
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PULLBACK FLOW MATCHING ON DATA MANIFOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Pullback Flow Matching (PFM), a novel framework for generative
modeling on data manifolds. Unlike existing methods that assume or learn re-
strictive closed-form manifold mappings for training Riemannian Flow Matching
(RFM) models, PFM leverages pullback geometry and isometric learning to pre-
serve the underlying manifold’s geometry while enabling efficient generation and
precise interpolation in latent space. This approach not only facilitates closed-
form mappings on the data manifold but also allows for designable latent spaces,
using assumed metrics on both data and latent manifolds. By enhancing isomet-
ric learning through Neural ODEs and proposing a scalable training objective,
we achieve a latent space more suitable for interpolation, leading to improved
manifold learning and generative performance. We demonstrate PFM’s effective-
ness through applications in synthetic data, protein dynamics and protein sequence
data, generating novel proteins with specific properties. This method shows strong
potential for drug discovery and materials science, where generating novel sam-
ples with specific properties is of great interest.

1 INTRODUCTION

Data manifold (D) Latent manifold (M)

Figure 1: An example of isometric learning,
where the goal is to create a latent space that al-
lows for interpolation. The shortest paths (in red)
on the data manifold D ⊂ R3 correspond to the
shortest paths on the latent manifold M.

Since the rise of machine learning in the sci-
entific domain, researchers have focused on
developing larger models trained on increas-
ingly massive datasets, as in weather forecast-
ing (Bodnar et al., 2024) and protein structure
prediction (Hayes et al., 2024). However, rely-
ing on such scaling laws is not feasible in many
scientific fields where data is limited and pre-
cise modeling of physical phenomena is cru-
cial. In such cases, incorporating prior knowl-
edge about the geometry of the data as an induc-
tive bias enables models to make accurate inter-
polations between data points, which is essen-
tial for reliable predictions and realistic repre-
sentations of complex systems. Current meth-
ods, however, lack the mathematical founda-
tions to accurately interpolate in latent space
(Arvanitidis et al., 2017) and do not capture the underlying geometric structure of the data (Wessels
et al., 2024). Our goal is to develop mappings that enable precise interpolation in latent space, lever-
aging geometry as an inductive bias to facilitate efficient and accurate generation on data manifolds,
thereby advancing the ability to model complex physical phenomena with limited data.

We consider modeling the data under the manifold hypothesis, which states that high-dimensional
data lies on a lower dimensional manifold. This has been successfully applied to several downstream
tasks in various fields across the scientific domain (Vanderplas & Connolly, 2009; Dsilva et al., 2016;
Noé & Clementi, 2017). Modeling the data in its intrinsic dimension allows for efficient analysis
Diepeveen et al. (2024) and generation Rombach et al. (2022). Furthermore, accurately capturing the
geometry of the data manifold in the learning problem has shown to improve several down-stream
tasks such as clustering (Ghojogh et al., 2022), classification (Kaya & Bilge, 2019; Hauberg et al.,
2012) and generation (Arvanitidis et al., 2020; Sun et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

One way to achieve a latent manifold that supports interpolation is to have a structured Riemannian
geometry, such as the one from pullback geometry, which provides closed-form manifold mappings
(Diepeveen et al., 2024). This requires constructing an invertible and differentiable mapping—
diffeomorphism—between the data manifold and the latent manifold. Interpolation on manifolds is
then performed through geodesics, shortest paths, and thus to achieve our goal we require geodesics
on the data manifold to match geodesics on the latent manifold. This motivates our consideration of
isometries, that is, metric-preserving diffeomorphisms φ. These mappings preserve the distances of
points on the data manifold on the latent manifold, and thereby ensure proper interpolation.

Related-Work. In the literature, low-dimensional generation and generation on manifolds have typ-
ically been addressed as separate problems. Low-dimensional approaches, such as latent diffusion
(Rombach et al., 2022) or latent flow-matching (Dao et al., 2023), often overlook the geometric
structure of the data, leading to inaccuracies in tasks requiring a faithful representation of the un-
derlying manifold. Conversely, manifold generation methods either assume geodesics on the data
manifold for simulation-free training (Chen & Lipman, 2024)—an approach flawed when closed-
form mappings are unavailable—or attempt to learn a metric that forces the generative trajectories
to have data support (Kapusniak et al., 2024).

Using a pullback framework presents challenges, such as task-specific learning problems that limit
generality and prevent the learning of isometries across broader data manifolds Cuzzolin (2008);
Gruffaz et al. (2021); Lebanon (2006). Geometrically regularized latent space methods, like Lee
et al. (2022) and Duque et al. (2022), work in practice but lack solid mathematical grounding in
isometries, particularly guaranteeing diffeomorphism in architectural design. Diepeveen (2024) ad-
dresses isometry challenges with a more general mathematically grounded framework, but its learn-
ing objective’s expressivity and computational feasibility limit its application to high-dimensional
real-world datasets.

Our approach bridges these gaps by modeling data on a lower-dimensional latent manifold with
known geometry through a diffeomorphisms parameterized and trained in a scalable and expressive
way. By doing so we preserve the intrinsic properties of the data manifold and enable accurate and
efficient generation through simulation-free training.

Contributions. We propose Pullback Flow Matching (PFM), a novel framework for latent manifold
learning and generation through isometries. This method respects the geometry of the data manifold,
even when closed-form manifold mappings are not available. Second, learning can be performed in
the intrinsic dimension of the data manifold resulting in efficient and effective learning of the gener-
ative model with fewer parameters. Building on Diepeveen (2024), we leverage pullback geometry
to define a new metric on the entire ambient space, Rd, by learning an isometry φ that preserves the
geometric structure of the data manifold D on the latent manifold M. We use the corresponding
metric of the assumed latent manifold M to perform Riemannian Flow Matching (RFM) on the
latent manifold that supports interpolation. Our contributions are as follows:

1. We introduce PFM, a novel framework that enables accurate and efficient data generation
on manifolds. PFM leverages the pullback geometry to preserve the underlying geometric
structure of the data manifold within the latent space, facilitating precise interpolation and
generation.

2. We improve the parameterization of diffeomorphisms, used to learn isometries, in both ex-
pressiveness and training efficiency through neural ordinary differential equations (Neural
ODEs).

3. We introduce a scalable and stable isometric learning objective. This objective relies solely
on a distance measure on the data manifold, simplifying the training process compared to
Diepeveen (2024) while maintaining geometric fidelity.

4. We demonstrate our methods’ effectiveness through experiments on synthetic data, high-
dimensional molecular dynamics data, and experimental peptide sequences. Our frame-
work utilizes designable latent spaces to generate novel proteins with specific properties
closely matching reference samples. This directed generation showcases the significant ap-
plicability of isometric learning and PFM in accurate physical modeling and interpolation,
advancing generative modeling techniques in drug discovery and materials science. 1

1The anonymized code for the experiments on the synthetic data is available in the supplementary material.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 NOTATION

We give a brief summary of the notation used in the paper, and give a more extensive background
on Riemannian and pullback geometry in Appendix A.

A manifold M is a topological space that locally resembles Euclidean space. A d-dimensional
manifold M around a point p ∈ M is described by a chart ψ : U → Rd, where U ⊆ M is a
neighborhood of p. The chart provides a local coordinate system for the manifold. The tangent
space at a point p ∈ M, denoted TpM, is the vector space of all tangent vectors at that point.

A smooth manifold M equipped with a Riemannian metric is called a Riemannian manifold and
is denoted by (M, (·, ·)M). The Riemannian metric (·, ·)M is a smoothly varying inner product
defined on the tangent spaces TpM for all points p ∈ M, and it defines lengths and angles on the
manifold. A geodesic, γp,q(t) is the shortest path between two points p, q ∈ M, generalizing the
notion of a straight line in Euclidean space.

The exponential map expp : TpM → M maps a tangent vector Ξp to a point on the manifold by
following the geodesic in the direction of Ξp starting from p. The inverse of the exponential map is
the logarithmic map, denoted by logp : M → TpM, which returns the tangent vector corresponding
to a given point on the manifold.

In this work, we consider a d-dimensional Riemannian manifold
(
M, (·, ·)M

)
, and a smooth dif-

feomorphism φ : Rd → M, such that φ
(
Rd
)
⊆ M is geodesically convex, meaning that any pair

of points within this subset are connected by a unique geodesic. This mapping allows us to pullback
the geometric structure of M to Rd by defining the pullback metric on Rd. Specifically, for tangent
vectors Ξp,Φp ∈ TpRd, the pullback metric is defined as

(Ξp,Φp)
φ :=

(
φ∗[Ξp], φ∗[Φp]

)M
φ(p)

, (1)

where φ∗ is the pushforward of tangent vectors under φ. Through this construction, various geomet-
ric objects in M, such as distances and geodesics, can be expressed in terms of their counterparts in
Rd with respect to the pullback metric. The distance function dφRd : Rd × Rd → R on Rd with the
pullback metric is given by,

dφRd(xi,xj) = dM
(
φ(xi), φ(xj)

)
, (2)

where dM denotes the Riemannian distance on M. The length-minimizing geodesic connecting xi

and xj in Rd with respect to the pullback metric γφxi,xj
: [0, 1] → Rd is given by,

γφxi,xj
(t) = φ−1

(
γMφ(xi),φ(xj)

(t)
)
, (3)

here γM denotes the geodesic in M connecting φ(xi) and φ(xj). This enables computation of
geodesics and distances in Rd using the geometry of M, as stated in Prop. 2.1 of Diepeveen (2024).

Data manifold (D) Latent manifold (M)

Figure 2: Isometric learning for the rotated Swiss
roll in 3D. The learned geodesic path (in black)
on the data manifold D ⊂ R3 correspond to the
shortest paths on the latent manifold M = R3.

In this paper we will assume the standard Eu-
clidean metric (·, ·)2 and a Euclidean latent
manifold M = Rd. Hence, the pullback metric
will be defined as

(Ξp,Φp)
φ :=

(
φ∗[Ξp], φ∗[Φp]

)Rd

φ(p)
. (4)

We will calculate distances on the latent mani-
fold M = Rd through,

dφRd(xi,xj) = ∥φ(xi)− φ(xj)∥2, (5)

and the geodesic calculation will boil down to

γφxi,xj
(t) = φ−1

(
φ(xi)(1−t)+tφ(xj)

)
. (6)

An example of a pullback geodesic γφxi,xj
(t) on

the data manifold based on a geodesic on a latent Euclidean manifold can be viewed in Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PULLBACK FLOW MATCHING

We propose Pullback Flow Matching (PFM), a novel framework for generative modeling on data
manifolds using pullback geometry. Our goal is to transform samples from a simple distribution
x0 ∼ p on the data manifold D into a complex target distribution x1 ∼ q, also on D. Ideally, we
would perform this transformation using Riemannian Flow Matching (RFM), see Appendix A for a
summary, on

(
D, (·, ·)D

)
by optimizing the objective from Chen & Lipman (2024),

LRFM (η) = Et,q(x1),p(x0)

(∥∥∥vt(γDx1,x0
(t);η

)
− γ̇Dx1,x0

(t)
∥∥∥D
γD
x1,x0

(t)

)2
, (7)

where η represents the learnable parameters of the parameterized vector field vt(x;η). Solving this
objective on data manifolds becomes intractable as the training of RFM is no longer simulation-
free (Chen & Lipman, 2024). Existing methods address this challenge by employing restrictive and
computationally intensive manifold mappings (Kapusniak et al., 2024). We overcome this limitation
by defining a new metric on the ambient space Rd using the pullback metric (Diepeveen, 2024) and
assume a learned isometry φθ that approximates geodesics γφθ on

(
Rd, (·, ·)φθ

)
to those γD on(

D, (·, ·)D
)
. Rewriting the RFM objective under the pullback framework yields the objective,

LPFM (η) = Et,q(x1),p(x0)

(∥∥∥vt(γφθ
x1,x0

(t);η
)
− γ̇φθ

x1,x0
(t)
∥∥∥φθ

γ
φθ
x1,x0

(t)

)2
, (8)

By applying Equation 3, we reformulate the PFM objective in terms of manifold mappings on M,

LPFM (η) =

Et,q(x1),p(x0)

(∥∥∥vt(γMφθ(x1),φθ(x0)
(t);η

)
− γ̇Mφθ(x1),φθ(x0)

(t)
∥∥∥M
γM
φθ(x1),φθ(x0)

(t)

)2
, (9)

Assuming a latent manifold M with closed-form mappings enables simulation-free training on data
manifolds. For efficiency, we model the d-dimensional latent manifold as a product manifold, M =

Md′×Rd−d′
. By encoding samples close to the submanifold Md′ ⊂ M, isometric learning ensures

geodesics Md′ closely match geodesics on M. As a result, we formulate the d′-PFM objective,

Ld′−PFM (η) =

Et,q(x1),p(x0)

(∥∥∥vt(γMd′
φθ(x1),φθ(x0)

(t);η
)
− γ̇

Md′
φθ(x1),φθ(x0)

(t)
∥∥∥Md′

γ
M

d′
φθ(x1),φθ(x0)

(t)

)2
, (10)

The d′-PFM objective offers two key benefits. First, defining the objective on the submanifold Md′

results in computational speed-ups during training. Second, the known geometry on the submanifold
simplifies the training dynamics of the vector field vt(·;η), requiring fewer parameters η to learn
the sampling trajectories of the data manifold, see Table 3.

CFM

PFM

1-PFM

Figure 3: Trajectories of continous normalizing flows (CNF) (left) trained with Conditional Flow
Matching (CFM), PFM and 1-PFM objectives on the ARCH dataset compared to the data manifold
D (right). At t = 0 the trajectory starts with a standard normal distribution in the data space for
CFM and latent submanifold for (1-)PFM mapped back to the data space through φ−1

θ .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Isometric learning for
coarse-grained protein confor-
mation data of adynalate kinase.
We define a new metric (·, ·)φ
on the entire ambient space, Rd

(d = 214 × 3), by learning
a diffeomorphism φ : Rd →
M that preserves a locally Eu-
clidean metric (·, ·)D on the la-
tent manifold M = Md′ ×
Rd−d′

for d′ = 1.

4 LEARNING ISOMETRIES

The motivation for learning isometries φθ—metric-preserving diffeomorphisms—is to enable a la-
tent (sub)manifold that supports interpolation with closed-form geometric mappings, facilitating
simulation-free training of PFM. Building on the framework of Diepeveen (2024), summarized
in Appendix A, we propose a more expressive parameterization of learnable diffeomorphisms φθ

through Neural ODEs and enhance the objective for scalable isometric learning on data manifolds.

4.1 PARAMETERIZING DIFFEOMORPHISMS

We parameterize diffeomorphisms, invertible and differentiable functions between two manifolds,
specifically φ : Rd → M. In practice, we construct the latent manifold as a product manifold,
M = Md′ × Rd−d′

and the diffeomorphism φ as,
φ := [ψ−1, Id−d′] ◦ ϕ ◦ Tµ, (11)

where ψ : U → Rd′
a chart on a geodesically convex subset U ⊂ Md′ of the d′-dimensional latent

submanifold
(
Md′ , (·, ·)Md′

)
, ϕ : Rd → Rd a diffeomorphism and Tµ(x) = x − µ, with µ the

average of the datapoints. We choose this construction because the manifold hypothesis translates to
assuming the data manifold is homeomorphic to Md′ . In such case, the rest of the latent manifold
should be mapped close to zero, e.g. φ(xi) is close to Md′ × 0d−d′

in terms of the metric on M.

We generate the diffeomorphism ϕ by solving a Neural ODE (Chen et al., 2018). The advantage
of this approach is threefold, i) this parameterization of diffeomorphisms is more expressive and
efficient to train compared to Invertible Residual Networks (Behrmann et al., 2019) as chosen by
Diepeveen (2024), ii) based on some mild technical assumptions a Neural ODE can be proven to
generate proper diffeomorphisms, see Appendix B for the proof, and iii) numerically the accuracy
and invertibility of the generated flow can be controlled through smaller step-sizes and higher-order
solvers.

To define the diffeomorphism ϕθ : Rd → Rd, we start with the Neural ODE governing the flow:
dz(t)

dt
= f(z(t);θ), (12)

where f : Rd → Rd is a vector field parameterized by a multilayer perceptron (MLP) with Swish
activation functions and a sine-cosine time embedding and θ denotes the parameters of the MLP.
Given an initial condition z(0) = x, the solution to this Neural ODE is:

ϕθ(x) := x+

∫ 1

0

f(z(t);θ) dt. (13)

To obtain the inverse ϕ−1
θ one has to integrate the differential equation backwards in time with

initial condition z(1). To solve the Neural ODE we implemented a Runge-Kutta solver in JAX, see
Appendix E for further architectural and training related details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 LEARNING OBJECTIVE

The primary objectives of learning isometries are i) to map the data manifold
(
D, (·, ·)D

)
into a low-

dimensional geodesic subspace of
(
M, (·, ·)M

)
, specifically Md′ ⊂ M, and ii) to preserve local

isometry, as motivated by Proposition 2.1 and Theorems 3.4, 3.6, and 3.8 from Diepeveen (2024).

We build on the training objective from Diepeveen (2024) (summarized in Appendix A) and use
global isometry loss and submanifold loss to map the data manifold D to the lower-dimensional
geodesic subspace Md′ . We enhance this with the graph matching loss for isometric learning,
which enforces global isometry between the data and latent manifolds (Zhu et al., 2014), ensuring
that each sample is equally isometric to all others.

The original objective enforces local isometry—preserving geodesic distances in small neighbor-
hoods—via the pullback metric’s Riemannian tensor (·, ·)φ. However, this is computationally in-
tractable and poorly scalable. We address this by using the regularization in stability regulariza-
tion from Finlay et al. (2020), which more efficiently enforces local isometry, leading to a scalable
objective,

L(θ) = α1
1

n2

n∑
i=1

n∑
j=1

∥dφθ

Rd (xi,xj)− di,j∥2 (global isometry loss)

+ α2
1

n

n∑
i=1

∑
j ̸=i

∥(dφθ

Rd (xi,x·)− dφθ

Rd (xj ,x·))− (di,· − dj,·)∥2 (graph matching loss)

+ α3
1

n

n∑
i=1

∥∥∥∥[0d′ ∅
∅ Id−d′

]
(ϕθ ◦ Tµ)(xi)

∥∥∥∥
1

(submanifold loss)

+ α4
1

n

n∑
i=1

∫ 1

0

∥εT∇fθ(zi(t))∥2 dt. (stability regularization)

Here, ε ∼ N (0, I) and dφθ

Rd (xi,x·) and di,· denote the columns of the distance matrices induced
by (·, ·)φ and (·, ·)D. The benefit of this formulation is that it only requires approximating geodesic
distances di,j on the data manifold D, without needing to calculate or differentiate the metric tensor.
In section 5, we demonstrate the effectiveness of the graph matching loss and stability regularization
through an ablation study on synthetic and high-dimensional protein dynamics trajectories. We
do not include an ablation of the global isometry loss and submanifold losses, as these have been
thoroughly examined in Diepeveen (2024), and our experiments showed consistent results with those
previously reported.

5 EXPERIMENTS

The goal of this paper is to learn interpolatable latent (sub)manifolds for generation on data man-
ifolds. We achieve this through isometric learning in the framework of pullback geometry. In this
section we validate our methods on synthetic, simulated and experimental datasets, for full descrip-
tions see Appendix D. For details on the training procedure and hyperparameter settings we refer
the reader to Appendix E.

We begin our experiments with an ablation study of graph matching loss and stability regu-
larization, demonstrating the benefits of including both terms for learning isometries. Second,
we compare (latent) interpolation methods with interpolation on the latent manifold M, (·, ·)M-
interpolation, and on the latent submanifold Md′ , (·, ·)Md′ -interpolation. We demonstrate that we
can accurately interpolate on the data manifold by interpolating on the latent (sub)manifold 2. Third,
we validate PFM as a generative model on data manifolds and discuss how sample generation is im-
proved by generating on the submanifold Md′ . Finally, we inspect the designability of the latent
manifold through the choice of metric (·, ·)D in the task of small protein design.

2In these experiments we do not report interpolation through the Riemannian Auto-Encoder (RAE) by
Diepeveen (2024) due to the intractability of the training objective for the higher-dimensional datasets.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 ABLATION STUDY

The goal of the ablation study is to evaluate the effectiveness of the reformulated objective
function for learning isometries. To this end, we perform an ablation study for both the
graph matching loss and stability regularization on a synthetic ARCH dataset (n = 500,
d = 2) in the spirit of Tong et al. (2020) and a coarse-grained protein dynamics datasets
of intestinal fatty acid binding protein (I-FABP) (n = 500, d = 131 × 3). We report
three metrics on the validation set of 20 % of the data, invertibility εinv = 1

n

∑n
i=1 ∥xi −

φ−1
θ

(
φθ(xi)

)
∥2, low-dimensionality εld = 1

n

∑n
i=1

∥∥∥∥[0d′ ∅
∅ Id−d′

]
ϕθ(xi)

∥∥∥∥2
1

and isometry εiso =

1
n2

∑n
i=1

∑n
j=1 ∥di,j − dM

(
φ(xi), φ(xj)

)
∥2.

Table 1: Ablation study of isometric learning for ARCH dataset and I-FABP protein dynamics
datasets for graph matching loss (GM) and stability regularization (Stability). In both cases we
choose Md′ = R. We report the means for invertibility (↓), low-dimensionality (↓) and isometry
(↓) with standard devations denoted by ±. The distance (·, ·)D we assume on the data manifold D
is a locally Euclidean distance based on Isomap (Tenenbaum et al., 2000).

Data Metric None GM Stability Both

A
R

C
H

Invertibility 7.637 · 10−1 3.585 · 10−2 8.198 · 10−5 1.011 · 10−4

±9.872 · 10−1 ±1.939 · 10−2 ±1.061 · 10−5 ±6.069 · 10−5

Low-Dimensionality 6.520 · 10−4 4.531 · 10−4 1.407 · 10−2 1.373 · 10−2

±9.521 · 10−5 ±3.341 · 10−5 ±8.414 · 10−4 ±6.768 · 10−4

Isometry 2.334 · 10−3 1.464 · 10−3 2.018 · 10−3 1.544 · 10−3

±1.466 · 10−4 ±1.221 · 10−4 ±5.791 · 10−5 ±2.025 · 10−4

I-
FA

B
P Invertibility 2.995 · 10−5 2.891 · 10−5 2.973 · 10−5 2.809 · 10−5

±8.945 · 10−6 ±4.968 · 10−6 ±7.560 · 10−6 ±8.982 · 10−6

Low-Dimensionality 1.378 · 10−1 1.379 · 10−1 1.379 · 10−1 1.378 · 10−1

±1.952 · 10−4 ±1.424 · 10−4 ±1.788 · 10−4 ±1.981 · 10−4

Isometry 2.889 · 10−3 2.898 · 10−3 2.919 · 10−3 2.887 · 10−3

±1.384 · 10−4 ±1.667 · 10−4 ±1.571 · 10−4 ±1.387 · 10−4

Result. Table 1 demonstrates that incor-
porating both the graph matching loss and
stability regularization improves the invert-
ibility and isometry metrics across both
datasets, with the combined approach yield-
ing both a low εinv and εiso values, indi-
cating enhanced model performance in pre-
serving the geometry of the data in the syn-
thetic dataset as well as the more noisy and
high dimensional simulated dataset.

5.2 INTERPOLATION EXPERIMENTS

The goal of isometric learning is to learn
an interpolatable latent (sub)manifold of the
data manifold with closed-form manifold
mappings. To evaluate whether interpola-
tion on the latent (sub)manifold accurately
reflects interpolation on the data manifold,
we conduct an interpolation experiment us-
ing the synthetic ARCH dataset, as well as
the molecular dynamics datasets of Adeny-
late Kinase (AK) (n = 100, d = 214 × 3)
and I-FABP.

Figure 5: Example of (·, ·)Md′ -interpolation for
ARCH dataset in red. In blue the dataset {xi}ni=1,
black the true submanifold Md′ , the half circle,
and in orange the Isomap geodesic between orange
points.

In both cases we choose Md′ = R, see Appendix C for guidance on latent manifold and metric
selection. We approximate the metric on the data manifold (·, ·)D through the length of Isomap’s
geodesics Tenenbaum et al. (2000), see Figure 5 for an example. We compare the accuracy of the
100 longest geodesics between points in the test set for multiple (latent) interpolation methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Root mean square error (RMSE) (↓) of the 100 longest isomap geodesics between points in
the test set for 3 different seeds for different latent interpolation methods. We compare our methods,
(·, ·)M-interpolation and (·, ·)Md′ -interpolation, with variational autoencoders (VAEs) (Kingma &
Welling, 2013), β−VAEs (Higgins et al., 2017) and GRAE (Duque et al., 2022).

Interpolation Latent ARCH Swiss Roll AK I-FABP

Linear ✗ 0.331±0.049 0.573±0.018 0.554±0.131 0.494±0.022

VAE ✓ 0.526±0.024 0.596±0.085 1.235±0.477 0.405±0.023

β-VAE ✓ 0.527±0.025 0.640±0.066 0.919±0.631 0.368±0.009

GRAE (Isomap) ✓ 0.426±0.076 0.568±0.024 2.030±0.579 0.442±0.005

GRAE (PHATE) ✓ 0.128±0.052 0.660±0.150 1.012±0.395 0.474±0.040

(·, ·)M ✓ 0.097±0.030 0.159±0.054 0.296±0.058 0.415±0.025

(·, ·)Md′ ✓ 0.109±0.026 0.159±0.055 0.219±0.012 0.292±0.006

Result. The (·, ·)Md′ - and (·, ·)M-interpolation achieves superior interpolation accuracy with lower
root mean square error (RMSE) variablity compared to other models, indicating more robust and
reliable interpolation. (·, ·)Md′ -interpolation specifically demonstrates improvements over other
methods in the more stochastic and seemingly higher dimensional AK (d = 639) and I-FABP
(d = 642) datasets. This improvement suggests that compressing the latent representation into a
lower-dimensional space reduces the noise while accurately capturing the underlying data manifold.
Our findings demonstrate that accurate interpolation of protein dynamics trajectories of AK and I-
FABP can be achieved using a single-dimensional latent manifold. This method shows promise for
improving protein dynamics simulations, ultimately advancing understanding of protein dynamics.

5.3 GENERATION EXPERIMENTS

We demonstrate the effectiveness of our proposed method PFM for generation on data manifolds D.
We train two PFMs, one using the latent manifold M and one using the lower dimensional latent
submanifold Md′ , named PFM and d′-PFM respectively. Additionally, we train a Conditional Flow
Matching (CFM) model on the raw data as a comparison. A visual example of the learned generative
flows over time for the ARCH dataset can be viewed in Figure 3. To evaluate our generative methods,
we use the 1-nearest neighbour (NN) accuracy (Lopez-Paz & Oquab, 2016), which measures how
well the generated point clouds match the reference point clouds. Each point cloud is classified
by finding its nearest neighbor in the combined set of generated and reference point clouds. The
accuracy reflects how similar the generated point clouds are to the reference set, with an accuracy
close to 50% indicating successful learning of the target distribution.

Table 3: Evaluation of generative model performance across dimensionality of (latent)
(sub)manifold (↓), number of model parameters, denoted by # pars (↓), and 1-NN accuracy (1-
NN→ 0.5). The 1-NN metric measures the generative quality, with values closer to 0.5 indicating
better performance.

ARCH Swiss

Model dim # pars 1-NN dim # pars 1-NN

CFM 2 50562 0.295±0.031 2 50691 0.870±0.016

PFM 2 50562 0.262±0.025 2 50691 0.795±0.011

1-PFM 1 5697 0.487±0.027 1 16066 0.789±0.019

AK I-FABP

Model dim # pars 1-NN dim # pars 1-NN
CFM 642 4682325 0.386±0.000 393 1789941 0.365±0.004

PFM 642 4682325 0.356±0.097 393 1789941 0.452±0.017

1-PFM 1 5697 0.464±0.022 1 5697 0.508±0.006

Result. Figure 3 we see that the learned isometry to the latent manifold M acts as a strong man-
ifold prior, capturing the manifold structure at the start of the continous normalizing flows (CNF)
trajectory (t = 0.0). Additionally, the learned isometry to the latent submanifold Md′ captures

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the noiseless manifold revealing the underlying manifold used to generate the data. Through this
strong (noiseless) manifold prior, we see that both PFM and 1-PFM approximate the distribution
on the manifold earlier in the trajectory and better. Table 3 highlights the effectiveness of the 1-
PFM model in generative tasks. The 1-PFM model leverages the lower-dimensional isometric latent
manifold Md′ , significantly reducing the number of parameters required. Training the 1-PFM is
significantly faster due to the reduction in parameters and the dimensionality of the training sam-
ples. The 1-NN accuracy for 1-PFM approaches the ideal 0.5 across all datasets, indicating that this
model better captures the underlying distribution on the data manifold compared to CFM and PFM.

5.4 DESIGNABLE LATENT MANIFOLDS FOR NOVEL PROTEIN ENGINEERING

The goal of these experiments is to design a latent manifold that captures biologically relevant
properties of protein sequences, enabling the generation of novel proteins with specific character-
istics. By leveraging our method’s flexibility in defining the metric on the data manifold (·, ·)D,
we structure the latent space such that it captures protein properties, such as sequence similarity,
hydrophobicity, hydrophobic moment, charge, and isoelectric point.

To achieve this, we use protein sequences of up to 25 amino acids from the giant repository of AMP
activities (GRAMPA) dataset (see Appendix D for details). We construct the following custom
metric on the data manifold,

dD(xi, xj) = dLevenshtein(xi, xj) + dhydrophobicity(xi, xj) (14)
+ dhydrophobic moment(xi, xj) + dcharge(xi, xj) (15)
+ disoelectric point(xi, xj), (16)

where the Levenshtein distance measures the number of single-character edits (insertions, deletions,
or substitutions) required to transform one sequence into another.

For the remaining four properties—hydrophobicity, hydrophobic moment, charge, and isoelectric
point—distances are computed using the difference in property values between sequences. Specifi-
cally, for each property, we define the (pseudo)distance as,

d[property](xi, xj) = |fproperty(xi)− fproperty(xj)|. (17)
These (pseudo)distances are standardized by dividing by the maximum observed distance in the
training data. Since the Levenshtein distance is a proper metric, we ensure that the combined dis-
tance dD(xi, xj) remains a valid distance metric.

We use the designed metric (·, ·)D on the space of protein sequences with at most 25 amino acids in
the GRAMPA dataset to learn an isometry that preserves this metric on the latent manifold M and
latent submanifold Md′ .

To generate protein sequences with specific properties, we sample from a normal distribution around
the data points in the latent manifold z ∈ M or latent submanifold z ∈ Md′ . The variability of
this sampling process is aligned with the latent variability of the training data σztrain

, scaled by a
temperature factor τ , resulting in the following expression,

z
(analogue)
i = zi + τN (0, σztrain

I), and (18)

x
(analogue)
i = φ−1

θ (zi) for i = 1, . . . , ntest. (19)
This sampling methodology is referred to as analogue generation, as it does not involve explicitly
learning the distribution over the latent manifold. Instead, it generates novel sequences by sampling
around existing data points on the latent (sub)manifold of the test set.

We apply this process to both the latent manifold M and its submanifold Md′ . To evaluate the
effectiveness of the generated sequences, we measure the number of unique sequences that were not
present in the original dataset and compare the properties of the generated samples to the properties
of their base points. For further specifics on hyperparameters and training procedures, refer to
Appendix E.

Results. The application of our designed latent manifold facilitated the generation of diverse novel
protein sequences, demonstrating the effectiveness of the analogue generation methodology. As il-
lustrated in Table 4, increasing the temperature parameter, τ , directly influenced the diversity of gen-
erated sequences. At lower temperatures (τ ≤ 0.1), many unique sequences emerged while main-
taining similarity to their base points, as indicated by non-significant KS test values. Conversely,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Unique protein sequences generated via analogue generation on the latent manifold M and
its submanifold Md′ at various temperatures (τ). The table presents the total sequences generated
(Total), those already in the dataset (In Data), and the number of novel sequences (Novel). We
perform a Kolmogorov-Smirnov test at a 5% significance level to compare novel sequences with
their base points. Non-significant Kolmogorov-Smirnov values are shown as X/Y, where X is the
number of non-significant properties and Y is the total properties tested.

M Md′

τ Total In Data Novel Non-Sign. KS Total In Data Novel Non-Sign. KS

0.01 689 652 37 5/5 687 5 682 2/5
0.05 689 103 586 5/5 689 4 685 2/5
0.1 689 35 654 5/5 689 4 685 2/5
0.2 689 12 677 2/5 689 0 689 2/5
0.5 689 1 688 1/5 689 0 689 1/5
1 689 0 689 0/5 689 0 689 0/5

higher temperatures (τ > 0.1) resulted in a significant increase in novel sequences, accompanied by
significant KS values suggesting greater divergence from base sequences. This observation supports
the hypothesis that novel sequences generated close to the base points are structurally similar, high-
lighting the effectiveness of isometric learning in structuring the latent space. Overall, our results
indicate that temperature manipulation can strategically balance novelty and similarity, paving the
way for innovative applications in protein engineering.

Figure 6: Latent interpolation between a protein
with a high hydrophobic moment and low charge
and a protein with a low hydrophobic moment and
high charge.

Latent interpolation experiments, illustrated
in Figure 6, further demonstrate the poten-
tial of our approach. By interpolating be-
tween sequences with contrasting properties,
we revealed a smooth transition of character-
istics within the latent space, reinforcing our
method’s capability to fine-tune specific protein
attributes. This smooth transition indicates that
our latent manifold can be effectively navigated
to explore a continuum of properties such as
hydrophobicity, hydrophobic moment, charge,
and isoelectric point, which are essential for de-
termining protein solubility, stability, and inter-
action behavior. This capability allows for the
targeted design of protein sequences that could
be optimized for specific biochemical contexts,
potentially enhancing their performance in ap-
plications like enzyme catalysis or therapeu-
tic development. In summary, the efficacy of
our designed latent manifold not only expands
the repertoire of available protein sequences but
also ensures retention of biologically relevant properties, positioning this approach as a valuable tool
for precision in protein engineering.

6 CONCLUSION

We introduce Pullback Flow Matching (PFM), a novel framework for simulation-free training of
generative models on data manifolds. By leveraging pullback geometry and isometric learning, PFM
allows for closed-form mappings on data manifolds while enabling precise interpolation and efficient
generation. We demonstrated the effectiveness of PFM through applications in synthetic protein dy-
namics and small protein generation, showcasing its potential in generating novel, property-specific
samples through designable latent spaces. This approach holds significant promise for advancing
generative modeling in fields like drug discovery and materials science, where precise and efficient
sample generation is critical.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent Space Oddity: on the Curvature
of Deep Generative Models. arXiv preprint arXiv:1710.11379, 2017.

Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf. Geometrically Enriched Latent
Spaces. arXiv preprint arXiv:2008.00565, 2020.

Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible Residual Networks. In International Conference on Machine Learning, pp. 573–582.
PMLR, 2019.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A Foundation
Model of the Atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Ricky TQ Chen and Yaron Lipman. Flow Matching on General Geometries. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary
Differential Equations. Advances in Neural Information Processing Systems, 31, 2018.

Fabio Cuzzolin. Learning Pullback Metrics for Linear Models. In The 1st International Workshop
on Machine Learning for Vision-based Motion Analysis-MLVMA’08, 2008.

Andrej Cvetkovski and Mark Crovella. Multidimensional scaling in the Poincaré disk. arXiv
preprint arXiv:1105.5332, 2011.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow Matching in Latent Space. arXiv preprint
arXiv:2307.08698, 2023.

Willem Diepeveen. Pulling back symmetric Riemannian geometry for data analysis. arXiv preprint
arXiv:2403.06612, 2024.

Willem Diepeveen, Carlos Esteve-Yagüe, Jan Lellmann, Ozan Öktem, and Carola-Bibiane
Schönlieb. Riemannian geometry for efficient analysis of protein dynamics data. Proceedings
of the National Academy of Sciences, 121(33):e2318951121, 2024.

Carmeline J Dsilva, Ronen Talmon, C William Gear, Ronald R Coifman, and Ioannis G Kevrekidis.
Data-Driven Reduction for a Class of Multiscale Fast-Slow Stochastic Dynamical Systems. SIAM
Journal on Applied Dynamical Systems, 15(3):1327–1351, 2016.

Andres F Duque, Sacha Morin, Guy Wolf, and Kevin R Moon. Geometry Regularized Autoen-
coders. IEEE transactions on pattern analysis and machine intelligence, 45(6):7381–7394, 2022.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to Train Your
Neural ODE: the World of Jacobian and Kinetic Regularization. In International Conference on
Machine Learning, pp. 3154–3164. PMLR, 2020.

Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Spectral, Probabilistic, and
Deep Metric Learning: Tutorial and Survey. arXiv preprint arXiv:2201.09267, 2022.

Samuel Gruffaz, Pierre-Emmanuel Poulet, Etienne Maheux, Bruno Jedynak, and Stanley Durrle-
man. Learning Riemannian metric for disease progression modeling. Advances in Neural Infor-
mation Processing Systems, 34:23780–23792, 2021.

Søren Hauberg, Oren Freifeld, and Michael Black. A Geometric take on Metric Learning. Advances
in Neural Information Processing Systems, 25, 2012.

Tomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
of evolution with a language model. bioRxiv, pp. 2024–07, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. β-VAE: Learning Basic Visual Concepts with a Con-
strained Variational Framework. ICLR (Poster), 3, 2017.

Kacper Kapusniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein,
Avishek Joey Bose, and Francesco Di Giovanni. Metric Flow Matching for Smooth Interpolations
on the Data Manifold. arXiv preprint arXiv:2405.14780, 2024.

Mahmut Kaya and Hasan Şakir Bilge. Deep Metric Learning: A Survey. Symmetry, 11(9):1066,
2019.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Guy Lebanon. Metric Learning for Text Documents. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(4):497–508, 2006.

John M Lee. Introduction to Smooth Manifolds. Springer, 2012.

Yonghyeon Lee, Sangwoong Yoon, MinJun Son, and Frank C Park. Regularized Autoencoders for
Isometric Representation Learning. In International Conference on Learning Representations,
2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
for Generative Modeling. arXiv preprint arXiv:2210.02747, 2022.

Anna Little, Daniel McKenzie, and James M Murphy. Balancing Geometry and Density: Path
Distances on High-Dimensional Data. SIAM Journal on Mathematics of Data Science, 4(1):72–
99, 2022.

David Lopez-Paz and Maxime Oquab. Revisiting Classifier Two-Sample Tests. arXiv preprint
arXiv:1610.06545, 2016.

Frank Noé and Cecilia Clementi. Collective variables for the study of long-time kinetics from
molecular trajectories: theory and methods. Current opinion in structural biology, 43:141–147,
2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695, 2022.

Xingzhi Sun, Danqi Liao, Kincaid MacDonald, Yanlei Zhang, Guillaume Huguet, Guy Wolf, Ian
Adelstein, Tim GJ Rudner, and Smita Krishnaswamy. Geometry-Aware Autoencoders for Metric
Learning and Generative Modeling on Data Manifolds. In ICML 2024 Workshop on Geometry-
grounded Representation Learning and Generative Modeling, 2024.

Paulina Szymczak, Marcin Możejko, Tomasz Grzegorzek, Radosław Jurczak, Marta Bauer, Damian
Neubauer, Karol Sikora, Michał Michalski, Jacek Sroka, Piotr Setny, et al. Discovering highly
potent antimicrobial peptides with deep generative model HydrAMP. nature communications, 14
(1):1453, 2023.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A Global Geometric Framework for
Nonlinear Dimensionality Reduction. science, 290(5500):2319–2323, 2000.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajecto-
ryNet: A Dynamic Optimal Transport Network for Modeling Cellular Dynamics. In International
Conference on Machine Learning, pp. 9526–9536. PMLR, 2020.

Jake Vanderplas and Andrew Connolly. Reducing the Dimensionality of Data: Locally Linear Em-
bedding of Sloan Galaxy Spectra. The Astronomical Journal, 138(5):1365, 2009.

David R Wessels, David M Knigge, Samuele Papa, Riccardo Valperga, Sharvaree Vadgama, Efstra-
tios Gavves, and Erik J Bekkers. Grounding Continuous Representations in Geometry: Equivari-
ant Neural Fields. arXiv preprint arXiv:2406.05753, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jacob Witten and Zack Witten. Deep learning regression model for antimicrobial peptide design.
BioRxiv, pp. 692681, 2019.

Laurent Younes. Shapes and Diffeomorphisms, volume 171. Springer, 2010.

Xiaofeng Zhu, Heung-Il Suk, and Dinggang Shen. Matrix-Similarity Based Loss Function and
Feature Selection for Alzheimer’s Disease Diagnosis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3089–3096, 2014.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A BACKGROUND

To achieve an interpolatable latent manifold we take a Riemannian geometric perspective. We start
by introducing the notation and key concepts of differential and Riemannian geometry, for a formal
description see Lee (2012). Second, we explain prior work on RAEs Diepeveen (2024), a framework
for constructing interpolatable latent manifolds. Third, we summarize CFM for generative modeling
Lipman et al. (2022), a scalable way to train generative models in a simulation-free manner. Finally,
we discuss how RFM Chen & Lipman (2024) generalize CFM to Riemannian manifolds.

A.1 RIEMMANIAN GEOMETRY

A d-dimensional smooth manifold M is a topological space that locally resembles Rd, such that for
each point p ∈ M, there exists a neighborhood U of p and a homeomorphism ψ : U → Rd, called
a chart. Then the tangent space TpM at a point p ∈ M is a vector space consisting of the tangent
vectors at p representing the space of derivations at p.

A Riemannian manifold
(
M, (·, ·)M

)
is a smooth manifold M equipped with a Riemannian metric

(·, ·)M, which is a smoothly varying positive-definite inner product on the tangent space TpM at
each point p. The Riemannian metric (·, ·)M defines the length of tangent vectors and the angle
between them, thereby inducing a natural notion of distance on M based on the lengths of tangent
vectors along curves between two points.

The shortest path between two points on M is called a geodesic, which generalizes the concept of
straight lines in Euclidean space to curved manifolds. Geodesics on Riemannian manifold are found
by minimizing

E(γ) =
1

2

∫ 1

0

(
γ̇(t), γ̇(t)

)
γ(t)

dt, (20)

whereas

L(γ) =

∫ 1

0

√(
γ̇(t), γ̇(t)

)
γ(t)

dt (21)

defines the distance between two points on the manifold. The exponential map,

expp : TpM → M, (22)

at p maps a tangent vector Ξp ∈ TpM to a point on M reached by traveling along the geodesic
starting at p in the direction of Ξp for unit time. The logarithmic map,

logp : M → TpM, (23)

is the inverse of the exponential map, mapping a point q ∈ M back to the tangent space TpM at p.

These names, ’exponential’ and ’logarithmic’ map, are geometric extensions of familiar calculus
concepts. Just as the exponential function maps a number to a point on a curve, the exponential
map on a manifold maps a direction and starting point to a location along a geodesic. Similarly,
the logarithm in calculus reverses exponentiation, and the logarithmic map on a manifold reverses
the exponential map, returning the original direction and distance needed to reach a specified point
along the geodesic.

Assume
(
M, (·, ·)M

)
is a d-dimensional Riemannian manifold and a smooth diffeomorphism φ :

Rd → M, such that φ(Rd) ⊆ M is geodesically convex, i.e., geodesics are uniquely defined on
φ(Rd). We can then define the pullback metric as

(Ξp,Φp)
φ
p :=

(
φ∗[Ξp], φ∗[Φp]

)
φ(p)

, (24)

for tangent vectors Ξp and Φp, where φ∗ is the pushforward. These mappings allow us to define all
relevant geometric mappings in Rd in terms of manifold mappings on M, see e.g. Proposition 2.1
of Diepeveen (2024):

1. Distances dφRd : Rd × Rd → R on
(
Rd, (·, ·)φ

)
are given by,

dφRd(xi,xj) = dM
(
φ(xi), φ(xj)

)
, (25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

2. Length-minimizing geodesics γφxi,xj
: [0, 1] → Rd on

(
Rd, (·, ·)φ

)
are given by,

γφxi,xj
(t) = φ−1

(
γMφ(xi),φ(xj)

(t)
)

(26)

3. Logarithmic maps logφxi
: Rd → Txi

Rd on
(
Rd, (·, ·)φ

)
are given by,

logφxi
(xj) = φ−1

∗

[
logMφ(xi)

(
φ(xj)

)]
(27)

4. Exponential maps expφxi
: Gxi

→ Rd for Gxi
:= logφxi

(Rd) ⊂ Txi
Rd on

(
Rd, (·, ·)φ

)
are

given by
expφxi

(Ξxi
) = φ−1

(
expMφ(xi)

(φ∗[Ξxi
])
)

(28)

A visual example of pullback geometry is given in Figure 7. Pullback geometry allows us to
remetrize all of space Rd, including the data manifold D ⊂ Rd, through the pullback metric. We
can use it to define geometric mappings on

(
Rd, (·, ·)φ

)
, including geodesics (see Equation 26),

through geometric mappings on the latent manifold M. Next, we summarize work on Riemannian
Auto-Encoders, that leverage pullback geometry to create an interpolatable latent manifold.

Figure 7: Example of pullback geometry for φ : Rd → M with M = Md′×Rd−d′
for Md′ = Rd′

,
d = 3 and d′ = 2. Samples φ(xi) are close to elements of Md′ × 0d−d′

.

A.2 RIEMANNIAN AUTO-ENCODER

The goal of RAEs is to create a interpolatable latent representation of the data. This is achieved
through data-driven (pullback) Riemannian geometry, encoding the data onto a latent manifold with
known geometry. The benefit of this, is that interpolation on the data manifold corresponds to
interpolation on the latent manifold. Resulting in a more interpretable latent space compared to
traditional auto-encoders.

Similar as in Diepeveen (2024), we define a RAE as a Riemannian Encoder RE : Rd → Rr and
Riemannian Decoder RD : Rr → Rd,

RAE(x) := (RD ◦RE)(x) s.t., (29)

RE(x)k := (logφz (x),v
k
z)

φ
z for k = 1, . . . r, (30)

RD(a) := expφz

(
r∑

k=1

akv
k
z

)
(31)

where z denotes a base point and (·, ·)φz the pullback metric at z. Furthermore,

vk
z :=

d∑
l=1

WlkΦ
l
z, (32)

represents the basis vectors of the latent space in the tangent space TzRd. Let Φl
z ∈ TzRd be an

orthonormal basis in the tangent space at z with respect to (·, ·)φz and define

Xi,l =
(
logφz (x

i),Φl
z

)φ
z

for i = 1, . . . , n and l = 1, . . . , d. (33)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We can compute W through a Singular Value Decomposition (SVD) of X .

X = UΣW T , (34)

where U ∈ RN×R, Σ = diag(σ1, . . . , σR) ∈ RR×R with σ1 ≥ · · · ≥ σR, W ∈ Rd×R and where
R := rank(X). The first r columns of W , corresponding to the largest singular values, are selected
to form the matrix W ∈ Rd×r. This parameter r allows one to set the dimensionality of the latent
representation of the RAE, if r = d then the RAE reduces to RAE(x) = expφz

(
logφz (x)

)
.

To learn a RAE, one needs to first construct a diffeomorphism and define an objective function. In
Diepeveen (2024) diffeomorphisms are constructed by,

φ := [ψ−1, Id−d′] ◦ ϕ ◦O ◦ Tz, (35)

where ψ : U → Rd′
is a chart on a (geodesically convex) subset U ⊂ Md′

of a d′-dimensional
Riemannian manifold (Md′

, (·, ·)M′
d
), ϕ : Rd → Rd is a real-valued diffeomorphism, O ∈ O(d) is

an orthogonal matrix, and Tz : Rd → Rd is given by Tz(x) = x−z. The learnable diffeomorphism
φ := φθ is constructed through parameterizing ϕ := ϕθ by an invertible residual network Behrmann
et al. (2019).

A.3 LEARNING ISOMETRIES WITH RIEMANNIAN AUTO-ENCODERS

After constructing the diffeomorphism and Riemannian Auto-Encoder, one can learn an isometry by
find the parameters θ of φθ in Diepeveen (2024) through minimizing the objective,

L(θ) = 1

N(N − 1)

N(N−1)∑
i,j=1,i̸=j

(
dφθ

Rd (xi,xj)− di,j
)2

(global isometry loss)

+ αsub
1

N

N∑
i=1

∥∥∥∥[Id−d′ ∅
∅ 0d′

]
(ϕθ ◦O ◦ Tz)(xi)

∥∥∥∥
1

(submanifold loss)

+ αiso
1

N

N∑
i=1

∥∥∥∥∥
((

ej , ej
′
)φθ

xi

)d

j,j′=1

− Id

∥∥∥∥∥
2

F

, (local isometry loss)

where ∥ · ∥F is the Frobenius norm and
((

ej , ej
′
)φθ

xi

)d

j,j′=1

denotes a d-dimensional matrix just

as (Aij)
d
i,j=1 denotes a matrix.

First, the global isometry loss takes global geometry into account, ensuring that the learned dis-
tances under the diffeomorphism φθ approximate the true pairwise distances di,j between data
points. Second, the submanifold loss enforces that the data manifold is mapped to M =

Md′ × Rd−d′
, preserving the submanifold structure of the data in the latent space. Finally, the

local isometry loss enforces local isometry, ensuring that small-scale distances and local geome-
try are preserved under the transformation, which is critical for maintaining the intrinsic geometric
properties of the data during dimensionality reduction. For further details on the implementation
and theoretical considerations, see Diepeveen (2024).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 CONDITIONAL FLOW MATCHING

To achieve the goal of accurate generative modeling on data manifolds through isometric learning,
we first need to understand generative modeling on Euclidean spaces. We do this through summa-
rizing CFM Lipman et al. (2022), a commonly used and effective framework for learning CNFs for
generative modeling for Euclidean data Chen et al. (2018). CFM is a method designed to map a
simple base distribution to a target data distribution by learning a time-dependent vector field. The
fundamental goal of Flow Matching (FM) is to align a target probability path pt(x) with a vector
field ut(x), which generates the desired distribution. The FM objective is defined as follows:

LFM(η) = Et,pt(x)∥vt(x;η)− ut(x)∥2, (36)

where η represents the learnable parameters of the neural network that parameterizes the vector
field vt(x;η), and t ∼ U(0, 1) is uniformly sampled. However, a significant challenge in FM is the
intractability of constructing the exact path pt(x) and the corresponding vector field ut(x).

To address this Lipman et al. (2022) introduce CFM, a more practical approach by constructing the
probability path and vector fields in a conditional manner. The CFM objective is then formulated by
marginalizing over the data distribution q(x1) and considering the conditional probability paths:

LCFM(η) = Et,q(x1),pt(x|x1)∥vt(x;η)− ut(x|x1)∥2. (37)

A key result, as established in Theorem 2 of Chen & Lipman (2024), is that the gradients of the
CFM objective with respect to the parameters η are identical to those of the original FM objective,
i.e.,

∇ηLFM(η) = ∇ηLCFM(η), (38)

ensuring that optimizing the CFM objective yields the same result as the original FM objective. This
enables effective train of the neural network without needing direct access to the intractable marginal
probability paths or vector fields.

Given a sample x1 from the data distribution q(x1), we define a conditional probability path
pt(x|x1)

3. This path starts at t = 0 from a simple distribution, typically a standard Gaussian,
and approaches a distribution concentrated around x1 as t→ 1:

pt(x|x1) = N (x|µt(x1), σt(x1)
2I), (39)

where µt(x1) : [0, 1] × Rd → Rd is the time-dependent mean, and we denote the time-dependent
standard deviation as σt(x1) : [0, 1]× R → R>0. For simplicity, we set µ0(x1) = 0 and σ0(x1) =
1, ensuring that all conditional paths start from the same standard Gaussian distribution. At t = 1,
the path converges to a distribution centered at x1 with a small standard deviation σmin.

The corresponding conditional vector field ut(x|x1) can be defined by considering the flow:

χt(x) = σt(x1)x+ µt(x1), (40)

which maps a sample from the standard Gaussian to a sample from pt(x|x1). The vector field
ut(x|x1) that generates this flow, as proven by Lipman et al. (2022) in Theorem 3, is given by:

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1), (41)

where the primes denote derivatives with respect to time to stay consistent with the original papers
notation.

In this work, we choose to use the optimal transport (OT) formulation of CFM. Here, the mean
µt(x1) and standard deviation σt(x1) are designed to change linearly in time, offering a straightfor-
ward interpolation between the base distribution and the target distribution. Specifically, the mean

3In this work, we use two types of indexing: xt to denote time indices and xi for different data points. It
should be clear from the context which indexing is being used.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and standard deviation are defined as:

µt(x1) = tx1, σt(x1) = 1− (1− σmin)t. (42)

This linear path results in a vector field ut(x|x1) given by:

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
. (43)

The corresponding conditional flow that generates this vector field is:

χt(x) = (1− (1− σmin)t)x+ tx1. (44)
This OT path is optimal in the sense that it represents the displacement map between the two Gaus-
sian distributions p0(x|x1) and p1(x|x1) Lipman et al. (2022).

The final CFM loss under this OT formulation is derived by substituting the above vector field and
flow into the general CFM objective (Equation 37) and reparameterizing pt(x|x1) in terms of x0.
This yields the following objective function:

LCFM(η) = Et,q(x1),p(x0)

∥∥∥∥vt(χt(x0);η)−
x1 − (1− σmin)x0

1− (1− σmin)t

∥∥∥∥2 . (45)

This formulation is advantageous because the OT paths ensure that particles move in straight lines
and with constant speed, leading to simpler and more efficient regression tasks compared to tra-
ditional diffusion-based methods. We use the OT-CFM objective in this work when we refer to
CFM.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5 RIEMANNIAN FLOW MATCHING

The next step toward generation on data manifolds is understanding generation on manifolds with
closed form geometric mappings. RFM aims to do exactly this by generalizing CFM to Rieman-
nian manifolds Chen & Lipman (2024). Assume a complete, connected and smooth manifold M
endowed with a Riemannian metric (·, ·)M. We are given a set of training samples x1 ∈ M from
some unknown data distribution q(x1) on the manifold. Then the goal is to learn a parametric map
ρ : M → M that pushes a simple base distribution p to the data distribution q. To achieve RFM
Chen & Lipman (2024) reparameterize the conditional flow as

xt = χt(x0|x1), (46)

where χt(x0|x1) is the solution to the ordinary differential equation (ODE) defined by a time-
dependent conditional vector field ut(x|x1) ∈ TxM that is tangent to the manifold M. The initial
condition is set as χ0(x0|x1) = x0.

This formulation leads to the RFM objective, which ensures that the vector field ut(x|x1) learned
by the model lies entirely within the tangent space of the manifold at each point xt ∈ M:

LRFM(η) = Et,q(x1),p(x0)

(
∥vt(xt;η)− ut(xt|x1)∥Mxt

)2
, (47)

where ∥ · ∥M is the norm enduced by the Riemannian metric (·, ·)M. For manifolds with closed-
form geodesic expressions, a simulation-free objective can be formulated using exponential and
logarithmic maps. This approach allows models to be trained without numerically simulating par-
ticle trajectories, leveraging closed-form geodesics and mappings to directly compute vector fields
and transport paths. In this case, xt can be defined by the geodesic between x1 and x0 and can be
explicitly expressed as

xt = γMx1,x0

(
κ(t)

)
= expMx1

(
κ(t) logMx1

(x0)
)
, (48)

with monotonically decreasing differentiable function κ(t) satisfying κ(0) = 1 and κ(1) = 0 acting
as a scheduler. Furthermore, the tangent vector field ut(x|x1) can be evaluated through,

ut(x|x1) = γ̇Mx1,x0

(
κ(t)

)
=

d

dt
expMx1

(
κ(t) logMx1

(x0)
)

(49)

The objective function is then given by:

LRFM(η) = Et,q(x1),p(x0)

(∥∥vt(γMx0,x1

(
κ(t)

)
;η)− γ̇Mx0,x1

(
κ(t)

)∥∥M
p

)2
(50)

Constructing a simulation-free objective for RFM on general geometries presents significant chal-
lenges due to the absence of closed-form expressions for essential geometric operations, such as
exponential and logarithmic maps, or geodesics. These operations are crucial for defining and ef-
ficiently evaluating the objective but are often computationally intensive to approximate without
closed-form solutions. For a list of examples of manifolds with closed-form geometric mappings,
see the appendix of Chen & Lipman (2024).

In the absence of such closed-form solutions, existing methods tackle these difficulties by either
learning a metric that constrains the generative trajectory to align with the data support Kapusniak
et al. (2024) or by assuming a metric with easily computable geodesics on the data manifold Chen
& Lipman (2024). However, learning a metric can be problematic as it may lead to overfitting
or fail to capture the true geometry of the data, particularly when the data manifold is complex
or poorly understood. On the other hand, assuming a simple metric with computable geodesics
can oversimplify the problem, resulting in models that inadequately represent the underlying data
structure. To overcome these challenges, we introduce Pullback Flow Matching in section 3.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B NEURAL ODES PARAMETERIZE DIFFEOMORPHISMS

We can verify that this defines a diffeomorphism by using Theorem C.15 of Younes (2010).
According to Theorem C.15, for ϕθ to be a diffeomorphism, the vector field f must satisfy
f ∈ L1([0, 1], C1

(0)(Ω,B)), where Ω is the domain of the vector field and B is a Banach space
representing the target space.

In our case, f is composed of smooth and continuously differentiable functions due to the MLP
parameterization, ensuring f is also smooth and continuously differentiable. Additionally, we en-
force local isometry by regularizing the Jacobian of fθ, which guarantees local regularity of f in the
data domain (see stability regularization). Thus, f meets the required conditions and ϕθ defines a
proper diffeomorphism.

C MANIFOLD AND METRIC SELECTION

Isometric learning requires three key choices to be made, first one needs to choose the Riemannian
metric of the data manifold (·, ·)D, second one needs to choose both the latent (sub)manifold and its
Riemannian metric

(
Md′ , (·, ·)Md′

)
and finally one needs to choose the dimensionality d′. Techni-

cally one also needs to assume a metric on Rd−d′
, but in this work we assume a Euclidean metric

(·, ·)2 throughout all our experiments.

There are several options when selecting the metric on the data manifold (·, ·)D. One can choose for
example a locally euclidean approximation through Isomap Tenenbaum et al. (2000) or a more noise-
robust geodesic approximation Little et al. (2022). One can also design a metric to create a latent
space 4 structured based on properties of the data one cares about, we show how in subsection 5.4.
In this work, we focus on using a proper metric and defer the exploration of learning with pseudo-
metrics to future research.

When selecting a latent Riemannian (sub)manifold and metric it is crucial to select Md′ such that
M = Md′ ×Rd−d′

it is diffeomorphic to the data manifold D. This ensures that the latent space of
the RAE can effectively capture the intrinsic structure of the data. The manifold should be chosen
based on its ability to accommodate the data’s periodicity, curvature, and dimensionality. This
alignment is essential for accurately representing the data manifold within the latent space. Unless
otherwise stated we assume Md′ = Rd′

. Additionally, one should select the Riemannian geometry
of
(
Md′ , (·, ·)Md′

)
such that geometric mappings can be explicitly defined in closed form. A list of

manifolds with closed form geometric mappings can be found in the appendix of Chen & Lipman
(2024). Unless otherwise states we select (·, ·)Md′ = (·, ·)2.

Finally, d′, the dimensionality of the latent space, is a hyperparameter that could be tuned through
iterative testing. Techniques such as Isomap Tenenbaum et al. (2000) or equivalents on other mani-
folds such as hyperbolic space Cvetkovski & Crovella (2011) can be employed to evaluate various
dimensional and Riemannian geometric settings and determine the optimal d′ that balances model
complexity with the ability to accurately capture the data manifold’s structure.

4In this text we refer to the latent space as the concept in machine and representation learning, technically
its a latent manifold endowed with a Riemannian metric, not a vector space.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D DATA DESCRIPTION

In this work we use several datasets, synthetic, simulated and experimental. Here we describe them
in order of appearance in the experiments.

D.1 ARCH DATASET

We create a dataset in the spirit of Tong et al. (2020). We sample n = 500 data points uniform on the
line [−1, 1] (xi ∼ U(−1, 1)), wrap this line around the unit half circle and add normally distributed
noise with σ = 0.1, i.e.

yi,1 = sin(0.5πxi) + ai,1, yi,2 = cos(0.5πxi) + ai,2 for ai,j ∼ N (0, 0.12). (51)

An example of the dataset can be found in Figure 5.

D.2 ADENYLATE KINASE (AK)

We consider the time-normalized open-to-close transition of AK. This is a dataset from coarse-
grained molecular dynamics simulations consisting of n = 102 conformations of 214 amino-acids
in 3D, samples of the trajectory can be found in Figure 8.

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Figure 8: Example of the open-to-close transition of adynalate kinase protein.

D.3 INTESTINAL FATTY ACID BINDING PROTEIN

The second protein dynamics dataset is that of n = 500 conformations of I-FABP in water. The
datasets comes from simulations in CHARMM of 500 picoseconds (ps) with a 2 femtoseconds (fs)
timestep. The data can be found on mdanalysis.org.

D.4 GRAMPA DATASET

The giant repository of AMP activities (GRAMPA) dataset Witten & Witten (2019) is a compilation
of peptides and their antimicrobial activity against various bacteria, including E. coli and P. aerugi-
nosa. It includes data on peptide sequences, target bacteria, bacterial strains, and minimal inhibitory
concentration (MIC) values, with additional columns providing details on sequence modifications
and data sources. The dataset was created to support deep learning models aimed at predicting the
antimicrobial effectiveness of peptides. The dataset is available here. In our experiments we follow
the preprocessing pipeline from Szymczak et al. (2023) and use only the sequence data and the cor-
responding MIC scores. After preprocessing we are left with n = 3444 sequences of maximum 25
amino-acids with tested antimicrobial activity against E. coli.

21

https://www.mdanalysis.org/MDAnalysisData/ifabp_water.html
https://github.com/zswitten/Antimicrobial-Peptides

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E TRAINING PROCEDURE

We explain the training procedure and hyperparameter settings for each of the experiments in sec-
tion 5 in further detail for reproducibility. In all experiments the datasets where split into train and
test sets. We apply early stopping and present the model with the lowest average loss on the test
data.

E.1 ABLATION STUDY

For details of hyperparameter settings for the ablation study see Table 5.

Table 5: Hyperparameter settings for ablation study of RAE on the ARCH, AK and I-FABP datasets.

Hyperparameter ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
nsteps 10 10 10
Seed 0 0 0
Number of Layers 5 5 5
α1 1.0 1.0 1.0
α2 [0.0, 1.0] [0.0, 5.0] [0.0, 5.0]
α3 1.0 1.0 1.0
α4 [0.0, 0.01] [0.0, 0.005] [0.0, 0.1]
d′ 1 1 1
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Number of Neighbors 5 2 4
Batch Size 64 16 64
Warmup 50 400 200

Specific hyperparameters worth mentioning are nsteps which is the number of Runge-Kutta steps we
use in our Neural ODE, Number of Layers is the number of layers of the MLP with swish activation
function for the vector field of the Neural ODE. The Number of Neighbors is the hyperparameter
used to calculate the shortest paths over the nearest neighbors graph for the Isomap geodesics in
sklearn and the Warmup is the number of epochs we train with α1, α2 = 0 to first learn a lower
dimensional representation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.2 INTERPOLATION EXPERIMENTS

For details of hyperparameter settings for the interpolation experiments of (·, ·)M- and (·, ·)Md′ -
interpolation see Table 6 and for the (β-)VAEs see Table 7.

Table 6: Hyperparameter settings for interpolation experiments for (·, ·)M- and (·, ·)Md′ -
interpolation on the ARCH, AK and I-FABP datasets.

Hyperparameters ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
nsteps 10 10 10
Seed 0 0 0
Number of Layers 5 5 5
α1 1.0 1.0 1.0
α2 5.0 5.0 5.0
α3 1.0 1.0 1.0
α4 0.001 0.005 0.1
d′ 1 1 1 5
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Number of Neighbors 5 2 4
Batch Size 64 16 64
Warmup 50 400 200
nparameters 17282 2486480 934961

Table 7: Hyperparameter settings for interpolation experiments for (β-)VAE on the ARCH dataset.
VAEs have β = 1.0, β-VAEs have β = 10.0.

Hyperparameters ARCH AK I-FABP

Epochs 1000 1000 1000
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2
Seed 0 0 0
Number of Encoder Layers 5 5 5
Number of Decoder Layers 5 5 5
Hidden Units 64 214 · 3 + 1 131 · 3 + 1
Beta [1.0, 10.0] [1.0, 10.0] [1.0, 10.0]
d′ 1 1 1
Batch Size 64 16 64
nparameters 34184 4555655 1712324

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E.3 GENERATION EXPERIMENTS

Table 8: Hyperparameter settings for CFM, PFM and d′-PFM for generation experiments. The same
isometry φθ of the interpolation experiments is used for the PFM and d′-PFM.

ARCH I-FABP
Hyperparameter CFM PFM d′-PFM CFM PFM d′-PFM

Epochs 5000 5000 5000 5000 5000 5000
Learning Rate 0.0005 0.0005 0.0005 0.001 0.001 0.0005
Scheduler Cosine Cosine Cosine Cosine Cosine Cosine
Minimum Learning Rate 5.0 · 10−6 5.0 · 10−6 5.0 · 10−6 1.0 · 10−5 1.0 · 10−5 5.0 · 10−6

Train/Test Split 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2 0.8/0.2
Seed 0 0 0 0 0 0
Number of Layers 10 10 10 10 10 10
Hidden Units 64 64 16 131 · 3 + 1 131 · 3 + 1 131 · 3 + 1
Batch Size 64 64 64 64 64 64
nsimulation steps 10 10 10 10 10 10

E.4 DESIGNABLE LATENT MANIFOLDS FOR NOVEL PROTEIN ENGINEERING

In Table 9 one can find the settings for training the isometry on the GRAMPA dataset for the protein
sequence design experiments. Specific hyperparameter worth mentioning is the embedding dimen-
sions, we use an embedding layer from the Flax library to embed the discrete sequences into a
continuous space and use a sign-cosine positional embedding, to embed the location in the sequence
of the amino acids in the data.

Table 9: Hyperparameter settings for protein design experiments of the RAEs on the GRAMPA
dataset.

Hyperparameters Setting

Epochs 1000
Learning Rate 0.0001
Optimizer Adam
Train/Test Split 0.8/0.2
nsteps 10
Seed 0
Number of Layers 5
Embedding dimension 8
α1 5.0
α2 5.0
α3 5.0
α4 0.05
d′ 128
Hidden Units 512
Batch Size 128
Warmup 100

24

	Introduction
	Notation
	Pullback Flow Matching
	Learning Isometries
	Parameterizing Diffeomorphisms
	Learning Objective

	Experiments
	Ablation Study
	Interpolation Experiments
	Generation Experiments
	Designable Latent Manifolds for Novel Protein Engineering

	Conclusion
	Background
	Riemmanian Geometry
	Riemannian Auto-Encoder
	Learning Isometries with Riemannian Auto-Encoders
	Conditional Flow Matching
	Riemannian Flow Matching

	Neural ODEs Parameterize Diffeomorphisms
	Manifold and Metric Selection
	Data Description
	ARCH Dataset
	AK
	Intestinal Fatty Acid Binding Protein
	GRAMPA Dataset

	Training Procedure
	Ablation Study
	Interpolation Experiments
	Generation Experiments
	Designable Latent Manifolds for Novel Protein Engineering

