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ABSTRACT

Convolutional Neural Networks (CNNs) have achieved a tremendous success in
a number of learning tasks, e.g., image classification. Recent advances in CNNs,
such as ResNets and DenseNets, mainly focus on the skip and concatenation op-
erators to avoid gradient vanishing. However, such operators largely neglect in-
formation across layers (as in ResNets) or involve tremendous redundancy of fea-
tures repeatedly copied from previous layers (as in DenseNets). Furthermore, due
to the quadratic complexity of memory usage, many deep residual-like networks
are obliged to abandon concatenation connections. In this paper, we design At-
tentive Feature Integration (AFI) modules, which can be applicable to most recent
network architectures , leading to new architectures named as AFINets. AFINets
can by adaptively integrates distinct information through explicitly modeling the
subordinate relationship between different levels of features. Experimental results
on benchmark datasets have demonstrated the effectiveness of the proposed AFI
modules.

1 INTRODUCTION

Convolutional Neural Networks(CNNs) have achieved the state-of-the-art results in a variety of
computer vision tasks (Wang et al., 2017; Jiang et al., 2013; Gatys et al., 2016). Recently, feature
reuse (Huang et al., 2017; Lee et al., 2019), addition and concatenation mechanisms, fuels the further
progress in the performance of CNNs due to the improvement of utilization of features and the
representation ability of models. The key insight of feature reuse is that the features from different
layers in CNN contain distinct information. More specifically, the features of shallow layers contain
more space information but relatively less advanced semantic information while the features of
deep layers contain more advanced semantic information but relatively less space information. For
instance, bar detectors in early layers might localize bars precisely, but cannot discriminate whether
the bars are desk legs or crutches. Additionally, Morcos et al. (2018) shows that the class selectivity,
which is proved to be related with the generalization gap to some degree, is prone to increase with
depth. This indicates that reusing low-level features is in favor of closing generalization gap. These
observations suggest that aggregation of multiple levels of features is vital to reason.

Addition and concatenation are two fundamental aggregation operations of feature reuse for design-
ing network architecture. From the perspective of addition, the shortcut connection can alleviate the
problem of gradient vanishing and smooth loss landscapes without extra memory usage (Li et al.,
2018a). Compared with addition, aggregating the features from layers by concatenation maintains
the most merits of addition, assists to diversify depth and leads to implicit deep supervision (Huang
et al., 2017). However, concatenation is abandoned by many deep residual-like networks for the
quadratic complexity of memory usage. Another shortcoming of concatenation is that, for the rea-
son that features are entangled with each other, model training suffers from concatenated features
which are indiscriminately selected.

To address these two problems, we explicitly model a lightweight and selective feature integration
scheme for better feature reuse, leading to the Attentive Feature Integration (AFI) module, as illus-
trated in Figure 1. Firstly, for several successive feature maps (i.e., raw features) with C channels,
each feature is extracted to a vector by a squeeze operation that captures information from a large
spatial extent. Thus, the global context is embedded in the vectors. Secondly, the vectors are scored
and normalized sequentially by the attention mechanism ( which consists of the shared scoring
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Figure 1: The AFI block can automatically extract important features for later feature reusing based
on the learned features.

function and the channel-by-channel softmax function) in order to re-calibrate features. At last, we
obtain the resulting feature via a summation of re-calibrated features, each channel of which can be
viewed as a convex combination over the raw features.

Different from concatenation that exploits whole features information with heavy computational
cost (as used in DenseNets), the memory usage incurred by the AFI module has linear rather than
quadratic complexity. Hence, the AFI module is much more efficient to be plugged into residual-like
networks. Notably, the plugged networks are also beneficial from deep supervision and diversified
depth, leading to better accuracy with less parameters and FLOPs. Furthermore, the experimental re-
sults show that our feature-wise integration module is compatible with the self-attention mechanism
(e.g., SE module (Hu et al., 2018b)), which models inter-dependencies of feature between channels.
Moreover, through the ablation studies, we discuss the interpretation of the AFI module. Equipped
with the AFI module, the corresponding AFI-ResNet-152 increases the Top-1 accuracy rate of the
vanilla ResNet-152 on ImageNet by 1.24%, with about 10% fewer FLOPs and 9.2% reduction of
parameters.

Our main contributions can be summarized as follows:

• Lightweight and Plug-and-Play: The AFI module is lightweight, which avoids the
quadratic complexity of memory usage. Consequently, it is easy to apply the AFI mod-
ule into CNNs. For example, AFI-ResNet can be constructed by shrinking convolutional
operations and plugging the AFI module into ResNet (He et al., 2016). AFI-MobileNetV2,
AFI-ShuffleNetV2, and AFI-ResNeXt can be composed similarly.

• Interpretability: Through ablation study, Figure 2 shows that the borderline of the target
is sharper by applying the AFI module. Moreover, the features applied by the AFI module
are less class-conditional than the vanilla, which implicates to less generalization gap.

• Higher Accuracy and Lower FLOPs: Experimental results show that our AFI mod-
ule significantly improves the representational power of the network. For example, AFI-
ResNet-152 increases the Top-1 accuracy rate in ImageNet by 1.24% compared to ResNet-
152 while decreases the FLOPs by about 10% and the number of parameters by about
9.2%.

2 RELATED WORKS.

Modern CNN Architectures. Deep convolutional neural networks(CNNs) have dominated image
classification since the AlexNet (Krizhevsky et al., 2012) and VGG-Net (Simonyan & Zisserman,
2014) are proposed. After that, substantial efforts have been made to improve the efficiency of
CNNs. The modular design strategy in GoogleNet (Szegedy et al., 2015) simplifies the network
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Figure 2: Illustration of the impact of the AFI module. All original images come from the ImageNet
dataset. Heatmaps generated by Grad-CAM (Selvaraju et al., 2017) illustrates which areas the net-
work pays more attention to. Compared to the vanilla ResNet-50, the area that AFI-ResNet-50 paid
most attention to is much smaller.

architecture and the multi-path structure in each module shows a great success. ResNet introduces
the shortcut connection alleviating the difficulty in deep network training. DenseNet (Huang et al.,
2017) densely connects all preceding layers to take full advantage of preceding feature maps. Based
on those fundamental architectures, some advanced variants(e.g., ResNeSt (Zhang et al., 2020)) have
been proposed and have achieved impressive performance in many computer vision tasks.

Feature Reuse. Maximizing the feature utilization is one way to make the CNNs more efficient. The
feature reuse mechanism in ResNet summarizes the whole output features of the frontier blocks and
also replaces the identity mapping into residual mapping by short connections. Due to its simple
structure and outstanding performance, a series of variants have been proposed, including Shuf-
fleNet (Ma et al., 2018), ResNeXt (Xie et al., 2017) and Inception-ResNet (Szegedy et al., 2017).
At the same time, DenseNet (Huang et al., 2017) demonstrates that reusing feature by densely con-
catenating all the features in frontier layers can effectively alleviate the difficulty of training and
improve the network performance with an increased risk of over-fitting. VoVNet (Lee et al., 2019),
VoVNetV2 (Lee & Park, 2019) overcomes the inefficiency of dense connection by concatenating
all features only once in the last feature map and achieve the state-of-the-art performance in in-
stance segmentation. As the trade-offs between ResNets (He et al., 2016) and DenseNets (Huang
et al., 2017), Dual Path Network (Chen et al., 2017) and Mixed link Network (Wang et al., 2018a)
combine the two forms of connection, addition and concatenation.

Attention Mechanisms. The benefits of attention mechanism have been demonstrated across a
range of tasks. Squeeze-and-Excitation block (Hu et al., 2018b) highly appreciates attention mecha-
nism and thus well improves the accuracy of varied CNNs. They use global average-pooled features
to exploit the inter-channel relationship and to compute the channel-wise attention. Besides, there
are several other researches to utilize the attention mechanism and improve the results of CNNs in
various vision tasks. CBAM (Woo et al., 2018) further add the spatial attention to the SE modeule
and results in better plug-and-play modules. Wang et al. (2017) propose soft mask branches to refine
the feature maps by adding attention knowledge. Non-local Neural Networks (Wang et al., 2018b)
proposes non-local module to integrate the global attention information. Libra R-CNN (Pang et al.,
2019) designs the balanced feature pyramid which refine the semantic feature from multi-level fea-
tures. BASNet (Qin et al., 2019) pays more attention to the boundary of the mask by the boundary-
aware loss function. However, few works focus on the mix of attention mechanism and feature
reuse. The proposed AFI module thus aims to improve feature reuse by the attention mechanism.
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3 OUR MODEL

In this section, firstly, we introduce our Attentive Feature Integration (AFI) module. Secondly, we
compare our module with previous works such as DenseNet combined with the self-attention module
and discuss the way to implement the AFI module for reusing features. At last, for validating
the capacity of the proposed model, we integrate AFI blocks with ResNet (He et al., 2016) and
MobileNetV2 (Sandler et al., 2018) to form AFI-ResNet and AFI-MobileNetV2, whose details of
the architectures will be presented.

3.1 ATTENTIVE FEATURE INTEGRATION MODULES

The squeeze operations and the attention mechanism compose our AFI modules. The attention
mechanism is a selective aggregation of information so that the resulting features can be easily
exploited by subsequent transformations.

Formally, for N different level features Xi ∈ RH×W×C , i ∈ {1, 2, ..., N}, the result feature R ∈
RH×W×C is gotten by:

zi = Fsq(Xi), si = Fsc(zi,W),

S = [s1, s2, · · · , sN ], S̃ = [Softmax(sT∗,1), · · · , Softmax(sT∗,C)]
T ,

R = s̃1 ⊗ X1 + s̃2 ⊗ X2 + · · ·+ s̃N ⊗ XN . (1)

Here Fsq(·) denotes a squeeze function(e.g., global average pooling), which gathers contextual long-
range feature interactions, embedding global context into a vector descriptor. By shrinking Xi on
its spatial dimensions H × W , the channel-wise statistic zi ∈ RC is generated, where C is the
number of channels. On the second stage, the shared scoring function Fsc(·) is applied into vector
descriptors to produce an embedding of importance s ∈ RC . Fsc(·) is set as two transformation
matrices around the activation function:

si = Fsc(zi,W) = W2ReLU(W1zi), (2)

where the vector si is parameterized by forming a bottleneck layer with weights W1 ∈ RC
r ×C , a

dimensionality-increasing layer with weights W2 ∈ RC×C
r and the reduction ratio r. Next, a matrix

S ∈ RN×C , S = [s1, s2, ..., sN ] is obtained by concatenating all the N vectors. Then, the matrix
S̃ ∈ RN×C are obtained by normalizing S along the N dimension using a Softmax function. At last,
the ⊗ notation denotes the channel-wise multiplication. The result feature R is the combination of
all the re-weighted input features, s̃i ⊗ Xi.

3.2 COMPARISON WITH PREVIOUS WORKS

Recently, a series of literature attempts to incorporate the attention mechanism to improve the per-
formance of CNNs. One of the most popular computational units is the Squeeze-and-Excitation(SE)
module introduced in Hu et al. (2018b). Compared to the SE module, our AFI module focus on
explicitly modeling the feature integration instead of channel-wise selection. Moreover, compared
to DenseNet with the self-attention module like CAPR-DenseNet (Zhang et al., 2019), our module
can be applied to deeper and larger network, while avoiding quadratic complexity memory usage
and running time by substituting the independent exciter for the shared attention mechanism. Com-
pared to the SKNet (Li et al., 2019) that selects the efficient kernel size, our AFI module can utilize
different level(e.g., positional and semantic) information by reusing features.

3.3 AFI MODULES FOR FEATURE REUSE

In order to better describe our method, we have followed the definition of stage and building blocks
in the previous work (Hu et al., 2018a). More specifically, a stage consists of several building blocks
with the same shape of feature stacking repeatedly.

The AFI module is a supplement to backbone networks and is simple to be applied to the residual-
like networks. For building block i of each stage, the features, X1, X2, · · · , Xi−1, in previous
building blocks are the inputs of the AFI module. The output of the AFI module, the fused feature
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Figure 3: The architecture of the AFI-MobileNet building block is shown in Figure 3(a). The
architecture of the AFI-ResNet building block is shown in Figure 3(b).

Table 1: The accuracy rate (%) comparison of applying our AFI module to different residual stages
of ResNet-32 and ResNet-110. Best results are marked in bold.

AFI Stage ResNet-32 Stage 1 Stage 2 Stage 3
C100 71.16 71.38(+0.22) 70.63(−0.53) 70.75(−0.41)

AFI Stage ResNet-110 Stage 1 Stage 2 Stage 3
C100 73.73 75.03(+1.30) 74.13(+0.40) 74.02(+0.29)

Ri, will be concatenated with feature Xi and fed into the subsequent convolution layer. More details
of AFI-Networks are shown in Figure 3.

Two different settings of the AFI-Networks are used in this paper. The first setting is that replacing
half of the output from first convolution operations in residual building blocks with the output of the
AFI module as shown in Figure 3(b) and the reduction ratio r is 4. We refer a network with the first
setting to an AFI-Network. Another setting remains the original network architecture and expands
the second convolution. In this setting, we set the reduction ratio r to 16. For example, the second
convolution kernel of the basic building block in ResNet is changed into Rk×k×2C×C . We name
it AFI-Network-B. It is worth mentioning that the only difference between the two settings is the
width of the network.

To further illustrate the implementation of our module, we take the AFI-ResNet and the AFI-
MobileNetV2 building blocks as examples. The diagram in Figure 3 shows details of the proposed
AFI-ResNet and AFI-MobileNetV2. We concatenate the result feature of the AFI module with the
output feature of the first convolutional layer. As many building blocks (e.g., the bottleneck building
block, the MobileNetV2 (Sandler et al., 2018) block) use first 1×1 convolution to reduce param-
eters, our AFI modules can neutralize the impairment of bottleneck convolution coming from the
reduction of channels.

4 EXPERIMENT

Before presenting results on real-world datasets, we first show the ablation study on the settings of
the AFI modules.

The Role of AFI Module To illustrate whether the low-level features are collected by our AFI
module, we generate the heatmap by Grad-CAM (Selvaraju et al., 2017). As we can see in the
Figure 2, our network has more details of detected things, and meanwhile, the heatmap generated
by ResNet-50 is too smooth to draw the specific borderline of detected things. With the help of

5



Under review as a conference paper at ICLR 2021

0.0 0.5 1.0
Selectivity Index

0

20

40

60

80

Fr
eq

ue
nc

y

Conv3-0

ResNet-50:     0.37
ASE-ResNet-50: 0.36

0.0 0.5 1.0
Selectivity Index

Conv3-1

ResNet-50:     0.46
ASE-ResNet-50: 0.34

0.0 0.5 1.0
Selectivity Index

Conv3-2

ResNet-50:     0.39
ASE-ResNet-50: 0.36

0.0 0.5 1.0
Selectivity Index

Conv3-3

ResNet-50:     0.42
ASE-ResNet-50: 0.35

0.0 0.5 1.0
Selectivity Index

Conv3-4

ResNet-50:     0.46
ASE-ResNet-50: 0.34

0.0 0.5 1.0
Selectivity Index

Conv3-5

ResNet-50:     0.48
ASE-ResNet-50: 0.35

Figure 4: Each figure depicts the class selectivity index distribution for features in both the baseline
ResNet-50 and AFI-ResNet-50 various building blocks in the Conv3 stage of their architectures.
The distributions come from the output of the AFI module and corresponding position of the vanilla
in each building block. The mean value is reported after the label.

Table 2: The accuracy rate(%) of AFI-MobileNetV2 with various of the self-attention model in
CIFAR-100.

MobileNetV2 Baseline AFI AFI-SE AFI-GE AFI-CBAM AFI-ECA
C100 75.20 75.94 76.15(+0.21%) 76.22(+0.28%) 76.51(+0.57%) 76.76(+0.82%)

low-level feature reuse, the tiny borderlines are more shown in the figure. Besides, compared to
ResNet-50, the area that AFI-ResNet-50 paid most attention to decreases obviously.

Besides, the class selectivity index metric introduced by Morcos et al. (2018) to analyze the semantic
meaning of features. This metric computes, for each feature map, the difference between the highest
class-conditional mean activity and the mean of all remaining class-conditional activities over the
testing dataset. The measurement is normalized between zero and one where one indicates that a
filter only fires for a single class and zero indicates that the filter produces the class-agnostic value.
The less class selectivity index contend to the more generalization of channels in a degree. As
shown in figure 4, the AFI-ResNet-50 is able to learn tinier and more generalized features instead
of features of a specific class than the vanilla in Conv3 stage. With the help of generalized features,
the generalization gap between the training and the testing dataset will be closed.

The Position of AFI Module In this ablation study, we study whether low-level feature maps or
high-level feature maps are more hospitable for feature reuse by the AFI module. Previous study
Yosinski et al. (2014) shows that the feature maps learned by the earlier convolutional layers are
more general. According to Table 1, by only applying our AFI module to the stage 1 of ResNet-32
or ResNet-110, the accuracy rate increases obviously, which means low-level features have more
practical impacts.

Potential in Width Networks Tables 4, 5 show our AFI module is adapted for increasing the width
of networks. The results of AFI-Network-B show that our AFI module offers a trade-off between
improved accuracy and increased model complexity for the real situations. For instance, for a mobile
user, the company can adopt AFI-Networks with lower computational complexity while a computer
user can adopt AFI-Network-Bs with higher accuracy.

Compatibility with Other Self-attention Models Intuitively, the AFI-module is a feature-wise at-
tention mechanism; alternatively, the self-attention module aims to model interdependence between
channels explicitly. We further conducted experiments on CIFAR-100 to demonstrate compatibil-
ity. In the experiments, we utilize the self-attention modules(SE(Hu et al., 2018b), GE(Hu et al.,
2018a), CBAM(Woo et al., 2018), ECA(Wang et al., 2020)) to the resulting features. As shown
in Table 2, all the AFI-SE, AFI-GE, AFI-CBAM, and AFI-ECA(+0.82%) models get better results,
which indicates that our model is compatible with other self-attention modules.

4.1 EXPERIMENTS ON CIFAR

The CIFAR (Krizhevsky et al., 2009) dataset consists of 60,000 RGB pictures, each with a size of
32×32. 50,000 of them are used as the training set and 10,000 are used for testing. The CIFAR-10
mission requires the network to correctly classify the pictures into 10 categories, such as airplanes
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Table 3: The architecture details of AFI-ResNet-6N+2 for CIFAR dataset. The operations and
feature shapes are listed inside the brackets and the number of stacked blocks is shown outside.

Name Output Size AFI-ResNet-(6N+2)
Conv0 32×32 3×3, 16

Conv1 32×32
[

AFI + 3× 3, 16
3× 3, 16

]
×N

Conv2 16×16
[

AFI + 3× 3, 32
3× 3, 32

]
×N

Conv3 8×8
[

AFI + 3× 3, 64
3× 3, 64

]
×N

num class AP,FC,Softmax

Table 4: Accuracy rates (%) on CIFAR-100 dataset. All results are reproduced by ourselves for a
fair comparison. Our network results are bold in the table. The FLOPs are calculated by assuming
the batch size of 32.

Model C100 Params FLOPs
ResNet-32 (He et al., 2016) 71.16 472.76K 2.23G

AFI-ResNet-32 71.09 378.23K 1.78G
AFI-ResNet-32-B 72.57 668.98K 3.15G

ResNet-110 (He et al., 2016) 73.73 1.74M 8.17G
AFI-ResNet-110 74.03 1.35M 6.23G

AFI-ResNet-110-B 75.69 2.57M 12.06G
ShuffleNetV2 (Ma et al., 2018) 70.71 0.94M 1.32G

AFI-ShuffleNetV2 72.06 0.95M 1.32G
AFI-ShuffleNetV2-B 72.24 1.29M 1.76G

MobileNetV2 (Sandler et al., 2018) 75.20 2.41M 3.03G
AFI-MobileNetV2 75.94 2.25M 2.67G

AFI-MobileNetV2-B 77.08 2.84M 3.16G
ResNext-29(32×4d) (Xie et al., 2017) 78.44 4.87M 24.95G

AFI-ResNext-29(32×4d) 79.37 4.26M 21.74G
AFI-ResNext-29(32×4d)-B 79.85 5.23M 25.90G

and automobiles. CIFAR-100 requires the network to classify pictures into 100 categories. We train
our network on the training dataset and evaluate it on the test dataset.

By integrating the AFI module with ResNet, ShuffleNetV2, MobileNetV2 and ResNext, we get their
AFI counterparts. All the backbone networks have a residual mapping. So we apply the AFI module
to the first convolution layer in building blocks to avoid affecting residual mapping and meanwhile
neutralize the wastage of the bottleneck convolution. Table 3 shows AFI-ResNet architecture. By
setting N = 5 and N = 18 separately, AFI-ResNet-32 and AFI-ResNet-110 are acquired.

In this experiment, we use SGD with a momentum of 0.9 and a weight decay of 1e-4. We train the
networks with the batch size to 64 for 300 epochs. The learning rate is initial to 0.1 and divided
by 10 at 50%, 75% of training process, respectively. Proportion is adopted in Huang et al. (2017).
Data augmentation(mirroring/shifting) is used in training. Because MobileNetV2 (Sandler et al.,
2018), ShuffleNetV2 (Ma et al., 2018), and other networks are not designed for the CIFAR dataset,
we adopt their variants from Github1. All results are reproduced by ourselves and use the same
experiment settings are adopted for a fair comparison.

Table 4 shows the comparison of classification error between the original networks and their cor-
responding AFI counterparts. As we can see, most of networks work better in classification with
assistance of our AFI module. For example, AFI-ResNext29(32×4d) increases the accuracy rate by
0.93% compared with ResNext29(32×4d) (Xie et al., 2017) on the CIFAR-100 dataset. Besides, as

1https://github.com/kuangliu/pytorch-cifar
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Table 5: The table shows the accuracy rates (%) of networks on the ImageNet validation set. Our re-
sults are marked in bold. All results are reproduced for a fair comparison. The FLOPs are calculated
by assuming the batch size of 32.

Model Params(M) FLOPs(G) Top-1 Prec. Top-5 Prec.
ResNet-50 (He et al., 2016) 25.56 131.57 75.3 92.2

AFI-ResNet-50 23.85(−1.71) 121.72(−9.85) 76.19(+0.89) 92.88(+0.68)

AFI-ResNet-50-B 33.86 176.05 77.02 93.55
ResNet-152 (He et al., 2016) 60.19 369.88 77.0 93.3

AFI-ResNet-152 54.67(−5.52) 332.24(−37.64) 78.24(+1.24) 93.98(+0.68)

SE-ResNet-50 28.07 131.83 76.71 93.38
SE-ResNet-152 66.77 370.52 78.43 94.27

Table 6: The comparison of the memory usage of AFI-ResNet-50 and ResNet-50 in the training and
testing process. The batch size is 64.

Model ResNet-50 AFI-ResNet-50
Training/Testing Memory (MiB) 7447/3827 7001/2671

shown in the results, other AFI-Networks also increase the accuracy rates while decrease or remain
at least the number of parameters and FLOPs.

4.2 EXPERIMENTS ON IMAGENET

The effect of the AFI module is also evaluated on the ImageNet 2012 dataset (Simonyan & Zis-
serman, 2014) which composes about 1.3 million training images and 50k validation images. Both
top-1 and top-5 classification accuracy rates are reported on the validation dataset.

In this experiment, we use SGD with a momentum of 0.9 and a weight decay of 1e-4. We train
the networks with batch size 64 for 90 epoch. The initial learning rate is 0.1 * batch size / 256 and
divided by 10 at 30, 60, and 80 epochs, respectively. 224×224 images serving as the inputs of the
network are cropped from the resized raw images or their horizontal flips. Data augmentation in Li
et al. (2018b) is used in training. We evaluate our model by applying a center-crop with 224×224.

The accuracy rates of baseline models and our network on the ImageNet validation set are shown
in Table 5. With the same backbone architecture, our model always obtains a higher accuracy rate
compared with ResNet. For instance, The AFI-ResNet-152 increases the accuracy rate by 1.24%,
decreases the number of parameters by 9.2%, and meanwhile decreases FLOPs by 10% compared
with ResNet-152.

Additionally, the memory usage of our model is smaller than the base model(ResNet-50) in both
training and testing process as shown in Table 6. In contrast with DenseNet-121 (Huang et al., 2017)
which requires an enormous running space for keeping features of the total 24-layer in DenseNet
block (3), our AFI-ResNet-50 maintains features at most 6 layers, therefore the memory usage of
our model is much smaller. Besides, reduction of the output of convolution also helps to optimize
memory costs during running time. Furthermore, our AFI-Module could release more running space
via reducing intermediate gradients in memory with the method proposed by Pleiss et al. (2017).

5 CONCLUSION

In this paper, we proposed the AFI modules that can adaptively select features for feature reuse and
improve the representational power of networks. The output feature of AFI blocks is aggregated by
the channel-wise soft attention over a series of features. The structure of the AFI module is simple
and can be used directly in existing state-of-the-art architectures easily. Experimental results show
the effectiveness of AFI-Networks, which achieve competitive performance across multiple datasets.
Compared with baseline models, AFI counterparts can achieve better performance with lower com-
putational complexity. We believe that the AFI modules can be broadly applicable across various
computer vision tasks, e.g., object detection, instance segmentation and semantic segmentation.
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