Under review as a conference paper at ICLR 2026

HAM: HIERARCHICAL ADAPTERS MERGING FOR
SCALABLE CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning allows models to acquire knowledge incrementally, but is
challenged by catastrophic forgetting, a phenomenon in which the learning of new
tasks disrupts previously acquired knowledge. Although large pre-trained models
can partially mitigate forgetting by leveraging their existing knowledge and over-
parameterization, they often struggle when confronted with novel data distributions.
Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, enable efficient
adaptation to new data. However, they still face challenges in scaling to dynamic
learning scenarios and long sequences of tasks, as maintaining one adapter per
task introduces complexity and increases the potential for interference. In this
paper, we introduce Hierarchical Adapters Merging (HAM), a novel framework
that dynamically combines adapters from different tasks during training. For each
experience, HAM trains a low-rank adapter along with an importance scalar, then
dynamically groups tasks based on adapter similarity. Within each group, adapters
are pruned, scaled and merged, facilitating transfer learning between related tasks.
Extensive experiments on three vision benchmarks demonstrate that HAM sur-
passes state-of-the-art methods, achieving up to 4% accuracy improvement over
the best baseline and nearly doubling efficiency in both training and inference, with
particularly strong advantages as the number of tasks increases.

1 INTRODUCTION

Continual Learning (CL) aims to build models that can learn incrementally from sequences of tasks
while retaining previously learned knowledge, reducing the phenomenon of catastrophic forgetting.
The emergence of large pre-trained models has introduced new alternatives, which are nonetheless
highly costly to retrain or fine-tune for each learning experience, which make the development of more
efficient approaches essential for feasibility. Parameter-Efficient Fine-Tuning (PEFT) methods
(Han et al.l |2024) tackle this issue by adapting only a small subset of the weights of the model or
introducing a limited number of trainable parameters, while keeping the base model frozen. Among
PEFT techniques, Low-Rank Adaptation (LoRA) (Hu et al.,[2021)) has emerged as a popular choice
due to its simplicity and effectiveness. However, LoRA, as the other PEFT methods, is optimized
for static learning scenarios, where the objective is to achieve the highest possible performance on a
single task. Conversely, in CL the focus in shifted more towards over-time learning and knowledge
retetion. In this setting, the standard LoRA approach falls short.

Similar to classical CL methods, PEFT-based approaches face three key challenges: (i) preventing
catastrophic forgetting of previously learned tasks, (ii) enabling knowledge transfer between related
tasks and (iii) efficiently allocating parameters while maintaining scalability. Previous approaches
typically address (i) and (ii) by either storing separate adapter modules for each task, requiring task
identifiers at inference, or by complex parameter isolation strategies that limit knowledge transfer.
More involved methods (Liang & Lil 2024; Wu et al.) try to improve the stability—plasticity trade-off
by subspace reparameterization or decoupled magnitude/direction learning. Nonetheless, they still
treat adapters independently throughout training and inference, preventing shared learning or adaptive
reuse. Alternatively, post-hoc merging (Marczak et al., [2024} [Yadav et al.| 2023 [Yu et al., [2024;
Ilharco et al., 2023} |Coleman et al., [2024) consolidates adapters after training, limiting knowledge
transfer during learning. These methods also depend on manually chosen merging coefficients, which
can become cumbersome and suboptimal—especially as the number of tasks grows.

“Equal contribution

Under review as a conference paper at ICLR 2026

al

I AW; |

| S(AW;, AW, 1

: Frozen &: Learnable iSEAW_ AWZ; AWe A, i

| iy 2 I

| A]

ag, 4| oGyt o | SO, AlVe.) AW, |

|]

Wo| |awe| - |awe,| awi| b :
st hl
| |

AN P i ® :Pruning
Task T, LAV Awe, AW)

| F

(a) HAM first phase: Task-Specific LoRA Train- i AWe,, i
H I]
ing i i
g J

(b) HAM second phase: Adapters Grouping

Figure 1: Illustration of the HAM method. Figure a new task-specific LoRA adapter AW; is trained,
alongside its importance factor av; and o, one for each of the M groups, where M < number of tasks. Figure
[TB} the adapter AW is associated with the most similar group adapter. After the association, AW; is pruned
and concatenated with the selected group adapter.

To address these limitations, we propose Hierarchical Adapters Merging (HAM), a continual LoRA-
based method that dynamically groups and merges adapters as tasks unfold. For each new task ¢,
HAM (i) learns a task-specific LoORA adapter with an importance weight ay, (ii) clusters related
tasks and concatenates their adapters, and (iii) merges groups using a specialized algorithm. This
hierarchical process controls the number of stored modules, retains prior-task knowledge to mitigate
forgetting, and promotes positive transfer among similar tasks. Importantly, the dynamic grouping
mechanism is agnostic to task ordering, making HAM more adaptive and scalable over long task
sequences, outperforming single-shot and rigid merging baselines. We evaluate our method on
standard CL benchmarks, putting the emphasis on longer sequences of tasks, a demanding yet
realistic setting that has received limited attention in the CL community. This scenario better reflects
real-world conditions, increasing the models “lifetime” and pushing the field closer to a true lifelong
learning agent.

To summarize, in this paper we introduce Hierarchical Adapters Merging for Low-Rank Adap-
tation (HAM), a novel approach that addresses the challenge of continually learning over long
sequences of tasks through a combination of task-specific adaptations, importance-weighted pruning,
and hierarchical merging. Our key contributions are as follows:

* We propose a scalable CL methodology for foundation models, leveraging PEFT tech-
niques to ensure efficiency, and an adaptation mechanism that assigns learnable importance
parameters to task-specific LoORA modules;

* We design a hierarchical group-based merging strategy that promotes knowledge transfer
across tasks, mitigates catastrophic forgetting, and guarantees high performance over long
task sequences;

* We conduct extensive experiments on diverse benchmarks, showing state-of-the-art perfor-
mance in dynamic CL scenarios with long task sequences.

Through a comprehensive experimental evaluation (Sec. [4.2)), we demonstrate that our method
outperforms previous PEFT-based approaches, achieving a 4% increase in accuracy and 9% decrease
in forgetting comparing to the strongest baseline, while being nearly twice as fast in both training
and inference. To gain deeper insights into HAM’s behavior, we conduct extensive ablation studies
(Sec. [4.3), which highlight the effectiveness of our hierarchical, two-phase merging strategy. These
analyses confirm that our approach substantially mitigates task interference, enhances knowledge
retention, and preserves scalability and efficiency even over longer task sequences.

2 RELATED WORK

Continual Learning CL approaches are typically grouped into three categories: (i) regularization-
based methods (Kirkpatrick et al.l 2017} Zenke et al., 2017), (ii) replay-based methods (Rebutffi et al.|
2017 |Chaudhry et al.l 2019) and (iii) parameter isolation methods (Mallya & Lazebnik, [2018; Rusu
et al.l [2016). The rise of large pretrained models has driven the adaptation of CL approaches to
Transformer-based architectures (Vaswani et al.,[2017). Recent work has increasingly explored how

Under review as a conference paper at ICLR 2026

to leverage these models for CL, highlighting both the challenges and opportunities. On one hand,
the rich representations and features extraction abilities captured during pre-training can promote
positive forward transfer during sequential learning. Conversely, the sheer number of parameters
complicates the fine-tuning of the model, making it prohibitively expensive and often impractical.

Parameter Efficient Fine-Tuning These techniques allow large pre-trained models to be adapted
to downstream tasks by only modifying a small set of parameters (Houlsby et al.| 2019), enabling
the learning of new tasks with a much higher efficiency than full fine-tuning. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) freezes the pre-trained model weights and injects trainable low-rank
decomposition matrices into each layer. For a pre-trained weight matrix Wy € R?**, LoRA
parameterizes the update AW as the product of two low-rank matrices:

W =Wy+ AW =W, + BA (1)

where B € R4*", A € R"** and the rank r < min(d, k). This significantly reduces the number
of trainable parameters from d x k to r x (d + k). Different LoRA-based techniques have been
adapted for CL to enable efficient adaptation over time. InfLoRA (Liang & Li, [2024) proposes
an interference-free low-rank adaptation method that reparameterizes pre-trained weights within a
subspace designed to minimize interference between tasks. SD-LoRA [Wu et al.| focuses on dynamic
adaptation which decouples magnitude and direction of LoRA updates for scalable, rehearsal-free
class-incremental learning. SEMA Wang et al.|(2025)) introduces a mixture-of-adapters framework,
dynamically expanding the adapters set for new tasks while mitigating forgetting through task-specific
routing. Nonetheless, such methods fall short when dealing with long task sequences.

An alternative is represented by prompt-based methods, which enable continual efficient learning
of new tasks though small learnable parameters. Learning to Prompt (L2P) (Wang et al., [2022b)
introduces a framework where a pre-trained model is guided by a set of learnable prompts stored
in a memory bank. These prompts are dynamically selected based on input queries, allowing the
model to adapt to new tasks without modifying the core parameters. DualPrompt (Wang et al.,|[2022a)
builds upon L2P by incorporating both task-invariant and task-specific prompts. This duality enables
the model to capture shared knowledge across tasks while retaining task-specific nuances. CODA-
Prompt (Smith et al.,|2023)) improves prompt-based methods by using an attention-driven key-query
mechanism to construct input-conditioned prompts, enhancing adaptability without sacrificing past
performance. However, a key drawback of prompt-based CL methods is their limited plasticity, which
restricts their ability to adapt effectively to novel tasks beyond their pre-training distribution.

Model Merging This offers a promising approach to CL by combining expert models to mitigate
catastrophic forgetting while leveraging their diverse strengths and capabilities. In dynamic and
ever-evolving domains, this enables models to expand their knowledge while minimizing the loss of
prior information. Different algorithms were defined to perform such combination of multiple models.
Linear merging computes a parameter-wise weighted average, without any particular technique
to address interference. TIES (Yadav et al., [2023) removes redundant parameters and solves sign
conflicts before merging the model’s weights. DARE (Yu et al.,[2024) randomly drops a portion of
the parameters and rescales the remaining ones to reduce redundancy and minimize interference.

Several works leverage model merging for CL. MagMax (Marczak et al., 2024) fine-tunes tasks
sequentially, then consolidates weights via maximum-magnitude selection, requiring no retraining but
applying merging only once at the end. Orthogonal Projection-Based Continual Merging (Tang et al.|
20235)) allows sequential integration of new models, using orthogonal projection to reduce interference
and a scaling factor to balance contributions. Adaptive LoRA Merging (Coleman et al. [2025)
replaces fixed-weights combinations with dynamically computed merging coefficients, enhancing
task integration. MELoRA (Ren et al.,[2024)) trains smaller LoRAs in parallel, concatenating them
diagonally into a single adapter, increasing representation capacity while maintaining computational
efficiency over standard LoRA.

3 HAM: HIERARCHICAL ADAPTERS MERGING

In this section, we introduce HAM. We first formalize the problem setting and the objectives of our
method (Sec. [3.1). We then describe the training phase of the HAM approach (Sec. [3.2)), which
consists of two main stages: (i) task-specific training of each LoRA adapter, highlighting the
important role of the « values; and (ii) adapter grouping, where the new LoRA is clustered, pruned
and combined into the most similar adapter group. At inference time, HAM produces a unified model

Under review as a conference paper at ICLR 2026

through a final adapter merging step (Sec. [3.3). Importantly, this merging step can be executed at
any point during training, without requiring the entire task sequence to be observed beforehand. An
overview of the method is presented in Figure[I] Additionally, we provide details about HAM’s
implementation in Appendix [A.2]

3.1 PROBLEM FORMULATION

We consider the class-incremental continual learning setting, where a model encounters a sequence
of tasks T = {T1, T3, ..., T } overtime, with non-overlapping class sets. For each task T}, the model
receives a dataset D; = {(z;, yj)};‘gl, where x; represents an input sample and y; its corresponding
label from the class set specific to task 7;. The model must learn to perform well on all encountered
tasks after training sequentially on each task, without task identifiers at inference time. We employ a
pre-trained model as our base model, e.g. a Vision Transformer, and denote its parameters as Wj.
The objective is to adapt it to each task in the sequence using low-rank modules, while preventing
catastrophic forgetting. Our goal is to design a strategy that enables effective knowledge transfer
between tasks, ultimately making the method particularly well-suited for longer task sequences.

Notation For clarity, we introduce the notation used throughout the method description. A LoRA
adapter trained on a specific task T is denoted as AW; = B; A;, where B; € R*" is the down-
projection matrix, and A; € R"** is the up-projection matrix. A group of LoRA adapters is
represented as G, associated with a group adapter AW¢, = Bg, Ag,. The set of groups is written
as G = {G4,...,Gu}, where M denotes the current number of groups. The maximum number of
groups is denoted by Gax.

3.2 HAM TRAINING PROCESS
3.2.1 TASK-SPECIFIC LORA TRAINING

For each task T;, we introduce a LoRA adapter AW;. Alongside with the adapter, we train an «;
value that conveys the importance the LoORA module itself. This scalar value then serves as a scaling
factor, needed to efficiently combine multiple adapters with limited interference. During the training
phase for task T}, the adapter AW; and its corresponding scaling factor «; are optimized using the
dataset D;. In this phase, the pre-trained model weights Wy and the previously learned group adapters
{AWG]. } jvil (see Sec. , are kept frozen. Instead, while training AW;, the scaling factors of the

group adapters {ag; } j=1 are also updated. This ensures that the relative importance of all adapters
remains balanced when a new task is introduced. Therefore, the output of the model for an input x is

computed as:
M

+ Z ag, AWg,x+ a;AW;z 2)
———

j=1

h = Wo.’L‘
~—~—

pre-trained model current adapter

previous group adapters

where we underline in red the components which are updated during the task-specific training phase.
This approach guarantees that each task-specific adapter is optimized while accounting also for
the behaviors and knowledge of earlier grouped LoRAs. By minimizing the amount of redundant
information across adapters, it encourages each one to focus solely on task-specific features, also
facilitating effective knowledge transfer between them.

As mentioned before, HAM adopts a dynamic grouping strategy to efficiently manage the increasing
number of adapters. This contrast with approaches such as |[Wu et al., where both the number
of adapters and their corresponding « values grows linearly with the number of tasks, leading to
high computational costs. Instead, rather than retaining a separate LORA module for each training
experience, our strategy progressively clusters similar adapters, performing an initial combination
phase within our hierarchical framework. Under this approach, each group G; holds a single adapter
AW, and a unique importance factor a,. By consolidating adapters in this fashion, the total number
of modules to be merged at inference time is substantially reduced, minimizing task interference
while preserving the expressive capacity of grouped adapters. Consequently, HAM excels in learning
across extended task sequences, mitigating forgetting while maintaining high efficiency.

Under review as a conference paper at ICLR 2026

3.2.2 ADAPTERS GROUPING

Group Association After training on task 7; and obtaining the adapter AW; = B; A;, we compute
the cosine similarity between the current adapter and previously learned group adapters, using the
last LoRA layer of each adapter:

B \(vec(BiAi),vec(BGjAGj))|
(AW AWG,) = 1B, 4)] - vec(Ba, Aa,) T

where j € {1,..., M} 3)

where vec(-) denotes vectorization. Given a similarity threshold 74y, the adapter AW; joins the
group adapter AW¢ if S(AW;, AWGj) > Tgim. If all similarity scores fall below the threshold and
the number of groups has not yet reached the limit, i.e. M < Gpax, @ new group is created for the
adapter. Otherwise, when the maximum number of groups is reached (M = Gnax), the adapter is
assigned to the most similar group, regardless of the threshold.

Each group G, carries a single group-level scaling factor o, , given by the average of the individual
« values associated to the adapters in the group. When a new adapter AW; is added to a group G,
the importance factor is updated as follows:

oG, = o ifM=0
a; — g,

|G| +1

“

ag, = ag, + otherwise

Selective Pruning After selecting the most similar group, we perform selective pruning to retain
only the most significant weights of the current adapter AW,. This pruning step is essential for
maintaining high performance while reducing parameter overhead during merging. We calculate the
importance of individual weights based on their magnitude. Specifically, for matrices B; and A;, we
retain only the top-k% weights with the highest absolute values, where k is a hyperparameter. Hence,
the resulting matrices BZ and /L are defined as:

B; =B, 01(|B;i| > 5)

R &)

where © represents element-wise multiplication, I(-) is the indicator function, and 75 and 74 are
thresholds chosen such that only the top-k% elements are retained.

Intra-Group Concatenation To obtain a single adapter per group, we concatenate all the LoRA

modules within that group. Specifically, for the pruned adapter AW; associated with the group G,
the group adapter AW is updated as follows:
Bg. = [Be., B

G et | ©)

<.

where [z, y] denotes horizontal concatenation and [z; y] denotes vertical concatenation.

We found this intra-group combination phase to be critical for the overall performance of the final
algorithm. Specifically, this step is primarily necessary to reduce the total number of adapters,
which has a substantial impact on the effectiveness of the subsequent merging phase. In fact, as the
number of modules increases, the merging procedures face greater difficulty in computing an optimal
combination of all adapters, leading to an increased interference among them and lower performance.
We tested different combination techniques in this phase, like TIES (Yadav et al., 2023). However, we
observed that the best results were achieved using a simple matrix concatenation to obtain the final
group adapters. We attribute this to the fact that, while merging techniques such as TIES produce
an output adapter with the same rank r as the input LoRA modules, concatenation instead yields
each AW, with an expanded rank rg, = m - r. Ultimately, this helps better preserve the features
learned by LoRAs during their individual training while increasing the representation capabilities of
the group adapter.

Under review as a conference paper at ICLR 2026

3.3 MODEL INFERENCE

The final stage of our method involves a global merging step, integrating all group adapters into a
single module. This is necessary in class-incremental learning, where task identifiers are unavailable at
inference time, making routing-based approaches unfeasible. Likewise, mixture-of-experts strategies
would struggle to scale with long task sequences and introduce additional complexity for expert
selection. By merging all adapters after training, HAM produces a unified model that supports
inference across all tasks without requiring extra heuristics or task-specific mechanisms.

After the adapters grouping phase, each group adapter is adjusted according to its importance factor
o, which serves to mitigate potential interference arising from their combination. Consequently,
equal weights are assigned to the merging algorithm, under the assumption that the o values provide
sufficient scaling for effective integration. Therefore, the final merged adapter is computed as:

M
1
AI/Vmerged = M Z aag; BGI-AGi @)

i=1

This merged adapter represents the final outcome of HAM’s training phase. It encapsulates the
accumulated knowledge coming from the entire training experience over time, while ensuring
minimal interference across tasks. Such adapter AW pereeq has a rank ripergeq = m - 7, where m is the
number of adapters per group and r is the rank of a single LoRA module. Therefore, our architecture
expands the adapters representation space, enabling better handling of extended task sequences, while
maintaining low complexity and a limited number of parameters, thanks to the considerable pruning
phase performed prior to merging. The merged adapter is utilized to define the final model, starting
from the pre-trained weights W. The model’s updated weights are expressed as:

Wihinal = Wo + AI/Vmerged (8)

Essentially, HAM produces a single model that can be used seamlessly for inference across all tasks
encountered during training.

In the following section, supported by a comprehensive experimental setup, we illustrate the critical
role of HAM’s training procedure in significantly enhancing the model’s capacity to retain knowl-
edge across a substantially larger set of tasks. Its effectiveness is demonstrated through numerous
comparisons with both traditional CL baselines and more recent PEFT-based methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate HAM on two standard CL benchmarks, namely CIFAR-100 and Tiny-ImageNet, and on
the more fine-grained CUB-200 dataset, where pre-trained models usually show poor performance
(Radford et al., [2021)). CIFAR-100 (Krizhevsky et al., 2009) includes 60,000 images over 100 classes.
CUB-200 (Wah et al., 2011} consists of 11,788 bird images across 200 categories. Tiny-ImageNet
(Le & Yang,2015) is a downsized version of ImageNet (Deng et al.|[2009)), with 100,000 images over
200 classes. We report two standard CL metrics: (i) Average Accuracy (AA): mean accuracy over
all tasks at the end of training; (ii) Forgetting Measure (FM): average drop in accuracy from a task’s
peak to its final accuracy. Additionally, we run an efficiency analysis, showing both the training and
inference times required by HAM and its competing baselines.

As for the base model, we employed a ViT-B/16 backbone pretrained on ImageNet. For HAM,
we set the LoRA rank to r = 16, apply pruning to retain the top 60% of weights per adapter, and
use Gmax = 2 task groups. Training is done using the AdamW optimizer (Loshchilov & Hutter,
2017), with a learning rate of 10~3 and batch size of 64. We compare against both standard and
parameter-efficient continual learning methods. Standard baselines include fine-tuning (FT), Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Learning without Forgetting (LwF) (Li &
Hoiem| 2017), implemented via Avalanche’s Naive, EWC and LwF strategies (Carta et al.,2023)).
Since our method involves a merging phases, we also benchmark it against widely used merging
techniques, namely Linear Merging, TIES and DARE-TIES. In this cases, we train an adapter for
each task before merging the entire set using the selected algorithm, leveraging the implementation
from HuggingFace peft library (Mangrulkar et al.,[2022). Additionally, we incorporate the most
recent and best-performing prompt-based and LoRA-based methods as PEFT baselines, using the

Under review as a conference paper at ICLR 2026

Method CIFAR-100 CUB-200 Tiny-ImageNet Average

Fine-Tuning 1.90 + 01 0.52 o1 2.52 +045 3.26 +o0.16
EWC 1.96 + 0.1 0.86 +036 3.12 o089 1.98 +032
LWF 2.35 +035 9.97 +13 4.1 +o2 547 +o4s
Linear Merging 64.29 +208 45.04 + 143 80.13 +0.604 63.15 + 113
TIES 62.53 £o73 4231 104 70.19 o012 58.34 1044
DARE_TIES 62.70 £204 4230 121 69.65 +0.233 58.22 + 079
L2P 62.55 +204 43.25 120 58.16 +0.69 54.65 + 098

Dual-Prompt 61.25 044 49.44 + 181 74.83 +026 61.84 + 063
CODA-Prompt 3245 +o41 41.18 +075 52.65 + o034 40.1 + 032

SEMA 65.86 +034 32.02 +3.16 83.56 + o057 60.48 +1.08
InfLoRA 49.1 £44 36.02 +326 65.7 066 50.27 + 184
SD-LoRA 71.63 061 47.56 +377 79.48 +209 66.22 + 145
HAM 71.78 £224 5517 + 104 83.29 031 70.08 + 0.3

Table 1: Average Accuracy (%, 1) after training on 50 tasks across three benchmarks. We also report the
average forgetting across datasets for an overall comparison. All methods were trained under identical key
hyperparameters (e.g. LoRA rank and alpha, number of epochs). Best results are shown in bold, and second-best
results are underlined.

. Performance on CUB-200 100 Performance on CIFAR-100
"k\\ @

370 3 T me——

8 ‘\\‘:\\\ & o0 | ETEEEETEE T T T ———

>60 S RN 2 SEsas =-e

3 2 ~ 3 S3a

g S e g o e
350 AN S 3 N

& Method TeIxel & Method A g

o 40 @ Ham o T o 40 =@ HAM

o SD-LoRA <D s J o SD-LoRA

$30 o mfoma S © - Inflora

9 e DualPrompt SSRG 2 20 -e DualPrompt

<20 CODA-Prompt ~sB < CODA-Prompt

wp P
10 0
10 20 50 100 10 Tasks 20 Tasks 50 Tasks
Number of Tasks Number of Tasks

(a) Accuracy on CUB-200 with (b) Accuracy on CIFAR-100 with
varying task counts. varying task counts.

Figure 2: Comparison of methods on CUB-200 and CIFAR-100 under different task splits.

same hyperparameters we employ for HAM. For L2P, DualPrompt and CODA-Prompt we used the
implementation available in the mammoth library (Boschini et al., [2022)). For SEMA, InfLoRA and
SD-LoRA we used the official implementation from the authors.

4.2 MAIN RESULTS

Accuracy In Table[I] we report accuracy results on three datasets over a training sequence of 50
tasks. As shown in the last column, HAM significantly outperforms state-of-the-art CL methods in
this challenging setting, where task sequences are longer than standard scenarios. On the simpler
datasets, i.e. CIFAR-100 and Tiny-ImageNet, HAM achieves accuracy comparable to competing
methods, nonetheless demonstrating greater consistency across benchmarks. More notably, on the
fine-graned and challenging CUB-200 dataset, HAM delivers substantial accuracy improvements,
where other methods struggle.

Performance Across Different Sequence Lengths To evaluate the effect of task sequence length,
we conducted experiments with progressively longer sequences. As shown in Figure 2] HAM
consistently achieves state-of-the-art performance across all sequence lengths, remaining the top-
performing method in every case. Moreover, it exhibits the smallest accuracy degradation as tasks
accumulate, whereas competing methods suffer sever drops. Most strikingly, Figure [2a demonstrates
that HAM maintains strong performance even in the extreme case of 100 tasks, whereas one of the
best baselines, SD-LoRA, fails after 69 experiences due to GPU memory limitations. These findings
validate HAM’s ability to achieve top-tier performance, especially when dealing with long task
sequences. Thanks to its superior efficiency over the strongest competing baselines, HAM represents
a compelling and scalable solution for challenging and realistic CL scenarios.

Forgetting Another key metric we evaluate is forgetting, which measures the ability to retain
knowledge in CL scenarios. The results, reported in Table E], are obtained from the same setting
as the one presented in Table [II We emphasize that correctly interpreting forgetting results in

Under review as a conference paper at ICLR 2026

Method CIFAR-100 CUB-200 Tiny-ImageNet Average

Fine-Tuning 97.63 + 067 24.4 +236 97.95 +oss 73.33 +1.00
EWC 97.63 +os 26.26 +431 96.62 +0.99 73.50 + 148
LWF 98.72 033 14.29 1246 95.22 +os 69.41 +os4
Linear Merging 31.79 +2n1 29.17+ 140 16.50 +1.11 25.82 +092
TIES 30 +204 29.18 + 139 17.94 + 202 25.71 +e678
DARE_TIES 31.04 £214 29.10 217 17.53 + 034 25.89 +1.02
L2P 18.44 +o0.64 5.53 119 6.83 +090 10.27 +os4
Dual-Prompt 10.58 +166 8.53 +205 5.85 + 052 8.32 £ 09
CODA-Prompt 13.30 +o06s 11.78 +1.18 12.29 + 198 12.46 +os0
SEMA 14.67 toe17 13.26 +1.32 10.86 + 077 12.93 +os6
InfLoRA 2341 +384 46.26 +368 19.32 182 29.66 + 187
SD-LoRA 12.24 1145 33.15 145 10.63 +40 18.67 +1.50
HAM 10.98 + 077 12.94 + 165 5.32 045 9.75 £ 063

Table 2: Forgetting Measure (%, |) after training on 50 tasks across three benchmarks. We also report the
average forgetting across datasets for an overall comparison. All methods were trained under identical key
hyperparameters (e.g. LoRA rank and alpha, number of epochs). Best results are shown in bold, and second-best
results are underlined.

isolation is challenging; a comprehensive understanding requires analyzing them in conjunction with
overall accuracy. In fact, while DualPrompt achieves the lowest forgetting across all experiments, its
accuracy performance is substantially weaker, falling about 9% behind HAM on average. In contrast,
when comparing with the strongest baselines in terms of accuracy, namely SEMA, InfLoRA and
SD-LoRA, HAM not only achieves higher accuracy but also exhibits consistently lower forgetting.
This highlights the effectiveness of our hierarchical approach in mitigating interference during the
merging phase, ultimately improving both knowledge retention and predictive performance.

Computational Efficiency To assess computational effi-

. s SEMA
ciency, we compare HAM’s training and inference times with 7 ..
the best performing PEFT-based CL baselines. Figure[3]re- nora 0.45¢

1.00x

ports the average per-task times on CIFAR-100 with 10 tasks, HAM | —_ Ll . ‘
with inference times measured on the final model after train- S raiming Time (s}
ing. HAM is substantially faster than the competing methods, un —
both during training and inference. Notably, HAM is ex- spicra 0.29¢

tremely more efficient than SEMA and roughly twice as fast ~ imfLora 017

as SD-LoRA in both stages, while also delivering superior ~ WAM@®=>
performance in terms of accuracy and reduced forgetting. * 7 inference Time (s)
This efficiency gains is largely due to HAM’s hierarchical
merging strategy and pruning approach, which reduce the
number of active parameters and lower computational over-
head throughout training and inference.

Figure 3: Training and inference times
comparison. HAM is significantly faster
than the strongest competing approaches.

4.3 ABLATION STUDIES

Similarity-based vs Orthogonality Grouping A fundamental design choice in HAM is grouping
tasks by similarity rather than orthogonality. While orthogonal grouping might intuitively seem
beneficial for maximizing diversity within groups, our experiments (Table [3) demonstrate that
similarity-based grouping consistently yields superior performance, with the advantage becoming
more pronounced as the number of tasks increases.

Dataset # Tasks Similarity (AA) Orthogonal (AA) Advantage

CIFAR-100 20 82.45 % 81.47 % +0.98 %
CIFAR-100 50 68.50 % 64.86 % +3.64 %
CUB-200 20 66.19 % 64.49 % +1.69 %
CUB-200 50 55.25 % 50.16 % +5.08 %

Table 3: Performance comparison of similarity-based vs. orthogonality-based grouping across datasets and
task counts. Similarity-based grouping consistently outperforms orthogonal grouping, with larger gains as the
number of tasks increases.

Group Adapters as Effective Intermediate Models A surprising finding in our experiments is that
the intermediate group adapters, created through concatenation and pruning, consistently outperform

Under review as a conference paper at ICLR 2026

Group Task ID Individual (%) Group (%) Improvement (%)

Task 3 84.40 87.80 +3.40
Task 6 86.70 89.60 +2.90
GroupO0 Task 8 81.50 85.20 +3.70
Task 1 84.30 85.20 +0.90
Task 7 83.60 86.30 +2.70
Task 2 80.90 83.60 +2.70
Task 4 78.70 83.50 +4.80
Group 1 Task5 87.00 90.60 +3.60
Task 9 90.00 92.60 +2.60
Task 0 84.20 84.30 +0.10
Average 84.13 86.87 +2.74

Table 4: Per-task accuracy improvement with group adapters at k = 0.6 (40% sparsity).

their constituent individual adapters. Table [4| details the per-task gains at our selected £k = 0.6,
showing that initially weaker tasks benefit most: Task 4 improves by +4.80% and Task 8 by +3.70%.
With k = 0.6, we reduce parameters from 5.90M to 3.54M (1.67 x reduction) while achieving +2.74%
accuracy improvement. This demonstrates that concatenation with moderate pruning is not merely a
parameter reduction technique but an effective knowledge consolidation mechanism.

Impact of the Number of Groups Table [5|reveals that using fewer groups generally improves
performance, while a similar reduction with 20 tasks yields a 0.96% improvement. This suggests
that larger groups may facilitate better knowledge sharing across related tasks, though HAM remains
robust across different grouping configurations with relatively modest performance variations.

Impact of the Merging Algorithm A crucial step in HAM is the final merging stage, where group
adapters are consolidated into a single one. To evaluate its impact, we compared several merging
algorithms on a 10-task scenario with rank 16 LoRA adapters (Table[6). Linear merging achieved the
best accuracy, slightly outperforming TIES and clearly surpassing DARE. Notably, the simpler linear
strategy outperformed more sophisticated methods, likely due to better preservation of task-specific
knowledge within HAM’s hierarchical structure.

Impact of Pruning Table[/|shows HAM’s performance when varying the percentage of retained
weights (k). AA improves as k increases from 10% to 60%, after which gains plateau and performance
slightly declines at ¥ = 80%. The most substantial improvements occur between 10% and 40%,
suggesting that strong pruning effectively balances information retention and noise reduction. Indeed,
extremely low retention (X = 10-20%) causes information loss, while higher levels (k > 60%)
reintroduce noise. Overall, these results confirm HAM’s design choice of employing strong pruning
to optimize both performance and parameter efficiency.

k Params Reduction AA

#Groups #Tasks AA (%) Merging AA (%) (Pruned) Factor (%)
2 10 86.44 + 0.30 Linear 86.44 4030 09 531M 111 X 8312
5 10 83.25 4001 08 472M 125x 85.82
TIES 85.66 +0.13
DARE 8343 100 0.6 3.54M 1.67x 85.83
2 20 82450 i 04 2.36M 250x 85.64
4 20 78.81 + o001

0.2 1.18M 5.00x 84.41
Table 6: Impact of different al- 0.1 0.59M 10.00 % 83.12

Table 5: Impact of the number of ~ gorithms in HAM final merg-

groups on CIFAR-100. ing. Table 7: Impact of pruning ratio on
CIFAR-100.

5 CONCLUSION

This study introduces Hierarchical Adapters Merging (HAM), a novel approach to LoRA merging
designed for Continual Learning. HAM follows a two-step merging procedure: first, it clusters
and concatenates similar adapters; then, it scales them using group-specific importance factors
before performing group-wise merging. Extensive experiments validate its effectiveness, showing
superior performance compared to state-of-the-art techniques across long task sequences, reducing
interference among adapters and enhancing transfer learning between tasks. In this work, we used
LoRA because of its balance between learning capabilities and computational complexity. However,
it is theoretically possible to use other PEFT methods, e.g. prompts, and it would be interesting to
assess the differences in performance when changing PEFT technique. Additionally, possible future
works can be directed towards a variation of such method that enables an online adapters merging.

Under review as a conference paper at ICLR 2026

REFERENCES

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

Antonio Carta, Lorenzo Pellegrini, Andrea Cossu, Hamed Hemati, and Vincenzo Lomonaco.
Avalanche: A pytorch library for deep continual learning. Journal of Machine Learning Re-
search, 24(363):1-6, 2023. URL http://jmlr.org/papers/v24/23-0130.html,

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, and Philip HS
Torr. Tiny episodic memories in continual learning. In arXiv preprint arXiv:1902.10486, 2019.

Eric Nuertey Coleman, Luigi Quarantiello, Julio Hurtado, and Vincenzo Lomonaco. Adaptive lora
merging for efficient domain incremental learning. In Adaptive Foundation Models: Evolving Al
for Personalized and Efficient Learning, 2024.

Eric Nuertey Coleman, Luigi Quarantiello, Ziyue Liu, Qinwen Yang, Samrat Mukherjee, Julio
Hurtado, and Vincenzo Lomonaco. Parameter-efficient continual fine-tuning: A survey. arXiv
preprint arXiv:2504.13822, 2025.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248-255. IEEE, 2009.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey, 2024. URL https://arxiv.org/abs/2403,
14608.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mohammad Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In Proceedings of the 36th International Conference on Machine Learning (ICML), pp.
2790-2799, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021. URL https://arxiv.org/abs/2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https:
//arxiv.org/abs/2212.04089.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwiriska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114
(13):3521-3526, 2017. doi: 10.1073/pnas.1611835114.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935-2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23638-23647, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7765-7773,2018. doi: 10.1109/CVPR.2018.00810.

10

http://jmlr.org/papers/v24/23-0130.html
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089

Under review as a conference paper at ICLR 2026

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://githubl
com/huggingface/peft, 2022.

Daniel Marczak, Barttomiej Twardowski, Tomasz Trzcifiski, and Sebastian Cygert. Magmax: Lever-
aging model merging for seamless continual learning, 2024. URL https://arxiv.org/
abs/2407.06322.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2001-2010, 2017. doi: 10.1109/CVPR.
2017.587.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten de Rijke,
Zhumin Chen, and Jiahuan Pei. Melora: mini-ensemble low-rank adapters for parameter-efficient
fine-tuning. arXiv preprint arXiv:2402.17263, 2024.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. In arXiv preprint
arXiv:1606.04671, 2016.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11909-11919, June 2023.

Anke Tang, Enneng Yang, Li Shen, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Merging models
on the fly without retraining: A sequential approach to scalable continual model merging. arXiv
preprint arXiv:2501.09522, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Huiyi Wang, Haodong Lu, Lina Yao, and Dong Gong. Self-expansion of pre-trained models with
mixture of adapters for continual learning. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 10087-10098, 2025.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. European Conference on Computer Vision, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139-149, 2022b.

Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class
incremental learning. In The Thirteenth International Conference on Learning Representations.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: resolv-
ing interference when merging models. In Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS "23, Red Hook, NY, USA, 2023. Curran Associates
Inc.

11

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2407.06322
https://arxiv.org/abs/2407.06322
http://arxiv.org/abs/1706.03762

Under review as a conference paper at ICLR 2026

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch, 2024. URL https://arxiv,
org/abs/2311.030909.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pp. 3987-3995,
2017.

12

https://arxiv.org/abs/2311.03099
https://arxiv.org/abs/2311.03099

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 COMPUTATIONAL RESOURCES

All experiments were conducted on the Leonardo supercomputer at CINECA. Table [8| provides
detailed specifications of the computational environment used for reproducibility.

System ‘ Details
Cluster Leonardo @ CINECA
(0N} Red Hat Enterprise Linux 8.7 (Ootpa)

Booster Module (GPU)

Booster Nodes

Atos BullSequana X2135 "Da Vinci" blades

3456 compute nodes

CPU 32 x Intel Ice Lake @ 2.60 GHz

GPU 4 x NVIDIA A100 (Ampere), 64 GB

RAM 512 GB per node

DCGP Module (CPU) Atos BullSequana X2140 blades

DCGP Nodes 1536 compute nodes

CPU 2 x 56-core Intel Sapphire Rapids @ 2.00 GHz
RAM 512 GB per node

Network ‘ 200G HDR Infiniband Dragonfly+

Software Environment

Python 3.11, PyTorch 2.0.1, CUDA 11.8, HuggingFace PEFT 0.15.2

A.2 HAM ALGORITHM

Table 8: System configuration and environment used for all experiments.

In this section, we detail the HAM algorithm through pseudo-code presented in Algorithm I} offering

a clear and reproducible outline of its computational steps.

A.3 ADDITIONAL BASELINES

Table O] reports additional baseline comparisons, including joint training approaches where the model
learns all tasks simultaneously. Joint training serves as an upper bound for performance, as it has
access to all task data concurrently. In particular, joint refers to the full fine-tuning of the model on all
data, while joint LoRA indicates the performance when training a single LoRA adapter on all tasks.

Method CIFAR-100 (AA) CUB-200 (AA)
Joint 83.11 £0.50 78.56 £2.17
Joint LoRA 86.58 + 1.27 37.53 £ 1.65
SEMA 65.86 +0.34 32.02+3.16
InfLoRA 49.10 +£4.40 36.02 +3.26
SD-LoRA 71.63 £0.67 47.56 £3.77
HAM 71.78 £2.24 55.17 £ 1.04

Table 9: Average Accuracy (%, 1) on CIFAR-100 and CUB-200 across 50 tasks. Joint performance represents
an upper bound.

A.4 COMPARISON OF MERGING STRATEGIES

Table [I0] compares HAM against standard model merging baselines: TIES, LINEAR, and DARE
TIES on CIFAR-100 across varying task lengths. HAM consistently outperforms other methods, with

Under review as a conference paper at ICLR 2026

Algorithm 1 HAM: Hierarchical Adapters Merging Algorithm

Require: Task sequence 7 = {71, 75, ...,T,}, base model parameters 6y, LoRA rank r, similarity
threshold 7, maximum number of groups gmax
Ensure: Final merged model g,
1: Initialize adapter set A = (), scaling factors a = (J, group set G = ()
2: for each task T} in T do
3: Initialize LoRA adapter AW, with rank r

4 Initialize scaling factor a;; = 1.0
5: for each training batch (z,y) from 7; do
6 Compute output: h = fo(z) + X7, o - AW;(x)
7: Update AW;, a;, and classifier parameters using loss computed from £ and y
8: end for
9 Add AW, to A, o; to
10: Assign T; to an existing group in G or create a new group based on similarity with previous
tasks
11: if number of groups |G| > gmax then
12: Merge the most similar groups in G
13: endif
14: for each group G; in G do
15: Compute group adapter: AWg,; = Concat ({oy - AW, | t € Gy})
16: end for
17: end for

18: if number of groups |G| = 1 then

19: Set Ofnal = 6o + AWGl

20: else

21: Merge group adapters using equal weights: fgna = 0o+ TIES_Merge ({ AW, } ,w = equal)
22: end if

23: return Og,.

the performance gap increasing as the task sequence grows longer, demonstrating superior robustness
and scalability. In this scenario, all adapters are merged with the above mentioned strategies after all
tasks have been trained.

Method 10 Tasks 20 Tasks 50 Tasks

TIES 78.35+1.19 78.82 +0.14 62.53+0.78
LINEAR 84.75 £0.39 79.92 +1.06 64.29 +2.98
DARE TIES 77.76 £0.23 74.14 £0.76 62.70 £ 2.04
HAM 86.44 = 0.30 82.07 = 0.40 71.71 £ 2.24

Table 10: Comparison of HAM with other model merging baselines on CIFAR-100. HAM yields consistently
better performance, particularly on longer task sequences.

A.5 DECLARATION ON GENERATIVE Al

During the preparation of this work, the authors used OpenAl ChatGPT-40 for grammar and spelling
check, paraphrase and reword. After using this tool, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s content.

	Introduction
	Related Work
	HAM: Hierarchical Adapters Merging
	Problem Formulation
	HAM Training Process
	Task-Specific LoRA Training
	Adapters Grouping

	Model Inference

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies

	Conclusion
	Appendix
	Computational Resources
	HAM Algorithm
	Additional Baselines
	Comparison of Merging Strategies
	Declaration on Generative AI

