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Abstract001

Large Language Models (LLMs) are capable002
of recalling multilingual factual knowledge003
present in their pretraining data. However, most004
studies evaluate only the final model, leaving005
the development of factual recall and crosslin-006
gual consistency throughout pretraining largely007
unexplored. In this work, we trace how fac-008
tual recall and crosslingual consistency evolve009
during pretraining, focusing on OLMo-7B as a010
case study. We find that both accuracy and con-011
sistency improve over time for most languages.012
We show that this improvement is primarily013
driven by the fact frequency in the pretraining014
corpus: more frequent facts are more likely to015
be recalled correctly, regardless of language.016
Yet, some low-frequency facts in non-English017
languages can still be correctly recalled. Our018
analysis reveals that these instances largely ben-019
efit from crosslingual transfer of their English020
counterparts – an effect that emerges predomi-021
nantly in the early stages of pretraining. We pin-022
point two distinct pathways through which mul-023
tilingual factual knowledge acquisition occurs:024
(1) frequency-driven learning, which is dom-025
inant and language-agnostic, and (2) crosslin-026
gual transfer, which is limited in scale and027
typically constrained to relation types involv-028
ing named entities. We will release our code to029
facilitate further research.030

1 Introduction031

Despite being predominantly trained on English-032

centric data, LLMs exhibit surprisingly strong mul-033

tilingual capabilities across a wide range of tasks034

(Jiang et al., 2023; Touvron et al., 2023; Zhang035

et al., 2024; Zhao et al., 2025). Notably, they036

can recall factual knowledge in multiple languages037

(Petroni et al., 2019; Jiang et al., 2020; Kassner038

et al., 2021). However, these models frequently039

exhibit crosslingual inconsistencies – answering a040

factual query correctly in one language but failing041

to do so in another (Qi et al., 2023; Chua et al.,042
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Figure 1: Relationship between fact frequency and fac-
tual recall in Catalan. High-frequency facts are more
likely to be correctly recalled, indicating the effect of
frequency-based learning. Meanwhile, the correct recall
of some low-frequency facts suggests the influence of
crosslingual transfer from other languages.

2025; Wang et al., 2025). Although bilinguals typi- 043

cally recall information more effectively when the 044

language of encoding matches the language of re- 045

trieval, they can usually recall factual knowledge 046

learned in one language using their other proficient 047

language (Marian and Neisser, 2000; Chung et al., 048

2019) – highlighting a flexibility that contrasts with 049

the inefficiencies seen in LLMs. Understanding 050

this discrepancy requires deeper insight into how 051

multilingual factual knowledge is acquired. 052

While prior work has investigated mechanisms 053

of (multilingual) factual recall (Geva et al., 2023; 054

Zhao et al., 2024; Fierro et al., 2024; Liu et al., 055

2025) and analyzed sources of crosslingual incon- 056

sistency (Qi et al., 2023; Wang et al., 2025), these 057

studies have largely focused on final models, draw- 058

ing conclusions solely from the end of pretraining. 059

As a consequence, the developmental process by 060

which LLMs acquire factual knowledge across lan- 061

guages remains poorly understood. 062

To address this gap, we trace the dynamics of 063

multilingual factual recall and crosslingual consis- 064

tency throughout pretraining. Rather than treat- 065

ing factual recall as a static outcome, we analyze 066

its emergence across checkpoints using OLMo- 067
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7B (Groeneveld et al., 2024), an English-centric068

decoder-only LLM pretrained on Dolma (Soldaini069

et al., 2024). Our analysis evaluates both accuracy070

within individual languages and consistency across071

languages for facts that are parallel in all languages.072

In addition, we investigate the key factors that073

contribute to correct multilingual factual recall.074

Prior work has shown that the frequency of an075

instance can significantly influence performance076

relating to it, including factual prediction (Razeghi077

et al., 2022; Elazar et al., 2023; McCoy et al., 2024;078

Merullo et al., 2025). Motivated by these findings,079

we hypothesize that fact frequency in the pretrain-080

ing corpus plays a central role in multilingual fac-081

tual recall. To test this, we compute the frequency082

of each fact and systematically link it to factual083

recall across languages and pretraining stages.084

We summarize the key findings of this paper:085

(i) The capacity for multilingual factual re-086

call develops progressively during pretrain-087

ing (§4). English and languages distant from088

English converge in early stages, while lan-089

guages more similar to English (e.g., those090

sharing the Latin script) continue to improve091

with extended pretraining.092

(ii) The correctness of factual recall is largely093

explained by a single factor: fact fre-094

quency in the pretraining corpus (§5). High-095

frequency facts are consistently recalled more096

accurately across languages (e.g., Catalan097

in Figure 1). In addition, this frequency-098

correctness relationship emerges early and099

strengthens throughout pretraining.100

(iii) Some low-frequency facts in non-English101

languages are recalled correctly mainly via102

crosslingual transfer (§6). High-frequency103

counterparts in English mainly enable these104

cases. However, the scale of transfer is limited105

and constrained to certain relation types.106

2 Related Work107

Multilingual Factual Recall and Consistency108

Several studies have investigated the factual knowl-109

edge stored in models through knowledge probing.110

Jiang et al. (2020) and Kassner et al. (2021) assess111

factual recall by translating English prompts into112

multiple languages, revealing notable performance113

disparities across languages. Yin et al. (2022) ex-114

tend this analysis to region-specific commonsense115

knowledge, finding that the best-performing lan- 116

guage for querying facts about a country (e.g., 117

China) is often English rather than its native 118

language (e.g., Chinese), indicating the English- 119

centric bias of models. Building on multilingual 120

probing studies, Qi et al. (2023) and Aggarwal 121

et al. (2025) investigate crosslingual consistency 122

and find that LLMs often return different answers 123

for equivalent queries in different languages. Wang 124

et al. (2025) further explore the underlying causes 125

of these inconsistencies through mechanistic inter- 126

pretability, revealing how internal representations 127

contribute to divergent outputs across languages. 128

Following this line of research, our work traces 129

the development of factual recall and crosslingual 130

consistency throughout pretraining, shedding light 131

on how these capabilities emerge and evolve. 132

Pretraining Trajectory Investigation Several 133

studies have investigated how Transformer-based 134

models (Vaswani et al., 2017) acquire linguistic or 135

task-specific knowledge during different phases of 136

pretraining, in both monolingual (Choshen et al., 137

2022; Xia et al., 2023; Müller-Eberstein et al., 138

2023; Chen et al., 2024) and multilingual settings 139

(Blevins et al., 2022; Wang et al., 2024). A con- 140

current study by Merullo et al. (2025) most closely 141

resembles our work; they demonstrate that fact fre- 142

quency is a strong predictor of both factual recall 143

and the emergence of linear factual representations 144

(e.g., subject-to-object mappings via linear transfor- 145

mation) (Hernandez et al., 2024). However, their 146

analysis is conducted in a purely monolingual con- 147

text. In contrast, our work examines multilingual 148

factual knowledge acquisition and shows that while 149

fact frequency remains a key driver of factual re- 150

call, crosslingual knowledge transfer provides ad- 151

ditional – albeit limited – benefits in enhancing 152

multilingual factual recall. 153

3 Experiment Setups 154

3.1 Languages and Model Checkpoints 155

Languages We consider 12 languages that 156

span 6 language families and use 7 different 157

scripts: Arabic (ara_Arab), Catalan (cat_Latn), 158

Chinese (zho_Hans), English (eng_Latn), 159

French (fra_Latn), Greek (ell_Grek), Japanese 160

(jpn_Jpan), Korean (kor_Kore), Russian 161

(rus_Cyrl), Spanish (spa_Latn), Turkish 162

(tur_Latn), Ukrainian (ukr_Cyrl).1 163

1Some languages, e.g., Ukrainian, are much less resourced
than others, according to our exploration of the multilingual
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Model Checkpoints We use the open-source164

OLMo-1.7 7B model (Groeneveld et al., 2024)165

(referred to as OLMo) in our study. OLMo is a166

decoder-only LLM pretrained on Dolma (Soldaini167

et al., 2024), an English-centric corpus with some168

multilingual coverage. To capture the dynamics of169

factual knowledge acquisition throughout pretrain-170

ing, we select model checkpoints at two granular-171

ities. Based on preliminary experiments showing172

that changes are more pronounced in the early pre-173

training stages, we include checkpoints every 1,000174

steps from step 0 to step 50,000. Beyond 50,000175

steps, we consider every 5,000 steps up to step176

400,000. This setup enables us to trace the model’s177

development from initialization to a mature stage178

with good multilingual capability (trained on ap-179

proximately 1.7T tokens).180

3.2 Multilingual Factual Dataset181

We use KLAR (Wang et al., 2025), a multilingual182

factual knowledge probing dataset, for our investi-183

gation. We use 1,197 facts grouped into 12 relation184

categories (cf. Table 2 in §A). Each fact is repre-185

sented as a triple of subject, relation, and object.186

KLAR also provides a prompt template for each re-187

lation in each language, structured as “<Question>188

The answer is:”. For example, for triple (France,189

capital, Paris), the template will then be expanded190

as “Where is France’s capital located? The answer191

is:”, with expected answer “Paris” in English. All192

facts and prompt templates are available in all 12193

languages. We therefore transform each fact into a194

query qli with expected answer oli in language l; for195

each fact i, qli and ql
′
i are translations of the same196

query in languages l and l′. We denote the resulting197

set of queries as Q.198

3.3 Evaluation199

To evaluate consistency, we compute the overlap-
ping ratio of correct predictions, following Jiang
et al. (2020) and Wang et al. (2025). Since OLMo is
an English-centric model due to the predominance
of English in Dolma’s documents (cf. §J), we treat
English as a reference language and compute how
consistent the predictions from other languages are
compared to predictions made in English:2

CO(l) =

∑|Q|
i 1(M(qli) = oli ∧M(q

eng
i ) = o

eng
i )∑|Q|

i 1(M(qli) = oli ∨M(q
eng
i ) = o

eng
i )

coverage of Dolma (Soldaini et al., 2024) (cf. §J).
2We present a complementary investigation of holistic

crosslingual consistency across all language pairs in §C.

where q
eng
i and o

eng
i are the query and expected 200

answer for the ith query in English, 1(·) is the 201

indicator function, and M(·) is the LLM’s pre- 202

diction function. When assessing correctness 203

(M(qli) = oli), we rely on the model’s complete 204

generation, checking whether it contains oli. We 205

depart here from previous work (Geva et al., 2023; 206

Qi et al., 2023; Hernandez et al., 2024) that just 207

checks the first predicted token, which can be 208

misleading due to ambiguity and tokenization is- 209

sues.3 We also compute the per language accu- 210

racy: ACC(l) =
∑|Q|

i 1(M(qli)=oli)
|Q| which allows us 211

to trace how well factual recall is performed. 212

3.4 Fact Frequencies 213

We approximate a fact’s frequency by counting 214

the number of documents where its subject and 215

object co-occur in the pretraining corpus. This co- 216

occurrence-based approximation has been widely 217

used and shown to be reliable (Elsahar et al., 2018; 218

Elazar et al., 2023; Merullo et al., 2025; Liu et al., 219

2025). For some languages, this approximation is 220

fairly accurate due to the uniqueness of their scripts 221

– for example, the subject-object pair (法国,巴黎) 222

in Chinese is unlikely to appear in texts from other 223

languages. However, ambiguity arises in languages 224

that share scripts, such as English and French. The 225

same pair (France, Paris), for instance, may appear 226

in either language, resulting in an aggregated fre- 227

quency count shared across both. We analyze the 228

impact of this identical-fact effect and show that it 229

does not compromise the robustness of our findings 230

(cf. §I). To efficiently obtain these co-occurrence 231

counts, we use the ElasticSearch API provided by 232

WIMBD (Elazar et al., 2024), a tool designed for 233

scalable search and frequency analysis over large 234

corpora.4 All fact frequencies in our analysis are 235

computed over the Dolma v1.7 corpus (Soldaini 236

et al., 2024) used to pretrain OLMo, by measuring 237

the number of subject-object co-occurrences for 238

each fact in KLAR. 239

4 Multilingual Factual Recall Dynamics 240

We begin our analysis by tracing how factual re- 241

call performance evolves throughout pretraining 242

3Even though the first token is correct, the final prediction
can be wrong because the object is split into multiple tokens.
For example, “Antwerp” and “Antananarivo” share the same
first token “Ant”. It is therefore ambiguous which city the
model is trying to generate based on just the token “Ant”.

4A public demo of WIMBD is available at: https://
wimbd.apps.allenai.org/.
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Figure 2: Factual accuracy (ACC) and crosslingual consistency (CO). While factual knowledge is rapidly acquired
during the early stages of pretraining and is reasonably high in many languages, a substantial performance gap
remains between English and most other languages, highlighting the limitations of crosslingual knowledge transfer.

across different languages. Specifically, we ex-243

amine both accuracy and crosslingual consistency244

at each checkpoint of OLMo (cf. §3.1) using the245

KLAR dataset. Figure 2 summarizes these results246

for eight languages (see §B for full results).247

Crosslingual consistency is tightly coupled with248

non-English performance. We observe that the249

trajectory of crosslingual consistency in each lan-250

guage l ̸= eng_Latn closely mirrors its own factual251

accuracy throughout pretraining. This suggests that252

consistency is primarily driven by whether the fact253

is correctly recalled in l, which almost always im-254

plies that it is also recalled in English. The implica-255

tion is twofold. (1) For non-English languages, the256

consistency of a language (CO) is effectively gated257

by its performance (ACC). (2) The limited capabil-258

ity of the model to transfer knowledge from English259

to other languages, referred to as the crosslingual260

knowledge barrier (Chua et al., 2025), is a persis-261

tent problem throughout pretraining.262

Factual knowledge is acquired rapidly in early263

pretraining phases. We observe that factual re-264

call performance (ACC) improves very quickly in265

the early stages of pretraining for many languages.266

For example, English reaches approximately 80%267

accuracy after only 50K steps (roughly 209B to-268

kens), with minimal gains beyond that point. This269

indicates that factual knowledge is acquired rapidly270

early and does not substantially benefit from fur-271

ther pretraining steps. While longer pretraining is272

known to improve other capabilities of LLMs (Ka-273

plan et al., 2020; Le Scao et al., 2022; Xiong et al.,274

2024), factual recall appears to rely on simpler275

mechanisms gained in early-stage training, likely276

tied to memorization of frequent co-occurrences,277

for which we give empirical evidence in §5.278

Script plays a more important role than lan- 279

guage family in sustained improvements. Lan- 280

guages such as ara_Arab, jpn_Jpan, and kor_Kore, 281

which neither use the Latin script nor belong to 282

the Indo-European family, reach early saturation in 283

performance – typically even before 2K steps. In 284

contrast, Latin-script languages such as cat_Latn, 285

fra_Latn, and spa_Latn, continue to improve with 286

more training steps. Interestingly, ell_Grek, de- 287

spite being an Indo-European language, saturates 288

early as well, whereas tur_Latn, from the Turkic 289

family, benefits from extended pretraining. This 290

pattern suggests that surface features like script 291

similarity are more influential for possible crosslin- 292

gual knowledge transfer than deeper typological 293

relationships, as we further investigate in §6. 294

5 Fact Frequency As Predictor 295

A notable observation in §4 is that factual recall 296

performance (ACC) rapidly converges for many 297

languages, including English. This suggests that 298

the model acquires much of its factual knowledge 299

in the early stages of pretraining and is able to re- 300

call it reliably when appropriately prompted (cf. 301

§3.2). We hypothesize that this behavior reflects 302

a form of memorization, where frequent exposure 303

to specific facts in the pretraining corpus enables 304

the model to retrieve them accurately. To investi- 305

gate this, we approximate the frequency of all facts 306

in the KLAR dataset (cf. §3.4) and analyze the 307

relationship between frequency and factual recall 308

performance both “globally” – across all languages 309

– and “locally” – within individual languages. 310

5.1 Global Results Across All Languages 311

We analyze the relationship between fact frequency 312

(in log scale) and probability of correct factual re- 313

call across six OLMo checkpoints: 5K, 10K, 30K, 314
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Figure 3: Relationship between fact frequency and the probability of correct factual recall. A consistent upward
trend across individual languages indicates that higher-frequency facts are more likely to be recalled by the model.
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Figure 4: Relationship between fact frequency and
factual recall for all languages and six pretraining
checkpoints. High-frequency facts are more likely to
be correctly recalled than rare ones. This frequency-
correctness correlation emerges early in pretraining and
becomes more pronounced over time.

50K, 100K and 400K. The results are displayed in315

Figure 4. Results for more checkpoints are reported316

in §D.1.317

Fact frequency strongly predicts factual recall318

performance. At the 400K-step checkpoint (cor-319

responding to approximately 1.7T tokens), we ob-320

serve a strong positive correlation between the fact321

log frequency and the probability of correct fac-322

tual recall, with a Pearson correlation coefficient323

of r = 0.93 (p < 0.001). This indicates a robust324

linear relationship between the two variables and325

supports our hypothesis that fact frequency in the326

pretraining corpus is a key determinant of factual327

recall performance across languages.328

This correlation emerges early in pretrain-329

ing. While the 5K-step and 10k-step checkpoints330

(around 20B and 41B tokens, respectively) show331

weak correlation, the 30K-step checkpoint (around332

125B tokens) has Pearson coefficients r = 0.95, in-333

dicating strong correlation. Together with the high334

factual recall accuracy observed in early check-335

points (cf. Figure 2), these results suggest that the336

model is exposed to and memorizes many high- 337

frequency facts early in pretraining, enabling accu- 338

rate recall even before large-scale exposure, aligned 339

with findings from Merullo et al. (2025). 340

5.2 Analysis per Language 341

We further investigate whether the relationship be- 342

tween fact frequency and factual recall accuracy 343

holds consistently across individual languages. We 344

focus on the 400k-step checkpoint. 345

High-frequency facts are more likely to be 346

correctly recalled within individual languages. 347

Figure 3 shows the distribution of fact frequencies 348

and corresponding factual recall probabilities for 8 349

representative languages (results for additional lan- 350

guages are in §D.2). Across all cases, we observe a 351

clear trend: facts that occur more frequently in the 352

pretraining corpus are more likely to be correctly 353

recalled. This pattern is not limited to English; lan- 354

guages such as rus_Cyrl exhibit particularly strong 355

effects – for instance, when fact frequency exceeds 356

103, the model recalls the fact with near-perfect 357

accuracy. Similar trends are observed in other lan- 358

guages as well, suggesting that fact frequency plays 359

a consistently central role in determining factual 360

recall performance across languages. 361

5.3 Recall Prediction with Frequencies 362

We observed in §5.2 that the relationship between 363

fact frequency and factual recall holds consistently 364

across individual languages. This naturally leads 365

to a further question: Can the recallability of a 366

fact be reliably predicted solely based on its fre- 367

quency within a given language? To answer this, 368

we construct a simple frequency-based classifier 369

for each language and evaluate its effectiveness. 370

Again, we focus on the 400k-step checkpoint. 371

Formally, for each language l, we define a
dataset Dl = {(f l

i , y
l
i)}Ni=1, where f l

i ∈ Z≥0
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Lang Threshold Accuracy FN

ara_Arab 3485 0.83 209
cat_Latn 2506 0.63 384
ell_Grek 483 0.84 190
eng_Latn 108 0.82 7
fra_Latn 19 0.64 134
jpn_Jpan 352 0.82 212
kor_Kore 402 0.80 238
rus_Cyrl 370 0.72 330
spa_Latn 12 0.60 169
tur_Latn 3068 0.64 373
ukr_Cyrl 385 0.79 248
zho_Hans 502 0.75 296

Table 1: Best threshold, accuracy, and false negatives
when using fact frequency as a predictor of factual recall.
We interpret FN as surprising correct low-frequency
predictions (SCLFP) – predictions that are correct even
though the underlying fact frequency is low. Good ac-
curacy on assessing fact frequency as a predictor for
correct fact recall is achieved for most languages with
this classifier as shown in column “Accuracy”.

is the frequency of fact i, and yli ∈ {0, 1} in-
dicates whether the model correctly recalled the
fact (1 if correct, 0 otherwise). Z≥0 is the set of
positive integers including 0. We then define a
threshold-based classifier hlt(f) for each language

as: hlt(f) =

{
1, if f ≥ t

0, otherwise
. The optimal thresh-

old t∗l in each language is selected to maximize
classification accuracy:

t∗l = arg max
t∈Z≥0

1

N

N∑
i=1

1
(
hlt(f

l
i ) = yli

)
where 1(·) is the indicator function. To better un-372

derstand the classification behavior, we also com-373

pute the number of false negatives (FN) under374

the optimal threshold, as these facts are also cor-375

rectly predicted but with low frequencies.5 Table 1376

presents the classification performance.377

Fact frequency serves as a strong predictor of378

factual recall for many languages. Across all379

languages, the threshold-based classifier achieves380

accuracy above 0.6, indicating performance much381

better than random guessing. A closer inspec-382

tion reveals that all languages with relatively lower383

accuracy, i.e., fra_Latn, spa_Latn, tur_Latn, and384

cat_Latn, use the Latin script, with no exceptions.385

5Other error types are not the primary focus of our further
analysis presented in the main content. For example, the cause
of false positives may be due to (1) insufficient exposure to
the fact despite its high frequency, or (2) sensitivity to the
specific prompt used for evaluation. We present an analysis of
the classifier in §E and complete error breakdown in §I.

In contrast, languages using non-Latin scripts con- 386

sistently achieve higher accuracy.6 We hypothe- 387

size that this pattern stems from extensive crosslin- 388

gual transfer from English to other Latin-script lan- 389

guages. As a result, many low- or mid-frequency 390

facts in these languages may still be correctly re- 391

called, likely due to shared vocabulary and lexical 392

overlap, as also shown by Qi et al. (2023). This 393

transfer effect tends to shift the optimal classifica- 394

tion threshold downward, enabling the threshold- 395

based classifier to correctly predict low-frequency 396

facts more often than expected. 397

All languages but English exhibit large false 398

negative rates. This is particularly clear in lan- 399

guages using non-Latin scripts, such as ara_Arab 400

and ukr_Cyrl, where the classifier fails to capture 401

many low-frequency facts that are in fact recalled 402

correctly by the model. Even in Latin-script lan- 403

guages – where the accuracy is relatively lower than 404

in other languages due to the reasons noted above – 405

we still observe a substantial number of false nega- 406

tives. English stands out as the only language with 407

few false negatives, because of the generally high 408

fact frequencies. This consistent trend across lan- 409

guages suggests that many low-frequency facts are 410

correctly recalled, motivating a closer examination 411

of such cases. We further investigate them in §6. 412

6 Investigation of Transfer Effect 413

We observed a substantial number of false nega- 414

tives when using frequency as a predictor in §5.3, 415

particularly for languages that use non-Latin scripts. 416

This is counterintuitive given the strong role fre- 417

quency typically plays in factual recall. We hy- 418

pothesize that these cases are due to the crosslin- 419

gual transfer effect – factual knowledge is pri- 420

marily learned in English and is successfully trans- 421

ferred to other languages. In the following sections, 422

we present a detailed analysis of these false neg- 423

atives identified in §5.3 – which we will refer to 424

as surprisingly correct low-frequency predictions 425

(SCLFPs). 426

6.1 Relation Type Distribution 427

We hypothesize that facts that involve named en- 428

tities or shared vocabulary are easier to transfer 429

across languages – e.g., the subject-object pair 430

France-Paris is easy to transfer from English to 431

French since the two named entities are identical 432

6We conduct a sensitivity analysis on the classifier in §E
and show it is more robust in non-Latin-script languages.
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Figure 5: Dynamics of learning for SCLFPs (surprisingly correct low frequency predictions, i.e., FNs in Table 1)
across 8 languages. Crosslingual transfer emerges early in pretraining and continues to strengthen over time.
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Figure 6: Distribution of SCLFPs (surprisingly correct
low frequency predictions) across relation types for each
language. High SCLFP values are concentrated on
relation types that involve only a small set of candidates
– which are generally named entities.

in English and French. This intuition is grounded433

in how humans often rely on lexical similarity and434

recognizable entities when transferring knowledge.435

To investigate this, we group SCLFPs in each lan-436

guage by their relation type, as shown in Figure 6.437

SCLFPs are concentrated in relation types in-438

volving named entities. This trend is especially439

pronounced in relations with a limited set of possi-440

ble candidates, such as continent and religion.441

Languages that use a non-Latin script also benefit442

from named entity transfer, e.g., in instrument443

and manufacturer relations. This observation444

aligns with prior work showing that named entities445

are more easily transferred across script boundaries,446

particularly in encoder-only models (Imani et al.,447

2023; Liu et al., 2024a).448

Latin-script languages benefit more broadly449

from crosslingual transfer. Compared to lan-450

guages using other scripts, languages writ-451

ten in Latin script receive transfer benefits452

across a wider range of relations, such as453

country_of_citizenship. This is expected, as454

many Latin-script languages have substantial vo- 455

cabulary overlap, leading to greater token-level sim- 456

ilarity. Such overlap enables the transfer of iden- 457

tical or lexically similar entities – e.g., “Bulgària” 458

in cat_Latn and “Bulgaristan” in tur_Latn. More- 459

over, higher token-level similarity in the context 460

during pretraining can also facilitate the alignment, 461

enhancing entity transfer (cf. §6.3). 462

6.2 Learning Progression 463

As shown in §4, the model acquires a substan- 464

tial amount of factual knowledge during the early 465

stages of pretraining. This raises a natural question: 466

Is crosslingual knowledge transfer similarly con- 467

centrated in the early stages, or does it continue 468

throughout pretraining? To explore this, we ex- 469

amine the learning trajectories of SCLFPs across 470

languages. Figure 5 illustrates how recall factual 471

accuracy for SCLFPs evolves over pretraing check- 472

points for 8 languages (see full results in §G). 473

Extensive crosslingual transfer occurs during 474

early pretraining. Across all languages, factual 475

recall accuracy for SCLFPs rapidly improves dur- 476

ing the initial stages of pretraining. This trend is 477

especially pronounced in languages that use non- 478

Latin scripts. For example, ara_Arab, ell_Grek, 479

and Kor_Kore reach over 60% accuracy within 480

the first 20K steps, after which their performance 481

plateaus or grows slowly, similar to the trend ob- 482

served for in §4. These findings suggest that 483

crosslingual transfer is not merely an emergent 484

property of the final model, but rather a phe- 485

nomenon that develops early in pretraining. 486

Many languages continue to benefit from trans- 487

fer throughout pretraining. This is especially 488

the case for languages using the Latin script, such 489

as spa_Latn, which display a more gradual and 490

continuous improvement. As discussed in §6.1, 491
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these languages benefit from crosslingual transfer492

across a broader range of relations, facilitated by493

extensive lexical overlap with other Latin-script494

languages. This broader scope of transferable con-495

tent contributes to the prolonged learning curve.496

We also observe that rus_Cyrl and zho_Hans bene-497

fit from continued improvements over time, which498

could be attributed to the comparatively larger rep-499

resentation of Russian and Chinese texts in the pre-500

training corpus (cf. §J). Notably, ukr_Cyrl exhibits501

a learning curve that rapidly and closely aligns502

with rus_Cyrl, suggesting that transfer also occurs503

between other script-sharing languages (we show504

their consistency continues to improve in §C).505

6.3 Similarity Dynamics506

To better understand why certain languages, partic-507

ularly those that do not use the Latin script, benefit508

from knowledge acquired in English, we analyze509

the evolution of cosine similarity between sentence-510

level representations of prompts (cf. §3.2) or fact511

pairs corresponding to SCLFPs during pretrain-512

ing. Specifically, we create fact pairs of SCLFPs513

for each language, where every pair contains one514

prompt in that language and its counterpart in En-515

glish. We then track the cosine similarity between516

these paired representations across checkpoints.7517

As a baseline, we also compute cosine similar-518

ities for UWLFPs – unsurprisingly wrong low-519

frequency predictions identified in our frequency-520

based classification (cf. §5.2) – as well as for all521

fact pairs in each language. Figure 7 illustrates522

the progression of similarity scores over time for 6523

languages (full results are available in §F).8524

Similarity remains higher for SCLFPs than for525

UWLFPs. Across all languages, we observe a526

consistent trend: the cosine similarity for SCLFPs527

quickly surpasses that of UWLFPs. While both be-528

gin at comparable levels, a clear and sustained sep-529

aration emerges after approximately 50K pretrain-530

ing steps. This divergence suggests that the model531

aligns the representations of SCLFPs with their En-532

glish counterparts better than for UWLFPs – facts533

that are similarly low-frequency but incorrectly534

predicted. These findings offer direct evidence of535

7We use the contextualized embedding of the final token
as the sentence-level representation. Representations are ex-
tracted at each layer, and we report the mean cosine similarity
computed by averaging similarities across all layers.

8To avoid inflated similarity, for each language, we filter
out fact pairs where the object strings in that language and
English are identical. Table 4 in §H provides statistics of fact
pairs containing identical objects across languages.
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Figure 7: Mean cosine similarity between sentence-level
representations of SCLFP, UWLFP, and all facts for
each language paired with English during pretraining.
All 6 languages exhibit consistently higher similarity for
SCLFP than for UWLFP, highlighting the emergence of
crosslingual transfer through representation alignment.

crosslingual knowledge transfer on SCLFPs, bene- 536

fiting from better alignment with English, spanning 537

both language and script boundaries. 538

Better alignment enables crosslingual transfer 539

but does not guarantee correct recall. The con- 540

sistently high similarity in Latin-script languages 541

aligns with prior work showing that Transformer 542

models tend to cluster representations based on 543

shared script (Wen-Yi and Mimno, 2023; Liu et al., 544

2024b). However, improved alignment alone is 545

not sufficient: for UWLFPs, the model continues 546

to better align them in pretraining, yet this does 547

not lead to gains in recall accuracy (i.e., UWLFPs 548

are not learned). This suggests that beyond align- 549

ment, other factors – such as language-specific un- 550

derstanding/generation and instruction following 551

abilities – also play a critical role in factual recall. 552

7 Conclusion 553

We investigate how multilingual factual recall and 554

crosslingual consistency emerge during pretrain- 555

ing, using OLMo-7B as a case study. Our analysis 556

shows that factual recall improves early and is pri- 557

marily driven by fact frequency, regardless of lan- 558

guage. However, some low-frequency facts in non- 559

English languages can still be recalled, mainly due 560

to crosslingual transfer from English – especially 561

for relations that involve named entities. We there- 562

fore conclude that multilingual factual knowledge 563

is gained through both frequency-driven learning 564

and crosslingual transfer starting from early stages. 565
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Limitations566

While this work contributes to emerging efforts567

in exploring multilingual knowledge acquisition568

during the pretraining process and contributes to569

understanding the mechanisms of acquisition, sev-570

eral limitations should be acknowledged.571

First, our study focuses on the checkpoints of572

a single English-centric model as a case study.573

This choice is primarily due to the scarcity of574

open-source models that provide both intermediate575

checkpoints and detailed documentation of their576

pretraining corpora. We therefore echo Soldaini577

et al. (2024) and encourage greater transparency in578

the community, including the release of intermedi-579

ate checkpoints and associated data. This would580

facilitate further research into knowledge acquisi-581

tion dynamics and help deepen our understanding582

of LLM pretraining processes.583

Second, our approximation of fact frequency in584

certain script-sharing languages may lack full accu-585

racy. As discussed in §3.4 and §I, this is due to the586

difficulty in disambiguating language identity in587

shared-script corpora. While our findings suggest588

this issue does not significantly affect the overall589

results, future work could improve precision by590

applying language identification techniques, espe-591

cially where computational resources permit.592

Finally, although we analyze the dynamics of593

multilingual knowledge acquisition and identify594

two primary mechanisms – frequency-based learn-595

ing and crosslingual transfer – we do not investi-596

gate the conditions under which each mechanism is597

most effective. Studying these underlying factors598

requires controlled manipulation of the pretraining599

corpus to observe causal effects, which falls beyond600

the scope of this work. Nonetheless, we regard this601

as a promising direction for future research.602
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Relation Number of Facts
capital_of 212
continent 212
country_of_citizenship 60
headquarters_location 51
instrument 46
language_of_work_or_name 108
languages_spoken 104
manufacturer 35
native_language 130
place_of_birth 35
place_of_death 79
religion 125
total 1,197

Table 2: Number of facts grouped by relation types.

B Complete Factual Recall Dynamics902

We present the complete factual recall dynamics in903

terms of accuracy and crosslingual consistency at904

each checkpoint of OLMo in Figure 8.905

C Holistic Crosslingual Consistency906

To complement the English-centric consistency
analysis in the main text, we investigate holis-
tic crosslingual consistency, which quantifies the
agreement of correct factual predictions across all
language pairs. Similar to §3.3, we compute the
overlapping ratio of correct predictions in any two
languages l and l′:

CO(l, l′) =

∑|Q|
i 1(M(qli) = oli ∧M(ql

′
i ) = ol

′
i )∑|Q|

i 1(M(qli) = oli ∨M(ql
′
i ) = ol

′
i )

where ql
′
i and ol

′
i are the query and expected an-907

swer for the ith query in l and l′, respectively, 1(·)908

is the indicator function, and M(·) is the LLM’s909

prediction function.910

We first show the crosslingual consistency be-911

tween any language pairs when the model is pre-912

trained for 400K steps. Figure 9 presents the re-913

sults. We can observe that the consistency is gen-914

erally low for most language pairs when the two915

involved languages do not share the same script,916

which is aligned with findings in the main text (cf.917

§4) that most non-Latin script languages have low918

consistency when compared with the predominant919

language, English. On the other hand, languages920

sharing the same script demonstrate higher similar-921

ity, for instance, Latin-script languages (fra_Latn,922

span_Latn, cat_Latn, tur_Latn, and eng_Latn) and923

Cyrillic-script languages (rus_Cyrl and ukr_Cyrl).924

This finding also aligns with §4, indicating that 925

shared script has a positive effect in improving the 926

crosslingual transfer and crosslingual consistency. 927

We further analyze the dynamics of crosslingual 928

consistency within script-specific language groups, 929

namely, Latin-script and Cyrillic-script languages, 930

to reveal how script similarity influences consis- 931

tency during pretraining. We average the consis- 932

tency scores of each language pair to compute the 933

per-group consistency. Figure 10 presents the re- 934

sults. We observe that consistency improves as pre- 935

training progresses, particularly among Latin-script 936

languages, which maintain higher mutual consis- 937

tency throughout pretraining. Similarly, Cyrillic- 938

script languages show slower but noticeable gains, 939

but with fluctuations – possibly because only one 940

pair of languages in this group. The overall con- 941

sistency across all languages plateaus earlier. The 942

results also align with the English-centric evalua- 943

tion presented in §4. In summary, the supplemen- 944

tary analysis indicates that shared script and likely 945

shared lexical structures contribute to greater align- 946

ment in factual recall across languages. 947

D Fact Recall and Frequencies 948

D.1 Overall Results 949

Figure 11 presents the evolution of the relationship 950

between fact frequency and correctness across 10 951

checkpoints during pretraining. We observe that a 952

linear relationship is gradually formed in the early 953

stages (i.e., 5K to 30K steps). This linear relation- 954

ship indicates that high-frequency facts are more 955

likely to be correctly recalled than low-frequency 956

ones. This trend stabilizes and sharpens as training 957

progresses. This emergent frequency–correctness 958

correlation underscores the model’s bias toward 959

memorizing frequently encountered facts. The 960

rapid formation of this pattern indicates that pre- 961

training quickly internalizes statistical regularities 962

in the data, which in turn guide factual recall. 963

D.2 Per-Language Results 964

Figure 12 further breaks down the same fre- 965

quency–correctness analysis by language, showing 966

the distribution of fact frequencies and recall accu- 967

racy in each of the 12 languages. Because Dolma 968

(Soldaini et al., 2024) is an English-centric dataset, 969

the fact frequencies for Latin-based languages are 970

more properly distributed. In contrast, languages of 971

other scripts have more uneven distributions – with 972

most facts occurring very few times or even not 973

12
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Figure 8: Factual accuracy (ACC) and crosslingual consistency (CO) for all languages.
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Figure 9: Crosslingual consistency of the model when
it is pretrained for 400K steps. The model exhibits
stronger consistency among languages that share the
same script. In particular, Latin-script languages main-
tain consistently higher mutual consistency, while lan-
guages with distinct scripts – such as jpn_Jpan – show
lower consistency with others.
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Figure 10: Dynamics of crosslingual consistency
throughout pretraining. We report the average con-
sistency among Latin-script languages, Cyrillic-script
languages, and all language pairs. While consistency
continues to improve among Latin-script languages
and Cyrillic-script languages, the overall consistency
plateaus in the early stages, which is similar to the
English-centric trends observed in Figure 2.

occurring at all (not shown in the figure). However, 974

the overall frequency–correctness correlation holds 975

across languages, which is aligned with the global 976

trend in §D.1. Notably, many languages have a sub- 977

stantial number of facts that are correctly predicted 978

at low frequencies – mainly due to crosslingual 979

transfer, for which we investigate in §6. 980

E Threshold Classifier Sensitivity 981

In order to analyze the sensitivity of the threshold- 982

based classifier from Section §5.3 to the chosen 983

threshold, we first plot the classifier accuracy for a 984

range of thresholds within t∗l ± 20%, for a step size 985

of 1%, shown in Figure 13. We observe that the 986

curves across languages are mostly flat, suggesting 987

13
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Figure 11: Relationship between fact frequency and factual recall for all languages in 10 checkpoints. High-
frequency facts are more likely to be correctly recalled than rare ones. This frequency–correctness correlation
emerges very early in pretraining (roughly 30K steps) and becomes more pronounced over time.
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Figure 12: Complete results of the relationship between fact frequency and the probability of correct factual recall
in each language.
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Figure 13: Classifier accuracy versus selected frequency threshold within a range of ±20% of t∗l , the chosen
threshold. The dotted line shows the actual chosen threshold.
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that the classifier accuracy is robust to the chosen988

threshold.989

To further confirm the classifier’s robustness, we990

randomly sample 90% of the original dataset per991

language and select a new t∗l based on this subsam-992

ple. We evaluate the classifier on the full dataset.993

The results for 5000 runs are shown in Table 3.994

We note that though the confidence intervals for995

some thresholds vary widely, the resulting accu-996

racy is very stable. Furthermore, the confidence997

intervals for the FP and FN counts, which are the998

focus of the analysis in Section §6 are narrow for999

most languages, with the exception of fra_Latn and1000

spa_Latn.1001

We hypothesize that frequency-based prediction1002

for these languages is confounded by two factors,1003

both of which boost transfer from other languages:1004

first, as we also noted in Section §5.3, fra_Latn and1005

spa_Latn benefit strongly from transfer from En-1006

glish and other Latin-script languages, second, our1007

analysis in Section §J indicates that fra_Latn and1008

spa_Latn are well-represented in the pre-training1009

data (cf. §6).1010

F Complete Similarity Progression1011

To supplement the representative trends shown in1012

Figure 7, we present the full set of similarity dy-1013

namics across all 12 languages, as show in Fig-1014

ure 14. These plots track the mean cosine sim-1015

ilarity between contextualized representations of1016

fact pairs (one in English and one in the target lan-1017

guage) across training checkpoints. We separately1018

report trends for SCLFP, UWLFP, and all fact1019

pairs, enabling a detailed view into how representa-1020

tion alignment evolves throughout pretraining.1021

Across languages and scripts, we consistently1022

observe that SCLFP exhibit greater similarity with1023

English than UWLFP. Since both SCLFP and1024

UWLFP are low-frequency facts, the similarity gap1025

indicates that UWLFP are correctly recalled be-1026

cause their representations are better aligned with1027

their English counterparts, while UWLFP in each1028

language are less similar compared to the English1029

counterparts and thus fail to benefit from crosslin-1030

gual transfer. One interesting case is ukr_Cryl,1031

where the gap between SCLFP and UWLFP is1032

not pronounced. We hypothesize that ukr_Cryl1033

benefits crosslingual transfer more from rus_Cryl1034

instead of English because of shared script. The1035

higher crosslingual consistency in the 400K-step1036

model (cf. Figure 9) and continuously improving1037

consistency in pretraining (cf. Figure 10) support 1038

our hypothesis. These full-language plots further 1039

strengthen our claim: pretraining on English ben- 1040

efits other languages not just through shared to- 1041

kens or frequency-based priors, but also through 1042

crosslingual transfer from representational align- 1043

ment, which goes beyond script boundaries. 1044

G Complete Learning Dynamics on 1045

SCLFPs 1046

We present the learning trajectories of SCLFPs 1047

across all languages in Figure 15. 1048

H Complementary Analysis of Facts 1049

To gain a deeper understanding of how factual 1050

knowledge in different languages benefits from 1051

English-centric pretraining, we conduct a comple- 1052

mentary analysis focusing on surface-level features 1053

of facts, particularly the overlap in object strings 1054

across languages. 1055

H.1 Same Object Effect 1056

We hypothesize that facts in a language l that share 1057

the same object string as their English counter- 1058

parts are more likely to benefit from transfer during 1059

pretraining. To investigate this, we report in Table 4 1060

the proportion of facts in each language that share 1061

the same object with English, grouped by SCLFP 1062

and non-SCLFP according to our threshold-based 1063

classification (cf. §5.3). 1064

We find that very few SCLFP share identical ob- 1065

jects with English. This is expected since SCLFP 1066

in each language have low frequencies.9 This 1067

finding, actually, further supports our claim that 1068

crosslingual transfer in SCLFP arises from deeper 1069

representational alignment (c.f. §6.3), not from 1070

trivial lexical overlap. In contrast, a substantial 1071

number of non-SCLFP (which are mostly high- 1072

frequency facts) do share the same object string 1073

with English, especially in Latin-script languages. 1074

To further understand the influence of object 1075

overlap, we select the subset of facts in each lan- 1076

guage whose English counterpart (i.e., same fact 1077

index) is correctly recalled by the model. These 1078

identical-object facts are strong candidates for 1079

crosslingual transfer from English via lexical align- 1080

ment. Figure 16 shows the distribution of these 1081

facts across relation types, along with the propor- 1082

tion of them that are correctly recalled in each 1083

9If a fact in a language has low frequency, it is very unlikely
that it shares the same object with its English counterpart.
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Figure 14: Complete results of mean cosine similarity for SCLFP, UWLFP, and all facts between each language
and English during pretraining. All languages exhibit higher similarity for SCLFP compared to UWLFP, indicating
crosslingual transfer based on better aligned representations.
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Figure 15: Dynamics of learning on the SCLFPs (surprisingly correct low frequency predictions, i.e., FNs in Table
1) across all languages.
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Threshold Accuracy FP FN

Lang Orig. Mean 95% CI Orig. Mean 95% CI Orig. Mean 95% CI Orig. Mean 95% CI

ara_Arab 3485 3247 [953, 3485] 0.83 0.83 [0.82, 0.83] 0 0 [0, 3] 209 209 [208, 209]
cat_Latn 2506 2462 [2389, 2506] 0.63 0.63 [0.62, 0.63] 64 65 [64, 65] 384 383 [384, 384]
ell_Grek 483 641 [268, 1692] 0.84 0.84 [0.84, 0.84] 2 2 [0, 4] 190 190 [189, 192]
eng_Latn 108 83 [1, 146] 0.82 0.82 [0.82, 0.82] 205 207 [203, 213] 7 6 [1, 9]
fra_Latn 19 16 [5, 25] 0.64 0.64 [0.63, 0.64] 302 318 [290, 361] 134 119 [77, 146]
jpn_Jpan 352 378 [326, 450] 0.82 0.82 [0.82, 0.82] 6 6 [4, 7] 212 212 [212, 215]
kor_Kore 402 376 [262, 402] 0.80 0.80 [0.80, 0.80] 1 1 [1, 3] 238 238 [237, 238]
rus_Cyrl 370 305 [201, 370] 0.72 0.72 [0.72, 0.72] 2 4 [2, 8] 330 328 [325, 330]
spa_Latn 12 11 [5, 59] 0.60 0.60 [0.60, 0.60] 304 325 [194, 365] 169 149 [109, 287]
tur_Latn 3068 3048 [2816, 3068] 0.64 0.64 [0.64, 0.64] 60 60 [60, 61] 373 373 [373, 373]
ukr_Cyrl 385 382 [368, 385] 0.79 0.79 [0.79, 0.79] 0 0 [0, 1] 248 248 [248, 248]
zho_Hans 502 494 [461, 502] 0.75 0.75 [0.75, 0.75] 7 8 [7, 10] 296 296 [295, 296]

Table 3: Mean threshold, accuracy, false positives, false negatives, over 5000 runs of selecting a threshold t∗l using a
randomly subsampled dataset. We include the results from selecting a threshold on the full dataset for comparison,
denoted “Orig.”.
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Figure 16: Distribution of identical-object facts across
relation types for each language. A cell labeled “17/24”
indicates that 17 out of 24 facts are correctly recalled,
where the 24 facts are those whose English counterparts
are also correctly predicted. Cells marked “0/0” indi-
cate that no such facts exist for that relation in the given
language. The results suggest that many languages,
particularly those using the Latin script, benefit from
sharing identical object strings with English.

language. The results confirm our expectations:1084

Latin-script languages show consistently high re-1085

call rates for identical-object facts across multiple1086

relation types. We also observe meaningful gains1087

in non-Latin-script languages, particularly in the1088

manufacturer relation, where object strings often1089

reference brand names directly borrowed from En-1090

glish (e.g., “Apple”). These findings further high-1091

light how both representational and lexical factors1092

contribute to multilingual factual recall.1093

I Effects of Excluding Identical Facts 1094

Across Languages 1095

In §5, we show that fact frequency can reliably pre- 1096

dict the factual recall accuracy. The frequency of 1097

each fact is approximated by counting the num- 1098

ber of documents where the subject and object 1099

strings of a fact co-occur. Although this measure 1100

has been widely used in previous research (Elazar 1101

et al., 2023; Merullo et al., 2025), there might be 1102

a further underlying confounding variable in the 1103

multilingual context. If two languages use the same 1104

subject/object strings for a fact, then the frequency 1105

of that fact will be the same in the two languages. 1106

This is particularly the case for Latin-script lan- 1107

guages. For example, both French and English use 1108

“France” and “Paris”, so the subject-object pair will 1109

be identical and the two languages will have the 1110

same frequency for this fact, even if sometimes 1111

the fact occurs in French text while sometimes in 1112

English text. In other words, many fact frequen- 1113

cies will be aggregated statistics over multiple 1114

script-sharing languages.10 Therefore, we want to 1115

investigate how the results will be affected if this 1116

confounding variable is excluded. 1117

We exclude facts in each language whose 1118

subject-object pairs match those in any other lan- 1119

guage (via string matching). This results in fewer 1120

facts in each language, but the remaining facts in 1121

each language are not affected by other languages 1122

(at least the languages considered in this study). 1123

Then we re-conduct the same investigation pre- 1124

10Of course, due to the shared tokens, every occurrence of
subject/object strings will affect the recallability of the fact
shared by multiple languages. Therefore, we simply use the
aggregated statistics for each language in the main text.

18



Language #SCLFP #object matched ratio #non-SCLFP #object matched ratio

tur_Latn 373 14 3.8% 824 149 18.1%
spa_Latn 169 6 3.6% 1028 239 23.2%
cat_Latn 384 11 2.9% 813 181 22.3%
fra_Latn 134 16 11.9% 1063 325 30.6%
ara_Arab 209 0 0.0% 988 0 0.0%
zho_Hans 296 0 0.0% 901 1 0.1%
rus_Cyrl 330 0 0.0% 867 17 2.0%
jpn_Jpan 212 0 0.0% 985 1 0.1%
ukr_Cyrl 248 0 0.0% 949 19 2.0%
kor_Kore 238 0 0.0% 959 1 0.1%
ell_Grek 190 0 0.0% 1007 20 2.0%

Table 4: Statistics of object agreement with English in SCLFP and non-SCLFP across languages. Many Latin-script
languages tend to have a higher proportion of identical objects in non-SCLFP compared to SCLFP.

sented §5.2 and §5.3.1125

We first present the per-language relationship1126

between fact frequency and factual recall for1127

five Latin-script languages (eng_Latn, spa_Latn,1128

cat_Latn, fra_Latn, tur_Latn) and two Cyrillic-1129

script languages (ukr_Cyrl, rus_Cyrl) in Figure 17.1130

We observe that, even though there are fewer facts1131

in some languages compared with Figure 12, where1132

identical facts are not excluded, the trend still re-1133

mains in each language: higher-frequency facts are1134

more likely to be correctly predicted.1135

We then present the frequency-based classifica-1136

tion for each language. Similar to the setting in1137

§5.3, the best threshold is selected by maximizing1138

the overall accuracy. Table 5 shows the results.1139

We observe that there are almost no changes for1140

languages that neither use Latin script nor Cyril-1141

lic script compared to Table 1. This is expected1142

since only a very tiny number of facts are removed1143

from these languages. On the other hand, we ob-1144

serve that there are some minor changes in Latin-1145

script and Cyrillic-script languages. These changes1146

are mainly in the absolute number of FP, FN, TP,1147

TN, and Total. The best threshold has almost not1148

changed at all except for spa_Latn, rus_Cyrl, and1149

ukl_Cyrl, indicating the robustness of classification1150

and similar frequency distribution before and after1151

removing the identical facts. Since we are inter-1152

ested in false negatives – facts with low frequencies1153

that are correctly predicted, we also compute the1154

agreement between false negatives before and after1155

the identical facts are removed. The overlapping1156

rate is more than 98% averaged across languages,1157

indicating that the identical facts have almost no1158

influence on the analysis presented in the main text.1159

J Multilingual Coverage in Dolma 1160

We estimate the coverage of Dolma for each lan- 1161

guage based on the frequency of token pairs. We to- 1162

kenize the GlotLID Corpus (Kargaran et al., 2023), 1163

a multilingual corpus comprising texts from di- 1164

verse sources, using DataTrove tokenizers (Penedo 1165

et al., 2024) specific to each language. From the 1166

tokenized output, we select the top four most fre- 1167

quent tokens that predominantly occur in one tar- 1168

get language but not in the others. We then com- 1169

pute the frequencies of all unique, non-repetitive 1170

token pairs formed from these top tokens within 1171

the Dolma corpus. The results are presented in Fig- 1172

ure 18. The low variance within each language’s 1173

boxplot indicates that the method offers a stable 1174

and reliable comparative measure of multilingual 1175

coverage. The figure reveals a substantial disparity 1176

in pair frequency across languages, ranging from 1177

high-resource languages such as French (fra_Latn) 1178

to low-resource ones like Ukrainian (ukr_Cyrl). 1179

K Per-Relation Dynamics Across 1180

Languages 1181

In this section, we analyze factual recall accuracy 1182

and crosslingual consistency at the level of indi- 1183

vidual relations across languages, enabling us to 1184

examine how factual knowledge of different re- 1185

lation types evolves over the pretraining progres- 1186

sion. We report the results for ara_Arab in Fig- 1187

ure 19, cat_Latn in Figure 20, ell_Grek in Fig- 1188

ure 21, spa_Latn in Figure 22, fra_Latn in Fig- 1189

ure 23, jpn_Jpan in Figure 24, kor_Kore in Fig- 1190

ure 25, rus_Cryl in Figure 26, tur_Latn in Figure 27, 1191

urk_Cryl in Figure 28, and zho_Hans in Figure 29. 1192
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Lang Threshold Accuracy FP FN TP TN Total

ara_Arab 3485 0.83 0 209 1 987 1197
cat_Latn 2506 0.60 17 359 25 549 950
ell_Grek 483 0.84 2 190 4 970 1166
eng_Latn 108 0.82 156 7 740 11 914
fra_Latn 19 0.62 221 134 436 152 943
jpn_Jpan 352 0.82 5 212 8 968 1193
kor_Kore 402 0.80 0 238 1 957 1196
rus_Cyrl 201 0.70 4 319 17 744 1084
spa_Latn 5 0.59 281 106 391 155 933
tur_Latn 3068 0.64 16 369 27 645 1057
ukr_Cyrl 219 0.78 2 238 3 838 1081
zho_Hans 502 0.75 7 296 17 872 1192

Table 5: Best threshold, accuracy, and error breakdown (false positives, false negatives, true positives, and true
negatives) for predicting factual recall correctness using fact frequency. For each language, we exclude facts whose
subject-object pairs match those in any other language (via string matching). The results closely mirror those in
Table 1, suggesting that identical subject-object facts across languages have minimal influence on the robustness of
frequency predicting factual recall correctness, even for Latin-based languages and Cyrillic-based languages, which
share many identical subject/objects for named entities.

We observe a similar trend as shown in §4: the1193

consistency in each relation is primarily driven by1194

whether the fact is correctly recalled in each lan-1195

guage l ̸= eng_Latn, since the corresponding fact1196

is almost always recalled in English.1197

The accuracy varies substantially across differ-1198

ent relations within each language, with particu-1199

larly large disparities in languages that use non-1200

Latin scripts. For example, ara_Arab has nearly1201

zero accuracy for place_of_birth relation.1202

L Experimental Environment and1203

Hyperparameters1204

All experiments are conducted on NVIDIA RTX1205

A6000 GPUs. For each fact in each language, we1206

use the prompt template provided in KLAR (Wang1207

et al., 2025). Each final query is accompanied by1208

three randomly selected demonstrations to enhance1209

pattern-matching capabilities, thereby facilitating1210

object extraction from the model’s response. We1211

use vLLM to generate responses for each query,1212

with generation parameters set to greedy decoding1213

and a maximum output length of 10 tokens.111214

11https://docs.vllm.ai/en/latest/
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Figure 17: Relationship between fact frequency and the probability of correct factual recall for five Latin-script
languages (eng_Latn, spa_Latn, cat_Latn, fra_Latn, tur_Latn) and two Cyrillic-script languages (ukr_Cyrl,
rus_Cyrl) when excluding facts with subject-object pairs that exactly match those in any other languages. While
shared script appears to influence the distribution of fact frequencies, a consistent trend remains across languages:
higher fact frequency is associated with a higher possibility of correct factual recall.
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Figure 18: Pair frequency distribution (log scale) for the top four most frequent language-specific tokens in the
Dolma corpus, measured across 12 languages.

21



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

capital_of
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

continent
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

country_of_citizenship
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

headquarters_location
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

instrument
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

language_of_work_or_name
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

languages_spoken
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

manufacturer
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

native_language
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

place_of_birth
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

place_of_death
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

religion
ara_Arab
eng_Latn (ref)

0
50

00
0

10
00

00

15
00

00

20
00

00

25
00

00

30
00

00

35
00

00

40
00

00

Checkpoint (steps)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
ns

ist
en

cy ara_Arab

Figure 19: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in ara_Arab.
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Figure 20: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in cat_Latn.
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Figure 21: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in ell_Grek.
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Figure 22: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in spa_Latn.
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Figure 23: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in fra_Latn.
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Figure 24: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in jpn_Jpan.
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Figure 25: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in kor_Kore.
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Figure 26: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in rus_Cyrl.
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Figure 27: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in tur_Latn.
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Figure 28: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in ukr_Cyrl.
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Figure 29: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in zho_Hans.
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