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Abstract

Large Language Models (LLMs) are capable
of recalling multilingual factual knowledge
present in their pretraining data. However, most
studies evaluate only the final model, leaving
the development of factual recall and crosslin-
gual consistency throughout pretraining largely
unexplored. In this work, we trace how fac-
tual recall and crosslingual consistency evolve
during pretraining, focusing on OLMo-7B as a
case study. We find that both accuracy and con-
sistency improve over time for most languages.
We show that this improvement is primarily
driven by the fact frequency in the pretraining
corpus: more frequent facts are more likely to
be recalled correctly, regardless of language.
Yet, some low-frequency facts in non-English
languages can still be correctly recalled. Our
analysis reveals that these instances largely ben-
efit from crosslingual transfer of their English
counterparts — an effect that emerges predomi-
nantly in the early stages of pretraining. We pin-
point two distinct pathways through which mul-
tilingual factual knowledge acquisition occurs:
(1) frequency-driven learning, which is dom-
inant and language-agnostic, and (2) crosslin-
gual transfer, which is limited in scale and
typically constrained to relation types involv-
ing named entities. We will release our code to
facilitate further research.

1 Introduction

Despite being predominantly trained on English-
centric data, LLMs exhibit surprisingly strong mul-
tilingual capabilities across a wide range of tasks
(Jiang et al., 2023; Touvron et al., 2023; Zhang
et al., 2024; Zhao et al., 2025). Notably, they
can recall factual knowledge in multiple languages
(Petroni et al., 2019; Jiang et al., 2020; Kassner
et al., 2021). However, these models frequently
exhibit crosslingual inconsistencies — answering a
factual query correctly in one language but failing
to do so in another (Qi et al., 2023; Chua et al.,

Probability of Correct Factual Recall (Accuracy) 100
Number of Facts (Total)
Number of Facts (Coﬁ'ect).

60

Number of Facts

40

Probability of Correct Factual Recall

o
N

20

0.0 0
10t 10° 10° 107
Frequency (log scale)

Figure 1: Relationship between fact frequency and fac-
tual recall in Catalan. High-frequency facts are more
likely to be correctly recalled, indicating the effect of
frequency-based learning. Meanwhile, the correct recall
of some low-frequency facts suggests the influence of
crosslingual transfer from other languages.

2025; Wang et al., 2025). Although bilinguals typi-
cally recall information more effectively when the
language of encoding matches the language of re-
trieval, they can usually recall factual knowledge
learned in one language using their other proficient
language (Marian and Neisser, 2000; Chung et al.,
2019) — highlighting a flexibility that contrasts with
the inefficiencies seen in LLMs. Understanding
this discrepancy requires deeper insight into how
multilingual factual knowledge is acquired.

While prior work has investigated mechanisms
of (multilingual) factual recall (Geva et al., 2023;
Zhao et al., 2024; Fierro et al., 2024; Liu et al.,
2025) and analyzed sources of crosslingual incon-
sistency (Qi et al., 2023; Wang et al., 2025), these
studies have largely focused on final models, draw-
ing conclusions solely from the end of pretraining.
As a consequence, the developmental process by
which LLMs acquire factual knowledge across lan-
guages remains poorly understood.

To address this gap, we trace the dynamics of
multilingual factual recall and crosslingual consis-
tency throughout pretraining. Rather than treat-
ing factual recall as a static outcome, we analyze
its emergence across checkpoints using OLMo-



7B (Groeneveld et al., 2024), an English-centric
decoder-only LLM pretrained on Dolma (Soldaini
et al., 2024). Our analysis evaluates both accuracy
within individual languages and consistency across
languages for facts that are parallel in all languages.

In addition, we investigate the key factors that
contribute to correct multilingual factual recall.
Prior work has shown that the frequency of an
instance can significantly influence performance
relating to it, including factual prediction (Razeghi
etal., 2022; Elazar et al., 2023; McCoy et al., 2024;
Merullo et al., 2025). Motivated by these findings,
we hypothesize that fact frequency in the pretrain-
ing corpus plays a central role in multilingual fac-
tual recall. To test this, we compute the frequency
of each fact and systematically link it to factual
recall across languages and pretraining stages.

We summarize the key findings of this paper:

(i) The capacity for multilingual factual re-
call develops progressively during pretrain-
ing (§4). English and languages distant from
English converge in early stages, while lan-
guages more similar to English (e.g., those
sharing the Latin script) continue to improve
with extended pretraining.

(i) The correctness of factual recall is largely
explained by a single factor: fact fre-
quency in the pretraining corpus (§5). High-
frequency facts are consistently recalled more
accurately across languages (e.g., Catalan
in Figure 1). In addition, this frequency-
correctness relationship emerges early and
strengthens throughout pretraining.

(iii) Some low-frequency facts in non-English
languages are recalled correctly mainly via
crosslingual transfer (§6). High-frequency
counterparts in English mainly enable these
cases. However, the scale of transfer is limited
and constrained to certain relation types.

2 Related Work

Multilingual Factual Recall and Consistency
Several studies have investigated the factual knowl-
edge stored in models through knowledge probing.
Jiang et al. (2020) and Kassner et al. (2021) assess
factual recall by translating English prompts into
multiple languages, revealing notable performance
disparities across languages. Yin et al. (2022) ex-
tend this analysis to region-specific commonsense

knowledge, finding that the best-performing lan-
guage for querying facts about a country (e.g.,
China) is often English rather than its native
language (e.g., Chinese), indicating the English-
centric bias of models. Building on multilingual
probing studies, Qi et al. (2023) and Aggarwal
et al. (2025) investigate crosslingual consistency
and find that LLMs often return different answers
for equivalent queries in different languages. Wang
et al. (2025) further explore the underlying causes
of these inconsistencies through mechanistic inter-
pretability, revealing how internal representations
contribute to divergent outputs across languages.
Following this line of research, our work traces
the development of factual recall and crosslingual
consistency throughout pretraining, shedding light
on how these capabilities emerge and evolve.

Pretraining Trajectory Investigation Several
studies have investigated how Transformer-based
models (Vaswani et al., 2017) acquire linguistic or
task-specific knowledge during different phases of
pretraining, in both monolingual (Choshen et al.,
2022; Xia et al., 2023; Miiller-Eberstein et al.,
2023; Chen et al., 2024) and multilingual settings
(Blevins et al., 2022; Wang et al., 2024). A con-
current study by Merullo et al. (2025) most closely
resembles our work; they demonstrate that fact fre-
quency is a strong predictor of both factual recall
and the emergence of linear factual representations
(e.g., subject-to-object mappings via linear transfor-
mation) (Hernandez et al., 2024). Howeyver, their
analysis is conducted in a purely monolingual con-
text. In contrast, our work examines multilingual
factual knowledge acquisition and shows that while
fact frequency remains a key driver of factual re-
call, crosslingual knowledge transfer provides ad-
ditional — albeit limited — benefits in enhancing
multilingual factual recall.

3 Experiment Setups
3.1 Languages and Model Checkpoints

Languages We consider 12 languages that
span 6 language families and use 7 different
scripts: Arabic (ara_Arab), Catalan (cat_Latn),
Chinese (zho_Hans), English (eng_Latn),
French (fra_Latn), Greek (ell_Grek), Japanese
(jpn_Jpan), Korean (kor_Kore), Russian
(rus_Cyrl), Spanish (spa_Latn), Turkish
(tur_Latn), Ukrainian (ukr_Cyrl).!

'Some languages, e.g., Ukrainian, are much less resourced
than others, according to our exploration of the multilingual



Model Checkpoints We use the open-source
OLMo-1.7 7B model (Groeneveld et al., 2024)
(referred to as OLMo) in our study. OLMo is a
decoder-only LLM pretrained on Dolma (Soldaini
et al., 2024), an English-centric corpus with some
multilingual coverage. To capture the dynamics of
factual knowledge acquisition throughout pretrain-
ing, we select model checkpoints at two granular-
ities. Based on preliminary experiments showing
that changes are more pronounced in the early pre-
training stages, we include checkpoints every 1,000
steps from step O to step 50,000. Beyond 50,000
steps, we consider every 5,000 steps up to step
400,000. This setup enables us to trace the model’s
development from initialization to a mature stage
with good multilingual capability (trained on ap-
proximately 1.7T tokens).

3.2 Multilingual Factual Dataset

We use KLAR (Wang et al., 2025), a multilingual
factual knowledge probing dataset, for our investi-
gation. We use 1,197 facts grouped into 12 relation
categories (cf. Table 2 in §A). Each fact is repre-
sented as a triple of subject, relation, and object.
KLAR also provides a prompt template for each re-
lation in each language, structured as “<Question>
The answer is:”. For example, for triple (France,
capital, Paris), the template will then be expanded
as “Where is France’s capital located? The answer
is.”, with expected answer “Paris” in English. All
facts and prompt templates are available in all 12
languages. We therefore transform each fact into a
query qﬁ with expected answer oé in language [; for
each fact 4, ¢/ and ¢/ are translations of the same
query in languages [ and I’. We denote the resulting
set of queries as Q.

3.3 Evaluation

To evaluate consistency, we compute the overlap-
ping ratio of correct predictions, following Jiang
etal. (2020) and Wang et al. (2025). Since OLMo is
an English-centric model due to the predominance
of English in Dolma’s documents (cf. §J), we treat
English as a reference language and compute how
consistent the predictions from other languages are
compared to predictions made in English:?
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coverage of Dolma (Soldaini et al., 2024) (cf. §J).
2We present a complementary investigation of holistic
crosslingual consistency across all language pairs in §C.

where qfng and O‘an are the query and expected
answer for the ith query in English, 1(-) is the
indicator function, and M(-) is the LLM’s pre-
diction function. When assessing correctness
(M(qf) = oé), we rely on the model’s complete
generation, checking whether it contains oé. We
depart here from previous work (Geva et al., 2023;
Qi et al., 2023; Hernandez et al., 2024) that just
checks the first predicted token, which can be
misleading due to ambiguity and tokenization is-

3 We also compute the per language accu-

sues.
QI —
racy: ACC(l) = %@b_oi) which allows us

to trace how well factual recall is performed.

3.4 Fact Frequencies

We approximate a fact’s frequency by counting
the number of documents where its subject and
object co-occur in the pretraining corpus. This co-
occurrence-based approximation has been widely
used and shown to be reliable (Elsahar et al., 2018;
Elazar et al., 2023; Merullo et al., 2025; Liu et al.,
2025). For some languages, this approximation is
fairly accurate due to the uniqueness of their scripts
— for example, the subject-object pair (£ [E, FL22)
in Chinese is unlikely to appear in texts from other
languages. However, ambiguity arises in languages
that share scripts, such as English and French. The
same pair (France, Paris), for instance, may appear
in either language, resulting in an aggregated fre-
quency count shared across both. We analyze the
impact of this identical-fact effect and show that it
does not compromise the robustness of our findings
(cf. §I). To efficiently obtain these co-occurrence
counts, we use the ElasticSearch API provided by
WIMBD (Elazar et al., 2024), a tool designed for
scalable search and frequency analysis over large
corpora.* All fact frequencies in our analysis are
computed over the Dolma v1.7 corpus (Soldaini
et al., 2024) used to pretrain OLMo, by measuring
the number of subject-object co-occurrences for
each fact in KLAR.

4 Multilingual Factual Recall Dynamics

We begin our analysis by tracing how factual re-
call performance evolves throughout pretraining

Even though the first token is correct, the final prediction
can be wrong because the object is split into multiple tokens.
For example, “Antwerp” and “Antananarivo” share the same
first token “Ant”. It is therefore ambiguous which city the
model is trying to generate based on just the token “Ant”.

*A public demo of WIMBD is available at: https://
wimbd.apps.allenai.org/.
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Figure 2: Factual accuracy (ACC) and crosslingual consistency (CO). While factual knowledge is rapidly acquired
during the early stages of pretraining and is reasonably high in many languages, a substantial performance gap
remains between English and most other languages, highlighting the limitations of crosslingual knowledge transfer.

across different languages. Specifically, we ex-
amine both accuracy and crosslingual consistency
at each checkpoint of OLMo (cf. §3.1) using the
KLAR dataset. Figure 2 summarizes these results
for eight languages (see §B for full results).

Crosslingual consistency is tightly coupled with
non-English performance. We observe that the
trajectory of crosslingual consistency in each lan-
guage | = eng_Latn closely mirrors its own factual
accuracy throughout pretraining. This suggests that
consistency is primarily driven by whether the fact
is correctly recalled in /, which almost always im-
plies that it is also recalled in English. The implica-
tion is twofold. (1) For non-English languages, the
consistency of a language (CO) is effectively gated
by its performance (ACC). (2) The limited capabil-
ity of the model to transfer knowledge from English
to other languages, referred to as the crosslingual
knowledge barrier (Chua et al., 2025), is a persis-
tent problem throughout pretraining.

Factual knowledge is acquired rapidly in early
pretraining phases. We observe that factual re-
call performance (ACC) improves very quickly in
the early stages of pretraining for many languages.
For example, English reaches approximately 80%
accuracy after only 50K steps (roughly 209B to-
kens), with minimal gains beyond that point. This
indicates that factual knowledge is acquired rapidly
early and does not substantially benefit from fur-
ther pretraining steps. While longer pretraining is
known to improve other capabilities of LLMs (Ka-
plan et al., 2020; Le Scao et al., 2022; Xiong et al.,
2024), factual recall appears to rely on simpler
mechanisms gained in early-stage training, likely
tied to memorization of frequent co-occurrences,
for which we give empirical evidence in §5.

Script plays a more important role than lan-
guage family in sustained improvements. Lan-
guages such as ara_Arab, jpn_Jpan, and kor_Kore,
which neither use the Latin script nor belong to
the Indo-European family, reach early saturation in
performance — typically even before 2K steps. In
contrast, Latin-script languages such as cat_Latn,
fra_Latn, and spa_Latn, continue to improve with
more training steps. Interestingly, ell_Grek, de-
spite being an Indo-European language, saturates
early as well, whereas tur_Latn, from the Turkic
family, benefits from extended pretraining. This
pattern suggests that surface features like script
similarity are more influential for possible crosslin-
gual knowledge transfer than deeper typological
relationships, as we further investigate in §6.

5 Fact Frequency As Predictor

A notable observation in §4 is that factual recall
performance (ACC) rapidly converges for many
languages, including English. This suggests that
the model acquires much of its factual knowledge
in the early stages of pretraining and is able to re-
call it reliably when appropriately prompted (cf.
§3.2). We hypothesize that this behavior reflects
a form of memorization, where frequent exposure
to specific facts in the pretraining corpus enables
the model to retrieve them accurately. To investi-
gate this, we approximate the frequency of all facts
in the KLLAR dataset (cf. §3.4) and analyze the
relationship between frequency and factual recall
performance both “globally” — across all languages
—and “locally” — within individual languages.

5.1 Global Results Across All Languages

We analyze the relationship between fact frequency
(in log scale) and probability of correct factual re-
call across six OLMo checkpoints: 5K, 10K, 30K,
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Figure 3: Relatiohship between fact frequéncy and the probability of correct factual recall. A consistent upward
trend across individual languages indicates that higher-frequency facts are more likely to be recalled by the model.
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Figure 4: Relationship between fact frequency and
factual recall for all languages and six pretraining
checkpoints. High-frequency facts are more likely to
be correctly recalled than rare ones. This frequency-
correctness correlation emerges early in pretraining and
becomes more pronounced over time.

50K, 100K and 400K. The results are displayed in
Figure 4. Results for more checkpoints are reported
in §D.1.

Fact frequency strongly predicts factual recall
performance. At the 400K-step checkpoint (cor-
responding to approximately 1.7T tokens), we ob-
serve a strong positive correlation between the fact
log frequency and the probability of correct fac-
tual recall, with a Pearson correlation coefficient
of r = 0.93 (p < 0.001). This indicates a robust
linear relationship between the two variables and
supports our hypothesis that fact frequency in the
pretraining corpus is a key determinant of factual
recall performance across languages.

This correlation emerges early in pretrain-
ing. While the 5K-step and 10k-step checkpoints
(around 20B and 41B tokens, respectively) show
weak correlation, the 30K-step checkpoint (around
125B tokens) has Pearson coefficients » = 0.95, in-
dicating strong correlation. Together with the high
factual recall accuracy observed in early check-
points (cf. Figure 2), these results suggest that the

model is exposed to and memorizes many high-
frequency facts early in pretraining, enabling accu-
rate recall even before large-scale exposure, aligned
with findings from Merullo et al. (2025).

5.2 Analysis per Language

We further investigate whether the relationship be-
tween fact frequency and factual recall accuracy
holds consistently across individual languages. We
focus on the 400k-step checkpoint.

High-frequency facts are more likely to be
correctly recalled within individual languages.
Figure 3 shows the distribution of fact frequencies
and corresponding factual recall probabilities for 8
representative languages (results for additional lan-
guages are in §D.2). Across all cases, we observe a
clear trend: facts that occur more frequently in the
pretraining corpus are more likely to be correctly
recalled. This pattern is not limited to English; lan-
guages such as rus_Cyrl exhibit particularly strong
effects — for instance, when fact frequency exceeds
103, the model recalls the fact with near-perfect
accuracy. Similar trends are observed in other lan-
guages as well, suggesting that fact frequency plays
a consistently central role in determining factual
recall performance across languages.

5.3 Recall Prediction with Frequencies

We observed in §5.2 that the relationship between
fact frequency and factual recall holds consistently
across individual languages. This naturally leads
to a further question: Can the recallability of a
fact be reliably predicted solely based on its fre-
quency within a given language? To answer this,
we construct a simple frequency-based classifier
for each language and evaluate its effectiveness.
Again, we focus on the 400k-step checkpoint.
Formally, for each language [, we define a
dataset D; = {(f},y))}Y,, where f} € Z>g



Lang Threshold Accuracy FN
ara_Arab 3485 0.83 209
cat_Latn 2506 0.63 384
ell_Grek 483 0.84 190
eng_Latn 108 0.82 7
fra_Latn 19 0.64 134
jpn_Jpan 352 0.82 212
kor_Kore 402 0.80 238
rus_Cyrl 370 0.72 330
spa_Latn 12 0.60 169
tur_Latn 3068 0.64 373
ukr_Cyrl 385 0.79 248
zho_Hans 502 0.75 296

Table 1: Best threshold, accuracy, and false negatives
when using fact frequency as a predictor of factual recall.
We interpret FN as surprising correct low-frequency
predictions (SCLFP) — predictions that are correct even
though the underlying fact frequency is low. Good ac-
curacy on assessing fact frequency as a predictor for
correct fact recall is achieved for most languages with
this classifier as shown in column “Accuracy”.

is the frequency of fact ¢, and yf e {0,1} in-
dicates whether the model correctly recalled the
fact (1 if correct, 0 otherwise). Zx is the set of
positive integers including 0. We then define a
threshold-based classifier 1! ( f) for each language

1, iff>t
as: hi(f) =< iff = _ . The optimal thresh-
0, otherwise

old ¢} in each language is selected to maximize
classification accuracy:

N
1
tj = arg max N Z 1 (hfg(le) = yi)
i=1

tGZZO

where 1(-) is the indicator function. To better un-
derstand the classification behavior, we also com-
pute the number of false negatives (FN) under
the optimal threshold, as these facts are also cor-
rectly predicted but with low frequencies.’ Table 1
presents the classification performance.

Fact frequency serves as a strong predictor of
factual recall for many languages. Across all
languages, the threshold-based classifier achieves
accuracy above 0.6, indicating performance much
better than random guessing. A closer inspec-
tion reveals that all languages with relatively lower
accuracy, i.e., fra_Latn, spa_Latn, tur_Latn, and
cat_Latn, use the Latin script, with no exceptions.

3Other error types are not the primary focus of our further
analysis presented in the main content. For example, the cause
of false positives may be due to (1) insufficient exposure to
the fact despite its high frequency, or (2) sensitivity to the
specific prompt used for evaluation. We present an analysis of
the classifier in §E and complete error breakdown in §1.

In contrast, languages using non-Latin scripts con-
sistently achieve higher accuracy.® We hypothe-
size that this pattern stems from extensive crosslin-
gual transfer from English to other Latin-script lan-
guages. As a result, many low- or mid-frequency
facts in these languages may still be correctly re-
called, likely due to shared vocabulary and lexical
overlap, as also shown by Qi et al. (2023). This
transfer effect tends to shift the optimal classifica-
tion threshold downward, enabling the threshold-
based classifier to correctly predict low-frequency
facts more often than expected.

All languages but English exhibit large false
negative rates. This is particularly clear in lan-
guages using non-Latin scripts, such as ara_Arab
and ukr_Cyrl, where the classifier fails to capture
many low-frequency facts that are in fact recalled
correctly by the model. Even in Latin-script lan-
guages — where the accuracy is relatively lower than
in other languages due to the reasons noted above —
we still observe a substantial number of false nega-
tives. English stands out as the only language with
few false negatives, because of the generally high
fact frequencies. This consistent trend across lan-
guages suggests that many low-frequency facts are
correctly recalled, motivating a closer examination
of such cases. We further investigate them in §6.

6 Investigation of Transfer Effect

We observed a substantial number of false nega-
tives when using frequency as a predictor in §5.3,
particularly for languages that use non-Latin scripts.
This is counterintuitive given the strong role fre-
quency typically plays in factual recall. We hy-
pothesize that these cases are due to the crosslin-
gual transfer effect — factual knowledge is pri-
marily learned in English and is successfully trans-
ferred to other languages. In the following sections,
we present a detailed analysis of these false neg-
atives identified in §5.3 — which we will refer to
as surprisingly correct low-frequency predictions
(SCLFPs).

6.1 Relation Type Distribution

We hypothesize that facts that involve named en-
tities or shared vocabulary are easier to transfer
across languages — e.g., the subject-object pair
France-Paris is easy to transfer from English to
French since the two named entities are identical

®We conduct a sensitivity analysis on the classifier in §E
and show it is more robust in non-Latin-script languages.
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across 8 languages. Crosslingual transfer emerges early in pretraining and continues to strengthen over time.
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Figure 6: Distribution of SCLFPs (surprisingly correct
low frequency predictions) across relation types for each
language. High SCLFP values are concentrated on
relation types that involve only a small set of candidates
— which are generally named entities.

in English and French. This intuition is grounded
in how humans often rely on lexical similarity and
recognizable entities when transferring knowledge.
To investigate this, we group SCLFPs in each lan-
guage by their relation type, as shown in Figure 6.

SCLFPs are concentrated in relation types in-
volving named entities. This trend is especially
pronounced in relations with a limited set of possi-
ble candidates, such as continent and religion.
Languages that use a non-Latin script also benefit
from named entity transfer, e.g., in instrument
and manufacturer relations. This observation
aligns with prior work showing that named entities
are more easily transferred across script boundaries,
particularly in encoder-only models (Imani et al.,
2023; Liu et al., 2024a).

Latin-script languages benefit more broadly
from crosslingual transfer. Compared to lan-
guages using other scripts, languages writ-
ten in Latin script receive transfer benefits
across a wider range of relations, such as
country_of_citizenship. This is expected, as

many Latin-script languages have substantial vo-
cabulary overlap, leading to greater token-level sim-
ilarity. Such overlap enables the transfer of iden-
tical or lexically similar entities — e.g., “Bulgaria”
in cat_Latn and “Bulgaristan” in tur_Latn. More-
over, higher token-level similarity in the context
during pretraining can also facilitate the alignment,
enhancing entity transfer (cf. §6.3).

6.2 Learning Progression

As shown in §4, the model acquires a substan-
tial amount of factual knowledge during the early
stages of pretraining. This raises a natural question:
Is crosslingual knowledge transfer similarly con-
centrated in the early stages, or does it continue
throughout pretraining? To explore this, we ex-
amine the learning trajectories of SCLFPs across
languages. Figure 5 illustrates how recall factual
accuracy for SCLFPs evolves over pretraing check-
points for 8 languages (see full results in §G).

Extensive crosslingual transfer occurs during
early pretraining. Across all languages, factual
recall accuracy for SCLF Ps rapidly improves dur-
ing the initial stages of pretraining. This trend is
especially pronounced in languages that use non-
Latin scripts. For example, ara_Arab, ell_Grek,
and Kor_Kore reach over 60% accuracy within
the first 20K steps, after which their performance
plateaus or grows slowly, similar to the trend ob-
served for in §4. These findings suggest that
crosslingual transfer is not merely an emergent
property of the final model, but rather a phe-
nomenon that develops early in pretraining.

Many languages continue to benefit from trans-
fer throughout pretraining. This is especially
the case for languages using the Latin script, such
as spa_Latn, which display a more gradual and
continuous improvement. As discussed in §6.1,



these languages benefit from crosslingual transfer
across a broader range of relations, facilitated by
extensive lexical overlap with other Latin-script
languages. This broader scope of transferable con-
tent contributes to the prolonged learning curve.
We also observe that rus_Cyrl and zho_Hans bene-
fit from continued improvements over time, which
could be attributed to the comparatively larger rep-
resentation of Russian and Chinese texts in the pre-
training corpus (cf. §J). Notably, ukr_Cyrl exhibits
a learning curve that rapidly and closely aligns
with rus_Cyrl, suggesting that transfer also occurs
between other script-sharing languages (we show
their consistency continues to improve in §C).

6.3 Similarity Dynamics

To better understand why certain languages, partic-
ularly those that do not use the Latin script, benefit
from knowledge acquired in English, we analyze
the evolution of cosine similarity between sentence-
level representations of prompts (cf. §3.2) or fact
pairs corresponding to SCLFPs during pretrain-
ing. Specifically, we create fact pairs of SCLFPs
for each language, where every pair contains one
prompt in that language and its counterpart in En-
glish. We then track the cosine similarity between
these paired representations across checkpoints.’
As a baseline, we also compute cosine similar-
ities for UWLFPs — unsurprisingly wrong low-
frequency predictions identified in our frequency-
based classification (cf. §5.2) — as well as for all
fact pairs in each language. Figure 7 illustrates
the progression of similarity scores over time for 6
languages (full results are available in §F).3

Similarity remains higher for SCLFPs than for
UWLFPs. Across all languages, we observe a
consistent trend: the cosine similarity for SCLFPs
quickly surpasses that of UWLFPs. While both be-
gin at comparable levels, a clear and sustained sep-
aration emerges after approximately 50K pretrain-
ing steps. This divergence suggests that the model
aligns the representations of SCLFPs with their En-
glish counterparts better than for UWLFPs — facts
that are similarly low-frequency but incorrectly
predicted. These findings offer direct evidence of

"We use the contextualized embedding of the final token
as the sentence-level representation. Representations are ex-
tracted at each layer, and we report the mean cosine similarity
computed by averaging similarities across all layers.

8To avoid inflated similarity, for each language, we filter
out fact pairs where the object strings in that language and
English are identical. Table 4 in §H provides statistics of fact
pairs containing identical objects across languages.
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Figure 7: Mean cosine similarity between sentence-level
representations of SCLFP, UWLFP, and all facts for
each language paired with English during pretraining.
All 6 languages exhibit consistently higher similarity for
SCLFP than for UWLFP, highlighting the emergence of
crosslingual transfer through representation alignment.

crosslingual knowledge transfer on SCLFPs, bene-
fiting from better alignment with English, spanning
both language and script boundaries.

Better alignment enables crosslingual transfer
but does not guarantee correct recall. The con-
sistently high similarity in Latin-script languages
aligns with prior work showing that Transformer
models tend to cluster representations based on
shared script (Wen-Yi and Mimno, 2023; Liu et al.,
2024b). However, improved alignment alone is
not sufficient: for UWLF Ps, the model continues
to better align them in pretraining, yet this does
not lead to gains in recall accuracy (i.e., UWLFPs
are not learned). This suggests that beyond align-
ment, other factors — such as language-specific un-
derstanding/generation and instruction following
abilities — also play a critical role in factual recall.

7 Conclusion

We investigate how multilingual factual recall and
crosslingual consistency emerge during pretrain-
ing, using OLMo-7B as a case study. Our analysis
shows that factual recall improves early and is pri-
marily driven by fact frequency, regardless of lan-
guage. However, some low-frequency facts in non-
English languages can still be recalled, mainly due
to crosslingual transfer from English — especially
for relations that involve named entities. We there-
fore conclude that multilingual factual knowledge
is gained through both frequency-driven learning
and crosslingual transfer starting from early stages.



Limitations

While this work contributes to emerging efforts
in exploring multilingual knowledge acquisition
during the pretraining process and contributes to
understanding the mechanisms of acquisition, sev-
eral limitations should be acknowledged.

First, our study focuses on the checkpoints of
a single English-centric model as a case study.
This choice is primarily due to the scarcity of
open-source models that provide both intermediate
checkpoints and detailed documentation of their
pretraining corpora. We therefore echo Soldaini
et al. (2024) and encourage greater transparency in
the community, including the release of intermedi-
ate checkpoints and associated data. This would
facilitate further research into knowledge acquisi-
tion dynamics and help deepen our understanding
of LLM pretraining processes.

Second, our approximation of fact frequency in
certain script-sharing languages may lack full accu-
racy. As discussed in §3.4 and §I, this is due to the
difficulty in disambiguating language identity in
shared-script corpora. While our findings suggest
this issue does not significantly affect the overall
results, future work could improve precision by
applying language identification techniques, espe-
cially where computational resources permit.

Finally, although we analyze the dynamics of
multilingual knowledge acquisition and identify
two primary mechanisms — frequency-based learn-
ing and crosslingual transfer — we do not investi-
gate the conditions under which each mechanism is
most effective. Studying these underlying factors
requires controlled manipulation of the pretraining
corpus to observe causal effects, which falls beyond
the scope of this work. Nonetheless, we regard this
as a promising direction for future research.
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A KLAR Statistics

We present the statistics of the KLAR dataset
(Wang et al., 2025) in Table 2. KLAR is based
on BMLAMAI17 (Qi et al., 2023) with some mi-
nor modifications to improve the applicability to
autoregressive models. We use 1,197 facts grouped
into 12 relation categories.
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Relation Number of Facts
capital_of 212
continent 212
country_of_citizenship 60
headquarters_location 51
instrument 46
language_of_work_or_name 108
languages_spoken 104
manufacturer 35
native_language 130
place_of_birth 35
place_of_death 79
religion 125
total 1,197

Table 2: Number of facts grouped by relation types.

B Complete Factual Recall Dynamics

We present the complete factual recall dynamics in
terms of accuracy and crosslingual consistency at
each checkpoint of OLMo in Figure 8.

C Holistic Crosslingual Consistency

To complement the English-centric consistency
analysis in the main text, we investigate holis-
tic crosslingual consistency, which quantifies the
agreement of correct factual predictions across all
language pairs. Similar to §3.3, we compute the
overlapping ratio of correct predictions in any two
languages [ and [’

(M(gh) = ok AM(d))
(M(q}) = ol v M(ql)

’
%)

oé' )

where qll-/ and oé' are the query and expected an-
swer for the ith query in [ and I’, respectively, 1(-)
is the indicator function, and M(-) is the LLM’s
prediction function.

We first show the crosslingual consistency be-
tween any language pairs when the model is pre-
trained for 400K steps. Figure 9 presents the re-
sults. We can observe that the consistency is gen-
erally low for most language pairs when the two
involved languages do not share the same script,
which is aligned with findings in the main text (cf.
§4) that most non-Latin script languages have low
consistency when compared with the predominant
language, English. On the other hand, languages
sharing the same script demonstrate higher similar-
ity, for instance, Latin-script languages (fra_Latn,
span_Latn, cat_Latn, tur_Latn, and eng_Latn) and
Cyrillic-script languages (rus_Cyrl and ukr_Cyrl).
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This finding also aligns with §4, indicating that
shared script has a positive effect in improving the
crosslingual transfer and crosslingual consistency.

We further analyze the dynamics of crosslingual
consistency within script-specific language groups,
namely, Latin-script and Cyrillic-script languages,
to reveal how script similarity influences consis-
tency during pretraining. We average the consis-
tency scores of each language pair to compute the
per-group consistency. Figure 10 presents the re-
sults. We observe that consistency improves as pre-
training progresses, particularly among Latin-script
languages, which maintain higher mutual consis-
tency throughout pretraining. Similarly, Cyrillic-
script languages show slower but noticeable gains,
but with fluctuations — possibly because only one
pair of languages in this group. The overall con-
sistency across all languages plateaus earlier. The
results also align with the English-centric evalua-
tion presented in §4. In summary, the supplemen-
tary analysis indicates that shared script and likely
shared lexical structures contribute to greater align-
ment in factual recall across languages.

D Fact Recall and Frequencies

D.1 Overall Results

Figure 11 presents the evolution of the relationship
between fact frequency and correctness across 10
checkpoints during pretraining. We observe that a
linear relationship is gradually formed in the early
stages (i.e., SK to 30K steps). This linear relation-
ship indicates that high-frequency facts are more
likely to be correctly recalled than low-frequency
ones. This trend stabilizes and sharpens as training
progresses. This emergent frequency—correctness
correlation underscores the model’s bias toward
memorizing frequently encountered facts. The
rapid formation of this pattern indicates that pre-
training quickly internalizes statistical regularities
in the data, which in turn guide factual recall.

D.2 Per-Language Results

Figure 12 further breaks down the same fre-
quency—correctness analysis by language, showing
the distribution of fact frequencies and recall accu-
racy in each of the 12 languages. Because Dolma
(Soldaini et al., 2024) is an English-centric dataset,
the fact frequencies for Latin-based languages are
more properly distributed. In contrast, languages of
other scripts have more uneven distributions — with
most facts occurring very few times or even not
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lower consistency with others.
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Figure 10: Dynamics of crosslingual consistency
throughout pretraining. We report the average con-
sistency among Latin-script languages, Cyrillic-script
languages, and all language pairs. While consistency
continues to improve among Latin-script languages
and Cyrillic-script languages, the overall consistency
plateaus in the early stages, which is similar to the
English-centric trends observed in Figure 2.

occurring at all (not shown in the figure). However,
the overall frequency—correctness correlation holds
across languages, which is aligned with the global
trend in §D.1. Notably, many languages have a sub-
stantial number of facts that are correctly predicted
at low frequencies — mainly due to crosslingual
transfer, for which we investigate in §6.

E Threshold Classifier Sensitivity

In order to analyze the sensitivity of the threshold-
based classifier from Section §5.3 to the chosen
threshold, we first plot the classifier accuracy for a
range of thresholds within ¢ & 20%, for a step size
of 1%, shown in Figure 13. We observe that the
curves across languages are mostly flat, suggesting
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that the classifier accuracy is robust to the chosen
threshold.

To further confirm the classifier’s robustness, we
randomly sample 90% of the original dataset per
language and select a new ¢} based on this subsam-
ple. We evaluate the classifier on the full dataset.
The results for 5000 runs are shown in Table 3.
We note that though the confidence intervals for
some thresholds vary widely, the resulting accu-
racy is very stable. Furthermore, the confidence
intervals for the FP and FN counts, which are the
focus of the analysis in Section §6 are narrow for
most languages, with the exception of fra_Latn and
spa_Latn.

We hypothesize that frequency-based prediction
for these languages is confounded by two factors,
both of which boost transfer from other languages:
first, as we also noted in Section §5.3, fra_Latn and
spa_Latn benefit strongly from transfer from En-
glish and other Latin-script languages, second, our
analysis in Section §J indicates that fra_Latn and
spa_Latn are well-represented in the pre-training
data (cf. §6).

F Complete Similarity Progression

To supplement the representative trends shown in
Figure 7, we present the full set of similarity dy-
namics across all 12 languages, as show in Fig-
ure 14. These plots track the mean cosine sim-
ilarity between contextualized representations of
fact pairs (one in English and one in the target lan-
guage) across training checkpoints. We separately
report trends for SCLFP, UWLFP, and all fact
pairs, enabling a detailed view into how representa-
tion alignment evolves throughout pretraining.
Across languages and scripts, we consistently
observe that SCLFP exhibit greater similarity with
English than UWLFP. Since both SCLFP and
UWLFP are low-frequency facts, the similarity gap
indicates that UWLFP are correctly recalled be-
cause their representations are better aligned with
their English counterparts, while UWLFP in each
language are less similar compared to the English
counterparts and thus fail to benefit from crosslin-
gual transfer. One interesting case is ukr_Cryl,
where the gap between SCLFP and UWLFP is
not pronounced. We hypothesize that ukr_Cryl
benefits crosslingual transfer more from rus_Cryl
instead of English because of shared script. The
higher crosslingual consistency in the 400K-step
model (cf. Figure 9) and continuously improving
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consistency in pretraining (cf. Figure 10) support
our hypothesis. These full-language plots further
strengthen our claim: pretraining on English ben-
efits other languages not just through shared to-
kens or frequency-based priors, but also through
crosslingual transfer from representational align-
ment, which goes beyond script boundaries.

G Complete Learning Dynamics on
SCLFPs

We present the learning trajectories of SCLFPs
across all languages in Figure 15.

H Complementary Analysis of Facts

To gain a deeper understanding of how factual
knowledge in different languages benefits from
English-centric pretraining, we conduct a comple-
mentary analysis focusing on surface-level features
of facts, particularly the overlap in object strings
across languages.

H.1 Same Object Effect

We hypothesize that facts in a language [ that share
the same object string as their English counter-
parts are more likely to benefit from transfer during
pretraining. To investigate this, we report in Table 4
the proportion of facts in each language that share
the same object with English, grouped by SCLFP
and non-SCLFP according to our threshold-based
classification (cf. §5.3).

We find that very few SCLFP share identical ob-
jects with English. This is expected since SCLFP
in each language have low frequencies.’ This
finding, actually, further supports our claim that
crosslingual transfer in SCLFP arises from deeper
representational alignment (c.f. §6.3), not from
trivial lexical overlap. In contrast, a substantial
number of non-SCLFP (which are mostly high-
frequency facts) do share the same object string
with English, especially in Latin-script languages.

To further understand the influence of object
overlap, we select the subset of facts in each lan-
guage whose English counterpart (i.e., same fact
index) is correctly recalled by the model. These
identical-object facts are strong candidates for
crosslingual transfer from English via lexical align-
ment. Figure 16 shows the distribution of these
facts across relation types, along with the propor-
tion of them that are correctly recalled in each

°If a fact in a language has low frequency, it is very unlikely
that it shares the same object with its English counterpart.
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and English during pretraining. All languages exhibit higher similarity for SCLFP compared to UWLFP, indicating
crosslingual transfer based on better aligned representations.
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Threshold Accuracy FP FN
Lang Orig. Mean 95% CI Orig. Mean 95% CI Orig. Mean 95% CI Orig. Mean 95% CI
ara_Arab 3485 3247 [953,3485] 0.83 0.83 [0.82,0.83] 0 0 [0,3] 209 209 [208,209]
cat_Latn 2506 2462 [2389,2506] 0.63 0.63 [0.62,0.63] 64 65 [64,65] 384 383 [384,384]
ell_Grek 483 641 [268,1692] 0.84 0.84 [0.84,0.84] 2 2 [0,4] 190 190 [189, 192]
eng_Latn 108 83 [1,146] 0.82 0.82 [0.82,0.82] 205 207 [203,213] 7 6 [1,9]
fra_Latn 19 16 [5,25] 0.64 0.64 [0.63,0.64] 302 318 [290,361] 134 119 [77, 146]
jpn_Jpan 352 378 [326,450] 0.82 0.82 [0.82,0.82] 6 6 4,71 212 212 [212,215]
kor_Kore 402 376 [262,402] 0.80 0.80 [0.80, 0.80] 1 1 [1,3] 238 238 [237,238]
rus_Cyrl 370 305 [201,370] 0.72 0.72 [0.72,0.72] 2 4 [2,8] 330 328 [325,330]
spa_Latn 12 11 [5,59] 0.60 0.60 [0.60,0.60] 304 325 [194,365] 169 149 [109, 287]
tur_Latn 3068 3048 [2816,3068] 0.64 0.64 [0.64,0.64] 60 60 [60,61] 373 373 [373,373]
ukr_Cyrl 385 382 [368,385] 0.79 0.79 [0.79,0.79] 0 0 [0,1] 248 248 [248,248]
zho_Hans 502 494 [461,502] 0.75 0.75 [0.75,0.75] 7 8 [7,10] 296 296 [295,296]

Table 3: Mean threshold, accuracy, false positives, false negatives, over 5000 runs of selecting a threshold ¢; using a
randomly subsampled dataset. We include the results from selecting a threshold on the full dataset for comparison,

denoted “Orig.”.
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Figure 16: Distribution of identical-object facts across
relation types for each language. A cell labeled “17/24”
indicates that 17 out of 24 facts are correctly recalled,
where the 24 facts are those whose English counterparts
are also correctly predicted. Cells marked “0/0” indi-
cate that no such facts exist for that relation in the given
language. The results suggest that many languages,
particularly those using the Latin script, benefit from
sharing identical object strings with English.

language. The results confirm our expectations:
Latin-script languages show consistently high re-
call rates for identical-object facts across multiple
relation types. We also observe meaningful gains
in non-Latin-script languages, particularly in the
manufacturer relation, where object strings often
reference brand names directly borrowed from En-
glish (e.g., “Apple”). These findings further high-
light how both representational and lexical factors
contribute to multilingual factual recall.
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I Effects of Excluding Identical Facts
Across Languages

In §5, we show that fact frequency can reliably pre-
dict the factual recall accuracy. The frequency of
each fact is approximated by counting the num-
ber of documents where the subject and object
strings of a fact co-occur. Although this measure
has been widely used in previous research (Elazar
et al., 2023; Merullo et al., 2025), there might be
a further underlying confounding variable in the
multilingual context. If two languages use the same
subject/object strings for a fact, then the frequency
of that fact will be the same in the two languages.
This is particularly the case for Latin-script lan-
guages. For example, both French and English use
“France” and “Paris”, so the subject-object pair will
be identical and the two languages will have the
same frequency for this fact, even if sometimes
the fact occurs in French text while sometimes in
English text. In other words, many fact frequen-
cies will be aggregated statistics over multiple
script-sharing languages.'? Therefore, we want to
investigate how the results will be affected if this
confounding variable is excluded.

We exclude facts in each language whose
subject-object pairs match those in any other lan-
guage (via string matching). This results in fewer
facts in each language, but the remaining facts in
each language are not affected by other languages
(at least the languages considered in this study).
Then we re-conduct the same investigation pre-

00f course, due to the shared tokens, every occurrence of
subject/object strings will affect the recallability of the fact
shared by multiple languages. Therefore, we simply use the
aggregated statistics for each language in the main text.



Language #SCLFP #object matched ratio | #non-SCLFP  #object matched ratio
tur_Latn 373 14  3.8% 824 149 18.1%
spa_Latn 169 6 3.6% 1028 239 23.2%
cat_Latn 384 11 29% 813 181 22.3%
fra_Latn 134 16 11.9% 1063 325 30.6%
ara_Arab 209 0 0.0% 988 0 0.0%
zho_Hans 296 0 0.0% 901 1 01%
rus_Cyrl 330 0 0.0% 867 17 2.0%
jpn_Jpan 212 0 0.0% 985 1 01%
ukr_Cyrl 248 0 0.0% 949 19  2.0%
kor_Kore 238 0 0.0% 959 1 01%
ell_Grek 190 0 0.0% 1007 20 2.0%

Table 4: Statistics of object agreement with English in SCLFP and non-SCLFP across languages. Many Latin-script
languages tend to have a higher proportion of identical objects in non-SCLFP compared to SCLFP.

sented §5.2 and §5.3.

We first present the per-language relationship
between fact frequency and factual recall for
five Latin-script languages (eng_Latn, spa_Latn,
cat_Latn, fra_Latn, tur_Latn) and two Cyrillic-
script languages (ukr_Cyrl, rus_Cyrl) in Figure 17.
We observe that, even though there are fewer facts
in some languages compared with Figure 12, where
identical facts are not excluded, the trend still re-
mains in each language: higher-frequency facts are
more likely to be correctly predicted.

We then present the frequency-based classifica-
tion for each language. Similar to the setting in
§5.3, the best threshold is selected by maximizing
the overall accuracy. Table 5 shows the results.
We observe that there are almost no changes for
languages that neither use Latin script nor Cyril-
lic script compared to Table 1. This is expected
since only a very tiny number of facts are removed
from these languages. On the other hand, we ob-
serve that there are some minor changes in Latin-
script and Cyrillic-script languages. These changes
are mainly in the absolute number of FP, FN, TP,
TN, and Total. The best threshold has almost not
changed at all except for spa_Latn, rus_Cyrl, and
ukl_Cyrl, indicating the robustness of classification
and similar frequency distribution before and after
removing the identical facts. Since we are inter-
ested in false negatives — facts with low frequencies
that are correctly predicted, we also compute the
agreement between false negatives before and after
the identical facts are removed. The overlapping
rate is more than 98% averaged across languages,
indicating that the identical facts have almost no
influence on the analysis presented in the main text.
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J Multilingual Coverage in Dolma

We estimate the coverage of Dolma for each lan-
guage based on the frequency of token pairs. We to-
kenize the GlotLID Corpus (Kargaran et al., 2023),
a multilingual corpus comprising texts from di-
verse sources, using DataTrove tokenizers (Penedo
et al., 2024) specific to each language. From the
tokenized output, we select the top four most fre-
quent tokens that predominantly occur in one tar-
get language but not in the others. We then com-
pute the frequencies of all unique, non-repetitive
token pairs formed from these top tokens within
the Dolma corpus. The results are presented in Fig-
ure 18. The low variance within each language’s
boxplot indicates that the method offers a stable
and reliable comparative measure of multilingual
coverage. The figure reveals a substantial disparity
in pair frequency across languages, ranging from
high-resource languages such as French (fra_Latn)
to low-resource ones like Ukrainian (ukr_Cyrl).

K Per-Relation Dynamics Across
Languages

In this section, we analyze factual recall accuracy
and crosslingual consistency at the level of indi-
vidual relations across languages, enabling us to
examine how factual knowledge of different re-
lation types evolves over the pretraining progres-
sion. We report the results for ara_Arab in Fig-
ure 19, cat_Latn in Figure 20, ell_Grek in Fig-
ure 21, spa_Latn in Figure 22, fra_Latn in Fig-
ure 23, jpn_Jpan in Figure 24, kor_Kore in Fig-
ure 25, rus_Cryl in Figure 26, tur_Latn in Figure 27,
urk_Cryl in Figure 28, and zho_Hans in Figure 29.



Lang Threshold Accuracy FP FN TP TN Total

ara_Arab 3485 0.83 0 209 1 987 1197
cat_Latn 2506 0.60 17 359 25 549 950
ell_Grek 483 0.84 2 190 4 970 1166
eng_Latn 108 0.82 156 7 740 11 914
fra_Latn 19 0.62 221 134 436 152 943
jpn_Jpan 352 0.82 5 212 8 968 1193
kor_Kore 402 0.80 0 238 1 957 1196
rus_Cyrl 201 0.70 4 319 17 744 1084
spa_Latn 5 0.59 281 106 391 155 933
tur_Latn 3068 0.64 16 369 27 645 1057
ukr_Cyrl 219 0.78 2 238 3 838 1081
zho_Hans 502 0.75 7 296 17 872 1192

Table 5: Best threshold, accuracy, and error breakdown (false positives, false negatives, true positives, and true
negatives) for predicting factual recall correctness using fact frequency. For each language, we exclude facts whose
subject-object pairs match those in any other language (via string matching). The results closely mirror those in
Table 1, suggesting that identical subject-object facts across languages have minimal influence on the robustness of
frequency predicting factual recall correctness, even for Latin-based languages and Cyrillic-based languages, which
share many identical subject/objects for named entities.

We observe a similar trend as shown in §4: the
consistency in each relation is primarily driven by
whether the fact is correctly recalled in each lan-
guage | # eng_Latn, since the corresponding fact
is almost always recalled in English.

The accuracy varies substantially across differ-
ent relations within each language, with particu-
larly large disparities in languages that use non-
Latin scripts. For example, ara_Arab has nearly
zero accuracy for place_of_birth relation.

L Experimental Environment and
Hyperparameters

All experiments are conducted on NVIDIA RTX
A6000 GPUs. For each fact in each language, we
use the prompt template provided in KLAR (Wang
et al., 2025). Each final query is accompanied by
three randomly selected demonstrations to enhance
pattern-matching capabilities, thereby facilitating
object extraction from the model’s response. We
use VLLM to generate responses for each query,
with generation parameters set to greedy decoding
and a maximum output length of 10 tokens.'!

"https://docs.vllm.ai/en/latest/
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Figure 17: Relationship between fact frequency and the probability of correct factual recall for five Latin-script
languages (eng_Latn, spa_Latn, cat_Latn, fra_Latn, tur_Latn) and two Cyrillic-script languages (ukr_Cyrl,
rus_Cyrl) when excluding facts with subject-object pairs that exactly match those in any other languages. While
shared script appears to influence the distribution of fact frequencies, a consistent trend remains across languages:
higher fact frequency is associated with a higher possibility of correct factual recall.
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Dolma corpus, measured across 12 languages.
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Figure 19: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in ara_Arab.

capital_of continent country_of citi; location
— catLatn 5 - I cattatn cat Latn S cat tatn
; eng_tatn(en | B eng_Latn (e - eng_tatn(en | 3% ~ ang_Latn (ref)
& €
aatiatm | o cat Latn cattat | o0 cat Latn
& &
R TP P ] TP P i PRI P
Checkpoit tepe) Checkpoit atepe) Checkpait tepe) Checkpoint teps
instrument language_of work or_name languages_spoken
— cat tatn 2 - o — cat tatn e cat_Latn pe cat Latn
ng_Latn (ren) | 33 - - eng_tatn (ren) | 33 - eng tatn(ren) | 33 "~ ang_Latn (ref)
& & g
catlatn | o2t atiatm | o0 cattatn | i cat Latn
¥ & & &
A S s A A A : EAR T A A A AR A O O e
Checkpoint (steps) Checkpoint (steps) Checkpoint (steps) Checkpoint (steps)
native_language place_of birth place_of death religion
e ~ cat_Latn o + cat_latn 2. cat_Latn 35 cat_Latn
Latnren | 335 ~ eng_Latn(ren | 335 ~ eng_tatnen | 3 -~ eng_Latn (ref
i & EH ’
cattatm | o cattat | o cattatn | o cat_Latn
il s y s M v o
TP 77 77 A 7 77 PP 7 O

“Checkpoint (steps) “Checkpoint (steps) “Checkpoint (steps) Checkpoint (steps)

Figure 20: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in cat_Latn.
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Figure 21: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in ell_Grek.
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Figure 22: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in spa_Latn.
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Figure 23: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in fra_Latn.
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Figure 24: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in jpn_Jpan.

23




continent country of citi: location

Accuracy

Consistency

. - korKore i e = koF_KOFR i -+ kor_Kore i -+ kor_Kore
- <" ang_Latn(ref) | T ¢ ~ eng_tatniren | T3 A o eng Latn(ref) | 3% = eng_Latn (ref)
€ - € €
kor Kore | 51 korkore | 51 Kor Kore | 5.i% Kor_Kore
&y 83 LE ;
O S A AN I A A O & N goE S
Checkpaint (steps) Checkpaint steps) Checkpaint steps) heckpaint (steps
instrument language_of work_or_name languages_spoken
~ kor_Kore 3 . - korkKore i . +— kor_Kore i - kor_Kore
— eng_Latn(ren | 3% - eng_tatn(ren | §3 ~ engtatn(ref) | J00 eng_Latn (ref)
N < e € o
KorKore | o korkore | 510 kor Kore | 532 Kor_Kore
Sl ple S 8a -
IR B gl [Law
R EA . A ° LA A S O A 4 D A S O S A A g ° E AR S S &5
Checkpaint steps) Checkpaint steps) Checkpaint (steps) Checkpeint (steps)
native_language place_of birth place_of death religion
s e o kor_Kore 5 +— kor_Kore +— Kor_Kore S e xorKore
: - eng_Latn (ren) | 37 - eng_Latn (ref) — eng_tatn(ren | J% - - eng_Latn (ref)
: LE : @
3 kor_Kore Zos kor_Kore kor_Kore Zos kor_Kore
HIo. 8 LH
A P CF £ F S P S F S S F S . P
Checkpoint (steps) Checkpoint (steps) Checkpoint (steps) Checkpoint (steps)

Figure 25: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in kor_Kore.
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Figure 26: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in rus_Cyrl.
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Figure 27: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in tur_Latn.
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Figure 29: Factual accuracy (ACC) and crosslingual consistency (CO) for each relation type in zho_Hans.
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