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Abstract

The goal of the cross-lingual summarization001
(CLS) is to convert a document in one lan-002
guage (e.g., English) to a summary in an-003
other one (e.g., Chinese), which is essentially004
the combination of machine translation (MT)005
and monolingual summarization (MS). Exist-006
ing studies on CLS mainly focus on utilizing007
pipeline methods or jointly training an end-to-008
end model through an auxiliary MT or MS ob-009
jective. However, it is very challenging for010
the model to directly conduct CLS as it re-011
quires both the abilities to translate and sum-012
marize. Besides, the processes of MT and013
MS have a hierarchical relationship with CLS.014
Therefore, we propose a hierarchical model for015
the CLS task, based on the conditional vari-016
ational auto-encoder. The hierarchical model017
contains two kinds of latent variables at the lo-018
cal and global levels, respectively. At the lo-019
cal level, there are two latent variables, one020
for translation and the other for summariza-021
tion. As for the global level, there is another022
latent variable for cross-lingual summariza-023
tion conditioned on the two local-level vari-024
ables. Experiments on two language direc-025
tions (English⇔Chinese) verify the effective-026
ness and superiority of the proposed approach,027
yielding state-of-the-art performances. In ad-028
dition, we show that our model is able to gen-029
erate better cross-lingual summaries than com-030
parison models in the few-shot setting.1031

1 Introduction032

The cross-lingual summarization (CLS) aims to033

summarize a document in source language (e.g.,034

English) into a different language (e.g., Chinese),035

which can be seen as a combination of machine036

translation (MT) and monolingual summarization037

(MS) to some extent (Orăsan and Chiorean, 2008;038

Zhu et al., 2019). The CLS can help people ef-039

fectively master the core points of an article in a040

1The code is attached to the supplementary material and
will be publicly available once accepted.

foreign language. Under the globalization back- 041

ground, it becomes more important and has a wider 042

range of applications. 043

Many researches have been proposed to deal 044

with this task. To our knowledge, they mainly fall 045

into three categories, i.e., pipeline, end-to-end, and 046

multi-task learning methods. (1) The first cate- 047

gory is pipeline-based, adopting either translation- 048

summarization (Leuski et al., 2003; Ouyang et al., 049

2019) or summarization-translation (Wan et al., 050

2010; Orăsan and Chiorean, 2008) paradigm. Al- 051

though being intuitive and straightforward, they 052

generally suffer from error propagation. (2) The 053

second category aims to train an end-to-end model 054

for CLS (Zhu et al., 2019, 2020). For instance, 055

Zhu et al. (2020) focus on using a pre-constructed 056

probabilistic bilingual lexicon to improve the CLS 057

model. (3) The last mainly resorts to multi-task 058

learning (Takase and Okazaki, 2020; Bai et al., 059

2021; Zhu et al., 2019; Cao et al., 2020a,b). Zhu 060

et al. (2019) separately introduce MT and MS to 061

improve CLS. Cao et al. (2020a,b) design sev- 062

eral additional training objectives (e.g., MS, back- 063

translation, and reconstruction) to enhance the CLS 064

model. 065

Although the above methods have used the re- 066

lated task (e.g., MT or MS) to help the CLS, the 067

MT and MS have been not applied as auxiliary 068

tasks at the same time to enhance the CLS model. 069

As pointed out by Cao et al. (2020a), it is chal- 070

lenging for the model to directly conduct CLS as 071

it requires both the abilities to translate and sum- 072

marize. Moreover, the hierarchical relationships 073

between MT&MS and CLS are not well modeled, 074

which can explicitly help translate and summarize 075

simultaneously for the CLS task. 076

Apparently, how to effectively model the hier- 077

archical relationships to exploit MT and MS is 078

one of the core issues for enhancing CLS, espe- 079

cially when the CLS data is limited.2 On the other 080

2Generally, it is difficult to acquire the CLS dataset (Zhu
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hand, the Conditional Variational Auto-Encoder081

(CVAE) (Sohn et al., 2015) has shown its superi-082

ority in learning hierarchical structure with hier-083

archical latent variables, which is often utilized084

to capture the semantic connection between the085

utterance and the corresponding context of conver-086

sations (Shen et al., 2019; Park et al., 2018; Serban087

et al., 2017). Despite its success, adapting it to CLS088

is non-trivial, especially involving hierarchical la-089

tent variables.090

Therefore, we propose a Variational091

Hierarchical Model to exploit translation092

and summarization simultaneously, named VHM,093

for CLS task in an end-to-end framework. VHM094

employs hierarchical latent variables based on095

CVAE to learn the hierarchical relationship096

between MT&MS and CLS. Specifically, the097

VHM contains two kinds of latent variables at098

the local and global levels, respectively. Firstly,099

we introduce two local variables for translation100

and summarization, respectively. The two local101

variables are constrained to reconstruct the102

translation and source-language summary. Then,103

we use the global variable to explicitly exploit104

the two local variables for better CLS, which is105

constrained to reconstruct the target-language106

summary. This makes sure the global variable cap-107

tures its relationship with the two local variables108

without any loss, preventing error propagation. For109

inference, we use the local and global variables to110

assist the cross-lingual summarization process.111

We validate our proposed training framework112

on the datasets of different language pairs (Zhu113

et al., 2019): Zh2EnSum (Chinese⇒English) and114

En2ZhSum (English⇒Chinese). Experiments115

show that our model achieves consistent improve-116

ments on two language directions in terms of both117

automatic metrics and human evaluation, demon-118

strating its effectiveness and generalizability. Few-119

shot evaluation further suggests that the local and120

global variables enable our model to generate a121

satisfactory cross-lingual summaries compared to122

existing related methods.123

Our main contributions are as follows:124

• To the best of our knowledge, we are the first125

to simultaneously and explicitly incorporate126

the translation of MT and summarization of127

MS into neural CLS models.128

• We are the first to build a variational hierar-129

chical model via conditional variational auto-130

et al., 2020; Ayana et al., 2018; Duan et al., 2019).

encoders that introduce a global variable to 131

combine the local ones for translation and 132

summarization at the same time for CLS. 133

• Our model gains consistent and significant 134

performance and remarkably outperforms the 135

previous state-of-the-art methods. 136

• Under the few-shot setting, our model still 137

achieves better performance than existing ap- 138

proaches. Particularly, the fewer the data are, 139

the greater the improvement we gain. 140

2 Background 141

Machine Translation (MT). Given an input se- 142

quence in the source languageXmt={xi}|Xmt|i=1 , the 143

goal of the neural MT model is to produce its trans- 144

lation in the target language Ymt={yi}|Ymt|i=1 . The 145

conditional distribution of the model is: 146

pθ(Ymt|Xmt) =

|Ymt|∏
t=1

pθ(yt|Xmt, y1:t−1), 147

where θ are model parameters and y1:t−1 is the 148

partial translation. 149

Monolingual Summarization (MS). Given 150

an input article in the source language 151

Xsrc
ms={xsrci }

|Xsrc
ms |

i=1 and the corresponding summa- 152

rization in the same language Xtgt
ms={xtgti }

|Xtgt
ms|

i=1 , 153

the monolingual summarization is formalized as: 154

pθ(X
tgt
ms|Xsrc

ms ) =

|Xtgt
ms|∏
t=1

pθ(x
tgt
t |Xsrc

ms , x
tgt
1:t−1). 155

Cross-Lingual Summarization (CLS). In CLS, 156

we aim to learn a model that can generate a 157

summary in the target language Ycls={yi}
|Ycls|
i=1 158

for a given article in the source language 159

Xcls={xi}
|Xcls|
i=1 . Formally, it is as follows: 160

pθ(Ycls|Xcls) =

|Ycls|∏
t=1

pθ(yt|Xcls, y1:t−1). 161

Conditional Variational Auto-Encoder (CVAE). 162

The CVAE (Sohn et al., 2015) consists of one prior 163

network and one recognition (posterior) network, 164

where the latter takes charge of guiding the learn- 165

ing of prior network via Kullback–Leibler (KL) 166

divergence (Kingma and Welling, 2013). For ex- 167

ample, the variational neural MT model (Zhang 168

et al., 2016a), which introduces a random latent 169

variable z into the neural MT conditional distribu- 170

tion: 171

pθ(Ymt|Xmt) =

∫
z
pθ(Ymt|Xmt, z)·pθ(z|Xmt)dz.

(1) 172
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Given a source sentence X , a latent variable z is173

firstly sampled by the prior network from the en-174

coder, and then the target sentence is generated175

by the decoder: Ymt ∼ pθ(Ymt|Xmt, z), where176

z ∼ pθ(z|Xmt).177

As it is hard to marginalize Eq. 1, the CVAE178

training objective is a variational lower bound of179

the conditional log-likelihood:180

L(θ, φ;Xmt, Ymt) = −KL(qφ(z|Xmt, Ymt)‖pθ(z|Xmt))

+ Eqφ(z|Xmt,Ymt)[log pθ(Ymt|z, Xmt)]

≤ log p(Ymt|Xmt),

181

where φ are parameters of the CVAE.182

3 Methodology183

Fig. 1 demonstrates an overview of our model, con-184

sisting of four components: encoder, variational185

hierarchical modules, decoder, training and infer-186

ence. Specifically, we aim to explicitly exploit the187

MT and MS for CLS simultaneously. Therefore,188

we firstly use the encoder (§ 3.1) to prepare the rep-189

resentation for the variational hierarchical module190

(§ 3.2), which aims to learn the two local variables191

for the global variable in CLS. Then, we introduce192

the global variable into the decoder (§ 3.3). Fi-193

nally, we elaborate the process of our training and194

inference (§ 3.4).195

3.1 Encoder196

Our model is based on transformer (Vaswani et al.,197

2017) encoder-decoder framework. As shown198

in Fig. 1, the encoder takes six types of inputs,199

{Xmt, Xsrc
ms , Xcls, Ymt, X

tgt
ms, Ycls}, among which200

Ymt, X
tgt
ms, and Ycls are only for training recog-201

nition networks. Taking Xmt for example, the202

encoder maps the input Xmt into a sequence of203

continuous representations whose size varies with204

respect to the source sequence length. Specifically,205

the encoder consists of Ne stacked layers and each206

layer includes two sub-layers:3 a multi-head self-207

attention (SelfAtt) sub-layer and a position-wise208

feed-forward network (FFN) sub-layer:209

s`e = SelfAtt(h`−1e ) + h`−1e ,

h`e = FFN(s`e) + s`e,
210

where h`e denotes the state of the `-th encoder layer211

and h0
e denotes the initialized embedding.212

Through the encoder, we prepare the representa-213

tions of {Xmt, Xsrc
ms , Xcls} for training prior net-214

3The layer normalization is omitted for simplicity and you
may refer to (Vaswani et al., 2017) for more details.
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Figure 1: Overview of the proposed VHM framework.
The local variables zmt, zms are tailored for transla-
tion and summarization, respectively. Then the global
one zcls is for cross-lingual summarization, where the
zcls not only conditions on the input but also zmt and
zms. The solid grey lines indicate training process re-
sponsible for generating {zmt, zms, zcls} from the cor-
responding posterior distribution predicted by recogni-
tion networks, which guide the learning of prior net-
works. The dashed red lines indicate inference process
for generating {zmt, zms, zcls} from the corresponding
prior distributions predicted by prior networks.

works, encoder and decoder. Taking Xmt for ex- 215

ample, we follow (Zhang et al., 2016a) and apply 216

mean-pooling over the output hNe,Xmte of theNe-th 217

encoder layer: 218

hXmt =
1

|Xmt|

|Xmt|∑
i=1

(hNe,Xmte,i ). 219

Similarly, we obtain hXsrc
ms

and hXcls . 220

For training recognition networks, we obtain the 221

representations of {Ymt, X
tgt
ms, Ycls}, taking Ymt 222

for example, and calculate it as follows: 223

hYmt =
1

|Ymt|

|Ymt|∑
i=1

(hNe,Ymte,i ). 224

Similarly, we obtain hXtgt
ms

and hYcls . 225

226

3.2 Variational Hierarchical Modules 227

Firstly, we design two local latent variational mod- 228

ules to learn the translation distribution in MT pairs 229

and summarization distribution in MS pairs, respec- 230

tively. Then, conditioned on them, we introduce 231

a global latent variational module to explicitly ex- 232

ploit them. 233
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3.2.1 Local: Translation and Summarization234

Translation. To capture the translation of the235

paired sentence, we introduce a local variable zmt236

that is responsible for generating the target infor-237

mation. Inspired by (Wang and Wan, 2019), we238

use isotropic Gaussian distribution as the prior dis-239

tribution of zmt: pθ(zmt|Xmt) ∼ N (µmt,σ
2
mtI),240

where I denotes the identity matrix and we have241

µmt = MLPmtθ (hXmt),

σmt = Softplus(MLPmtθ (hXmt)),
242

where MLP(·) and Softplus(·) are multi-layer per-243

ceptron and approximation of ReLU function, re-244

spectively.245

At training, the posterior distribution conditions246

on both source input and the target reference, which247

provides translation information. Therefore, the248

prior network can learn a tailored translation dis-249

tribution by approaching the recognition network250

via KL divergence (Kingma and Welling, 2013):251

qφ(zmt|Xmt, Ymt) ∼ N (µ′mt,σ
′2
mtI), where µ′mt252

and σ′mt are calculated as:253

µ′mt = MLPmtφ (hXmt ;hYmt),

σ′mt = Softplus(MLPmtφ (hXmt ;hYmt)),
254

where (·;·) indicates concatenation operation.255

Summarization. To capture the summarization256

in MS pairs, we introduce another local vari-257

able zms, which takes charge of generating the258

source-language summary. Similar to zmt, we259

define its prior distribution as: pθ(zms|Xsrc
ms ) ∼260

N (µms,σ
2
msI), where µms and σms are calcu-261

lated as:262

µms = MLPmsθ (hXsrc
ms

),

σms = Softplus(MLPmsθ (hXsrc
ms

)).
263

At training, the posterior distribution conditions264

on both the source input and the source-language265

summary that contains the summarization clue,266

and thus is responsible for guiding the learning267

of the prior distribution. Specifically, we define the268

posterior distribution as: qφ(zms|Xsrc
ms , X

tgt
ms) ∼269

N (µ′ms,σ
′2
msI), where µ′ms and σ′ms are calcu-270

lated as:271

µ′ms = MLPmsφ (hXsrc
ms

;hXtgt
ms

),

σ′ms = Softplus(MLPmsφ (hXsrc
ms

;hXtgt
ms

)).
272

3.2.2 Global: CLS273

After obtaining zmt and zms, we introduce the274

global variable zcls that aims to generate a target-275

language summary, where the zcls can simultane-276

ously exploit the local variables for CLS. Specifi-277

cally, we firstly encode the source input Xcls and 278

condition on both two local variables zmt and zms, 279

and then sample zcls. We define its prior distribu- 280

tion as: pθ(zcls|Xcls, zmt, zms) ∼ N (µcls,σ
2
clsI), 281

where µcls and σcls are calculated as: 282

µcls = MLPclsθ (hXcls ; zmt; zms),

σcls = Softplus(MLPclsθ (hXcls ; zmt; zms)).
283

At training, the posterior distribution conditions 284

on the local variables, the CLS input, and the cross- 285

lingual summary that contains combination infor- 286

mation of translation and summarization. There- 287

fore, the posterior distribution can teach the prior 288

distribution. Specifically, we define the posterior 289

distribution as: qφ(zcls|Xcls, zmt, zms, Ycls) ∼ 290

N (µ′cls,σ
′2
clsI), where µ′cls and σ′cls are calculated 291

as: 292

µ′cls = MLPclsφ (hXcls ; zmt; zms;hYcls),

σ′cls = Softplus(MLPclsφ (hXcls ; zmt; zms;hYcls)).
293

3.3 Decoder 294

The decoder adopts a similar structure to the en- 295

coder, and each of Nd decoder layers includes an 296

additional cross-attention sub-layer (CrossAtt): 297

s`d = SelfAtt(h`−1d ) + h`−1d ,

c`d = CrossAtt(s`d,h
Ne
e ) + s`d,

h`d = FFN(c`d) + c`d,

298

where h`d denotes the state of the `-th decoder layer. 299

As shown in Fig. 1, we firstly obtain the local 300

variables {zmt, zms} either from the posterior dis- 301

tribution predicted by recognition networks (train- 302

ing process as the solid grey lines) or from prior 303

distribution predicted by prior networks (inference 304

process as the dashed red lines). Then, conditioned 305

on {zmt, zms}, we generate the global variable zcls 306

via posterior (training) or prior (inference) network. 307

Finally, we incorporate zcls into the state of the top 308

layer of the decoder with a projection layer: 309

ot = Tanh(Wp[h
Nd
d,t ; zcls] + bp), (2) 310

where Wp and bp are training parameters, hNdd,t is 311

the hidden state at time-step t of the Nd-th decoder 312

layer. Then, ot is fed into a linear transformation 313

and softmax layer to predict the probability distri- 314

bution of the next target token: 315

pt = Softmax(Woot + bo), 316

where Wo and bo are training parameters. 317

4



3.4 Training and Inference318

The model is trained to maximize the conditional319

log-likelihood, due to the intractable marginal like-320

lihood, which is converted to the following vari-321

tional lower bound that needs to be maximized in322

the training process:323

J (θ, φ;Xcls, Xmt, X
src
ms , Ycls, Ymt, X

tgt
ms) =

−KL(qφ(zmt|Xmt, Ymt)‖pθ(zmt|Xmt))

−KL(qφ(zms|Xsrc
ms , X

tgt
ms)‖pθ(zms|Xsrc

ms ))

−KL(qφ(zcls|Xcls, zmt, zms, Ycls)‖pθ(zcls|Xcls, zmt, zms))

+ Eqφ [logpθ(Ymt|Xmt, zmt)]

+ Eqφ [logpθ(X
tgt
ms|Xsrc

ms , zms)]

+ Eqφ [logpθ(Ycls|Xcls, zcls, zmt, zms)],

324

where the variational lower bound includes the re-325

construction terms and KL divergence terms based326

on three hierarchical variables. We use the repa-327

rameterization trick (Kingma and Welling, 2013) to328

estimate the gradients of the prior and recognition329

networks (Zhao et al., 2017).330

During inference, firstly, the prior networks of331

MT and MS generate the local variables. Then, con-332

ditioned on them, the global variable is produced333

by prior network of CLS. Finally, only the global334

variable is fed into the decoder, which corresponds335

to red dashed arrows in Fig. 1.336

4 Experiments337

4.1 Datasets and Metrics338

Datasets. We evaluate our approach on Zh2EnSum339

and En2ZhSum datasets released by (Zhu et al.,340

2019). Both the Chinese-to-English and English-341

to-Chinese test sets are manually corrected. The342

dataset details (e.g., splits of training, validation or343

test sets) are described in Appendix A.344

Metrics. Following (Zhu et al., 2020), 1) we eval-345

uate all models with the standard ROUGE met-346

ric (Lin, 2004), reporting the F1 scores for ROUGE-347

1, ROUGE-2, and ROUGE-L. All ROUGE scores348

are reported by the 95% confidence interval mea-349

sured by the official script;4 2) we also evaluate the350

quality of English summaries in Zh2EnSum with351

MoverScore (Zhao et al., 2019).352

4.2 Implementation Details353

In this paper, we train all models using standard354

transformer (Vaswani et al., 2017) in Base setting.355

For other hyper-parameters, we mainly follow the356

setting described in (Zhu et al., 2019, 2020) for357

4The parameter for ROUGE script here is “-c 95 -r 1000
-n 2 -a”

fair comparison. For more details, please refer to 358

Appendix B. 359

4.3 Comparison Models 360

Pipeline Models. TETran (Zhu et al., 2019). It 361

first translates the original article into the target 362

language by Google Translator5 and then summa- 363

rizes the translated text via LexRank (Erkan and 364

Radev, 2004). TLTran (Zhu et al., 2019). It first 365

summarizes the original article via a transformer- 366

based monolingual summarization model and then 367

translates the summary into the target language by 368

Google Translator. 369

End-to-End Models. TNCLS (Zhu et al., 2019). 370

It directly uses the de-facto transformer (Vaswani 371

et al., 2017) to train an end-to-end CLS system. 372

ATS-A (Zhu et al., 2020).6 It is an efficient model 373

to attend the pre-constructed probabilistic bilingual 374

lexicon to enhance the CLS. 375

Multi-Task Models. MS-CLS (Zhu et al., 2019). 376

It simultaneously performs summarization genera- 377

tion for both CLS and MS tasks and calculates the 378

total losses. MT-CLS (Zhu et al., 2019).7 It alterna- 379

tively trains CLS and MT tasks. MS-CLS-Rec (Cao 380

et al., 2020a). It jointly trains MS and CLS sys- 381

tems with a reconstruction loss to mutually map the 382

source and target representations. MT-MS-CLS. It 383

is our strong baseline, which is implemented by 384

alternatively training CLS, MT, and MS. Here, we 385

keep the dataset used for MT and MS consistent 386

with (Zhu et al., 2019) for fair comparison. 387

4.4 Main Results 388

Overall, we separate the models into three parts 389

in Tab. 1: the pipeline, end-to-end, and multi-task 390

settings. In each part, we show the results of exist- 391

ing studies and our re-implemented baselines and 392

our approach, i.e., the VHM, on Zh2EnSum and 393

En2ZhSum test sets. 394

Results on Zh2EnSum. Compared against 395

the pipeline and end-to-end methods, VHM 396

substantially outperforms all of them (e.g., 397

the previous best model “ATS-A”) by a large 398

margin with 0.68/0.52/0.18/0.4↑ scores on 399

RG1/RG2/RGL/MVS, respectively. Under the 400

multi-task setting, compared to the existing best 401

model “MS-CLS-Rec”, our VHM also consistently 402

5https://translate.google.com/
6https://github.com/ZNLP/ATSum
7https://github.com/ZNLP/NCLS-Corpora

5
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Models Zh2EnSum En2ZhSum
RG1 RG2 RGL MVS RG1 RG2 RGL

Pipeline GETran(Zhu et al., 2019) 24.34 9.14 20.13 0.64 28.19 11.40 25.77
GLTran(Zhu et al., 2019) 35.45 16.86 31.28 16.90 32.17 13.85 29.43

End-to-End TNCLS(Zhu et al., 2019) 38.85 21.93 35.05 19.43 36.82 18.72 33.20
ATS-A(Zhu et al., 2020) 40.68 24.12 36.97 22.15 40.47 22.21 36.89

Multi-Task

MS-CLS(Zhu et al., 2019) 40.34 22.65 36.39 21.09 38.25 20.20 34.76
MT-CLS(Zhu et al., 2019) 40.25 22.58 36.21 21.06 40.23 22.32 36.59
MS-CLS-Rec(Cao et al., 2020a) 40.97 23.20 36.96 NA 38.12 16.76 33.86
MS-CLS* 40.44 22.19 36.32 21.01 38.26 20.07 34.49
MT-CLS* 40.05 21.72 35.74 20.96 40.14 22.36 36.45
MT-MS-CLS(Ours) 40.65 24.02 36.69 22.17 40.34 22.35 36.44
VHM(Ours) 41.36†† 24.64† 37.15† 22.55† 40.98†† 23.07†† 37.12†

Table 1: ROUGE F1 scores (%) and MoverScore scores (%) on Zh2EnSum test set, and ROUGE F1 scores (%)
on En2ZhSum test set. RG and MVS refer to ROUGE and MoverScore, respectively. The “*” denotes results
by running their released code. The “NA” indicates no such result in the original paper. “†” and “††” indicate
that statistically significant better than the best result of all comparison models with t-test p < 0.05 and p < 0.01,
respectively.
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Figure 2: ROUGE F1 scores (%) and MoverScore scores (%) on Zh2EnSum test set in few-shot setting. x% means
that the x% CLS training dataset is used, e.g., 0.1% represents that 0.1% training dataset (about 1.7k instances)
is used for training. The performance “Gap” (red line) between “VHM” and “ATS-A” grows steadily with the
decreasing of used CLS training data.

boosts the performance in three metrics (i.e., 0.39↑,403

1.44↑, and 0.19↑ rouge scores on RG1/RG2/RGL,404

respectively), showing its effectiveness.405

Our VHM also significantly surpasses our strong406

baseline “MT-MS-CLS” by 0.71/0.62/0.46/0.38↑407

scores on RG1/RG2/RGL/MVS, respectively,408

demonstrating the superiority of our model again.409

Results on En2ZhSum. Compared against the410

pipeline, end-to-end and multi-task methods, our411

VHM presents remarkable rouge improvements412

over the existing best model “ATS-A” by a large413

margin, about 0.51/0.86/0.23↑ rouge gains on414

RG1/RG2/RGL, respectively. These results sug-415

gest that VHM consistently performs well in differ-416

ent language directions.417

Our approach still notably surpasses our strong418

baseline “MT-MS-CLS” in terms of all metrics,419

which shows the generalizability and superiority of 420

our model again. 421

4.5 Few-Shot Results 422

Due to the difficulty of acquiring the cross-lingual 423

summarization dataset (Zhu et al., 2019), we con- 424

duct such experiments to investigate the model per- 425

formance when the CLS training dataset is limited, 426

i.e., few-shot experiments. Specifically, we ran- 427

domly choose 0.1%, 1%, 10%, and 50% CLS train- 428

ing datasets to conduct experiments. The results 429

are shown in Fig. 2 and Fig. 3. 430

Results on Zh2EnSum. Fig. 2 shows that VHM 431

significantly surpasses all comparison models un- 432

der each setting. Particularly, under the 0.1% set- 433

ting, our model still achieves best performances 434

than all baselines, suggesting that our variational 435

hierarchical model works well in the few-shot set- 436
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Figure 3: Rouge F1 scores (%) on the test set when using different CLS training data. The performance “Gap” (red
line) between “VHM” and “ATS-A” grows steadily with the decreasing of used CLS training data.

ting as well. Besides, we find the performance gap437

between comparison models and VHM is growing438

when the less proportion of CLS training data is439

used, which is carefully analysed in § 5.2.440

Results on En2ZhSum. Fig. 3 shows that VHM441

significantly outperforms all comparison models442

under each setting, showing the generalizability443

and superiority of our model again in the few-shot444

setting.445

5 Analysis446

5.1 Ablation Study447

We conduct ablation studies to investigate how well448

the local and global variables of our VHM works.449

When removing variables listed in Tab. 2, we have450

the following findings.451

(1) Rows 1∼3 vs. row 0 shows that the model452

performs worse, especially when removing the two453

local ones (row 3), due to missing the explicit trans-454

lation or summarization or both information pro-455

vided by the local variables, which is important to456

CLS. Besides, row 3 indicates that directly attend-457

ing to zcls leads to poor performances, showing the458

necessity of the hierarchical structure, i.e., using459

the global variable to exploit the local ones.460

(2) Rows 4∼5 vs. row 0 shows that directly461

attending the local translation and summarization462

cannot achieve good results due to lacking of the463

global combination of them, showing that it is very464

necessary for designing the variational hierarchical465

model, i.e., using a global variable to well exploit466

and combine the local ones.467

5.2 Why the VHM Works Well in the468

Few-Shot Setting?469

We investigate why our VHM works well in the470

few-shot setting. From Fig. 2 and Fig. 3, when the471

used CLS training data become fewer, we can ob-472

serve the following trends: 1) it is obvious that the473

# Models Zh2EnSum En2ZhSum
RG1/RG2/RGL/MVS RG1/RG2/RGL

0 VHM 56.29/29.78/51.54/26.13 69.57/38.75/64.25
1 – zmt 55.67/29.19/50.21/25.44 68.39/37.42/63.51
2 – zms 55.83/29.38/50.59/25.67 68.59/37.81/63.78
3 – zmt&zms 55.48/28.94/49.18/25.29 67.92/36.98/63.15
4 – zcls 54.65/28.41/48.87/24.62 66.55/36.65/62.77
5 – hierarchy 55.36/28.54/48.98/24.76 66.65/36.76/62.86

Table 2: Ablation results on the validation sets (in the
full setting). Row 1 denotes that we remove the local
variable zmt, and sample zcls from the source input and
another local variable zms, similarly for row 2. Row 3
denotes that we remove both local variables zmt and
zms and sample zcls only from the source input. Row
4 means that we remove the global variable zcls and
directly attend the local variables zmt and zms in Eq. 2.
Row 5 represents that we keep three latent variables
but remove the hierarchical relation between zcls and
zmt&zms.

performance becomes worse; 2) the performance 474

gaps between comparison models and VHM grows. 475

It is because relatively larger proportion of transla- 476

tion and summarization data are used. Therefore, 477

the influence from MT and MS becomes greater, 478

effectively strengthening the CLS model. Conse- 479

quently, our VHM achieves a comparably stable 480

performance. 481

5.3 Human Evaluation 482

Following (Zhu et al., 2019, 2020), we conduct hu- 483

man evaluation on 25 random samples from each 484

of the Zh2EnSum and En2ZhSum test set. We 485

compare the summaries generated by our methods 486

(MT-MS-CLS and VHM) with the summaries gen- 487

erated by ATS-A, MS-CLS, and MT-CLS in the full 488

setting and few-shot setting (0.1%), respectively. 489

We ask three graduate students to compare the gen- 490

erated summaries with human-corrected references, 491

and assess each summary from three independent 492

perspectives: 493
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Models Zh2EnSum En2ZhSum

IF CC FL IF CC FL

ATS-A 3.44 4.16 3.98 3.12 3.31 3.28
MS-CLS 3.12 4.08 3.76 3.04 3.22 3.12
MT-CLS 3.36 4.24 4.14 3.18 3.46 3.36
MT-MS-CLS 3.42 4.46 4.22 3.24 3.48 3.42
VHM 3.56 4.54 4.38 3.36 3.54 3.48

Table 3: Human evaluation results in the full setting.
IF, CC and FL denote informative, concise, and fluent
respectively.

1. How informative (i.e., IF) the summary is?494

2. How concise (i.e., CC) the summary is?495

3. How fluent, grammatical (i.e., FL) the sum-496

mary is?497

Each property is assessed with a score from 1498

(worst) to 5 (best). The average results are pre-499

sented in Tab. 3 and Tab. 4.500

Tab. 3 shows the results in the full setting. We501

find that our VHM outperforms all comparison502

models from three aspects in both language direc-503

tions, which further demonstrates the effectiveness504

and superiority of our model.505

Tab. 4 shows the results in the few-shot setting,506

where only 0.1% CLS training data are used in all507

models. We find that our VHM still performs best508

than all other models from three perspectives in509

both datasets, suggesting its generalizability and510

effectiveness again under different settings.511

6 Related Work512

Cross-Lingual Summarization. Conventional513

cross-lingual summarization methods mainly fo-514

cus on incorporating bilingual information into515

the pipeline methods (Leuski et al., 2003; Ouyang516

et al., 2019; Orăsan and Chiorean, 2008; Wan517

et al., 2010; Wan, 2011; Yao et al., 2015; Zhang518

et al., 2016b), i.e., translation and then summariza-519

tion or summarization and then translation. Due520

to the difficulty of acquiring cross-lingual sum-521

marization dataset, some previous researches fo-522

cus on constructing datasets (Ladhak et al., 2020;523

Scialom et al., 2020; Yela-Bello et al., 2021; Zhu524

et al., 2019), mixed-lingual pre-training (Xu et al.,525

2020), or zero-shot approaches (Ayana et al., 2018;526

Duan et al., 2019; Dou et al., 2020), i.e., using527

machine translation (MT) or monolingual summa-528

rization (MS) or both to train the CLS system.529

Among them, Zhu et al. (2019) propose to use530

roundtrip translation strategy to obtain large-scale531

CLS datasets and then present two multi-task learn-532

Models Zh2EnSum En2ZhSum

IF CC FL IF CC FL

ATS-A 2.26 2.96 2.82 2.04 2.58 2.68
MS-CLS 2.24 2.84 2.78 2.02 2.52 2.64
MT-CLS 2.38 3.02 2.88 2.18 2.74 2.76
MT-MS-CLS 2.54 3.08 2.92 2.24 2.88 2.82
VHM 2.68 3.16 3.08 2.56 3.06 2.88

Table 4: Human evaluation results in the few-shot set-
ting (0.1%).

ing methods for CLS. Based on this dataset, Zhu 533

et al. (2020) leverage an end-to-end model to attend 534

the pre-constructed probabilistic bilingual lexicon 535

to improve CLS. To further enhance CLS, some 536

studies resort to shared decoder (Bai et al., 2021), 537

more pseudo training data (Takase and Okazaki, 538

2020), or more related task training (Cao et al., 539

2020b,a). Different from them, we propose a varia- 540

tional hierarchical model that introduces a global 541

variable to simultaneously exploit and combine the 542

local translation variable in MT pairs and local sum- 543

marization variable in MS pais for CLS, achieving 544

better results. 545

Conditional Variational Auto-Encoder. 546

CVAE has verified its superiority in many 547

fields (Sohn et al., 2015). For instance, in 548

dialogue, Shen et al. (2019), Park et al. (2018) and 549

Serban et al. (2017) extend CVAE to capture the 550

semantic connection between the utterance and 551

the corresponding context with hierarchical latent 552

variables. Although the CVAE has been widely 553

used in NLP tasks, its adaption and utilization 554

to cross-lingual summarization for modeling 555

hierarchical relationships are non-trivial, and to the 556

best of our knowledge, has never been investigated 557

before in CLS. 558

7 Conclusion 559

In this paper, we propose to enhance the neural 560

CLS system by simultaneously exploiting MT and 561

MS. Given the hierarchical relationships between 562

MT&MS and CLS, we propose a variational hier- 563

archical model to explicitly exploit and combine 564

them in CLS process. Experiments on Zh2EnSum 565

and En2ZhSum show that our model significantly 566

improves the quality of cross-lingual summaries in 567

terms of automatic metrics and human evaluations. 568

Particularly, our model in the few-shot setting still 569

works better, suggesting its superiority and gener- 570

alizability. 571
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Constantin Orăsan and Oana Andreea Chiorean. 2008. 654
Evaluation of a cross-lingual Romanian-English 655
multi-document summariser. In Proceedings of 656
the Sixth International Conference on Language Re- 657
sources and Evaluation (LREC’08), Marrakech, Mo- 658
rocco. European Language Resources Association 659
(ELRA). 660

Jessica Ouyang, Boya Song, and Kathy McKeown. 661
2019. A robust abstractive system for cross-lingual 662
summarization. In Proceedings of the 2019 Confer- 663
ence of the North American Chapter of the Associ- 664
ation for Computational Linguistics: Human Lan- 665
guage Technologies, Volume 1 (Long and Short Pa- 666
pers), pages 2025–2031, Minneapolis, Minnesota. 667
Association for Computational Linguistics. 668

Yookoon Park, Jaemin Cho, and Gunhee Kim. 2018. 669
A hierarchical latent structure for variational conver- 670
sation modeling. In Proceedings of the 2018 Con- 671
ference of the North American Chapter of the Asso- 672
ciation for Computational Linguistics: Human Lan- 673
guage Technologies, Volume 1 (Long Papers), pages 674
1792–1801, New Orleans, Louisiana. Association 675
for Computational Linguistics. 676

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, 677
Benjamin Piwowarski, and Jacopo Staiano. 2020. 678
MLSUM: The multilingual summarization corpus. 679
In Proceedings of the 2020 Conference on Empirical 680
Methods in Natural Language Processing (EMNLP), 681
pages 8051–8067, Online. Association for Computa- 682
tional Linguistics. 683

9

https://doi.org/10.18653/v1/2021.acl-long.538
https://doi.org/10.18653/v1/2021.acl-long.538
https://doi.org/10.18653/v1/2021.acl-long.538
https://doi.org/10.18653/v1/2021.acl-long.538
https://doi.org/10.18653/v1/2021.acl-long.538
https://doi.org/10.18653/v1/2020.acl-main.554
https://doi.org/10.18653/v1/2020.acl-main.554
https://doi.org/10.18653/v1/2020.acl-main.554
https://doi.org/10.18653/v1/2020.acl-main.554
https://doi.org/10.18653/v1/2020.acl-main.554
https://doi.org/10.1609/aaai.v34i01.5328
https://doi.org/10.1609/aaai.v34i01.5328
https://doi.org/10.1609/aaai.v34i01.5328
https://doi.org/10.18653/v1/2020.ngt-1.7
https://doi.org/10.18653/v1/2020.ngt-1.7
https://doi.org/10.18653/v1/2020.ngt-1.7
https://doi.org/10.18653/v1/2020.ngt-1.7
https://doi.org/10.18653/v1/2020.ngt-1.7
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/P19-1305
https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.18653/v1/D15-1229
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.1145/979872.979877
https://doi.org/10.1145/979872.979877
https://doi.org/10.1145/979872.979877
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf
https://doi.org/10.18653/v1/N19-1204
https://doi.org/10.18653/v1/N19-1204
https://doi.org/10.18653/v1/N19-1204
https://doi.org/10.18653/v1/N18-1162
https://doi.org/10.18653/v1/N18-1162
https://doi.org/10.18653/v1/N18-1162
https://doi.org/10.18653/v1/2020.emnlp-main.647


Iulian Serban, Alessandro Sordoni, Ryan Lowe, Lau-684
rent Charlin, Joelle Pineau, Aaron Courville, and685
Yoshua Bengio. 2017. A hierarchical latent variable686
encoder-decoder model for generating dialogues. In687
AAAI Conference on Artificial Intelligence.688

Lei Shen, Yang Feng, and Haolan Zhan. 2019. Model-689
ing semantic relationship in multi-turn conversations690
with hierarchical latent variables. In Proceedings of691
the 57th Annual Meeting of the Association for Com-692
putational Linguistics, pages 5497–5502, Florence,693
Italy. Association for Computational Linguistics.694

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015.695
Learning structured output representation using696
deep conditional generative models. In Proceedings697
of NIPS, pages 3483–3491.698

Sho Takase and Naoaki Okazaki. 2020. Multi-task699
learning for cross-lingual abstractive summariza-700
tion.701

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob702
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz703
Kaiser, and Illia Polosukhin. 2017. Attention is all704
you need. In Proceedings of NIPS, pages 5998–705
6008.706

Xiaojun Wan. 2011. Using bilingual information for707
cross-language document summarization. In Pro-708
ceedings of the 49th Annual Meeting of the As-709
sociation for Computational Linguistics: Human710
Language Technologies, pages 1546–1555, Portland,711
Oregon, USA. Association for Computational Lin-712
guistics.713

Xiaojun Wan, Huiying Li, and Jianguo Xiao. 2010.714
Cross-language document summarization based on715
machine translation quality prediction. In Proceed-716
ings of the 48th Annual Meeting of the Association717
for Computational Linguistics, pages 917–926, Up-718
psala, Sweden. Association for Computational Lin-719
guistics.720

Tianming Wang and Xiaojun Wan. 2019. T-cvae:721
Transformer-based conditioned variational autoen-722
coder for story completion. In Proceedings of IJCAI,723
pages 5233–5239.724

Ruochen Xu, Chenguang Zhu, Yu Shi, Michael Zeng,725
and Xuedong Huang. 2020. Mixed-lingual pre-726
training for cross-lingual summarization. In Pro-727
ceedings of the 1st Conference of the Asia-Pacific728
Chapter of the Association for Computational Lin-729
guistics and the 10th International Joint Conference730
on Natural Language Processing, pages 536–541,731
Suzhou, China. Association for Computational Lin-732
guistics.733

Jin-ge Yao, Xiaojun Wan, and Jianguo Xiao. 2015.734
Phrase-based compressive cross-language summa-735
rization. In Proceedings of the 2015 Conference on736
Empirical Methods in Natural Language Processing,737
pages 118–127, Lisbon, Portugal. Association for738
Computational Linguistics.739

Jenny Paola Yela-Bello, Ewan Oglethorpe, and Navid 740
Rekabsaz. 2021. MultiHumES: Multilingual hu- 741
manitarian dataset for extractive summarization. In 742
Proceedings of the 16th Conference of the European 743
Chapter of the Association for Computational Lin- 744
guistics: Main Volume, pages 1713–1717, Online. 745
Association for Computational Linguistics. 746

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, 747
and Min Zhang. 2016a. Variational neural machine 748
translation. In Proceedings of EMNLP, pages 521– 749
530. 750

Jiajun Zhang, Yu Zhou, and Chengqing Zong. 2016b. 751
Abstractive cross-language summarization via trans- 752
lation model enhanced predicate argument structure 753
fusing. IEEE/ACM Transactions on Audio, Speech, 754
and Language Processing, 24(10):1842–1853. 755

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. 756
2017. Learning discourse-level diversity for neural 757
dialog models using conditional variational autoen- 758
coders. In Proceedings of ACL, pages 654–664. 759

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris- 760
tian M. Meyer, and Steffen Eger. 2019. MoverScore: 761
Text generation evaluating with contextualized em- 762
beddings and earth mover distance. In Proceedings 763
of the 2019 Conference on Empirical Methods in 764
Natural Language Processing and the 9th Interna- 765
tional Joint Conference on Natural Language Pro- 766
cessing (EMNLP-IJCNLP), pages 563–578, Hong 767
Kong, China. Association for Computational Lin- 768
guistics. 769

Junnan Zhu, Haoran Li, Tianshang Liu, Yu Zhou, Ji- 770
ajun Zhang, and Chengqing Zong. 2018. MSMO: 771
Multimodal summarization with multimodal output. 772
In Proceedings of the 2018 Conference on Em- 773
pirical Methods in Natural Language Processing, 774
pages 4154–4164, Brussels, Belgium. Association 775
for Computational Linguistics. 776

Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Ji- 777
ajun Zhang, Shaonan Wang, and Chengqing Zong. 778
2019. NCLS: Neural cross-lingual summarization. 779
In Proceedings of the 2019 Conference on Empirical 780
Methods in Natural Language Processing and the 781
9th International Joint Conference on Natural Lan- 782
guage Processing (EMNLP-IJCNLP), pages 3054– 783
3064, Hong Kong, China. Association for Computa- 784
tional Linguistics. 785

Junnan Zhu, Yu Zhou, Jiajun Zhang, and Chengqing 786
Zong. 2020. Attend, translate and summarize: An 787
efficient method for neural cross-lingual summariza- 788
tion. In Proceedings of the 58th Annual Meeting 789
of the Association for Computational Linguistics, 790
pages 1309–1321, Online. Association for Compu- 791
tational Linguistics. 792

10

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14567
https://doi.org/10.18653/v1/P19-1549
https://doi.org/10.18653/v1/P19-1549
https://doi.org/10.18653/v1/P19-1549
https://doi.org/10.18653/v1/P19-1549
https://doi.org/10.18653/v1/P19-1549
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
http://arxiv.org/abs/2010.07503
http://arxiv.org/abs/2010.07503
http://arxiv.org/abs/2010.07503
http://arxiv.org/abs/2010.07503
http://arxiv.org/abs/2010.07503
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/P11-1155
https://www.aclweb.org/anthology/P11-1155
https://www.aclweb.org/anthology/P11-1155
https://www.aclweb.org/anthology/P10-1094
https://www.aclweb.org/anthology/P10-1094
https://www.aclweb.org/anthology/P10-1094
https://doi.org/10.24963/ijcai.2019/727
https://doi.org/10.24963/ijcai.2019/727
https://doi.org/10.24963/ijcai.2019/727
https://doi.org/10.24963/ijcai.2019/727
https://doi.org/10.24963/ijcai.2019/727
https://www.aclweb.org/anthology/2020.aacl-main.53
https://www.aclweb.org/anthology/2020.aacl-main.53
https://www.aclweb.org/anthology/2020.aacl-main.53
https://doi.org/10.18653/v1/D15-1012
https://doi.org/10.18653/v1/D15-1012
https://doi.org/10.18653/v1/D15-1012
https://www.aclweb.org/anthology/2021.eacl-main.146
https://www.aclweb.org/anthology/2021.eacl-main.146
https://www.aclweb.org/anthology/2021.eacl-main.146
https://doi.org/10.18653/v1/D16-1050
https://doi.org/10.18653/v1/D16-1050
https://doi.org/10.18653/v1/D16-1050
https://doi.org/10.1109/TASLP.2016.2586608
https://doi.org/10.1109/TASLP.2016.2586608
https://doi.org/10.1109/TASLP.2016.2586608
https://doi.org/10.1109/TASLP.2016.2586608
https://doi.org/10.1109/TASLP.2016.2586608
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D18-1448
https://doi.org/10.18653/v1/D18-1448
https://doi.org/10.18653/v1/D18-1448
https://doi.org/10.18653/v1/D19-1302
https://doi.org/10.18653/v1/2020.acl-main.121
https://doi.org/10.18653/v1/2020.acl-main.121
https://doi.org/10.18653/v1/2020.acl-main.121
https://doi.org/10.18653/v1/2020.acl-main.121
https://doi.org/10.18653/v1/2020.acl-main.121


Appendix793

A Datasets794

We evaluate the proposed approach on Zh2EnSum795

and En2ZhSum datasets released by (Zhu et al.,796

2019).8 The Zh2EnSum and En2ZhSum are orig-797

inally from (Hu et al., 2015) and (Hermann et al.,798

2015; Zhu et al., 2018), respectively. Both the799

Chinese-to-English and English-to-Chinese test800

sets are manually corrected.801

Zh2EnSum. It is a Chinese-to-English summa-802

rization dataset, which has 1,699,713 Chinese short803

texts (104 Chinese characters on average) paired804

with Chinese (18 Chinese characters on average)805

and English short summaries (14 tokens on aver-806

age). The dataset is split into 1,693,713 training807

pairs, 3,000 validation pairs, and 3,000 test pairs.808

En2ZhSum. It is an English-to-Chinese summa-809

rization dataset, which has 370,687 English docu-810

ments (755 tokens on average) paired with multi-811

sentence English (55 tokens on average) and Chi-812

nese summaries (96 Chinese characters on aver-813

age). The dataset is split into 364,687 training814

pairs, 3,000 validation pairs, and 3,000 test pairs.815

B Implementation Details816

We mainly follow the setting described in (Zhu817

et al., 2019, 2020) for fair comparison. Specifi-818

cally, the segmentation granularity is “subword to819

subword” for Zh2EnSum, and “word to word” for820

En2ZhSum. All the parameters are initialized via821

Xavier initialization method (Glorot and Bengio,822

2010). We train our models using standard trans-823

former (Vaswani et al., 2017) in Base setting, which824

contains a 6-layer encoder (i.e., Ne) and a 6-layer825

decoder (i.e., Nd) with 512-dimensional hidden826

representations. And all latent variables have a di-827

mension of 128. Each mini-batch contains a set828

of document-summary pairs with roughly 4,096829

source and 4,096 target tokens. We apply Adam830

optimizer (Kingma and Ba, 2015) with β1 = 0.9,831

β2 = 0.998. Following (Zhu et al., 2019), we train832

each task for about 800,000 iterations in all multi-833

task models (reaching convergence). To alleviate834

the degeneration problem of the variational frame-835

work, we apply KL annealing. The KL multiplier λ836

gradually increases from 0 to 1 over 400, 000 steps.837

For evaluation, we use beam search with a beam838

size 4 and length penalty 0.6. All our methods are839

8https://github.com/ZNLP/NCLS-Corpora

trained and tested on a single NVIDIA Tesla V100 840

GPU. 841
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