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Abstract

The goal of the cross-lingual summarization
(CLS) is to convert a document in one lan-
guage (e.g., English) to a summary in an-
other one (e.g., Chinese), which is essentially
the combination of machine translation (MT)
and monolingual summarization (MS). Exist-
ing studies on CLS mainly focus on utilizing
pipeline methods or jointly training an end-to-
end model through an auxiliary MT or MS ob-
jective. However, it is very challenging for
the model to directly conduct CLS as it re-
quires both the abilities to translate and sum-
marize. Besides, the processes of MT and
MS have a hierarchical relationship with CLS.
Therefore, we propose a hierarchical model for
the CLS task, based on the conditional vari-
ational auto-encoder. The hierarchical model
contains two kinds of latent variables at the lo-
cal and global levels, respectively. At the lo-
cal level, there are two latent variables, one
for translation and the other for summariza-
tion. As for the global level, there is another
latent variable for cross-lingual summariza-
tion conditioned on the two local-level vari-
ables. Experiments on two language direc-
tions (English<Chinese) verify the effective-
ness and superiority of the proposed approach,
yielding state-of-the-art performances. In ad-
dition, we show that our model is able to gen-
erate better cross-lingual summaries than com-
parison models in the few-shot setting.!

1 Introduction

The cross-lingual summarization (CLS) aims to
summarize a document in source language (e.g.,
English) into a different language (e.g., Chinese),
which can be seen as a combination of machine
translation (MT) and monolingual summarization
(MS) to some extent (Ordsan and Chiorean, 2008;
Zhu et al., 2019). The CLS can help people ef-
fectively master the core points of an article in a

'The code is attached to the supplementary material and
will be publicly available once accepted.

foreign language. Under the globalization back-
ground, it becomes more important and has a wider
range of applications.

Many researches have been proposed to deal
with this task. To our knowledge, they mainly fall
into three categories, i.e., pipeline, end-to-end, and
multi-task learning methods. (1) The first cate-
gory is pipeline-based, adopting either translation-
summarization (Leuski et al., 2003; Ouyang et al.,
2019) or summarization-translation (Wan et al.,
2010; Orasan and Chiorean, 2008) paradigm. Al-
though being intuitive and straightforward, they
generally suffer from error propagation. (2) The
second category aims to train an end-to-end model
for CLS (Zhu et al., 2019, 2020). For instance,
Zhu et al. (2020) focus on using a pre-constructed
probabilistic bilingual lexicon to improve the CLS
model. (3) The last mainly resorts to multi-task
learning (Takase and Okazaki, 2020; Bai et al.,
2021; Zhu et al., 2019; Cao et al., 2020a,b). Zhu
et al. (2019) separately introduce MT and MS to
improve CLS. Cao et al. (2020a,b) design sev-
eral additional training objectives (e.g., MS, back-
translation, and reconstruction) to enhance the CLS
model.

Although the above methods have used the re-
lated task (e.g., MT or MS) to help the CLS, the
MT and MS have been not applied as auxiliary
tasks at the same time to enhance the CLS model.
As pointed out by Cao et al. (2020a), it is chal-
lenging for the model to directly conduct CLS as
it requires both the abilities to translate and sum-
marize. Moreover, the hierarchical relationships
between MT&MS and CLS are not well modeled,
which can explicitly help translate and summarize
simultaneously for the CLS task.

Apparently, how to effectively model the hier-
archical relationships to exploit MT and MS is
one of the core issues for enhancing CLS, espe-
cially when the CLS data is limited.”> On the other

Generally, it is difficult to acquire the CLS dataset (Zhu



hand, the Conditional Variational Auto-Encoder
(CVAE) (Sohn et al., 2015) has shown its superi-
ority in learning hierarchical structure with hier-
archical latent variables, which is often utilized
to capture the semantic connection between the
utterance and the corresponding context of conver-
sations (Shen et al., 2019; Park et al., 2018; Serban
etal., 2017). Despite its success, adapting it to CLS
is non-trivial, especially involving hierarchical la-
tent variables.

Therefore, we propose a Variational
Hierarchical Model to exploit translation
and summarization simultaneously, named VHM,
for CLS task in an end-to-end framework. VHM
employs hierarchical latent variables based on
CVAE to learn the hierarchical relationship
between MT&MS and CLS. Specifically, the
VHM contains two kinds of latent variables at
the local and global levels, respectively. Firstly,
we introduce two local variables for translation
and summarization, respectively. The two local
variables are constrained to reconstruct the
translation and source-language summary. Then,
we use the global variable to explicitly exploit
the two local variables for better CLS, which is
constrained to reconstruct the target-language
summary. This makes sure the global variable cap-
tures its relationship with the two local variables
without any loss, preventing error propagation. For
inference, we use the local and global variables to
assist the cross-lingual summarization process.

We validate our proposed training framework
on the datasets of different language pairs (Zhu
et al., 2019): Zh2EnSum (Chinese=-English) and
En2ZhSum (English=-Chinese). Experiments
show that our model achieves consistent improve-
ments on two language directions in terms of both
automatic metrics and human evaluation, demon-
strating its effectiveness and generalizability. Few-
shot evaluation further suggests that the local and
global variables enable our model to generate a
satisfactory cross-lingual summaries compared to
existing related methods.

Our main contributions are as follows:

* To the best of our knowledge, we are the first
to simultaneously and explicitly incorporate
the translation of MT and summarization of
MS into neural CLS models.

e We are the first to build a variational hierar-
chical model via conditional variational auto-

et al., 2020; Ayana et al., 2018; Duan et al., 2019).

encoders that introduce a global variable to
combine the local ones for translation and
summarization at the same time for CLS.

* Our model gains consistent and significant
performance and remarkably outperforms the
previous state-of-the-art methods.

* Under the few-shot setting, our model still
achieves better performance than existing ap-
proaches. Particularly, the fewer the data are,
the greater the improvement we gain.

2 Background

Machine Translation (MT). Given an input se-
quence in the source language X mt—{xl}wmt' the
goal of the neural MT model is to produce its trans-
lation in the target language Ymt—{yl}‘ Yl The

conditional distribution of the model is:
[Yont|

)= H Po(Yt| Xomt, Y1:6-1),

t=1
where ¢ are model parameters and ;.. is the
partial translation.
Monolingual Summarization (MS). Given
an input article in the source language

Do (Ymt‘th

X
Xzre {xs’"c}‘ 7l and the corresponding summa-

tgt [ tgty|X
rization in the same language X,7s={z;’ }' msl,

the monolingual summarization is formahzed as:
I X? gt

tgt sre tgt
H p@ ms?xl:t—l)'

Cross-Lingual Summarlzatlon (CLS). In CLS,
we aim to learn a model that can generate a

pO(tht Xsrc

summary in the target language Y= {yl}lyds
for a given article in the source language

clsf{mz}‘ Xeis| . Formally, it is as follows:
|Ycls|

pG(Ycls‘Xcls) = H p@(yt|Xcls’y1:tfl)-
t=1

Conditional Variational Auto-Encoder (CVAE).
The CVAE (Sohn et al., 2015) consists of one prior
network and one recognition (posterior) network,
where the latter takes charge of guiding the learn-
ing of prior network via Kullback-Leibler (KL)
divergence (Kingma and Welling, 2013). For ex-
ample, the variational neural MT model (Zhang
et al., 2016a), which introduces a random latent
variable z into the neural MT conditional distribu-
tion:

PVt Xot) = [ DVot Xt 2) (2] X,

z
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Given a source sentence X, a latent variable z is
firstly sampled by the prior network from the en-
coder, and then the target sentence is generated
by the decoder: Y, ~ po(Yint|Ximt,z), where
z ~ pg(z| Xmt)-

As it is hard to marginalize Eq. 1, the CVAE
training objective is a variational lower bound of
the conditional log-likelihood:

[,(97 ¢; th7 Ymt) = _KL(q¢(Z|th7 Ymt) ||pg(Z‘th))
+ By, (2l Xt Yinr) 108 D0 (Yot |2, Xime )]
< IOgP(Ymt|th),

where ¢ are parameters of the CVAE.

3 Methodology

Fig. 1 demonstrates an overview of our model, con-
sisting of four components: encoder, variational
hierarchical modules, decoder, training and infer-
ence. Specifically, we aim to explicitly exploit the
MT and MS for CLS simultaneously. Therefore,
we firstly use the encoder (§ 3.1) to prepare the rep-
resentation for the variational hierarchical module
(§ 3.2), which aims to learn the two local variables
for the global variable in CLS. Then, we introduce
the global variable into the decoder (§ 3.3). Fi-
nally, we elaborate the process of our training and
inference (§ 3.4).

3.1 Encoder

Our model is based on transformer (Vaswani et al.,
2017) encoder-decoder framework. As shown
in Fig. 1, the encoder takes six types of inputs,
(Xt X6, Xetss Yont X5 Yers}, among which
Yo, Xms, and Y, are only for training recog-
nition networks. Taking X,,; for example, the
encoder maps the input X,,; into a sequence of
continuous representations whose size varies with
respect to the source sequence length. Specifically,
the encoder consists of N, stacked layers and each
layer includes two sub-layers:*> a multi-head self-
attention (SelfAtt) sub-layer and a position-wise
feed-forward network (FFN) sub-layer:

¢ = SelfAtt(hs™!) + hi !,
hf FFN(s!) + s,

where h’ denotes the state of the ¢-th encoder layer
and h? denotes the initialized embedding.
Through the encoder, we prepare the representa-

tions of { X, X<, X} for training prior net-

3The layer normalization is omitted for simplicity and you
may refer to (Vaswani et al., 2017) for more details.
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Figure 1: Overview of the proposed VHM framework.
The local variables z,,,;, z,,s are tailored for transla-
tion and summarization, respectively. Then the global
one z.s is for cross-lingual summarization, where the
Z.1s not only conditions on the input but also z,,,; and

ms- Lhe solid grey lines indicate training process re-
sponsible for generating {Z,,¢, Zm,s, Zcis } from the cor-
responding posterior distribution predicted by recogni-
tion networks, which guide the learning of prior net-
works. The dashed red lines indicate inference process
for generating {z,,¢, Zm s, Zcis } from the corresponding
prior distributions predicted by prior networks.

works, encoder and decoder. Taking X,,,; for ex-
ample, we follow (Zhang et al., 2016a) and apply
mean-pooling over the output he Xt of the N,-th
encoder layer:

| Xt
h Z N67th
e \th|

Similarly, we obtain h xsre and hx,..

For training recognition networks, we obtain the
representations of {Y,,, Xﬁgﬁ, Y.s}, taking Yo,;
for example, and calculate it as follows:

[Yint]

h Z N57Ymt
mt ‘Ymt‘

Similarly, we obtain h ytg¢ and hy, .

3.2 Variational Hierarchical Modules

Firstly, we design two local latent variational mod-
ules to learn the translation distribution in MT pairs
and summarization distribution in MS pairs, respec-
tively. Then, conditioned on them, we introduce
a global latent variational module to explicitly ex-
ploit them.



3.2.1 Local: Translation and Summarization

Translation. To capture the translation of the
paired sentence, we introduce a local variable z,,,;
that is responsible for generating the target infor-
mation. Inspired by (Wang and Wan, 2019), we
use isotropic Gaussian distribution as the prior dis-
tribution of Z,¢: Po(Zme| Xme) ~ N (e, 02,,1),
where I denotes the identity matrix and we have

pmt = MLPy" (hx, ),
o mt = Softplus(MLPJ" (hy, ),

where MLP(+) and Softplus(-) are multi-layer per-
ceptron and approximation of ReL'U function, re-
spectively.

At training, the posterior distribution conditions
on both source input and the target reference, which
provides translation information. Therefore, the
prior network can learn a tailored translation dis-
tribution by approaching the recognition network
via KL divergence (Kingma and Welling, 2013):
46 (Zmt| Xont, Yint) ~ N (W1, 012 1), Where gy,
and o7, are calculated as:

/"’;nt = MLPth (tht; hYmt)’
o= Softplus(MLPth(tht; hy, ,)),

where (-;-) indicates concatenation operation.
Summarization. To capture the summarization
in MS pairs, we introduce another local vari-
able z,,s, which takes charge of generating the
source-language summary. Similar to z,,;, we
define its prior distribution as: pg(zy,s| X5<) ~
N (s, 02, 1), where pi,,s and o, are calcu-
lated as:
O ms = Softplus(MLPg" (hxsre)).

At training, the posterior distribution conditions
on both the source input and the source-language
summary that contains the summarization clue,
and thus is responsible for guiding the learning
of the prior distribution. Specifically, we define the
posterior distribution as: gy (Zms| X278, Xide) ~
N(ph,s, 002, 1), where p!, and o), are calcu-
lated as:

Hims = MLPZ? (hxgres by ),
O s = Softplus(MLP™ (hixsre; hyior ).

3.2.2 Global: CLS

After obtaining z,,; and z,,s, we introduce the
global variable z.;s that aims to generate a target-
language summary, where the z.;s can simultane-
ously exploit the local variables for CLS. Specifi-

cally, we firstly encode the source input X ;s and
condition on both two local variables z,,,; and z,,,
and then sample z.;;. We define its prior distribu-
tion as: py (chs|Xcl37 Zmt, st) ~ N(/J'cls; USZSI)’
where p.;s and o5 are calculated as:

trets = MLPG® (x5 Zimt; Zms),
Ous = Softplus(MLPgls(thS; Zimt; Zms))-

At training, the posterior distribution conditions
on the local variables, the CLS input, and the cross-
lingual summary that contains combination infor-
mation of translation and summarization. There-
fore, the posterior distribution can teach the prior
distribution. Specifically, we define the posterior
distribution as: ¢y (25| Xcis, Zmt, Zms, Yeis) ~
N (., 02 1), where p!,, and o, are calculated
as:

IJ’/CZS = MLP(,Cbls(hXcls 7 th; ZTTLS; hYcls)?
ol = Softplus(MLPgs(hXcls i Zmt; Zms; Ny,,.)).

3.3 Decoder

The decoder adopts a similar structure to the en-
coder, and each of N decoder layers includes an
additional cross-attention sub-layer (CrossAtt):

si = SelfAtt(h’™!) + hi ™,
¢!, = CrossAtt(sh, hVe) + s,
hY = FFN(c}) + cf,
where hfl denotes the state of the ¢-th decoder layer.

As shown in Fig. 1, we firstly obtain the local
variables {Z,, Zms | either from the posterior dis-
tribution predicted by recognition networks (train-
ing process as the solid grey lines) or from prior
distribution predicted by prior networks (inference
process as the dashed red lines). Then, conditioned
on {Zt, Zms |, We generate the global variable z;
via posterior (training) or prior (inference) network.
Finally, we incorporate z.s into the state of the top
layer of the decoder with a projection layer:

oy = Tanh(Wp[hgf; Zos] +byp), 2

where W), and b, are training parameters, hiZg is
the hidden state at time-step ¢ of the N -th decoder
layer. Then, o; is fed into a linear transformation
and softmax layer to predict the probability distri-
bution of the next target token:

pt = Softmax(W,0; + b,),

where W, and b,, are training parameters.



3.4 Training and Inference

The model is trained to maximize the conditional
log-likelihood, due to the intractable marginal like-
lihood, which is converted to the following vari-
tional lower bound that needs to be maximized in

the training process:
T (0, 6 Xeiss Xmts Xre, Yers Yt X[98) =
— KL(q¢(Zmt| Xmt, Yt ) [P0 (Zmt| Xint))
— KL (44 (2ms| Xprs» Xi2e) [Po (2ms| X))
- KL(%(chs | Xetss Zmts Zms, Yeis) 1P (Zeis | Xets, Zmt s Zims))
Eg, [logpe (Ynt| Ximts Zmt)]
Eq, [logpo (X725 X s s Zms )]
[

de ms?

+ E% logpe (Yeis| Xeiss Zetss Zmis Zms)]
where the variational lower bound includes the re-
construction terms and KL divergence terms based
on three hierarchical variables. We use the repa-
rameterization trick (Kingma and Welling, 2013) to
estimate the gradients of the prior and recognition
networks (Zhao et al., 2017).

During inference, firstly, the prior networks of
MT and MS generate the local variables. Then, con-
ditioned on them, the global variable is produced
by prior network of CLS. Finally, only the global
variable is fed into the decoder, which corresponds
to red dashed arrows in Fig. 1.

4 Experiments

4.1 Datasets and Metrics

Datasets. We evaluate our approach on Zh2EnSum
and En2ZhSum datasets released by (Zhu et al.,
2019). Both the Chinese-to-English and English-
to-Chinese test sets are manually corrected. The
dataset details (e.g., splits of training, validation or
test sets) are described in Appendix A.

Metrics. Following (Zhu et al., 2020), 1) we eval-
uate all models with the standard ROUGE met-
ric (Lin, 2004), reporting the F1 scores for ROUGE-
1, ROUGE-2, and ROUGE-L. All ROUGE scores
are reported by the 95% confidence interval mea-
sured by the official script;* 2) we also evaluate the
quality of English summaries in Zh2EnSum with
MoverScore (Zhao et al., 2019).

4.2 Implementation Details

In this paper, we train all models using standard
transformer (Vaswani et al., 2017) in Base setting.
For other hyper-parameters, we mainly follow the
setting described in (Zhu et al., 2019, 2020) for

*The parameter for ROUGE script here is “-c 95 -r 1000

-n2-a”’

fair comparison. For more details, please refer to
Appendix B.

4.3 Comparison Models

Pipeline Models. TETran (Zhu et al., 2019). It
first translates the original article into the target
language by Google Translator> and then summa-
rizes the translated text via LexRank (Erkan and
Radev, 2004). TLTran (Zhu et al., 2019). It first
summarizes the original article via a transformer-
based monolingual summarization model and then
translates the summary into the target language by
Google Translator.

End-to-End Models. TNCLS (Zhu et al., 2019).
It directly uses the de-facto transformer (Vaswani
et al., 2017) to train an end-to-end CLS system.
ATS-A (Zhu et al., 2020).° It is an efficient model
to attend the pre-constructed probabilistic bilingual
lexicon to enhance the CLS.

Multi-Task Models. MS-CLS (Zhu et al., 2019).
It simultaneously performs summarization genera-
tion for both CLS and MS tasks and calculates the
total losses. MT-CLS (Zhu et al., 2019).7 It alterna-
tively trains CLS and MT tasks. MS-CLS-Rec (Cao
et al., 2020a). It jointly trains MS and CLS sys-
tems with a reconstruction loss to mutually map the
source and target representations. MT-MS-CLS. It
is our strong baseline, which is implemented by
alternatively training CLS, MT, and MS. Here, we
keep the dataset used for MT and MS consistent
with (Zhu et al., 2019) for fair comparison.

4.4 Main Results

Overall, we separate the models into three parts
in Tab. 1: the pipeline, end-to-end, and multi-task
settings. In each part, we show the results of exist-
ing studies and our re-implemented baselines and
our approach, i.e., the VHM, on Zh2EnSum and
En2ZhSum test sets.

Results on Zh2EnSum. Compared against
the pipeline and end-to-end methods, VHM
substantially outperforms all of them (e.g.,
the previous best model “ATS-A”) by a large
margin with 0.68/0.52/0.18/0.41 scores on
RG1/RG2/RGL/MVS, respectively. Under the
multi-task setting, compared to the existing best
model “MS-CLS-Rec”, our VHM also consistently

Shttps://translate.google.com/
®https://github.com/ZNLP/ATSum
"https://github.com/ZNLP/NCLS-Corpora
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Models Zh2EnSum En2ZhSum

RGl RG2 RGL MVS |[RGI RG2 RGL

Pipeline GETran(Zhu et al., 2019) 2434 9.14 20.13 0.64 [28.19 1140 25.77
GLTran(Zhu et al., 2019) 3545 16.86 31.28 16.90 |32.17 13.85 29.43
’ﬁ;;ljt;:é;l"TNth’sf (Zhuetal.,2019)  [38.85 21.93 35.05 19.43 [36.82 18.72 3320
ATS-A(Zhu et al., 2020) 40.68 24.12 3697 22.15 |40.47 2221 36.89
T MS-CLS(Zhu et al., 2019) | 4034 22.65 3639 21.09 [3825 2020 34.76
MT-CLS(Zhu et al., 2019) 40.25 22.58 36.21 21.06 (4023 2232 36.59
MS-CLS-Rec(Cao et al., 2020a)[40.97 23.20 36.96 NA [38.12 16.76 33.86
Multi-Task | MS-CLS* 4044 2219 36.32 21.01 (3826 20.07 34.49
MT-CLS* 40.05 21.72 3574 20.96 |40.14 2236 36.45
'MT-MS-CLS(Ours) | 40.65 24.02 36.69 22.17 [4034 2235 36.44
VHM(Ours) 41.3617 24.64" 37.151 22.557|40.981 23.071T 37.121

Table 1: ROUGE F1 scores (%) and MoverScore scores (%) on Zh2EnSum test set, and ROUGE F1 scores (%)
on En2ZhSum test set. RG and MVS refer to ROUGE and MoverScore, respectively. The “*” denotes results
by running their released code. The “NA” indicates no such result in the original paper. “T” and “ft” indicate
that statistically significant better than the best result of all comparison models with t-test p < 0.05 and p < 0.01,
respectively.
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Figure 2: ROUGE F1 scores (%) and MoverScore scores (%) on Zh2EnSum test set in few-shot setting. X% means
that the x% CLS training dataset is used, e.g., 0.1% represents that 0.1% training dataset (about 1.7k instances)
is used for training. The performance “Gap” (red line) between “VHM” and “ATS-A” grows steadily with the

decreasing of used CLS training data.

boosts the performance in three metrics (i.e., 0.397,
1.441, and 0.191 rouge scores on RG1/RG2/RGL,
respectively), showing its effectiveness.

Our VHM also significantly surpasses our strong
baseline “MT-MS-CLS” by 0.71/0.62/0.46/0.38%
scores on RGI1/RG2/RGL/MVS, respectively,
demonstrating the superiority of our model again.

Results on En2ZhSum. Compared against the
pipeline, end-to-end and multi-task methods, our
VHM presents remarkable rouge improvements
over the existing best model “ATS-A” by a large
margin, about 0.51/0.86/0.231 rouge gains on
RG1/RG2/RGL, respectively. These results sug-
gest that VHM consistently performs well in differ-
ent language directions.

Our approach still notably surpasses our strong
baseline “MT-MS-CLS” in terms of all metrics,

which shows the generalizability and superiority of
our model again.

4.5 Few-Shot Results

Due to the difficulty of acquiring the cross-lingual
summarization dataset (Zhu et al., 2019), we con-
duct such experiments to investigate the model per-
formance when the CLS training dataset is limited,
i.e., few-shot experiments. Specifically, we ran-
domly choose 0.1%, 1%, 10%, and 50% CLS train-
ing datasets to conduct experiments. The results
are shown in Fig. 2 and Fig. 3.

Results on Zh2EnSum. Fig. 2 shows that VHM
significantly surpasses all comparison models un-
der each setting. Particularly, under the 0.1% set-
ting, our model still achieves best performances
than all baselines, suggesting that our variational
hierarchical model works well in the few-shot set-
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Figure 3: Rouge F1 scores (%) on the test set when using different CLS training data. The performance “Gap” (red
line) between “VHM” and “ATS-A” grows steadily with the decreasing of used CLS training data.

ting as well. Besides, we find the performance gap
between comparison models and VHM is growing
when the less proportion of CLS training data is
used, which is carefully analysed in § 5.2.

Results on En2ZhSum. Fig. 3 shows that VHM
significantly outperforms all comparison models
under each setting, showing the generalizability
and superiority of our model again in the few-shot
setting.

5 Analysis
5.1 Ablation Study

We conduct ablation studies to investigate how well
the local and global variables of our VHM works.
When removing variables listed in Tab. 2, we have
the following findings.

(1) Rows 1~3 vs. row 0 shows that the model
performs worse, especially when removing the two
local ones (row 3), due to missing the explicit trans-
lation or summarization or both information pro-
vided by the local variables, which is important to
CLS. Besides, row 3 indicates that directly attend-
ing to z.s leads to poor performances, showing the
necessity of the hierarchical structure, i.e., using
the global variable to exploit the local ones.

(2) Rows 4~5 vs. row 0 shows that directly
attending the local translation and summarization
cannot achieve good results due to lacking of the
global combination of them, showing that it is very
necessary for designing the variational hierarchical
model, i.e., using a global variable to well exploit
and combine the local ones.

5.2 Why the VHM Works Well in the
Few-Shot Setting?

We investigate why our VHM works well in the
few-shot setting. From Fig. 2 and Fig. 3, when the
used CLS training data become fewer, we can ob-
serve the following trends: 1) it is obvious that the

4 Models Zh2EnSum En2ZhSum
RG1/RG2/RGL/MVS | RG1/RG2/RGL
0 [VHM 56.29/29.78/51.54/26.13(69.57/38.75/64.25
Tzm 55.67/29.19/50.21/25.44|68.39/37.42/63.51
2 |~ Zms 55.83/29.38/50.59/25.67/68.59/37.81/63.78
3 |\~ 2t &2, 5|55.48/28.94/49.18/25.29(67.92/36.98/63.15
4=z, 54.65/28.41/48.87/24.62/66.55/36.65/62.77
5 |- hierarchy 55.36/28.54/48.98/24.76|66.65/36.76/62.86

Table 2: Ablation results on the validation sets (in the
full setting). Row 1 denotes that we remove the local
variable z,,;, and sample z.;; from the source input and
another local variable z,,, similarly for row 2. Row 3
denotes that we remove both local variables z,,; and
Zms and sample z.;s only from the source input. Row
4 means that we remove the global variable z.;; and
directly attend the local variables z,,,; and z,,, in Eq. 2.
Row 5 represents that we keep three latent variables
but remove the hierarchical relation between z.;s and
Zmt&Zm s

performance becomes worse; 2) the performance
gaps between comparison models and VHM grows.
It is because relatively larger proportion of transla-
tion and summarization data are used. Therefore,
the influence from MT and MS becomes greater,
effectively strengthening the CLS model. Conse-
quently, our VHM achieves a comparably stable
performance.

5.3 Human Evaluation

Following (Zhu et al., 2019, 2020), we conduct hu-
man evaluation on 25 random samples from each
of the Zh2EnSum and En2ZhSum test set. We
compare the summaries generated by our methods
(MT-MS-CLS and VHM) with the summaries gen-
erated by ATS-A, MS-CLS, and MT-CLS in the full
setting and few-shot setting (0.1%), respectively.
We ask three graduate students to compare the gen-
erated summaries with human-corrected references,
and assess each summary from three independent
perspectives:



Zh2EnSum En2ZhSum Zh2EnSum En2ZhSum
Models Models
IF CC FL IF CcC FL IF CcC FL IF CC FL

ATS-A 344 416 398 3.12 331 328 ATS-A 226 296 282 204 258 2.68
MS-CLS 312 408 376 3.04 322 3.12 MS-CLS 224 284 278 202 252 264
MT-CLS 336 424 414 3.18 346 3.36 MT-CLS 238 302 288 218 274 276
MT-MS-CLS 342 446 422 324 348 342 MT-MS-CLS 2.54 3.08 292 224 288 282
VHM 356 454 438 336 354 348 VHM 268 316 3.08 256 3.06 2.88

Table 3: Human evaluation results in the full setting.
IF, CC and FL denote informative, concise, and fluent
respectively.

1. How informative (i.e., IF) the summary is?
2. How concise (i.e., CC) the summary is?

3. How fluent, grammatical (i.e., FL) the sum-
mary is?

Each property is assessed with a score from 1
(worst) to 5 (best). The average results are pre-
sented in Tab. 3 and Tab. 4.

Tab. 3 shows the results in the full setting. We
find that our VHM outperforms all comparison
models from three aspects in both language direc-
tions, which further demonstrates the effectiveness
and superiority of our model.

Tab. 4 shows the results in the few-shot setting,
where only 0.1% CLS training data are used in all
models. We find that our VHM still performs best
than all other models from three perspectives in
both datasets, suggesting its generalizability and
effectiveness again under different settings.

6 Related Work

Cross-Lingual Summarization. Conventional
cross-lingual summarization methods mainly fo-
cus on incorporating bilingual information into
the pipeline methods (Leuski et al., 2003; Ouyang
et al., 2019; Orasan and Chiorean, 2008; Wan
et al., 2010; Wan, 2011; Yao et al., 2015; Zhang
et al., 2016Db), i.e., translation and then summariza-
tion or summarization and then translation. Due
to the difficulty of acquiring cross-lingual sum-
marization dataset, some previous researches fo-
cus on constructing datasets (Ladhak et al., 2020;
Scialom et al., 2020; Yela-Bello et al., 2021; Zhu
et al., 2019), mixed-lingual pre-training (Xu et al.,
2020), or zero-shot approaches (Ayana et al., 2018;
Duan et al., 2019; Dou et al., 2020), i.e., using
machine translation (MT) or monolingual summa-
rization (MS) or both to train the CLS system.
Among them, Zhu et al. (2019) propose to use
roundtrip translation strategy to obtain large-scale
CLS datasets and then present two multi-task learn-

Table 4: Human evaluation results in the few-shot set-
ting (0.1%).

ing methods for CLS. Based on this dataset, Zhu
et al. (2020) leverage an end-to-end model to attend
the pre-constructed probabilistic bilingual lexicon
to improve CLS. To further enhance CLS, some
studies resort to shared decoder (Bai et al., 2021),
more pseudo training data (Takase and Okazaki,
2020), or more related task training (Cao et al.,
2020b,a). Different from them, we propose a varia-
tional hierarchical model that introduces a global
variable to simultaneously exploit and combine the
local translation variable in MT pairs and local sum-
marization variable in MS pais for CLS, achieving
better results.

Conditional Variational Auto-Encoder.
CVAE has verified its superiority in many
fields (Sohn et al.,, 2015). For instance, in
dialogue, Shen et al. (2019), Park et al. (2018) and
Serban et al. (2017) extend CVAE to capture the
semantic connection between the utterance and
the corresponding context with hierarchical latent
variables. Although the CVAE has been widely
used in NLP tasks, its adaption and utilization
to cross-lingual summarization for modeling
hierarchical relationships are non-trivial, and to the
best of our knowledge, has never been investigated
before in CLS.

7 Conclusion

In this paper, we propose to enhance the neural
CLS system by simultaneously exploiting MT and
MS. Given the hierarchical relationships between
MT&MS and CLS, we propose a variational hier-
archical model to explicitly exploit and combine
them in CLS process. Experiments on Zh2EnSum
and En2ZhSum show that our model significantly
improves the quality of cross-lingual summaries in
terms of automatic metrics and human evaluations.
Particularly, our model in the few-shot setting still
works better, suggesting its superiority and gener-
alizability.
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Appendix
A Datasets

We evaluate the proposed approach on Zh2EnSum
and En2ZhSum datasets released by (Zhu et al.,
2019).% The Zh2EnSum and En2ZhSum are orig-
inally from (Hu et al., 2015) and (Hermann et al.,
2015; Zhu et al., 2018), respectively. Both the
Chinese-to-English and English-to-Chinese test
sets are manually corrected.

Zh2EnSum. It is a Chinese-to-English summa-
rization dataset, which has 1,699,713 Chinese short
texts (104 Chinese characters on average) paired
with Chinese (18 Chinese characters on average)
and English short summaries (14 tokens on aver-
age). The dataset is split into 1,693,713 training
pairs, 3,000 validation pairs, and 3,000 test pairs.

En2ZhSum. It is an English-to-Chinese summa-
rization dataset, which has 370,687 English docu-
ments (755 tokens on average) paired with multi-
sentence English (55 tokens on average) and Chi-
nese summaries (96 Chinese characters on aver-
age). The dataset is split into 364,687 training
pairs, 3,000 validation pairs, and 3,000 test pairs.

B Implementation Details

We mainly follow the setting described in (Zhu
et al., 2019, 2020) for fair comparison. Specifi-
cally, the segmentation granularity is “subword to
subword” for Zh2EnSum, and “word to word” for
En2ZhSum. All the parameters are initialized via
Xavier initialization method (Glorot and Bengio,
2010). We train our models using standard trans-
former (Vaswani et al., 2017) in Base setting, which
contains a 6-layer encoder (i.e., N.) and a 6-layer
decoder (i.e., N;) with 512-dimensional hidden
representations. And all latent variables have a di-
mension of 128. Each mini-batch contains a set
of document-summary pairs with roughly 4,096
source and 4,096 target tokens. We apply Adam
optimizer (Kingma and Ba, 2015) with 8; = 0.9,
B2 =0.998. Following (Zhu et al., 2019), we train
each task for about 800,000 iterations in all multi-
task models (reaching convergence). To alleviate
the degeneration problem of the variational frame-
work, we apply KL annealing. The KL multiplier A
gradually increases from 0 to 1 over 400, 000 steps.
For evaluation, we use beam search with a beam
size 4 and length penalty 0.6. All our methods are

$https://github.com/ZNLP/NCLS-Corpora
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trained and tested on a single NVIDIA Tesla V100
GPU.
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