
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HAM: HIERARCHICAL ADAPTERS MERGING FOR
SCALABLE CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning allows models to acquire knowledge incrementally, but is
challenged by catastrophic forgetting, a phenomenon in which the learning of new
tasks disrupts previously acquired knowledge. Although large pre-trained models
can partially mitigate forgetting by leveraging their existing knowledge and over-
parameterization, they often struggle when confronted with novel data distributions.
Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, enable efficient
adaptation to new data. However, they still face challenges in scaling to dynamic
learning scenarios and long sequences of tasks, as maintaining one adapter per
task introduces complexity and increases the potential for interference. In this
paper, we introduce Hierarchical Adapters Merging (HAM), a novel framework
that dynamically combines adapters from different tasks during training. For each
experience, HAM trains a low-rank adapter along with an importance scalar, then
dynamically groups tasks based on adapter similarity. Within each group, adapters
are pruned, scaled and merged, facilitating transfer learning between related tasks.
Extensive experiments on three vision benchmarks demonstrate that HAM sur-
passes state-of-the-art methods, achieving up to 4% accuracy improvement over
the best baseline and nearly doubling efficiency in both training and inference, with
particularly strong advantages as the number of tasks increases.

1 INTRODUCTION

Continual Learning (CL) aims to build models that can learn incrementally from sequences of tasks
while retaining previously learned knowledge, reducing the phenomenon of catastrophic forgetting.
The emergence of large pre-trained models has introduced new alternatives, which are nonetheless
highly costly to retrain or fine-tune for each learning experience, which make the development of more
efficient approaches essential for feasibility. Parameter-Efficient Fine-Tuning (PEFT) methods
(Han et al., 2024) tackle this issue by adapting only a small subset of the weights of the model or
introducing a limited number of trainable parameters, while keeping the base model frozen. Among
PEFT techniques, Low-Rank Adaptation (LoRA) (Hu et al., 2021) has emerged as a popular choice
due to its simplicity and effectiveness. However, LoRA, as the other PEFT methods, is optimized
for static learning scenarios, where the objective is to achieve the highest possible performance on a
single task. Conversely, in CL the focus in shifted more towards over-time learning and knowledge
retetion. In this setting, the standard LoRA approach falls short.

Similar to classical CL methods, PEFT-based approaches face three key challenges: (i) preventing
catastrophic forgetting of previously learned tasks, (ii) enabling knowledge transfer between related
tasks and (iii) efficiently allocating parameters while maintaining scalability. Previous approaches
typically address (i) and (ii) by either storing separate adapter modules for each task, requiring task
identifiers at inference, or by complex parameter isolation strategies that limit knowledge transfer.
More involved methods (Liang & Li, 2024; Wu et al.) try to improve the stability–plasticity trade-off
by subspace reparameterization or decoupled magnitude/direction learning. Nonetheless, they still
treat adapters independently throughout training and inference, preventing shared learning or adaptive
reuse. Alternatively, post-hoc merging (Marczak et al., 2024; Yadav et al., 2023; Yu et al., 2024;
Ilharco et al., 2023; Coleman et al., 2024) consolidates adapters after training, limiting knowledge
transfer during learning. These methods also depend on manually chosen merging coefficients, which
can become cumbersome and suboptimal—especially as the number of tasks grows.

*Equal contribution

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Task

. . .

: Frozen :️ Learnable

(a) HAM first phase: Task-Specific LoRA Train-
ing

: Pruning

(b) HAM second phase: Adapters Grouping

Figure 1: Illustration of the HAM method. Figure 1a: a new task-specific LoRA adapter ∆Wi is trained,
alongside its importance factor αi and αGj , one for each of the M groups, where M ≪ number of tasks. Figure
1b: the adapter ∆Wi is associated with the most similar group adapter. After the association, ∆Wi is pruned
and concatenated with the selected group adapter.

To address these limitations, we propose Hierarchical Adapters Merging (HAM), a continual LoRA-
based method that dynamically groups and merges adapters as tasks unfold. For each new task t,
HAM (i) learns a task-specific LoRA adapter with an importance weight αt, (ii) clusters related
tasks and concatenates their adapters, and (iii) merges groups using a specialized algorithm. This
hierarchical process controls the number of stored modules, retains prior-task knowledge to mitigate
forgetting, and promotes positive transfer among similar tasks. Importantly, the dynamic grouping
mechanism is agnostic to task ordering, making HAM more adaptive and scalable over long task
sequences, outperforming single-shot and rigid merging baselines. We evaluate our method on
standard CL benchmarks, putting the emphasis on longer sequences of tasks, a demanding yet
realistic setting that has received limited attention in the CL community. This scenario better reflects
real-world conditions, increasing the models “lifetime” and pushing the field closer to a true lifelong
learning agent.

To summarize, in this paper we introduce Hierarchical Adapters Merging for Low-Rank Adap-
tation (HAM), a novel approach that addresses the challenge of continually learning over long
sequences of tasks through a combination of task-specific adaptations, importance-weighted pruning,
and hierarchical merging. Our key contributions are as follows:

• We propose a scalable CL methodology for foundation models, leveraging PEFT tech-
niques to ensure efficiency, and an adaptation mechanism that assigns learnable importance
parameters to task-specific LoRA modules;

• We design a hierarchical group-based merging strategy that promotes knowledge transfer
across tasks, mitigates catastrophic forgetting, and guarantees high performance over long
task sequences;

• We conduct extensive experiments on diverse benchmarks, showing state-of-the-art perfor-
mance in dynamic CL scenarios with long task sequences.

Through a comprehensive experimental evaluation (Sec. 4.2), we demonstrate that our method
outperforms previous PEFT-based approaches, achieving a 4% increase in accuracy and 9% decrease
in forgetting comparing to the strongest baseline, while being nearly twice as fast in both training
and inference. To gain deeper insights into HAM’s behavior, we conduct extensive ablation studies
(Sec. 4.3), which highlight the effectiveness of our hierarchical, two-phase merging strategy. These
analyses confirm that our approach substantially mitigates task interference, enhances knowledge
retention, and preserves scalability and efficiency even over longer task sequences.

2 RELATED WORK

Continual Learning CL approaches are typically grouped into three categories: (i) regularization-
based methods (Kirkpatrick et al., 2017; Zenke et al., 2017), (ii) replay-based methods (Rebuffi et al.,
2017; Chaudhry et al., 2019) and (iii) parameter isolation methods (Mallya & Lazebnik, 2018; Rusu
et al., 2016). The rise of large pretrained models has driven the adaptation of CL approaches to
Transformer-based architectures (Vaswani et al., 2017). Recent work has increasingly explored how

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to leverage these models for CL, highlighting both the challenges and opportunities. On one hand,
the rich representations and features extraction abilities captured during pre-training can promote
positive forward transfer during sequential learning. Conversely, the sheer number of parameters
complicates the fine-tuning of the model, making it prohibitively expensive and often impractical.

Parameter Efficient Fine-Tuning These techniques allow large pre-trained models to be adapted
to downstream tasks by only modifying a small set of parameters (Houlsby et al., 2019), enabling
the learning of new tasks with a much higher efficiency than full fine-tuning. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) freezes the pre-trained model weights and injects trainable low-rank
decomposition matrices into each layer. For a pre-trained weight matrix W0 ∈ Rd×k, LoRA
parameterizes the update ∆W as the product of two low-rank matrices:

W = W0 +∆W = W0 +BA (1)

where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d, k). This significantly reduces the number
of trainable parameters from d × k to r × (d + k). Different LoRA-based techniques have been
adapted for CL to enable efficient adaptation over time. InfLoRA (Liang & Li, 2024) proposes
an interference-free low-rank adaptation method that reparameterizes pre-trained weights within a
subspace designed to minimize interference between tasks. SD-LoRA Wu et al. focuses on dynamic
adaptation which decouples magnitude and direction of LoRA updates for scalable, rehearsal-free
class-incremental learning. SEMA Wang et al. (2025) introduces a mixture-of-adapters framework,
dynamically expanding the adapters set for new tasks while mitigating forgetting through task-specific
routing. Nonetheless, such methods fall short when dealing with long task sequences.

An alternative is represented by prompt-based methods, which enable continual efficient learning
of new tasks though small learnable parameters. Learning to Prompt (L2P) (Wang et al., 2022b)
introduces a framework where a pre-trained model is guided by a set of learnable prompts stored
in a memory bank. These prompts are dynamically selected based on input queries, allowing the
model to adapt to new tasks without modifying the core parameters. DualPrompt (Wang et al., 2022a)
builds upon L2P by incorporating both task-invariant and task-specific prompts. This duality enables
the model to capture shared knowledge across tasks while retaining task-specific nuances. CODA-
Prompt (Smith et al., 2023) improves prompt-based methods by using an attention-driven key-query
mechanism to construct input-conditioned prompts, enhancing adaptability without sacrificing past
performance. However, a key drawback of prompt-based CL methods is their limited plasticity, which
restricts their ability to adapt effectively to novel tasks beyond their pre-training distribution.

Model Merging This offers a promising approach to CL by combining expert models to mitigate
catastrophic forgetting while leveraging their diverse strengths and capabilities. In dynamic and
ever-evolving domains, this enables models to expand their knowledge while minimizing the loss of
prior information. Different algorithms were defined to perform such combination of multiple models.
Linear merging computes a parameter-wise weighted average, without any particular technique
to address interference. TIES (Yadav et al., 2023) removes redundant parameters and solves sign
conflicts before merging the model’s weights. DARE (Yu et al., 2024) randomly drops a portion of
the parameters and rescales the remaining ones to reduce redundancy and minimize interference.

Several works leverage model merging for CL. MagMax (Marczak et al., 2024) fine-tunes tasks
sequentially, then consolidates weights via maximum-magnitude selection, requiring no retraining but
applying merging only once at the end. Orthogonal Projection-Based Continual Merging (Tang et al.,
2025) allows sequential integration of new models, using orthogonal projection to reduce interference
and a scaling factor to balance contributions. Adaptive LoRA Merging (Coleman et al., 2025)
replaces fixed-weights combinations with dynamically computed merging coefficients, enhancing
task integration. MELoRA (Ren et al., 2024) trains smaller LoRAs in parallel, concatenating them
diagonally into a single adapter, increasing representation capacity while maintaining computational
efficiency over standard LoRA.

3 HAM: HIERARCHICAL ADAPTERS MERGING

In this section, we introduce HAM. We first formalize the problem setting and the objectives of our
method (Sec. 3.1). We then describe the training phase of the HAM approach (Sec. 3.2), which
consists of two main stages: (i) task-specific training of each LoRA adapter, highlighting the
important role of the α values; and (ii) adapter grouping, where the new LoRA is clustered, pruned
and combined into the most similar adapter group. At inference time, HAM produces a unified model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

through a final adapter merging step (Sec. 3.3). Importantly, this merging step can be executed at
any point during training, without requiring the entire task sequence to be observed beforehand. An
overview of the method is presented in Figure 1. Additionally, we provide details about HAM’s
implementation in Appendix A.2.

3.1 PROBLEM FORMULATION

We consider the class-incremental continual learning setting, where a model encounters a sequence
of tasks T = {T1, T2, ..., TN} overtime, with non-overlapping class sets. For each task Ti, the model
receives a dataset Di = {(xj , yj)}ni

j=1, where xj represents an input sample and yj its corresponding
label from the class set specific to task Ti. The model must learn to perform well on all encountered
tasks after training sequentially on each task, without task identifiers at inference time. We employ a
pre-trained model as our base model, e.g. a Vision Transformer, and denote its parameters as W0.
The objective is to adapt it to each task in the sequence using low-rank modules, while preventing
catastrophic forgetting. Our goal is to design a strategy that enables effective knowledge transfer
between tasks, ultimately making the method particularly well-suited for longer task sequences.

Notation For clarity, we introduce the notation used throughout the method description. A LoRA
adapter trained on a specific task Ti is denoted as ∆Wi = BiAi, where Bi ∈ Rd×r is the down-
projection matrix, and Ai ∈ Rr×k is the up-projection matrix. A group of LoRA adapters is
represented as Gi, associated with a group adapter ∆WGi = BGiAGi . The set of groups is written
as G = {G1, . . . , GM}, where M denotes the current number of groups. The maximum number of
groups is denoted by Gmax.

3.2 HAM TRAINING PROCESS

3.2.1 TASK-SPECIFIC LORA TRAINING

For each task Ti, we introduce a LoRA adapter ∆Wi. Alongside with the adapter, we train an αi

value that conveys the importance the LoRA module itself. This scalar value then serves as a scaling
factor, needed to efficiently combine multiple adapters with limited interference. During the training
phase for task Ti, the adapter ∆Wi and its corresponding scaling factor αi are optimized using the
dataset Di. In this phase, the pre-trained model weights W0 and the previously learned group adapters
{∆WGj

}Mj=1 (see Sec. 3.2.2), are kept frozen. Instead, while training ∆Wi, the scaling factors of the
group adapters {αGj

}Mj=1 are also updated. This ensures that the relative importance of all adapters
remains balanced when a new task is introduced. Therefore, the output of the model for an input x is
computed as:

h = W0x︸︷︷︸
pre-trained model

+

M∑
j=1

αGj
∆WGj

x︸ ︷︷ ︸
previous group adapters

+ αi∆Wix︸ ︷︷ ︸
current adapter

(2)

where we underline in red the components which are updated during the task-specific training phase.
This approach guarantees that each task-specific adapter is optimized while accounting also for
the behaviors and knowledge of earlier grouped LoRAs. By minimizing the amount of redundant
information across adapters, it encourages each one to focus solely on task-specific features, also
facilitating effective knowledge transfer between them.

As mentioned before, HAM adopts a dynamic grouping strategy to efficiently manage the increasing
number of adapters. This contrast with approaches such as Wu et al., where both the number
of adapters and their corresponding α values grows linearly with the number of tasks, leading to
high computational costs. Instead, rather than retaining a separate LoRA module for each training
experience, our strategy progressively clusters similar adapters, performing an initial combination
phase within our hierarchical framework. Under this approach, each group Gi holds a single adapter
∆WGi

and a unique importance factor αGi
. By consolidating adapters in this fashion, the total number

of modules to be merged at inference time is substantially reduced, minimizing task interference
while preserving the expressive capacity of grouped adapters. Consequently, HAM excels in learning
across extended task sequences, mitigating forgetting while maintaining high efficiency.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.2 ADAPTERS GROUPING

Group Association After training on task Ti and obtaining the adapter ∆Wi = BiAi, we compute
the cosine similarity between the current adapter and previously learned group adapters, using the
last LoRA layer of each adapter:

S(∆Wi,∆WGj
) =

|⟨vec(BiAi), vec(BGjAGj)⟩|
∥vec(BiAi)∥ · ∥vec(BGj

AGj
)∥

, where j ∈ {1, . . . ,M} (3)

where vec(·) denotes vectorization. Given a similarity threshold τsim, the adapter ∆Wi joins the
group adapter ∆WGj

if S(∆Wi,∆WGj
) ≥ τsim. If all similarity scores fall below the threshold and

the number of groups has not yet reached the limit, i.e. M < Gmax, a new group is created for the
adapter. Otherwise, when the maximum number of groups is reached (M = Gmax), the adapter is
assigned to the most similar group, regardless of the threshold.

Each group Gi carries a single group-level scaling factor αGi , given by the average of the individual
α values associated to the adapters in the group. When a new adapter ∆Wj is added to a group Gi,
the importance factor is updated as follows:

αGi = αj if M = 0

αGi = αGi +
αj − αGi

|Gi|+ 1
otherwise

(4)

Selective Pruning After selecting the most similar group, we perform selective pruning to retain
only the most significant weights of the current adapter ∆Wi. This pruning step is essential for
maintaining high performance while reducing parameter overhead during merging. We calculate the
importance of individual weights based on their magnitude. Specifically, for matrices Bi and Ai, we
retain only the top-k% weights with the highest absolute values, where k is a hyperparameter. Hence,
the resulting matrices B̂i and Âi are defined as:

B̂i = Bi ⊙ I(|Bi| ≥ τB)

Âi = Ai ⊙ I(|Ai| ≥ τA)
(5)

where ⊙ represents element-wise multiplication, I(·) is the indicator function, and τB and τA are
thresholds chosen such that only the top-k% elements are retained.

Intra-Group Concatenation To obtain a single adapter per group, we concatenate all the LoRA
modules within that group. Specifically, for the pruned adapter ˆ∆Wi associated with the group Gj ,
the group adapter ∆WGj is updated as follows:

BGj
= [BGj

, B̂i]

AGj
= [AGj

; Âi]
(6)

where [x, y] denotes horizontal concatenation and [x; y] denotes vertical concatenation.

We found this intra-group combination phase to be critical for the overall performance of the final
algorithm. Specifically, this step is primarily necessary to reduce the total number of adapters,
which has a substantial impact on the effectiveness of the subsequent merging phase. In fact, as the
number of modules increases, the merging procedures face greater difficulty in computing an optimal
combination of all adapters, leading to an increased interference among them and lower performance.
We tested different combination techniques in this phase, like TIES (Yadav et al., 2023). However, we
observed that the best results were achieved using a simple matrix concatenation to obtain the final
group adapters. We attribute this to the fact that, while merging techniques such as TIES produce
an output adapter with the same rank r as the input LoRA modules, concatenation instead yields
each ∆WGi

with an expanded rank rGi
= m · r. Ultimately, this helps better preserve the features

learned by LoRAs during their individual training while increasing the representation capabilities of
the group adapter.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 MODEL INFERENCE

The final stage of our method involves a global merging step, integrating all group adapters into a
single module. This is necessary in class-incremental learning, where task identifiers are unavailable at
inference time, making routing-based approaches unfeasible. Likewise, mixture-of-experts strategies
would struggle to scale with long task sequences and introduce additional complexity for expert
selection. By merging all adapters after training, HAM produces a unified model that supports
inference across all tasks without requiring extra heuristics or task-specific mechanisms.

After the adapters grouping phase, each group adapter is adjusted according to its importance factor
α, which serves to mitigate potential interference arising from their combination. Consequently,
equal weights are assigned to the merging algorithm, under the assumption that the α values provide
sufficient scaling for effective integration. Therefore, the final merged adapter is computed as:

∆Wmerged =
1

M

M∑
i=1

αGiBGiAGi (7)

This merged adapter represents the final outcome of HAM’s training phase. It encapsulates the
accumulated knowledge coming from the entire training experience over time, while ensuring
minimal interference across tasks. Such adapter ∆Wmerged has a rank rmerged = m · r, where m is the
number of adapters per group and r is the rank of a single LoRA module. Therefore, our architecture
expands the adapters representation space, enabling better handling of extended task sequences, while
maintaining low complexity and a limited number of parameters, thanks to the considerable pruning
phase performed prior to merging. The merged adapter is utilized to define the final model, starting
from the pre-trained weights W0. The model’s updated weights are expressed as:

Wfinal = W0 +∆Wmerged (8)

Essentially, HAM produces a single model that can be used seamlessly for inference across all tasks
encountered during training.

In the following section, supported by a comprehensive experimental setup, we illustrate the critical
role of HAM’s training procedure in significantly enhancing the model’s capacity to retain knowl-
edge across a substantially larger set of tasks. Its effectiveness is demonstrated through numerous
comparisons with both traditional CL baselines and more recent PEFT-based methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate HAM on two standard CL benchmarks, namely CIFAR-100 and Tiny-ImageNet, and on
the more fine-grained CUB-200 dataset, where pre-trained models usually show poor performance
(Radford et al., 2021). CIFAR-100 (Krizhevsky et al., 2009) includes 60,000 images over 100 classes.
CUB-200 (Wah et al., 2011) consists of 11,788 bird images across 200 categories. Tiny-ImageNet
(Le & Yang, 2015) is a downsized version of ImageNet (Deng et al., 2009), with 100,000 images over
200 classes. We report two standard CL metrics: (i) Average Accuracy (AA): mean accuracy over
all tasks at the end of training; (ii) Forgetting Measure (FM): average drop in accuracy from a task’s
peak to its final accuracy. Additionally, we run an efficiency analysis, showing both the training and
inference times required by HAM and its competing baselines.

As for the base model, we employed a ViT-B/16 backbone pretrained on ImageNet. For HAM,
we set the LoRA rank to r = 16, apply pruning to retain the top 60% of weights per adapter, and
use Gmax = 2 task groups. Training is done using the AdamW optimizer (Loshchilov & Hutter,
2017), with a learning rate of 10−3 and batch size of 64. We compare against both standard and
parameter-efficient continual learning methods. Standard baselines include fine-tuning (FT), Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Learning without Forgetting (LwF) (Li &
Hoiem, 2017), implemented via Avalanche’s Naive, EWC and LwF strategies (Carta et al., 2023).
Since our method involves a merging phases, we also benchmark it against widely used merging
techniques, namely Linear Merging, TIES and DARE-TIES. In this cases, we train an adapter for
each task before merging the entire set using the selected algorithm, leveraging the implementation
from HuggingFace peft library (Mangrulkar et al., 2022). Additionally, we incorporate the most
recent and best-performing prompt-based and LoRA-based methods as PEFT baselines, using the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method CIFAR-100 CUB-200 Tiny-ImageNet Average
Fine-Tuning 1.90 ± 0.1 0.52 ± 0.1 2.52 ± 0.45 3.26 ± 0.16

EWC 1.96 ± 0.1 0.86 ± 0.36 3.12 ± 0.89 1.98 ± 0.32

LWF 2.35 ± 0.35 9.97 ± 1.3 4.1 ± 0.2 5.47 ± 0.45

Linear Merging 64.29 ± 2.98 45.04 ± 1.43 80.13 ± 0.694 63.15 ± 1.13

TIES 62.53 ± 0.78 42.31 ± 1.04 70.19 ± 0.12 58.34 ± 0.44

DARE_TIES 62.70 ± 2.04 42.30 ± 1.21 69.65 ± 0.233 58.22 ± 0.79

L2P 62.55 ± 2.04 43.25 ± 2.01 58.16 ± 0.69 54.65 ± 0.98

Dual-Prompt 61.25 ± 0.44 49.44 ± 1.81 74.83 ± 0.26 61.84 ± 0.63

CODA-Prompt 32.45 ± 0.47 41.18 ± 0.75 52.65 ± 0.34 40.1 ± 0.32

SEMA 65.86 ± 0.34 32.02 ± 3.16 83.56 ± 0.57 60.48 ± 1.08

InfLoRA 49.1 ± 4.4 36.02 ± 3.26 65.7 ± 0.66 50.27 ± 1.84

SD-LoRA 71.63 ± 0.67 47.56 ± 3.77 79.48 ± 2.09 66.22 ± 1.45

HAM 71.78 ± 2.24 55.17 ± 1.04 83.29 ± 0.31 70.08 ± 0.83

Table 1: Average Accuracy (%, ↑) after training on 50 tasks across three benchmarks. We also report the
average forgetting across datasets for an overall comparison. All methods were trained under identical key
hyperparameters (e.g. LoRA rank and alpha, number of epochs). Best results are shown in bold, and second-best
results are underlined.

(a) Accuracy on CUB-200 with
varying task counts.

(b) Accuracy on CIFAR-100 with
varying task counts.

Figure 2: Comparison of methods on CUB-200 and CIFAR-100 under different task splits.

same hyperparameters we employ for HAM. For L2P, DualPrompt and CODA-Prompt we used the
implementation available in the mammoth library (Boschini et al., 2022). For SEMA, InfLoRA and
SD-LoRA we used the official implementation from the authors.

4.2 MAIN RESULTS

Accuracy In Table 1, we report accuracy results on three datasets over a training sequence of 50
tasks. As shown in the last column, HAM significantly outperforms state-of-the-art CL methods in
this challenging setting, where task sequences are longer than standard scenarios. On the simpler
datasets, i.e. CIFAR-100 and Tiny-ImageNet, HAM achieves accuracy comparable to competing
methods, nonetheless demonstrating greater consistency across benchmarks. More notably, on the
fine-graned and challenging CUB-200 dataset, HAM delivers substantial accuracy improvements,
where other methods struggle.

Performance Across Different Sequence Lengths To evaluate the effect of task sequence length,
we conducted experiments with progressively longer sequences. As shown in Figure 2, HAM
consistently achieves state-of-the-art performance across all sequence lengths, remaining the top-
performing method in every case. Moreover, it exhibits the smallest accuracy degradation as tasks
accumulate, whereas competing methods suffer sever drops. Most strikingly, Figure 2a demonstrates
that HAM maintains strong performance even in the extreme case of 100 tasks, whereas one of the
best baselines, SD-LoRA, fails after 69 experiences due to GPU memory limitations. These findings
validate HAM’s ability to achieve top-tier performance, especially when dealing with long task
sequences. Thanks to its superior efficiency over the strongest competing baselines, HAM represents
a compelling and scalable solution for challenging and realistic CL scenarios.

Forgetting Another key metric we evaluate is forgetting, which measures the ability to retain
knowledge in CL scenarios. The results, reported in Table 2, are obtained from the same setting
as the one presented in Table 1. We emphasize that correctly interpreting forgetting results in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method CIFAR-100 CUB-200 Tiny-ImageNet Average
Fine-Tuning 97.63 ± 0.67 24.4 ± 2.86 97.95 ± 0.55 73.33 ± 1.00

EWC 97.63 ± 0.5 26.26 ± 4.31 96.62 ± 0.99 73.50 ± 1.48

LWF 98.72 ± 0.33 14.29 ± 2.46 95.22 ± 0.5 69.41 ± 0.84

Linear Merging 31.79 ± 2.11 29.17± 1.40 16.50 ± 1.11 25.82 ± 0.92

TIES 30 ± 2.04 29.18 ± 1.39 17.94 ± 20.2 25.71 ± 6.78

DARE_TIES 31.04 ± 2.14 29.10 ± 2.17 17.53 ± 0.34 25.89 ± 1.02

L2P 18.44 ± 0.64 5.53 ± 1.19 6.83 ± 0.90 10.27 ± 0.54

Dual-Prompt 10.58 ± 1.66 8.53 ± 2.05 5.85 ± 0.52 8.32 ± 0.90

CODA-Prompt 13.30 ± 0.64 11.78 ± 1.18 12.29 ± 1.98 12.46 ± 0.80

SEMA 14.67 ± 0.67 13.26 ± 1.32 10.86 ± 0.77 12.93 ± 0.56

InfLoRA 23.41 ± 3.84 46.26 ± 3.68 19.32 ± 1.82 29.66 ± 1.87

SD-LoRA 12.24 ± 1.45 33.15 ± 1.45 10.63 ± 4.0 18.67 ± 1.50

HAM 10.98 ± 0.77 12.94 ± 1.65 5.32 ± 0.45 9.75 ± 0.63

Table 2: Forgetting Measure (%, ↓) after training on 50 tasks across three benchmarks. We also report the
average forgetting across datasets for an overall comparison. All methods were trained under identical key
hyperparameters (e.g. LoRA rank and alpha, number of epochs). Best results are shown in bold, and second-best
results are underlined.
isolation is challenging; a comprehensive understanding requires analyzing them in conjunction with
overall accuracy. In fact, while DualPrompt achieves the lowest forgetting across all experiments, its
accuracy performance is substantially weaker, falling about 9% behind HAM on average. In contrast,
when comparing with the strongest baselines in terms of accuracy, namely SEMA, InfLoRA and
SD-LoRA, HAM not only achieves higher accuracy but also exhibits consistently lower forgetting.
This highlights the effectiveness of our hierarchical approach in mitigating interference during the
merging phase, ultimately improving both knowledge retention and predictive performance.

Figure 3: Training and inference times
comparison. HAM is significantly faster
than the strongest competing approaches.

Computational Efficiency To assess computational effi-
ciency, we compare HAM’s training and inference times with
the best performing PEFT-based CL baselines. Figure 3 re-
ports the average per-task times on CIFAR-100 with 10 tasks,
with inference times measured on the final model after train-
ing. HAM is substantially faster than the competing methods,
both during training and inference. Notably, HAM is ex-
tremely more efficient than SEMA and roughly twice as fast
as SD-LoRA in both stages, while also delivering superior
performance in terms of accuracy and reduced forgetting.
This efficiency gains is largely due to HAM’s hierarchical
merging strategy and pruning approach, which reduce the
number of active parameters and lower computational over-
head throughout training and inference.

4.3 ABLATION STUDIES

Similarity-based vs Orthogonality Grouping A fundamental design choice in HAM is grouping
tasks by similarity rather than orthogonality. While orthogonal grouping might intuitively seem
beneficial for maximizing diversity within groups, our experiments (Table 3) demonstrate that
similarity-based grouping consistently yields superior performance, with the advantage becoming
more pronounced as the number of tasks increases.

Dataset # Tasks Similarity (AA) Orthogonal (AA) Advantage
CIFAR-100 20 82.45 % 81.47 % +0.98 %
CIFAR-100 50 68.50 % 64.86 % +3.64 %
CUB-200 20 66.19 % 64.49 % +1.69 %
CUB-200 50 55.25 % 50.16 % +5.08 %

Table 3: Performance comparison of similarity-based vs. orthogonality-based grouping across datasets and
task counts. Similarity-based grouping consistently outperforms orthogonal grouping, with larger gains as the
number of tasks increases.

Group Adapters as Effective Intermediate Models A surprising finding in our experiments is that
the intermediate group adapters, created through concatenation and pruning, consistently outperform

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Group Task ID Individual (%) Group (%) Improvement (%)

Group 0

Task 3 84.40 87.80 +3.40
Task 6 86.70 89.60 +2.90
Task 8 81.50 85.20 +3.70
Task 1 84.30 85.20 +0.90
Task 7 83.60 86.30 +2.70

Group 1

Task 2 80.90 83.60 +2.70
Task 4 78.70 83.50 +4.80
Task 5 87.00 90.60 +3.60
Task 9 90.00 92.60 +2.60
Task 0 84.20 84.30 +0.10

Average 84.13 86.87 +2.74

Table 4: Per-task accuracy improvement with group adapters at k = 0.6 (40% sparsity).

their constituent individual adapters. Table 4 details the per-task gains at our selected k = 0.6,
showing that initially weaker tasks benefit most: Task 4 improves by +4.80% and Task 8 by +3.70%.
With k = 0.6, we reduce parameters from 5.90M to 3.54M (1.67× reduction) while achieving +2.74%
accuracy improvement. This demonstrates that concatenation with moderate pruning is not merely a
parameter reduction technique but an effective knowledge consolidation mechanism.

Impact of the Number of Groups Table 5 reveals that using fewer groups generally improves
performance, while a similar reduction with 20 tasks yields a 0.96% improvement. This suggests
that larger groups may facilitate better knowledge sharing across related tasks, though HAM remains
robust across different grouping configurations with relatively modest performance variations.

Impact of the Merging Algorithm A crucial step in HAM is the final merging stage, where group
adapters are consolidated into a single one. To evaluate its impact, we compared several merging
algorithms on a 10-task scenario with rank 16 LoRA adapters (Table 6). Linear merging achieved the
best accuracy, slightly outperforming TIES and clearly surpassing DARE. Notably, the simpler linear
strategy outperformed more sophisticated methods, likely due to better preservation of task-specific
knowledge within HAM’s hierarchical structure.

Impact of Pruning Table 7 shows HAM’s performance when varying the percentage of retained
weights (k). AA improves as k increases from 10% to 60%, after which gains plateau and performance
slightly declines at k = 80%. The most substantial improvements occur between 10% and 40%,
suggesting that strong pruning effectively balances information retention and noise reduction. Indeed,
extremely low retention (k = 10-20%) causes information loss, while higher levels (k > 60%)
reintroduce noise. Overall, these results confirm HAM’s design choice of employing strong pruning
to optimize both performance and parameter efficiency.

Groups # Tasks AA (%)
2 10 86.44 ± 0.30

5 10 83.25 ± 0.21

2 20 82.45 ± 0.45

4 20 78.81 ± 0.01

Table 5: Impact of the number of
groups on CIFAR-100.

Merging AA (%)
Linear 86.44 ± 0.30

TIES 85.66 ± 0.13

DARE 83.43 ± 0.07

Table 6: Impact of different al-
gorithms in HAM final merg-
ing.

k Params Reduction AA
(Pruned) Factor (%)

0.9 5.31M 1.11× 83.12
0.8 4.72M 1.25× 85.82
0.6 3.54M 1.67× 85.83
0.4 2.36M 2.50× 85.64
0.2 1.18M 5.00× 84.41
0.1 0.59M 10.00× 83.12

Table 7: Impact of pruning ratio on
CIFAR-100.

5 CONCLUSION

This study introduces Hierarchical Adapters Merging (HAM), a novel approach to LoRA merging
designed for Continual Learning. HAM follows a two-step merging procedure: first, it clusters
and concatenates similar adapters; then, it scales them using group-specific importance factors
before performing group-wise merging. Extensive experiments validate its effectiveness, showing
superior performance compared to state-of-the-art techniques across long task sequences, reducing
interference among adapters and enhancing transfer learning between tasks. In this work, we used
LoRA because of its balance between learning capabilities and computational complexity. However,
it is theoretically possible to use other PEFT methods, e.g. prompts, and it would be interesting to
assess the differences in performance when changing PEFT technique. Additionally, possible future
works can be directed towards a variation of such method that enables an online adapters merging.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

Antonio Carta, Lorenzo Pellegrini, Andrea Cossu, Hamed Hemati, and Vincenzo Lomonaco.
Avalanche: A pytorch library for deep continual learning. Journal of Machine Learning Re-
search, 24(363):1–6, 2023. URL http://jmlr.org/papers/v24/23-0130.html.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, and Philip HS
Torr. Tiny episodic memories in continual learning. In arXiv preprint arXiv:1902.10486, 2019.

Eric Nuertey Coleman, Luigi Quarantiello, Julio Hurtado, and Vincenzo Lomonaco. Adaptive lora
merging for efficient domain incremental learning. In Adaptive Foundation Models: Evolving AI
for Personalized and Efficient Learning, 2024.

Eric Nuertey Coleman, Luigi Quarantiello, Ziyue Liu, Qinwen Yang, Samrat Mukherjee, Julio
Hurtado, and Vincenzo Lomonaco. Parameter-efficient continual fine-tuning: A survey. arXiv
preprint arXiv:2504.13822, 2025.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255. IEEE, 2009.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey, 2024. URL https://arxiv.org/abs/2403.
14608.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mohammad Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In Proceedings of the 36th International Conference on Machine Learning (ICML), pp.
2790–2799, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021. URL https://arxiv.org/abs/2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL https:
//arxiv.org/abs/2212.04089.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwińska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114
(13):3521–3526, 2017. doi: 10.1073/pnas.1611835114.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
23638–23647, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7765–7773, 2018. doi: 10.1109/CVPR.2018.00810.

10

http://jmlr.org/papers/v24/23-0130.html
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.04089

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Daniel Marczak, Bartłomiej Twardowski, Tomasz Trzciński, and Sebastian Cygert. Magmax: Lever-
aging model merging for seamless continual learning, 2024. URL https://arxiv.org/
abs/2407.06322.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2001–2010, 2017. doi: 10.1109/CVPR.
2017.587.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten de Rijke,
Zhumin Chen, and Jiahuan Pei. Melora: mini-ensemble low-rank adapters for parameter-efficient
fine-tuning. arXiv preprint arXiv:2402.17263, 2024.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. In arXiv preprint
arXiv:1606.04671, 2016.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11909–11919, June 2023.

Anke Tang, Enneng Yang, Li Shen, Yong Luo, Han Hu, Bo Du, and Dacheng Tao. Merging models
on the fly without retraining: A sequential approach to scalable continual model merging. arXiv
preprint arXiv:2501.09522, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Huiyi Wang, Haodong Lu, Lina Yao, and Dong Gong. Self-expansion of pre-trained models with
mixture of adapters for continual learning. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 10087–10098, 2025.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. European Conference on Computer Vision, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022b.

Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu
Meng, Kede Ma, and Ying Wei. Sd-lora: Scalable decoupled low-rank adaptation for class
incremental learning. In The Thirteenth International Conference on Learning Representations.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: resolv-
ing interference when merging models. In Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates
Inc.

11

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2407.06322
https://arxiv.org/abs/2407.06322
http://arxiv.org/abs/1706.03762

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch, 2024. URL https://arxiv.
org/abs/2311.03099.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pp. 3987–3995,
2017.

12

https://arxiv.org/abs/2311.03099
https://arxiv.org/abs/2311.03099

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 COMPUTATIONAL RESOURCES

All experiments were conducted on the Leonardo supercomputer at CINECA. Table 8 provides
detailed specifications of the computational environment used for reproducibility.

System Details

Cluster Leonardo @ CINECA
OS Red Hat Enterprise Linux 8.7 (Ootpa)

Booster Module (GPU) Atos BullSequana X2135 "Da Vinci" blades
Booster Nodes 3456 compute nodes
CPU 32 × Intel Ice Lake @ 2.60 GHz
GPU 4 × NVIDIA A100 (Ampere), 64 GB
RAM 512 GB per node

DCGP Module (CPU) Atos BullSequana X2140 blades
DCGP Nodes 1536 compute nodes
CPU 2 × 56-core Intel Sapphire Rapids @ 2.00 GHz
RAM 512 GB per node

Network 200G HDR Infiniband Dragonfly+

Software Environment Python 3.11, PyTorch 2.0.1, CUDA 11.8, HuggingFace PEFT 0.15.2

Table 8: System configuration and environment used for all experiments.

A.2 HAM ALGORITHM

In this section, we detail the HAM algorithm through pseudo-code presented in Algorithm 1, offering
a clear and reproducible outline of its computational steps.

A.3 ADDITIONAL BASELINES

Table 9 reports additional baseline comparisons, including joint training approaches where the model
learns all tasks simultaneously. Joint training serves as an upper bound for performance, as it has
access to all task data concurrently. In particular, joint refers to the full fine-tuning of the model on all
data, while joint LoRA indicates the performance when training a single LoRA adapter on all tasks.

Method CIFAR-100 (AA) CUB-200 (AA)
Joint 83.11 ± 0.50 78.56 ± 2.17
Joint LoRA 86.58 ± 1.27 37.53 ± 1.65
SEMA 65.86 ± 0.34 32.02 ± 3.16
InfLoRA 49.10 ± 4.40 36.02 ± 3.26
SD-LoRA 71.63 ± 0.67 47.56 ± 3.77
HAM 71.78 ± 2.24 55.17 ± 1.04

Table 9: Average Accuracy (%, ↑) on CIFAR-100 and CUB-200 across 50 tasks. Joint performance represents
an upper bound.

A.4 COMPARISON OF MERGING STRATEGIES

Table 10 compares HAM against standard model merging baselines: TIES, LINEAR, and DARE
TIES on CIFAR-100 across varying task lengths. HAM consistently outperforms other methods, with

1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 HAM: Hierarchical Adapters Merging Algorithm

Require: Task sequence T = {T1, T2, . . . , Tn}, base model parameters θ0, LoRA rank r, similarity
threshold τ , maximum number of groups gmax

Ensure: Final merged model θfinal
1: Initialize adapter set A = ∅, scaling factors α = ∅, group set G = ∅
2: for each task Ti in T do
3: Initialize LoRA adapter ∆Wi with rank r
4: Initialize scaling factor αi = 1.0
5: for each training batch (x, y) from Ti do
6: Compute output: h = θ0(x) +

∑i
j=1 αj ·∆Wj(x)

7: Update ∆Wi, αi, and classifier parameters using loss computed from h and y
8: end for
9: Add ∆Wi to A, αi to α

10: Assign Ti to an existing group in G or create a new group based on similarity with previous
tasks

11: if number of groups |G| > gmax then
12: Merge the most similar groups in G
13: end if
14: for each group Gj in G do
15: Compute group adapter: ∆WGj

= Concat ({αt ·∆Wt | t ∈ Gj})
16: end for
17: end for
18: if number of groups |G| = 1 then
19: Set θfinal = θ0 +∆WG1

20: else
21: Merge group adapters using equal weights: θfinal = θ0+TIES_Merge

({
∆WGj

}
, w = equal

)
22: end if
23: return θfinal

the performance gap increasing as the task sequence grows longer, demonstrating superior robustness
and scalability. In this scenario, all adapters are merged with the above mentioned strategies after all
tasks have been trained.

Method 10 Tasks 20 Tasks 50 Tasks
TIES 78.35 ± 1.19 78.82 ± 0.14 62.53 ± 0.78
LINEAR 84.75 ± 0.39 79.92 ± 1.06 64.29 ± 2.98
DARE TIES 77.76 ± 0.23 74.14 ± 0.76 62.70 ± 2.04
HAM 86.44 ± 0.30 82.07 ± 0.40 71.71 ± 2.24

Table 10: Comparison of HAM with other model merging baselines on CIFAR-100. HAM yields consistently
better performance, particularly on longer task sequences.

A.5 DECLARATION ON GENERATIVE AI

During the preparation of this work, the authors used OpenAI ChatGPT-4o for grammar and spelling
check, paraphrase and reword. After using this tool, the authors reviewed and edited the content as
needed and take full responsibility for the publication’s content.

2

	Introduction
	Related Work
	HAM: Hierarchical Adapters Merging
	Problem Formulation
	HAM Training Process
	Task-Specific LoRA Training
	Adapters Grouping

	Model Inference

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies

	Conclusion
	Appendix
	Computational Resources
	HAM Algorithm
	Additional Baselines
	Comparison of Merging Strategies
	Declaration on Generative AI

