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ABSTRACT

The discovery of therapeutics to treat genetically-driven pathologies relies on
identifying genes involved in the underlying disease mechanism. With billions
of potential hypotheses to test, an exhaustive exploration of the entire space of po-
tential interventions is impossible in practice. Sample-efficient methods based on
active learning or Bayesian optimization bear the promise of identifying targets
of interest using as few experiments as possible. However, genomic perturba-
tion experiments typically rely on proxy outcomes measured in biological model
systems that may not completely correlate with the results of interventions in hu-
mans. In practical experiment design, one aims to find a set of interventions that
maximally move a target phenotype via a diverse mechanism set to reduce the
risk of failure in future stages of trials. To that end, we introduce DiscoBAX —
a sample-efficient algorithm for genomic intervention discovery that maximizes
the desired movement of a phenotype while covering a diverse set of underlying
mechanisms. We provide theoretical guarantees on the optimality of the approach
under standard assumptions, conduct extensive experiments in synthetic and real-
world settings relevant to genomic discovery, and demonstrate that DiscoBax out-
performs state-of-the-art active learning and Bayesian optimization methods in
this task. Better methods for selecting effective and diverse perturbations in bio-
logical systems could enable researchers to discover novel therapeutics for many
genetically-driven diseases.

1 INTRODUCTION

Genomic experiments probing the function of genes under realistic cellular conditions are the cor-
nerstone of modern early-stage drug target discovery and validation; moreover, they are used to
identify effective modulators of one or more disease-relevant cellular processes. These experiments,
for example using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) (Jehuda
et al., 2018) perturbations, are both time and resource-intensive (Dickson & Gagnon, 2004; 2009;
DiMasi et al., 2016; Berdigaliyev & Aljofan, 2020). Therefore, an exhaustive search of the bil-
lions of potential experimental protocols covering all possible experimental conditions, cell states,
cell types, and perturbations (Trapnell, 2015; Hasin et al., 2017; Worzfeld et al., 2017; Chappell
et al., 2018; MacLean et al., 2018; Chappell et al., 2018) is infeasible even for the world’s largest
biomedical research institutes. Furthermore, to mitigate the chances of failure in subsequent stages
of the drug design pipeline, it is desirable for the subset of precursors selected in the target iden-
tification stage to operate on diverse underlying biological mechanisms (Nica et al., 2022). That
way, if a promising candidate based on in-vitro experiments triggers unexpected issues when tested
in-vivo (e.g., undesirable side effects), other lead precursors relying on different pathways might be
suitable replacements that are not subject to the same issues. Mathematically, finding a diverse set
of precursors corresponds to identifying and sampling from the different modes of the black-box
objective function mapping intervention representations to the corresponding effects on the disease
phenotype (§ 2). Existing machine learning methods for iterative experimental design (e.g., active
learning, Bayesian optimization) have the potential to aid in efficiently exploring this vast biological
intervention space. However, to our knowledge, there is no method geared toward identifying the
modes of the underlying black-box objective function to identify candidate interventions that are
both effective and diverse (§ 6).

To this end, we introduce DiscoBAX - a sample-efficient Bayesian Algorithm eXecution (BAX)
method for discovering genomic intervention sets with both high expected change in the target phe-

1



Under review as a conference paper at ICLR 2023

value of true distribution of function f

high

low

Diversity-seeking

Value-seeking

DiscoBax

number of samples

Av
er

ag
e 

va
lu

e 
pe

r s
am

pl
e

number of samples

%
of

m
od

es
 

co
ve

re
d

Figure 1: We compare DiscoBAX (orange star) to existing diversity-seeking (dark grey circle) and
value-seeking (light grey triangle) batch active learning policies. DiscoBAX aims to recover a maxi-
mally diverse set of interventions with values above a pre-defined threshold from a given underlying
distribution. This aim contrasts with value-seeking strategies focusing on maximizing value and
diversity-seeking strategies focusing on maximizing coverage. We expect DiscoBAX to design ge-
nomic experiments yielding high value findings that maximize mode coverage. As discussed in § 1,
the diversity of selected interventions is highly desirable to increase the chances that at least some
of these interventions will succeed in subsequent stages of the drug discovery pipeline.

notype and high diversity to maximize chances of success in the following stages of drug develop-
ment (Figure 1), which we formalize as set-valued maximization problem (Equation 4). After pro-
viding theoretical guarantees on the optimality of the presented approach under standard conditions,
we perform a comprehensive experimental evaluation in both synthetic and real-world datasets. The
experiments show that DiscoBAX outperforms existing state-of-the-art active learning and Bayesian
optimization methods in designing genomic experiments that maximize the yield of findings that
could lead to the discovery of new potentially treatable disease mechanisms.

Our contributions are as follows:

• We formalize the gene target identification problem (§ 3) and discuss limitations of existing
methods in addressing this problem (§ 6).

• We develop DiscoBAX - a sample-efficient BAX method for maximizing the rate of signif-
icant discoveries per experiment while simultaneously probing for a wide range of diverse
mechanisms during a genomic experiment campaign (§ 4).

• We provide theoretical guarantees that substantiate the optimality of DiscoBAX under stan-
dard assumptions (§ 4 and Appendix A).

• We conduct a comprehensive experimental evaluation covering both synthetic as well as
real-world experimental design tasks that demonstrate that DiscoBAX outperforms existing
state-of-the-art methods for experimental design in this setting (§ 5).

2 BACKGROUND AND NOTATION

Genomic experimentation is an early stage in drug discovery where geneticists assess the effect of
genomic interventions on moving a set of disease-relevant phenotypes to determine suitable drug
targets. In an abstract language, we assume a black-box function, f : G → R, that maps each gene,
g ∈ G, to the value, f(g), corresponding to the magnitude of phenotypic change under gene knock
out. The set, G, is finite, |G| = m < ∞, because there are a limited number of protein-encoding
genes in the human genome (≈ 20, 000) (Pertea et al., 2018), and is formalizable by either the
set of integers or one-hot vectors with dimension m. However, biologically informed embeddings,
X : G → X , are often preferred to represent genes for their potential to capture genetic, functional
relationships. We assume that gene embeddings, X(g) = x ∈ X ⊆ Rd, are d-dimensional variables,
with m distinct members, |X | = m, thus, we use f(g) and f(x) interchangeably.
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In drug development, a candidate target must meet several criteria to proceed to subsequent stages
in the development pipeline. For example, engaging the target – down- or up-regulating the gene –
must move the phenotype significantly in the desired direction. Such genes are called “top-movers”
of the phenotype. We can define the K top-movers for a given phenotype as members of the set,X =
{x1,x2, . . . ,xm}, corresponding to the K largest values of {f(x1), f(x2), . . . , f(xm)}. However,
each evaluation of the phenotype change, f , requires a CRISPR-Cas9 knockout experiment in the
lab, which makes exhaustive experimentation infeasible even for the most resourceful institutions.
Hence in practice, the experimentation budget is limited to T ≪ m experiments. Instead of choosing
the K top-movers (requiring phenotype change knowledge, f(x), for all inputs x ∈ X ), a more
practical approach is to form the subset, Xc ⊆ X , of genes that when knocked out lead to a change
in the phenotype, f(x), larger than a selected threshold value, c, i.e. Xc := {x ∈ X : f(x) ≥ c}.
Bayesian Algorithm Execution (BAX), proposed by Neiswanger et al. (2021), is a method to esti-
mate the output, OA := OA(f), of an algorithm, A, run on a function, f , by evaluating the function
on a budgeted set of inputs, {xi}Ti=1 ∈ X . Estimating a computable property is done by positing
a probabilistic model for f for estimating OA. Data is acquired by searching for the value x ∈ X
that maximizes the mutual information, I(Yx;OA | Dt), between the function output, Yx, and the
algorithm output, OA. BAX assumes that functional output instances, yx, of the function, f , can
be observed for each acquired x. The acquisition of data is sequential, where the information gain
maximization procedure leads to a dataset of observations, Dt := {(xi, yxi

)}t−1
i=1 , at step t ∈ [T ].

BAX can be used in conjunction with a number of algorithms, such as determining the superlevel
set (i.e. Xc), computing integrals, or finding local optima of f . Given that genomic experimentation
seeks to find a diverse set of genes corresponding to the modes of f , the BAX framework is well
suited to our task.

Concretely, BAX acquisition functions select points by maximizing the expected information gain
(EIG) obtained from each point about the output of the algorithm. Crucial to the applicability of
BAX to our problem setting is the tractability of accurate approximators of the EIG for algorithms
which, like the one we will propose, return a subset of their inputs. The exact computation of the
EIG for arbitrary algorithms is not generally tractable; however, Neiswanger et al. (2021) present
an approximation that only requires the computation of the entropy of the distribution over function
values conditioned on algorithm outputs.

EIGv
t (x,Dt) = H(fip(x)|Dt)− Ep(S|Dt)[H(fip(x)|S,Dt)]. (1)

When the model P is a Gaussian Process, both of these quantities are straightforward to compute:
the first is the entropy of the GP’s predictive distribution at x, and we can estimate the second by
conditioning a posterior on the values of elements in the set S. Monte Carlo approximation of this
quantity is possible when the model P does not permit a closed form.

3 PROBLEM SETTING

A primary challenge in the drug discovery pipeline is the discrepancy in outcomes between in vitro
experimental data and in vivo diseases. Where In vitro experimental data can quantify the effect
of a gene knockout on a specific aspect of a cellular phenotype in a petri dish, in vivo interactions
between the drug and the organism may lead to weaker effect sizes or toxicity. The drug discovery
pipeline consists of stages that start by testing a set of candidate interventions and then procedes by
selecting a subset of promising candidates to pass on for further development. For example, one
might test a broad range of gene knockouts on cell cultures and then select a subset to evaluate in
animal models. These trials can be expensive, so it is desirable to weed out potentially ineffective or
toxic candidates before this phase. To do so, researchers can leverage heuristic score functions that
predict the ”drug-like-ness” or likelihood of toxicity of a compound (Jiménez-Luna et al., 2020).
Considering a diverse set of candidate interventions, where each intervention applies to a different
mechanism in the disease phenotype, is also of use because it increases the likelihood of at least one
candidate succeeding in the subsequent phase.

We formalize this problem as an optimization problem where the optimizer has access to a measure-
ment correlated with the quantity of interest; however, it is noise augmented to emulate the primary
objective function. We formalize our search space (i.e., the set of available genes, though in princi-
ple this could be any set) G = {g1, . . . , gm}, for which we have some phenotype measurement fip.
We will primarily refer to fip as a function from features to phenotype changes, but it is equivalent
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to expressing fip as a function on genes G. The subscript ‘ip’ stands for intermediate phenotype
as it is not the actual clinical measurement caused by the gene knockout. Instead, it is a measure-
ment known to correlate with a disease pathology and is tractable in the lab setting (see Appendix B
for detailed formalization). In this paper, we will assume the phenotype change is a real number
fip(x) ∈ R; however, given suitable modeling assumptions, it is possible to extend our approach
to vector-valued phenotype readouts. We also define a function called disease outcome, fout, which
is composed of fip and factors outside the biological pathway, such as toxicity of a molecule that
engages with a target gene. The noise component, η, encapsulates all these extra factors.

We consider two tractable formulations of the relationship between the disease outcome, fout, and
the in vitro phenotype, fip.

1. Multiplicative Bernoulli noise:

fout(x; η) = fip(x)η(x) (2)

where η(x) ∈ {0, 1},∀x ∈ G, and η is sampled from a Gaussian process classification
model. This setting presents a simplified model of drug toxicity: η corresponds to a binary
indicator of whether or not the drug is revealed to exhibit unwanted side effects in future
trials. The multiplicative noise model assumes that the downstream performance of an
intervention is monotone with respect to its effect on the phenotype, conditional on the
compound not exhibiting toxicity in future trials. In our experiments, we assume η exhibits
correlation structure over inputs corresponding to a GP classification model, and construct
the kernel KX of this GP to depend on some notion of distance in the embedding space X .

2. Additive Gaussian noise:

fout(x; η) = fip(x) + η(x) η ∼ GP(0,KX ) (3)

where η : G → R is drawn from a Gaussian process model with kernel KX . In this case,
we assume that the unforeseen effects of the input x are sufficiently numerous to resemble
a Gaussian perturbation of the measured in vitro phenotype fip(x).

Notice that in the above models, noise is an umbrella term for everything that affects the fitness of
a target but is not part of the biological pathway from the gene to the phenotype change. Therefore,
the choice of noise distribution and how it affects the outcome is a modelling assumption that is
intended to capture coarse inductive biases known to the researcher. We additionally seek out a set
of interventions S ⊂ G of some fixed size |S| = k whose elements cause the maximum expected
change (for some noise distribution) in the disease outcome. In other words, we seek an interven-
tion that best moves the disease phenotype, which will be the best candidate drug. This goal is
distinct from either sampling the super-level-sets of fip or finding the set S with the best average
performance. Instead, we explicitly seek to identify a set of points whose toxicity or unintended
side effects will be minimally correlated, maximizing the odds that at least one will succeed in the
subsequent trials. We thus obtain a set-valued maximization problem

max
S⊆X

Eη

[
max
x∈S

fout(x; η)

]
. (4)

This compact formula is critical to attain our overarching objective: identifying interventions with
both a large impact on the phenotype of interest and with high diversity to increase the chance of
success of some of them in the subsequent steps of the drug discovery pipeline. An illustrative
example is provided in Figure 6 in the Appendix to provide further intuition into this formula.

The general formulation of this problem is NP-hard (Goel et al., 2010); therefore, we propose a
tractable algorithm that provides a constant-factor approximation of the optimal solution by lever-
aging the submodular structure of the objective under suitable modeling assumptions. Given such
an algorithm, our task is the active learning problem of optimally querying the function, fip, given a
limited number of trials, T , to accurately estimate the algorithm’s output on the ground-truth dataset.

Importantly, this formulation allows us to decouple modeling the measured phenotype, fip, from
modeling the noise η. For example, we might make the modeling assumption that we sample fip
from a GP with some kernel k1 and that η is a Bernoulli random variable indicating the safety of the
compound.
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4 METHOD

Various methods exist for efficiently optimizing black-box functions; however, our problem setting
violates several assumptions underlying these approaches. In particular, while we assume access to
intermediate readouts fip, the actual optimization target of interest fout is not observable. Further, we
seek to find a set of interventions that maximize its expected value under some modeling assump-
tions. These two properties render a broad range of prior art inapplicable. Active sampling methods
do not prioritize high-value regions of the input space. Bayesian optimization methods assume ac-
cess to the ground-truth function outputs (or a noisy observation thereof). And Bayesian algorithm
execution approaches based on level-set sampling may not sufficiently decorrelate the hidden noise
in the outcome.

We propose an intervention set selection algorithm in a Bayesian algorithm execution procedure
that leverages the modeling assumptions we characterize in the previous section. This method, Sub-
set Discovery via Bayesian Algorithm Execution (DiscoBAX), consists of two distinct parts. (1) a
subset-selection algorithm obtaining a 1− 1/e-factor approximation of the set that optimizes equa-
tion 3, and (2) an outer BAX loop that queries the phenotype readings to maximize the information
gain about the output of this algorithm. In Section 4.1, we present the idealized form of DiscoBAX
and show that it attains an approximately optimal solution. Our approach is easily adaptable to in-
corporate approximate posterior sampling methods, enabling its use with deep neural networks on
high-dimensional datasets. We outline this practical implementation in Section 4.2.

4.1 ALGORITHM

Subset maximization: we first address the problem of identifying a subset S ⊂ X which maximizes
the value Eη[maxx∈S fout(x; η)] As mentioned previously, the exact maximization of this objective
is intractable. To construct a tractable approximation, we propose a submodular surrogate objective,
under which the value of an intervention is lower-bounded by zero f∗

out(x; η) = max(fout(x; η), 0).
This choice is motivated by the intuition that any intervention with a negative expected value on
the phenotype is equally useless as it will not be considered in later experiment iterations, and
so we do not need to distinguish between harmful interventions. The resulting function f(S) =
Eη[maxx∈S f∗

out(x; η)] will be submodular, and thus Algorithm 1, the greedy algorithm, will provide
a 1− 1/e approximation of the optimal solution.

Observation 1. The score function f : P(G)→ R defined by

f(S) = Eη

[
max
x∈S

(
max(0, fout(x; η)

)]
(5)

is submodular.

We provide proof of this result in Appendix A. In practice, we can estimate the expected value in
this objective using Monte Carlo (MC) samples over the noise distribution η. Where MC sampling
is too expensive, a heuristic that uses a threshold to remove points whose values under η are too
highly correlated can also obtain comparable results with a reduced computational burden.

Algorithm 1 SubsetSelect (Multiplicative Noise)
Require: integer k > 0, set X , distribution
P (η), sampled f̂ip : X → R
S ← ∅
f̂out(x; η) := f̂ip(x)η(x)
for i < k do

S ← S ∪ {argmax
x∈X\S

Eη[ max
y∈S∪{x}

f̂out(x; η)]}

end for
return S

Algorithm 2 DiscoBAX
Require: finite sample set X , budget T , Monte

Carlo parameter ℓ ∈ N
D ← ∅
for i < T do

sample {f̂ip}ℓj=1 ∼ P (fip|D)
Sj ← SubsetSelect(f̂ip,j),∀j = 1, . . . , ℓ

xi ← argmaxx∈X EIGv(x, Sℓ
j=1)

query fip(xi)
D = D ∪ {(xi, fip(xi)}

end for
return D
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Active sampling: because we do not assume prior knowledge of the phenotype function fip, we
require a means of selecting potential interventions for querying its value at a specified input x. In
practice, running these experiments may incur a cost, and so it is desirable to minimize the number of
queries necessary to obtain an accurate estimate of the optimal intervention set. BAX (Neiswanger
et al., 2021) presents an effective active sampling approach to approximate the output of an algo-
rithm using a minimal number of queries to the dataset of interest. In our setting, this allows us to
approximate the output of Algorithm 1 over the set (X , fip(X )) without incurring the cost of evalu-
ating the effect of every knockout intervention in G. Concretely, this procedure takes as input some
probabilistic model P which defines a distribution over phenotype readings fip conditioned on the
data Dt seen so far and from which it is possible to draw samples.

A remark on the efficiency of subset maximization & active sampling— It has to be emphasized that
subset selection is a function called within each active sampling cycle. Hence, the above observation
about submodularity refers specifically to Algorithm 1 rather than its incorporation in Algorithm 2.
If sample efficiency is not a concern this algorithm could be run on the set of all inputs and provide
the exact solution.

We outline this procedure in Algorithm 2, and refer to Section 2 for additional details. In the batch
acquisition setting, we form batches of size B at each cycle by selecting the B points with the
highest EIG values.

4.2 PRACTICAL IMPLEMENTATION IN HIGH DIMENSIONS

When working with high-dimensional input features, we typically leverage Bayesian Neural Net-
works in lieu of Gaussian Processes. We sample from the parameter distribution via Monte Carlo
dropout (MCD) (Gal & Ghahramani, 2016), and rely on Monte Carlo simulation to estimate the
quantities introduced in Algorithm 2. In particular, the entropy of the posterior distribution is ob-
tained as follows:

H(yx|Dt) = Ep(yx|Dt) [log p(yx|Dt)] ∼
1

M

M∑
s=1

log p(ysx|Dt, fs) (6)

where the samples {ysx = fs(x)}Mi=1 are obtained by sampling from the distribution over model
parameters with MCD to obtain the parameter samples {fs}Mi=1.

5 EXPERIMENTS

In the experimental evaluation of DiscoBAX, we specifically seek to answer the following questions:
1) Does DiscoBAX allow us to reach a better trade-off between recovery of the top interventions and
their diversity (Table 1 and 2)? 2) Is the method sample-efficient, i.e., identifies global optima in
fewer experiments relative to random sampling or naive optimization baselines (Figure 3 and 5)?
3) Is the performance of DiscoBAX sensitive to various hyperparameter choices (Appendix D.3)?
To address these questions, we first focus on experiments involving synthetic datasets (§ 5.1) in
which we know the underlying ground truth objective function. We then conduct experiments across
several large-scale experimental assays from the GeneDisco benchmark Mehrjou et al. (2021) that
cover a diverse set of disease phenotypes.

5.1 SYNTHETIC DATA

We begin with a concrete example to illustrate the distinction between the behavior DiscoBAX and
existing methods. The dataset we consider is a one-dimensional regression task on a mixture-of-
Gaussians density function fmog. We construct fmog such that it exhibits several local optima at
a variety of values, necessitating a careful trade-off between exploration and exploitation to opti-
mize the DiscoBAX objective. Crucially, exploitation in this setting requires not only an accurate
estimation of the global optimum but also an accurate estimation of the local optima. We provide
evaluations on additional datasets in Appendix D.1. We consider the following baseline acquisi-
tion functions which select the optimal point x∗ to query at each iteration, letting µ(x) denote the
posterior mean over fip(x) and σ2(x) its variance. We evaluate random sampling, a UCB-like acqui-
sition function, BAX on super-level set and top-k algorithms, Thompson sampling, and uncertainty
maximization baselines. Full details are provided in Appendix D.1.
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Figure 2: Illustration of failure modes of benchmark acquisition functions in our problem setting:
existing methods struggle to accurately capture both the high- and low-valued local optima. We use
a batch size equal to one for all methods.

In Figure 2, we visualize the solutions found by each approach after 30 iterations. We further
evaluate the score of each method, computed as Eη maxx∈S fip(x)η(x), where η is drawn from a
Bernoulli distribution whose logits are determined by an affine transformation of a sample from a
GP with zero mean and radial basis function covariance kernel. This construction ensures a high
correlation between the values of nearby inputs and reward sets S whose elements are distant from
each other. To select S, we use the learned posterior mean µ from each acquisition strategy as input
to Algorithm 1 and set S to be equal to its output. We observe that most baselines over-exploit
the high-value local optima, leading to inaccuracies on the lower optima. As a result, Algorithm 1
is unable to select the optimal subset elements from the lower-value modes and the model score
suffers. The active sampling baseline yields a more uniform sampling distribution over inputs that
results in a relatively uniform distribution of errors. While DiscoBAX does not perfectly estimate
the value of the target function, its sampling strategy yields reasonably accurate estimates of all of
the local optima.

5.2 GENEDISCO DATASET

Datasets & baselines. The GeneDisco benchmark (Mehrjou et al., 2021) is comprised of five
large-scale genome-wide CRISPR assays and compares the relative strengths of nine active learning
algorithms (eg., Margin sampling, Coreset) for optimal experimental design. The objective of the
different methods is to select the set of interventions (ie., genetic knockouts) with the largest impact
on the corresponding disease phenotype. We include all existing baselines from the GeneDisco
benchmark, as well as eight additional approaches: UCB, qUCB, qEI, qPOI, Thompson sampling,
Top-K BAX, Levelset BAX, and DiscoBAX.

Metrics & approach. We define the set of optimal interventions as the ones in the top percentile
of the experimentally-measured phenotype (referred to as ‘Top-K interventions’). We use the Top-
K recall metric to assess the ability of the different methods to identify the best interventions. To
quantify the diversity across the set of optimal interventions, we first cluster these interventions in
a lower-dimensional subspace (details provided in Appendix C). We then measure the proportion
of these clusters that are recalled (i.e., any of its members are selected) by a given algorithm over
the different experiment cycles. The overall score of an approach is defined as the geometric mean
between Top-K recall and the diversity metric. For all methods and datasets, we perform 25 con-
secutive batch acquisition cycles (with batch size 32). All experiments are repeated 10 times with
different random seeds.

Results & discussion. We observe that, across the different datasets, DiscoBAX enables to identify
a more diverse set of optimal interventions relative to baselines (Table 1). It does so in a sample-
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Figure 3: Top-K recall and Diversity score Vs acquisition cycles The two top plots are for the
Interferon γ assay (Schmidt et al., 2021), and the two bottom plots are based on the Leukemia assay
(Zhuang et al., 2019).

efficient manner as it achieves higher diversity throughout the different acquisition cycles (Fig.3).
Note that sample-efficiency is an empirical observation here not a theoretical property of the al-
gorithm since it is possible to construct adversarial datasets where a BAX method will attain no
better performance than random sampling. Interestingly, it tends to recall a higher share of optimal
interventions on several assays as well, which may be the result of very steep extrema in the cor-
responding datasets. We also find the performance of DiscoBAX to be relatively insensitive to the
choice of hyperparameters (Appendix D.3). Lastly, we note that when the input feature space (ie.,
the intervention representation) does not correlate much with the disease phenotype of interest, the
model being learned tends to perform poorly and we observe no lift between the different methods
and random sampling (eg., the SARS-CoV-2 assay from Zhu et al. (2021) – see Appendix D.2).

Table 1: Performance comparison on GeneDisco CRISPR assays We report the aggregated per-
formance of DiscoBAX and other methods on all assays from the GeneDisco benchmark. All other
baselines and the breakdown per assay are provided in Appendix D.2.

Method Category Top-K recall Diversity score Overall score

Random - 29.3% (1.4%) 4.9% (0.3%) 12.0% (0.6%)
Thompson Sampling Bandits 27.5% (1.5%) 4.8% (0.4%) 11.5% (0.7%)
UCB Bayesian Optim. 33.5% (2.0%) 5.9% (0.5%) 14.1% (1.0%)
Coreset Active learning 39.3% (1.9%) 5.5% (0.3%) 14.7% (0.8%)
Levelset Bax BAX 35.4% (2.2%) 6.3% (0.4%) 15.0% (0.9%)
Top-K Bax BAX 38.8% (2.3%) 6.8% (0.6%) 16.2% (1.2%)
DiscoBax (ours) BAX 44.1% (2.2%) 7.8% (0.5%) 18.6% (1.1%)
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6 RELATED WORK

Prior works have studied the application of genomic discovery and method development for diverse
target generation.

Bayesian optimization: Bayesian optimization (BO) is concerned with finding the global opti-
mum of a function with the fewest number of function evaluations (Snoek et al., 2012; Shahriari
et al., 2015). Since this target function is often expensive-to-evaluate, one typically uses a Gaussian
process as a surrogate function (Srinivas et al.). The candidates for function evaluation are then
determined through a so-called acquisition function, which is often expressed as the expected util-
ity over the surrogate model. Typical choices include the expected improvement (Močkus, 1975,
EI) and probability of improvement (Kushner, 1964, PI) as utility functions. Recent work includes
variational approaches Song et al. (2022) which yield a tractable acquisition function whose limit-
ing behavior is equivalent to PI. Prior work tried to obtain diversity in Bayesian optimization e.g.
through a batch setting (Kirsch et al., 2019) or multi-objective optimization (Hernández-Lobato
et al., 2016). Bayesian optimization has been applied to biological problem settings such as small
molecule optimization (Korovina et al., 2020) or automatic chemical design (Griffiths & Hernández-
Lobato, 2017).

Optimal experiment design broadens the scope of Bayesian Optimization: rather than simply max-
imizing a parametric function, the task is to adaptively identify an optimal set of experiments to
efficiently reach some goal (Robbins, 1952; Chernoff, 1959). Applying machine learning to auto-
mate hypothesis generation and testing goes back multiple decades (King et al., 2004). Optimal
experiment design is amenable to Bayesian optimization (Greenhill et al., 2020) and reinforcement
learning approaches (Kandasamy et al., 2019). Most related to our work is Bayesian Algorithm Exe-
cution (BAX) Neiswanger et al. (2021) that extends the goal of experiment design from only finding
the maximum of a function to estimating more general properties such as level sets by computing
the expected information gain (EIG) which is the mutual information between the evaluation of an
input point and the statistics related that property.

Active learning While many probabilistic models like Gaussian processes provide principled un-
certainty estimates (Rasmussen, 2003), modern neural network architectures often rely on heuristics
or only provide approximations approaches (Gal & Ghahramani, 2016; Lakshminarayanan et al.,
2017). Active learning based approaches use the uncertainty estimates for maximizing expected
information gains of model parameters (Houlsby et al., 2011). Recently, more and more approaches
have used active learning based on model uncertainties of neural networks for biomedical applica-
tions.

Bandits: The upper confidence bounds seen in BO originate in the bandit setting (Lai & Robbins,
1985), in which one can extend the widely-used UCB algorithm to Gaussian processes (Grünewälder
et al., 2010; Srinivas et al.). While both bandits and BO seek to find the maximum of a function,
the two problem settings leverage different notions of optimality. BO seeks to identify the argmax,
whereas bandits seek to minimize the number of sub-optimal queries. Related to bandits and BO,
some efforts are made to formulate active learning as a reinforcement learning problem (Slade &
Branson, 2022; Casanova et al., 2020; Konyushkova et al., 2017; Pang et al., 2018).

7 CONCLUSION

We have introduced a mathematical formalization of the drug discovery problem that captures the
noise induced by moving from in vitro to in vivo experiments. We proposed a novel algorithm based
on Bayesian Algorithm Execution and illustrated its utility on many illustrative synthetic datasets.
We have further evaluated this class of methods against the real-world large-scale assays from the
GeneDisco benchmark, where they help identify diverse top interventions better than existing base-
lines. Future work could see the extension of the current framework to explicitly account for the
fact that experimental cycles happen in batches. Further, we assume in this work that distant rep-
resentations of interventions implied different underlying biological mechanisms - a proper causal
formulation of the problem would allow us to tell apart causally connected pathways more cleanly.
Finally, it is typical practice to measure several potential intermediate phenotypes of interest to
capture different aspects of interest, which requires an extension of our approach to the setting of
multiple objectives.
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8 REPRODUCIBILITY STATEMENT

We clearly state our modelling assumptions throughout Sections 2 to 4. We provide proof for our
theoretical claims in Appendix A. All experimental results reported in Section 5 and appendix D
can be reproduced using the code available at: https://github.com/anonymous35780/
solaris-2023-iclr. Hyper-parameter sweeps for the BAX methods for GeneDisco are pre-
sented in Table 3.
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