geometric
properties of the data during dimensionality reduction. For further details on the implementation
and theoretical considerations, see Diepeveen (2024).
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A.4 CONDITIONAL FLOW MATCHING

To achieve the goal of accurate generative modeling on data manifolds through isometric learning,
we first need to understand generative modeling on Euclidean spaces. We do this through summa-
rizing CFM Lipman et al. (2022), a commonly used and effective framework for learning CNFs for
generative modeling for Euclidean data Chen et al. (2018). CFM is a method designed to map a
simple base distribution to a target data distribution by learning a time-dependent vector field. The
fundamental goal of Flow Matching (FM) is to align a target probability path pt(x) with a vector
field ut(x), which generates the desired distribution. The FM objective is defined as follows:

LFM(η) = Et,pt(x)∥vt(x;η)− ut(x)∥2, (36)

where η represents the learnable parameters of the neural network that parameterizes the vector
field vt(x;η), and t ∼ U(0, 1) is uniformly sampled. However, a significant challenge in FM is the
intractability of constructing the exact path pt(x) and the corresponding vector field ut(x).

To address this Lipman et al. (2022) introduce CFM, a more practical approach by constructing the
probability path and vector fields in a conditional manner. The CFM objective is then formulated by
marginalizing over the data distribution q(x1) and considering the conditional probability paths:

LCFM(η) = Et,q(x1),pt(x|x1)∥vt(x;η)− ut(x|x1)∥2. (37)

A key result, as established in Theorem 2 of Chen & Lipman (2024), is that the gradients of the
CFM objective with respect to the parameters η are identical to those of the original FM objective,
i.e.,

∇ηLFM(η) = ∇ηLCFM(η), (38)

ensuring that optimizing the CFM objective yields the same result as the original FM objective. This
enables effective train of the neural network without needing direct access to the intractable marginal
probability paths or vector fields.

Given a sample x1 from the data distribution q(x1), we define a conditional probability path
pt(x|x1)

3. This path starts at t = 0 from a simple distribution, typically a standard Gaussian,
and approaches a distribution concentrated around x1 as t→ 1:

pt(x|x1) = N (x|µt(x1), σt(x1)
2I), (39)

where µt(x1) : [0, 1] × Rd → Rd is the time-dependent mean, and we denote the time-dependent
standard deviation as σt(x1) : [0, 1]× R → R>0. For simplicity, we set µ0(x1) = 0 and σ0(x1) =
1, ensuring that all conditional paths start from the same standard Gaussian distribution. At t = 1,
the path converges to a distribution centered at x1 with a small standard deviation σmin.

The corresponding conditional vector field ut(x|x1) can be defined by considering the flow:

χt(x) = σt(x1)x+ µt(x1), (40)

which maps a sample from the standard Gaussian to a sample from pt(x|x1). The vector field
ut(x|x1) that generates this flow, as proven by Lipman et al. (2022) in Theorem 3, is given by:

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1), (41)

where the primes denote derivatives with respect to time to stay consistent with the original papers
notation.

In this work, we choose to use the optimal transport (OT) formulation of CFM. Here, the mean
µt(x1) and standard deviation σt(x1) are designed to change linearly in time, offering a straightfor-
ward interpolation between the base distribution and the target distribution. Specifically, the mean

3In this work, we use two types of indexing: xt to denote time indices and xi for different data points. It
should be clear from the context which indexing is being used.
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and standard deviation are defined as:

µt(x1) = tx1, σt(x1) = 1− (1− σmin)t. (42)

This linear path results in a vector field ut(x|x1) given by:

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
. (43)

The corresponding conditional flow that generates this vector field is:

χt(x) = (1− (1− σmin)t)x+ tx1. (44)
This OT path is optimal in the sense that it represents the displacement map between the two Gaus-
sian distributions p0(x|x1) and p1(x|x1) Lipman et al. (2022).

The final CFM loss under this OT formulation is derived by substituting the above vector field and
flow into the general CFM objective (Equation 37) and reparameterizing pt(x|x1) in terms of x0.
This yields the following objective function:

LCFM(η) = Et,q(x1),p(x0)

∥∥∥∥vt(χt(x0);η)−
x1 − (1− σmin)x0

1− (1− σmin)t

∥∥∥∥2 . (45)

This formulation is advantageous because the OT paths ensure that particles move in straight lines
and with constant speed, leading to simpler and more efficient regression tasks compared to tra-
ditional diffusion-based methods. We use the OT-CFM objective in this work when we refer to
CFM.
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A.5 RIEMANNIAN FLOW MATCHING

The next step toward generation on data manifolds is understanding generation on manifolds with
closed form geometric mappings. RFM aims to do exactly this by generalizing CFM to Rieman-
nian manifolds Chen & Lipman (2024). Assume a complete, connected and smooth manifold M
endowed with a Riemannian metric (·, ·)M. We are given a set of training samples x1 ∈ M from
some unknown data distribution q(x1) on the manifold. Then the goal is to learn a parametric map
ρ : M → M that pushes a simple base distribution p to the data distribution q. To achieve RFM
Chen & Lipman (2024) reparameterize the conditional flow as

xt = χt(x0|x1), (46)

where χt(x0|x1) is the solution to the ordinary differential equation (ODE) defined by a time-
dependent conditional vector field ut(x|x1) ∈ TxM that is tangent to the manifold M. The initial
condition is set as χ0(x0|x1) = x0.

This formulation leads to the RFM objective, which ensures that the vector field ut(x|x1) learned
by the model lies entirely within the tangent space of the manifold at each point xt ∈ M:

LRFM(η) = Et,q(x1),p(x0)

(
∥vt(xt;η)− ut(xt|x1)∥Mxt

)2
, (47)

where ∥ · ∥M is the norm enduced by the Riemannian metric (·, ·)M. For manifolds with closed-
form geodesic expressions, a simulation-free objective can be formulated using exponential and
logarithmic maps. This approach allows models to be trained without numerically simulating par-
ticle trajectories, leveraging closed-form geodesics and mappings to directly compute vector fields
and transport paths. In this case, xt can be defined by the geodesic between x1 and x0 and can be
explicitly expressed as

xt = γMx1,x0

(
κ(t)

)
= expMx1

(
κ(t) logMx1

(x0)
)
, (48)

with monotonically decreasing differentiable function κ(t) satisfying κ(0) = 1 and κ(1) = 0 acting
as a scheduler. Furthermore, the tangent vector field ut(x|x1) can be evaluated through,

ut(x|x1) = γ̇Mx1,x0

(
κ(t)

)
=

d

dt
expMx1

(
κ(t) logMx1

(x0)
)

(49)

The objective function is then given by:

LRFM(η) = Et,q(x1),p(x0)

(∥∥vt(γMx0,x1

(
κ(t)

)
;η)− γ̇Mx0,x1

(
κ(t)

)∥∥M
p

)2
(50)

Constructing a simulation-free objective for RFM on general geometries presents significant chal-
lenges due to the absence of closed-form expressions for essential geometric operations, such as
exponential and logarithmic maps, or geodesics. These operations are crucial for defining and ef-
ficiently evaluating the objective but are often computationally intensive to approximate without
closed-form solutions. For a list of examples of manifolds with closed-form geometric mappings,
see the appendix of Chen & Lipman (2024).

In the absence of such closed-form solutions, existing methods tackle these difficulties by either
learning a metric that constrains the generative trajectory to align with the data support Kapusniak
et al. (2024) or by assuming a metric with easily computable geodesics on the data manifold Chen
& Lipman (2024). However, learning a metric can be problematic as it may lead to overfitting
or fail to capture the true geometry of the data, particularly when the data manifold is complex
or poorly understood. On the other hand, assuming a simple metric with computable geodesics
can oversimplify the problem, resulting in models that inadequately represent the underlying data
structure. To overcome these challenges, we introduce Pullback Flow Matching in section 3.
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B NEURAL ODES PARAMETERIZE DIFFEOMORPHISMS

We can verify that this defines a diffeomorphism by using Theorem C.15 of Younes (2010).
According to Theorem C.15, for ϕθ to be a diffeomorphism, the vector field f must satisfy
f ∈ L1([0, 1], C1

(0)(Ω,B)), where Ω is the domain of the vector field and B is a Banach space
representing the target space.

In our case, f is composed of smooth and continuously differentiable functions due to the MLP
parameterization, ensuring f is also smooth and continuously differentiable. Additionally, we en-
force local isometry by regularizing the Jacobian of fθ, which guarantees local regularity of f in the
data domain (see stability regularization). Thus, f meets the required conditions and ϕθ defines a
proper diffeomorphism.

C MANIFOLD AND METRIC SELECTION

Isometric learning requires three key choices to be made, first one needs to choose the Riemannian
metric of the data manifold (·, ·)D, second one needs to choose both the latent (sub)manifold and its
Riemannian metric

(
Md′ , (·, ·)Md′

)
and finally one needs to choose the dimensionality d′. Techni-

cally one also needs to assume a metric on Rd−d′
, but in this work we assume a Euclidean metric

(·, ·)2 throughout all our experiments.

There are several options when selecting the metric on the data manifold (·, ·)D. One can choose for
example a locally euclidean approximation through Isomap Tenenbaum et al. (2000) or a more noise-
robust geodesic approximation Little et al. (2022). One can also design a metric to create a latent
space 4 structured based on properties of the data one cares about, we show how in subsection 5.4.
In this work, we focus on using a proper metric and defer the exploration of learning with pseudo-
metrics to future research.

When selecting a latent Riemannian (sub)manifold and metric it is crucial to select Md′ such that
M = Md′ ×Rd−d′

it is diffeomorphic to the data manifold D. This ensures that the latent space of
the RAE can effectively capture the intrinsic structure of the data. The manifold should be chosen
based on its ability to accommodate the data’s periodicity, curvature, and dimensionality. This
alignment is essential for accurately representing the data manifold within the latent space. Unless
otherwise stated we assume Md′ = Rd′

. Additionally, one should select the Riemannian geometry
of
(
Md′ , (·, ·)Md′

)
such that geometric mappings can be explicitly defined in closed form. A list of

manifolds with closed form geometric mappings can be found in the appendix of Chen & Lipman
(2024). Unless otherwise states we select (·, ·)Md′ = (·, ·)2.

Finally, d′, the dimensionality of the latent space, is a hyperparameter that could be tuned through
iterative testing. Techniques such as Isomap Tenenbaum et al. (2000) or equivalents on other mani-
folds such as hyperbolic space Cvetkovski & Crovella (2011) can be employed to evaluate various
dimensional and Riemannian geometric settings and determine the optimal d′ that balances model
complexity with the ability to accurately capture the data manifold’s structure.

4In this text we refer to the latent space as the concept in machine and representation learning, technically
its a latent manifold endowed with a Riemannian metric, not a vector space.
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D DATA DESCRIPTION

In this work we use several datasets, synthetic, simulated and experimental. Here we describe them
in order of appearance in the experiments.

D.1 ARCH DATASET

We create a dataset in the spirit of Tong et al. (2020). We sample n = 500 data points uniform on the
line [−1, 1] (xi ∼ U(−1, 1)), wrap this line around the unit half circle and add normally distributed
noise with σ = 0.1, i.e.

yi,1 = sin(0.5πxi) + ai,1, yi,2 = cos(0.5πxi) + ai,2 for ai,j ∼ N (0, 0.12). (51)

An example of the dataset can be found in Figure 5.

D.2 ADENYLATE KINASE (AK)

We consider the time-normalized open-to-close transition of AK. This is a dataset from coarse-
grained molecular dynamics simulations consisting of n = 102 conformations of 214 amino-acids
in 3D, samples of the trajectory can be found in Figure 8.

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Figure 8: Example of the open-to-close transition of adynalate kinase protein.

D.3 INTESTINAL FATTY ACID BINDING PROTEIN

The second protein dynamics dataset is that of n = 500 conformations of I-FABP in water. The
datasets comes from simulations in CHARMM of 500 picoseconds (ps) with a 2 femtoseconds (fs)
timestep. The data can be found on mdanalysis.org.

D.4 GRAMPA DATASET

The giant repository of AMP activities (GRAMPA) dataset Witten & Witten (2019) is a compilation
of peptides and their antimicrobial activity against various bacteria, including E. coli and P. aerugi-
nosa. It includes data on peptide sequences, target bacteria, bacterial strains, and minimal inhibitory
concentration (MIC) values, with additional columns providing details on sequence modifications
and data sources. The dataset was created to support deep learning models aimed at predicting the
antimicrobial effectiveness of peptides. The dataset is available here. In our experiments we follow
the preprocessing pipeline from Szymczak et al. (2023) and use only the sequence data and the cor-
responding MIC scores. After preprocessing we are left with n = 3444 sequences of maximum 25
amino-acids with tested antimicrobial activity against E. coli.
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E TRAINING PROCEDURE

We explain the training procedure and hyperparameter settings for each of the experiments in sec-
tion 5 in further detail for reproducibility. In all experiments the datasets where split into train and
test sets. We apply early stopping and present the model with the lowest average loss on the test
data.

E.1 ABLATION STUDY

For details of hyperparameter settings for the ablation study see Table 5.

Table 5: Hyperparameter settings for ablation study of RAE on the ARCH, AK and I-FABP datasets.

Hyperparameter ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
nsteps 10 10 10
Seed 0 0 0
Number of Layers 5 5 5
α1 1.0 1.0 1.0
α2 [0.0, 1.0] [0.0, 5.0] [0.0, 5.0]
α3 1.0 1.0 1.0
α4 [0.0, 0.01] [0.0, 0.005] [0.0, 0.1]
d′ 1 1 1
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Number of Neighbors 5 2 4
Batch Size 64 16 64
Warmup 50 400 200

Specific hyperparameters worth mentioning are nsteps which is the number of Runge-Kutta steps we
use in our Neural ODE, Number of Layers is the number of layers of the MLP with swish activation
function for the vector field of the Neural ODE. The Number of Neighbors is the hyperparameter
used to calculate the shortest paths over the nearest neighbors graph for the Isomap geodesics in
sklearn and the Warmup is the number of epochs we train with α1, α2 = 0 to first learn a lower
dimensional representation.
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E.2 INTERPOLATION EXPERIMENTS

For details of hyperparameter settings for the interpolation experiments of (·, ·)M- and (·, ·)Md′ -
interpolation see Table 6 and for the (β-)VAEs see Table 7.

Table 6: Hyperparameter settings for interpolation experiments for (·, ·)M- and (·, ·)Md′ -
interpolation on the ARCH, AK and I-FABP datasets.

Hyperparameters ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
nsteps 10 10 10
Seed 0 0 0
Number of Layers 5 5 5
α1 1.0 1.0 1.0
α2 5.0 5.0 5.0
α3 1.0 1.0 1.0
α4 0.001 0.005 0.1
d′ 1 1 1 5
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Number of Neighbors 5 2 4
Batch Size 64 16 64
Warmup 50 400 200
nparameters 17282 2486480 934961

Table 7: Hyperparameter settings for interpolation experiments for (β-)VAE on the ARCH dataset.
VAEs have β = 1.0, β-VAEs have β = 10.0.

Hyperparameters ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
Seed 0 0 0
Number of Encoder Layers 5 5 5
Number of Decoder Layers 5 5 5
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Beta [1.0, 10.0] [1.0, 10.0] [1.0, 10.0]
d′ 1 1 1
Batch Size 64 16 64
nparameters 34184 4555655 1712324
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E.3 GENERATION EXPERIMENTS

Table 8: Hyperparameter settings for CFM, PFM and d′-PFM for generation experiments. The same
isometry φθ of the interpolation experiments is used for the PFM and d′-PFM.

ARCH I-FABP
Hyperparameter CFM PFM d′-PFM CFM PFM d′-PFM

Epochs 5000 5000 5000 5000 5000 5000
Learning Rate 0.0005 0.0005 0.0005 0.001 0.001 0.0005
Scheduler Cosine Cosine Cosine Cosine Cosine Cosine
Minimum Learning Rate 5.0 · 10−6 5.0 · 10−6 5.0 · 10−6 1.0 · 10−5 1.0 · 10−5 5.0 · 10−6

Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2
Seed 0 0 0 0 0 0
Number of Layers 10 10 10 10 10 10
Hidden Units 64 64 16 131 · 3 + 1 131 · 3 + 1 131 · 3 + 1
Batch Size 64 64 64 64 64 64
nsimulation steps 10 10 10 10 10 10

E.4 DESIGNABLE LATENT MANIFOLDS FOR NOVEL PROTEIN ENGINEERING

In Table 9 one can find the settings for training the isometry on the GRAMPA dataset for the protein
sequence design experiments. Specific hyperparameter worth mentioning is the embedding dimen-
sions, we use an embedding layer from the Flax library to embed the discrete sequences into a
continuous space and use a sign-cosine positional embedding, to embed the location in the sequence
of the amino acids in the data.

Table 9: Hyperparameter settings for protein design experiments of the RAEs on the GRAMPA
dataset.

Hyperparameters Setting

Epochs 1000
Learning Rate 0.0001
Optimizer Adam
Train/Test Split 0.8/0.2
nsteps 10
Seed 0
Number of Layers 5
Embedding dimension 8
α1 5.0
α2 5.0
α3 5.0
α4 0.05
d′ 128
Hidden Units 512
Batch Size 128
Warmup 100
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