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Abstract

Domain generalization has great impact on medical image analysis as data distribution
inconsistencies are prevalent in most of the medical data modalities due to the image
acquisition techniques. In this study, we investigate a novel pipeline that generalizes the
retinal vessel segmentation across color fundus photography and OCT angiography images.
We hypothesize that the scaled minor eigenvector of the Hessian matrix can sufficiently
represent the vessel by vector flow. This vector field can be regarded as a common domain
for different modalities as it is very similar even for data that follows vastly different
intensity distributions. Next, we leverage the uncertainty in the latent space of the auto-
encoder to synthesize enhanced vessel maps to augment the training data. Finally, we
propose a transformer network to extract features from the vector field. We show the
performance of our model in cross-modality experiments. Our code and trained model are
publicly available at https://github.com/MedICL-VU/Vector-Field-Transformer.

Keywords: domain generalization, vessel segmentation, vector field, transformer, data
augmentation

1. Introduction

Deep learning has become the prevailing solution for many medical image analysis tasks (Li
et al., 2021; Hu et al., 2020; Li et al., 2020a) given its remarkable performance. However, as a
data-driven algorithm, it is sensitive to the data distribution, especially when the available
annotated training set is limited. Unfortunately, most medical image modalities present
strong distribution shifts between datasets, caused by the use of various imaging protocols
and/or scanner vendors. To tackle this, the ideas of domain adaptation (DA) (Guan and
Liu, 2021) and domain generalization (DG) (Wang et al., 2021; Zhou et al., 2021) have
been proposed. Suppose a model is trained on data in one or several different but related
domains. DA aims to optimize the performance of it on a given target domain. DG is more
challenging as the target domain is completely inaccessible during training.

There are three main classes of approaches to increase the generalization capability of
a deep model. First, there are data augmentation/generation based methods (Khirodkar
et al., 2019; Zhou et al., 2020). By applying hand-crafted perturbations to training data
or by leveraging adversarial models to generate new data that is out of the current domain
distribution, the training domain is expanded in this approach. Next, there are the repre-
sentation disentanglement approaches (Xu et al., 2014; Ouyang et al., 2021). Given input
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data from various domains, these let the model extract domain-invariant latent features that
are transferable across data distributions. This is equivalent to mapping the data following
different distributions to a common space. The last family of approaches is using general
learning strategies (e.g., meta learning (Li et al., 2018; Balaji et al., 2018)). In this study,
we investigate a workflow that marries the first two approaches to achieve DG.

There are many implementations of DG for MRI (Liu et al., 2020; Li et al., 2020a), CT
(Khandelwal and Yushkevich, 2020) and fundus photography (Yang et al., 2021; Liu et al.,
2021), but the OCT and OCT angiography (OCT-A) are rarely discussed in this context.
OCT-A is an important tool to visualize retinal vessels. However, the complex retinal
vasculature composed of thin plexus requires huge effort to obtain 3D manual annotation
for supervised training. Instead, our overall goal is to use annotated 2D fundus
images to train a network that is capable of vessel segmentation on OCT-A
data. Inspired by our previous work (Hu et al., 2021), we begin by applying an auto-encoder
to generate enhanced vessel maps in the latent space. As there is no direct supervision,
these enhanced vessel maps are in arbitrarily different styles/contrasts for each re-run of the
training process. We use these differing vessel maps as augmentation for our training set.
Next, since the human perception of ‘vesselness’ depends heavily on the local contrast and
general shape instead of absolute intensity value, we hypothesize that the minor eigenvector
of the Hessian matrix can sufficiently represent the vessels. By introducing the vectors, our
goal is to let the model learn the shape of the vessels independently from the image intensity
distribution. This would allow us to achieve generalization with regard to the ‘style’ of the
input image. Thus, we convert the image into a vector field which we deem as a common
feature space. Then a vector field transformer (VFT) is proposed to extract shape features.
Since the transformer leverages the attention mechanism based upon the dot product of
feature vectors, it is suitable to work on a vector field. In addition, we designed a parallel
pathway with three types of patch sizes that allow the model to see different ranges of
context. Our main contributions are:

• Introducing the vector field to generalize different modalities for vessel segmentation.

• Auto-encoder to generate different styles of enhanced vessel maps for augmentation.

• VFT with parallel transformer layers to separate the input with various window sizes.

2. Methodology

Our approach is based on the key observation that, despite very different image appear-
ances, the structural/geometrical features of vessels in color fundus photography and depth
projected OCT angiography perceptually present strong similarities. However, the existing
learning-based approaches for vessel segmentation rarely attempt to bridge the gap between
these two modalities. In other words, instead of focusing on the structural patterns of the
vessels, the current models are more dependent on intensity distribution.

We model the domain generalization as follows: We denote the number of domains by
Ω. Then the source domains that are used for training can be represented as S = {Si|i =
1, . . . ,ΩS}, while the target set of domains for testing are T = {T i|i = 1, . . . ,ΩT }. Each
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Figure 1: The overall pipeline. The yellow box is the data augmentation used to create the training set
S. The pink box shows the segmentation network. In testing, only the pink box is used.

training domain contains mi pairs of annotated samples Si = {(Xi
j , Y

i
j )|j = 1, . . . ,mi},

where Y i
j is the label for sample Xi

j . Considering the easier availability of manual annota-

tion, we train the model on a fundus dataset (i.e., S = {S1
fundus}), then test on two OCT-A

datasets (i.e., T = {T 1
octa, T

2
octa}) to demonstrate two different cross-modality scenarios.

To increase the diversity of the training data, we propose a vessel enhancement network
(EnhanceNet, Sec. 2.1) to generate enhanced vessel maps that follow a variety of distribu-
tions such that the training set S gets augmented to {S1, . . . , Sk+1}, where k is the number
of EnhanceNet models trained. This also converts the fundus images into grayscale in the
process. Then, to learn the tubular shape of the vessel, we use an intensity-scaled vector
field (Sec. 2.2) as the input and propose a multi-size-window transformer to capture the
correlation between vectors in a local area. Fig. 1 illustrates this overall DG pipeline.

2.1. Data augmentation with vessel enhancement network

The en-face projection of OCT angiography is a 2D grayscale image that contains only the
vessels. In contrast, the fundus data are color images with relatively poor contrast and also
includes other anatomical structures such as the optic disk and the fovea. Some approaches

Figure 2: Vessel enhancement network. X is the input color image, Y is the corresponding binary label.
Li denotes the latent space for k different trained models.
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input/label L0 (CLAHE) L1 L2 L3

Figure 3: Comparison of EnhanceNet latent images with CLAHE contrast enhancement. The middle row
is a zoomed-in view within the yellow box. The bottom row shows the associated vector fields.

convert fundus images to grayscale and apply the contrast-limited adaptive histogram equal-
ization (CLAHE) (Reza, 2004) algorithm to improve the contrast of vessels. However, it is
possible for CLAHE to over-enhance noise and/or other structures like macula, such that
some vessels are blocked (e.g., the bright middle region in the CLAHE result in Fig. 3).
Instead, following the same idea as (Hu et al., 2021), we introduce a vessel enhancement
network, EnhanceNet, for data augmentation. It converts the color image to grayscale and
simultaneously filters out the irrelevant structures such that the vessels stand out.

The EnhanceNet has an encoder-decoder structure (Fig. 2). Let X be the input color
fundus image, and let Y be the corresponding vessel labels. If we view these images as
feature sets, X is a larger set that contains both vessel features as well as spurious features
(e.g., fovea, optic disk) that are undesirable for the vessel segmentation task. The encoder
fe of EnhanceNet serves as a feature selector that filters these out. If the network output Ŷ
is a good reconstruction of Y , then the latent image L should approximate the intersection
of the two sets (i.e., L ≈ X ∩ Y ). In order to keep the latent space to the same dimensions
as the input image, the residual U-Net architecture is implemented for both the encoder
fe and the decoder fd. Since the target output is the vessel-enhanced latent image, we
distribute more parameters in fe to allow the encoder more flexibility. Given N pixels, the
loss function for training is a combination of cross-entropy loss and Dice loss:

LEnhanceNet = − 1

N

N∑
n=1

yn log ŷn +

(
1−

2
∑N

n=1 ynŷn∑N
n=1 ŷ

2
n + y2n

)
, (1)
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Figure 4: The architecture of the VFT network. Network details are available in Appendix A.

where ŷn and yn are the prediction and the ground truth at pixel n, respectively.

Since there is no direct supervision over the latent space, the training process can be
fairly unstable and the appearance of L is not consistent when the model is re-trained. We
take advantage of this additional degree of freedom and set k = 3 in our experiment to
train 3 different models. This results in 3 different latent images L1, L2 and L3 for each
input image X, as illustrated in Fig. 3. We note that sometimes the vessel intensity can be
flipped between different Li. We also observe that the background texture features are not
completely removed in L1 and L2. L3 is closer to the ideal case since background texture is
strongly suppressed and only vessels are extracted. It is clear from Fig. 3 that all 3 outputs
from EnhanceNet are dramatically cleaner than CLAHE results, and hence better able to
simplify the downstream segmentation task. By leveraging the uncertainty of EnhanceNet,
we can generate vessel maps in several synthetic domains given a single input image as
an effective way to augment the training data. All four types of generated domains are
applied in the training stage. If we denote the CLAHE image as L0, then the domains are
Si = {(Li

j , Yj)}mj=1 where m = 20 and i = 0, 1, 2, 3 in our case, and the whole training set is

defined as S = {S0, S1, S2, S3}.

2.2. Vector field transformer

Frangi et al. classically model tubular structures with the vesselness measure, defined by the
eigenvalues of the Hessian matrix H (Frangi et al., 1998). Following the same intuition, we
observe that the minor eigenvectors of H form a smooth vector field with streamlines that
follow along the retinal vessels. To create the vector field given a grayscale image X, we
compute the Hessian H at X(i, j) by 2D convolution with the derivative of a Gaussian with
σ = 0.1. After eigen-decomposition, we keep the second eigenvector v2(i, j) that corresponds
to the smaller eigenvalue, which aligns with the vessel direction. The image intensity is used
as the magnitude of the vector, which yields the vector field V (i, j) = X(i, j)v2(i, j). In
our experiments, the image intensities of X are normalized to the [0, 255] range. Note that
for cases like L2, we flip the intensity before normalization.

One promising property of this vector field representation is that it allows a con-
sistent appearance for vessels across different image modalities, as it emphasizes struc-
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tural/geometrical information rather than pure image intensity. In the last row of Fig. 3,
we observe that the vessel is represented by the vector flow formed by vectors sharing
coherent orientations and magnitudes. This property holds across diverse domains Li. Seg-
menting vessels is then equivalent to find these locally clustered vectors that are coherent
in magnitude and direction. This is very suitable for the self-attention mechanism to work.
By taking the dot product with other vectors, the homogeneity of vector orientation and
intensity levels can easily be captured. Hence, we propose a vector field transformer (Fig. 4)
that takes the vector field as input and leverages 3 parallel transformer layers (TL) with
different window sizes (2×2, 4×4 and 8×8) to extract features in multiple scales. Since the
vector is already regarded as a feature, no further embedding is needed. Similar to Tran-
sUNet (Chen et al., 2021), the transformer blocks are only applied in the encoder layers,
while the decoder contains residual blocks. The loss function for VFT is cross-entropy.

2.3. Datasets

We use three publicly available datasets. DRIVE. The DRIVE dataset (Staal et al., 2004)
consists of 20 labelled fundus images of size 565 × 584. We use these as our training
set. ROSE. The ROSE dataset (Ma et al., 2020) includes two type of annotations: the
centerline-level (sparse) labels of thin vessels, and pixel-level (dense) labels of thick vessels.
We use 30 images of size 304 × 304 with pixel-level dense labels for testing. OCTA500.
OCTA500 (Li et al., 2020b) contains two subsets: OCTA 6M and OCTA 3M. We use
OCTA 6M, which includes 300 samples with larger field of view (6mm×6mm×2mm). The
projection maps of different tissue layers and manual vessel segmentations are available
in 2D. We use the OCTA 6M internal limiting membrane (ILM) to outer plexiform layer
(OPL) projection as our second testing set (i.e., 300 images with size 400× 400).

2.4. Baseline models and implementation details

To evaluate the proposed method, we performed a comprehensive ablation study. First,
we train a residual UNet (ResUNet) with the same number of layers as VFT to assess the
advantage of using the parallel transformers. Note that both models take the vector field as
input. Next, using the same ResUNet structure, we train a model that takes the intensity
image as the input to assess whether the vector field representation of the image helps with
the recognition of vessel shape. Finally, we train all three models with and without data
augmentation (Sec. 2.1).

All networks are trained and tested on an NVIDIA RTX 2080TI 11GB GPU. We use
a batch size of 3 and train for 300 epochs. We use the Adam optimizer with the initial
learning rate of 1× 10−5 for VFT, 1× 10−4 for Residual UNet. The learning rate for both
networks decay by 0.5 every 3 epochs.

3. Results

Qualitative results are shown in Fig. 5, where the top two rows are from ROSE and the
bottom two rows are from OCTA500. Red and green represent false negatives (FN) and
false positives (FP), respectively. Each column compares the model trained with/without
augmentation (Sec. 2.1). The effects of the vector field input and the transformer are
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Algorithm
DSC ACC SEN SPE

w/o w w/o w w/o w w/o w

ResUNet(int)
0.6705 0.6912 0.8872 0.9129 0.7542 0.6419 0.9130 0.9641
±0.0239 ±0.0364±0.0092 ±0.0128 ±0.0681±0.0898±0.0141 ±0.0102

ResUNet(vec)
0.7031 0.6510 0.9220 0.9134 0.6837 0.5256 0.9550 0.9846
±0.0261 ±0.0299 ±0.0109 ±0.0145 ±0.0713 ±0.0424 ±0.0077 ±0.0035

VFT
0.7602 0.6807 0.9303 0.9192 0.7221 0.5604 0.9694 0.9851
±0.0244±0.0288 ±0.0110±0.0136±0.0633 ±0.0446 ±0.0051±0.0032

Table 1: ROSE results. DSC: Dice score, ACC: accuracy, SEN: sensitivity. SPE: specificity. Bold: best
score per column. w, w/o: with or without augmentation.

Algorithm
DSC ACC SEN SPE

w/o w w/o w w/o w w/o w

ResUNet(int)
0.6344 0.7165 0.9069 0.9494 0.8852 0.7055 0.9098 0.9751
±0.0532 ±0.0373 ±0.0124 ±0.0070 ±0.0422 ±0.0795 ±0.0156 ±0.0104

ResUNet(vec)
0.7005 0.7754 0.9343 0.9604 0.8455 0.7460 0.9440 0.9827
±0.0398 ±0.0257 ±0.0074 ±0.0064 ±0.0508 ±0.0373 ±0.0097 ±0.0048

VFT
0.7365 0.7876 0.9414 0.9610 0.9045 0.7936 0.9455 0.9785
±0.0446±0.0291±0.0069±0.0060±0.0337±0.0458±0.0083±0.0057

Table 2: OCTA500 results. DSC: Dice score, ACC: accuracy, SEN: sensitivity. SPE: specificity. Bold:
best score per column. w, w/o: with or without augmentation.

shown left-to-right. The model trained on the intensity input gets many FPs, and vessel
thicknesses are overestimated. The former issue is largely resolved by using the vector field
as input. By training on augmented data, the model becomes less aggressive and thin
vessels are no longer over-dilated. For the ROSE dataset, the labeled vessels are relatively
thick which are easy to capture, so even the vanilla ResUNet works well. We note that,
although the accuracy of the segmentation raises with augmentation, this may induce a drop
in sensitivity (Tab. 1) in this dataset. A hypothesis for why ROSE does not benefit from
data augmentation is that augmented images have relatively high vessel intensity, while
the small vessels in ROSE appear darker. For the OCTA500 dataset, in which the thinner
vessels are also labeled, the proposed method gets the best outcome with regard to almost
all metrics (Tab. 2). For both datasets, VFT performs better with vector input.

4. Conclusion

The domain generalizability of a deep learning model is essential in medical image analysis.
In this work, we explore mapping vessel images from different modalities to a common space
by creating the eigenvector field from Hessian matrices. Then, we set up a vector field
transformer to capture the structural features modelled by the correlation between vectors.
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Input/label ResUNet (intensity) ResUNet (vector) VFT
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Figure 5: Effects of input (intensity/vector), model (ResUNet/VFT) and data augmentation. Red and
green represent false negatives and false positives, respectively. The top two rows are from
ROSE, the bottom two rows are from OCTA500.

This makes promising gains in Dice score. Moreover, we leverage the uncertainty of the
latent output from EnhanceNet to augment the data with 3 different synthetic domains.
This further improves the segmentation accuracy. Our approach can be extended to other
segmentation tasks in tubular objects (e.g., airway trees) in future research.
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Appendix A. VFT architecture

Residual U-Net. The backbone of the neural network is a residual U-Net that takes the
input vector field with shape x1 ∈ R2×256×256. Herein, the superscript denotes the input
of the first layer. Note that the residual units are replaced by paralleled transformer layers
in the compression pipeline. These transformer layers will not change the dimension of
the input tensor. Details are provided in the following paragraph. The downsampling is
achieved by a transition down-block that contains a 2d convolution layer, a batch normal-
ization layer, and an exponential linear unit (ELU). Intuitively, this transition down-block
will increase the channel number while reducing the height and width of the image by half.
In our experiment, we apply a 5-layer model with channel number {2, 8, 16, 32, 64} (i.e.,
x5 ∈ R64×16×16). In the decoder part, we apply the transpose 2d convolution layer, batch
normalization, and ELU in the transition up-block.

Transformer layers. We incorporate the transformer blocks in each layer of the residual
U-Net encoder. In order to capture the vector orientation similarity in different scales of
context, we break the image into three types of patches (2 × 2, 4 × 4, 8 × 8). This forms
the three paralleled transformer layers (TL). If the input x ∈ RC×H×W , then the output
of each TL has the same dimension (i.e., TL(x) ∈ RC×H×W ). We concatenate all three
outputs by channel and apply a 2D convolution to linearly map it back to RC×H×W . We
leverage the same transformer layer structure as proposed in (Chen et al., 2021). We set
the number of heads in the multi-head self-attention layer (MSA) to C

2 . The output of the
multi-layer perceptron is set to be 4C.

Unlike other implementations of transformers in medical image analysis (Hatamizadeh
et al., 2022), VFT focuses on the context within the partitioned patches instead of the po-
tential correlation between windows. Therefore, no feature embedding is required for VFT
as the eigenvectors already represent the structural pattern. The transformer layer acts on
the vectors within the patch to extract the vector similarity. Intuitively, the vectors within
a vessel in a small patch should be homogeneous in both orientation and magnitude.

Appendix B. Comparison with same modality segmentation

To further validate the cross-modality segmentation performance, we compare it with a
VFT model trained and tested on OCT-A images. There are 300 subjects in OCTA500
6M dataset. We use 200 of them as training data, while the rest serves as testing data.
The following table shows the comparison between the two settings, i.e., same modality vs.
cross-modality:
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train/test DSC ACC SEN SPE

OCT-A/OCT-A
0.8200 0.9686 0.7817 0.9881
±0.0287±0.0065±0.0430±0.0046

fundus/OCT-A
0.7876 0.9610 0.7936 0.9785
±0.0291±0.0060±0.0458±0.0057

Table 3: Performance of the VFT model in the same modality vs. cross-modality settings.

The gap between the two Dice scores (0.7878 vs. 0.8200) is modest, and the other metrics
are similarly comparable. Hence, this experiment supports the conclusion that the vector
field substantially facilitates cross-modality generalization.
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