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Abstract

Score matching is a vital tool for learning the dis-
tribution of data with applications across many
areas including diffusion processes, energy based
modelling, and graphical model estimation. De-
spite all these applications, little work explores
its use when data is incomplete. We address this
by adapting score matching (and its major exten-
sions) to work with missing data in a flexible set-
ting where data can be partially missing over any
subset of the coordinates. We provide two sep-
arate score matching variations for general use,
an importance weighting (IW) approach, and a
variational approach. We provide finite sample
bounds for our IW approach in finite domain set-
tings and show it to have especially strong perfor-
mance in small sample lower dimensional cases.
Complementing this, we show our variational ap-
proach to be strongest in more complex high-
dimensional settings which we demonstrate on
graphical model estimation tasks on both real and
simulated data.

1. Introduction

Over the last decade, score matching has established itself
as a powerful tool with downstream use in many areas of
machine learning. Examples include: energy based mod-
elling (Swersky et al., 2011; [Bao et al. 2020; |Li et al.,
2019b), mode-seeking clustering (Sasaki et al., 2014), and
perhaps most prominently of all Diffusion processes (Song
& Ermon, 2019; |Song et al., |2021b; Tashiro et al., 2021}
Song et al., [2021a} [Huang et al., 2021). Score matching
aims to learn the score of a distribution which is the gra-
dient of the log of the probability density function (PDF)
(s(x) = Vg log p(z)). In contrast to modelling the density
directly, the score does not need to integrate to one meaning
there is no need to calculate a normalising constant. This
allows it to be much more more flexibly modelled than the
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density itself. Furthermore, the validity of the score match-
ing objective itself requires only very mild assumptions of
the family of proposed scores further ensuring this flexibil-
ity. Alongside the classical method (Hyvérinen, 2005), var-
ious adaptations of score matching have arisen to improve
performance, decrease computational cost, and extend the
approach to a wider range of settings (Hyvérinen, |2007;
Vincent, 20115 Song et al., |[2020; |Liu et al., 2022).

In this work, we extend the score matching framework to
handle missing data at training time. Specifically, we learn
the full score function from partially missing multidimen-
sional input data, a paradigm we term missing score match-
ing. Crucially, our approach is compatible with any pa-
rameterised score model, enabling its application to both
explicit score formulations and more general approaches
such as neural networks (NNs). We propose two methods
to adapt the original score matching method as well as its
popular adaptations, truncated, sliced, and denoising score
matching (Hyvérinen, 2007; [Vincent, 2011} Liu & Wang,
2017; [Song et al.l 2020). These two distinct but closely re-
lated methods complement each other allowing for a wide
range of problems to be tackled. The first method is a sim-
pler importance weighting (IW) approach which we refer
to as marginal IW score matching. For this method we
obtain finite sample bounds in the bounded domain set-
ting under certain conditions. We also provide experimen-
tal results demonstrating its efficacy in lower dimensional
settings and where less data is available. Our second ap-
proach is a more computationally sophisticated variational
approach which we refer to as marginal variational score
matching. We demonstrate the efficacy of this approach in
more complex, high dimensional settings by applying it to
the problem of graphical model estimation with both real
and synthetic datasets.

In section 2] we discuss relevant works for score matching
and related fields. In section 3] we will introduce our prob-
lem more formally including score matching and any nota-
tion used. Sectiond] will be used to introduce our methods.
Section [5] will present results on some real and simulated
datasets. In Section [ we give our conclusion.

2. Related Works

While there has been some work which utilises score
matching with missing data, these approaches mostly do so
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exclusively through the lens of diffusion models. Specif-
ically works such as MissDiff (Ouyang et al., [2023)) and
Ambient Diffusion (Daras et al.l 2023) require the score
function itself to take the form of a neural network (NN)
which learns the scores of the fully-observed and corrupted
scores simultaneously. This prohibits their use in situations
where our model for the score is some explicit parameteri-
sation whose parameters we want to learn as is the case in
settings such as energy based modelling [Li et al.| (2023));
Bao et al.| (2020); [Salimans & Ho| (2021) and Gaussian
graphical models (Lin et al., [2016} [Yu et al.| 2018). Ambi-
ent Diffusion also requires the data to be further artificially
corrupted in order to create a pseudo-supervised learning
paradigm making both Ambient Diffusion and MissDiff
subject to various levels of out of sample learning without
specific adjustments for this phenomenon.

Looking more generally at distribution estimation with
missing data, multiple works in the field of generative mod-
elling have looked to tackle the problem of providing a gen-
erative model for a distribution given corrupted samples
from it. Prominent among these are MisGAN (Li et al.,
20194), which presents a marginalised GAN framework
and MCFlow (Richardson et al., 2020) , which presents
a EM like normalising flow framework. Neither of these
approaches allow for flexible specification of a parametric
density estimate however with MCFlow requiring the den-
sity to be a normalising flow and MisGAN having no model
for the density whatsoever.

To our knowledge, the only approach which seems to adapt
score matching to missing data in a parameter preserving
manner is presented in (Uehara et al.| 2020) using an iter-
ative EM-like procedure. However they themselves admit
that there is little intuitive understanding of when this ap-
proach will converge. Additionally, due to the nature of the
score matching objective, the expectation step cannot be
directly approximated using Monte Carlo estimation and
instead requires fractional importance weighting, a method
which employs nested Monte Carlo estimates introducing
bias into the training objective.

Parallel to this, some papers have looked to extend score
matching to the latent variable setting, an area with much
commonality to missing data (Vértes & Sahani, [2016} |Bao
et al.,[2020;2021). Latent variable modelling differs in two
crucial aspects from missing score matching. Firstly the
components which are unobserved (the latent variables) re-
main constant between samples, and secondly there is not
necessarily a notion of a ground truth for the unobserved
components in when data is corrupted. Additionally each
of these works has limitations; |Vértes & Sahani| (2016])
only applies to exponential families, Bao et al.| (2020)) re-
quires a gradient unrolling step in its optimisation which is
computationally expensive and can lead to errors in the op-

timisation procedure (as acknowledged in their follow on
work), and Bao et al| (2021) is only given for denoising
score matching, not for classical or sliced score matching.

3. Setting

3.1. Notation

Forn € Nlet [n] := {1,...,n}. For a random variable Z
we use supp(Z) for the support of Z. For f : R — R
we write 0; f(x) = 8‘% where © = (z1,...,24)  and

Vof(x) = (0;f(x),..., daf(x)) ", the gradient of f. For
f:RY — R?take f(x); as the j™ component of f(z) and
write Vg - f(x) == 01f(x)1 + - -+ + 0qf (x) 4. Finally for
a,be R, take a o b to be the Hadamard product.

We now introduce some indexing notation which we will
be using for RVs and functions throughout. This will prove
useful when identifying the missing non-missing compo-
nents of our data. Let Z be a random variable taking values
in R%. We use Z; to refer to the j™ component Z and for
A C [d] take Zy = {Z;};ecx. We use negation in indexing
to mean the complementing coordinates. More precisely
we let —j denote [d] \ {j} and let —X denote [d] \ \. We
typically use Z(*) to denote an independent copy of Z. For
afunction f: X — Yand x) € X),z’ , € X_), we take
f(zx,z",) tobe f(z) where

if j €\
ifje—\

We will take X to be a RV taking values in X C R< repre-
senting our original dataset and X’ to be a RV representing
some generative/variational/importance weighting distribu-
tion. i.e., the “artificial distributions” we will utilise in our
method. Similarly, we take E,E’ to be expectations with
respect to (w.r.t.) X, X’ respectively.

Throughout we take p to be the pdf of the RV, X, and py
to be a model therein. We let ¢ represent an unnormalised
density (i.e. N=!'. ¢ = p for some normalising constant
N > 0.) We will write marginalisations/conditionings for
both true and model densities implicitly with p(x)) =
Jyp(x)dx_y and p(xx|z_») being the conditional den-
sity of X,|X_» = x_ for example.

Now that we have introduced our notation we can move
onto the key area of focus for our work, score matching.

3.2. Score Matching

First proposed by (Hyvirinen, [2005)), score matching aims
to learn the gradient of the log-density (score). The advan-
tage of this framework over full density approaches such
as maximum likelihood estimation (MLE) is that we are
not restricted to parametric models which integrate to 1.
This allows us to be much more flexible in how we param-
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eterise in turn making high dimensional distribution mod-
elling more feasible. We now introduce the approach.

Let X be a RV over R? with PDF p. We say that ¢ is the
unnormalised density of X if N~! . g(x) = p(x) where
p is the PDF of X and N is the normalising constant of q.
Define the score, of X to be

s(z) = Vg logp(z) = Vylogq(x).

The aim of score matching is to learn s from a collection
of IID copies of X which we denote D := {X)}7_,. Fol-
lowing Hyvirinen| (2005), we introduce a generic parame-
terised proposal score sy for § € ® C RP and aim to min-
imise the Fisher Divergence between the true distribution
and our proposal distribution which is given by

F(9) = E[[|s(X) — so(X)[|).

The key result from Hyvérinen| (2005) which enables us to
practically implement score matching is that under certain
(fairly minimal) regularity conditions, which we provide in
Appendix [D.T} we have

L(0) =E [2Vx - 59(X) + [|so(X)|*] = F(0) — C
(1)

where here and throughout, we take C' to represent any con-
stant which does not depend upon 6. Crucially, L(#) is now
an expectation of observable random variables. Hence we
can now approximate this with our data and take 0 as

. 1 — 4 4
0 := argmin . Z |:2VX(1') - 59(XD) 4 ||sg(X D) 2] .
0 i=1

TRUNCATED SCORE MATCHING

A limitation of standard score matching is that it requires
lim,, 00 p(x) = 0 for all z; € R. Thus it cannot be used
for many distributions with compact support if the density
does not converge to zero at the (topological) boundary.
Initial work to adapt score matching to truncated distribu-
tions was presented in (Hyvirinen, [2007) for distributions
on [0,00) then further expanded in (Liu et al. 2022; |[Yu
et al.| [2022) to general compact spaces X'. For our com-
pact space X C R we use X to denote the (topological)
boundary. We now minimise some weighted version of the
Fisher divergence whose weights go to zero at the bound-
ary. Specifically let g : X — R be a function satisfying
limg_,, g(x); = 0 forany &’ € 0X, j € [d]. Our objec-
tive is then

Fr(0) =E U

. 2
7t ()0 (s0(3) ~ s00) ]

Just as in classical score matching we obtain an equivalence
(though this time via Green’s theorem rather than simple

integration by parts) giving us that under certain regularity
conditions on g, s, and X,

Lr(0) =E | Y g(X); (20;80(X); + 86(X)7)
j€ed

+ E | 0;9(X);80(X);
jed

= Fr(0) — C.

This can again be approximated via data using standard
Monte Carlo approximation. Full details on the conditions
required for this approach alongside the proof can be found
in (Liu et al., 2022). Two other key extensions of score
matching are sliced score matching (Song et al.,|2020) and
denoising score matching (Vincent, [2011). We introduce
these extensions in Appendix [D] with our corresponding
adaptations to missing data given in Appendix [A.I] Now,
we give our missing data scenario.

3.3. Missing Data Scenario
Instead of observing samples from X we assume that we
observe samples from the corrupted version of the RV
given by X. To define X we introduce a mask RV M over
{0,1}% and then define X by

Xj _ X; %f M; =1
%) if Mj =0
where Xj = (& represents that coordinate being miss-

ing. We will be focussing on the missing completely at
random scenario where M | X. However, we do pro-
vide an extension to missing not at random data in Ap-
pendix[A.1.4] We introduce the RV A on P([d]) defined by
A = {i € [d]|M; = 1} so that A gives the non-corrupted
coordinates of X and take A to be a sample of A. Crucially
given samples from X, we also have samples from X,.

Our aim is to adapt the score matching objective to estimate
the full score s by a parameterised score sy using samples

from the corrupted data D = { X"} | = {X/(\?};L:l.

4. Marginal Score Matching

To motivate our approach we look at how we might use
MLE in the case where the normalising constant and con-
ditional normalising constants were calculable. For py our
parametric model of the density, we would choose 0 to be

0 := argmax log p X
g9 ; g Do )

where pg is the associated corrupted data density when
X ~ pp. As our data is missing completely at random
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this is actually equivalent to maximising

Z log po:a, (X/(\ii)), where pg.» () = /
i=1 A

po(x)dz_).

For notational simplicity we will thus reframe our problem
as working with marginal samples {X/(\Zi)}?zl.

4.1. Marginal Score Matching

Our approach is to directly alter the score matching objec-
tive similarly. Just as densities have associated marginal
densities so do scores have associated marginal scores.

Definition 4.1 (Marginal Score function). Let s be a score
function with s(z) = V logq(x) for ¢ an unnormalised
PDF. Then the associated marginal score function is

sa(xy) == Vg, log/

Ra—|A]

q(x)dx . ()

This definition of marginal scores restricts s to a genuine
score function. For this reason we will also want sy to
always be a genuine score function or at least to have an
anti-derivative. The simplest way to achieve this is to
work with g9 : X — (0,00) as our baseline and de-
fine sp(x) = Vg logqge(x). We will also take py(x) =
([ qo(z)da) ! qo(x) which we assume to be unknown.

With this notion of a marginal score we can define our
marginal Fisher divergence to be

Fa(0) = E[[lsa(Xa) — san(Xa)l] 3)

where s).9 is defined analogously to sy. As with normal
score matching can relate this objective to one involving no
terms of s,. We first need the following assumptions.

Assumption 4.2. For any 6 > 0, A € supp(A):

(a) pe is well defined, i.e. fX qo(z)dz < o0;

() Efllsx(X)II%], Elllsxe (Xa)lI?] < oo

(c) pa(z) is differentiable and ¢y.g is twice differentiable;
(d) pa(@a)sro(wr)—0 as [|x||—ro0;

(€) pro(Xa) = pa(X,) almost surely (a.s.) for all A €
supp(A), implies that pg(X) = p(X) a.s..

Assumption (a) ensures that our proposal unnormalised
density is always a genuine unnormalised density. Assump-
tions (b)-(d) are similar to the standard assumptions given
for standard score matching. Assumption (e) is an identifi-
ability assumption which is required to be feasibly able to
learn the true data distribution from our corrupted data.

Proposition 4.3. Given Assumptions{.2(a)-(d) hold

Lu(0) =E[2Vx, - sa0(Xa) + [[sa0(XA)P] @)
—Fu(6) — C.

If (e) also holds and there exists some 0F such that
sg+(X) = s(X) a.s.. Then if 0 is a minimiser of Ly (0)
we have that q5(X) = Np(X) a.s. for some constant N,
i.e. the minimiser is the true unnormalised density.

Through this result we have shown, much like with stan-
dard score matching, that under certain regularity condi-
tions our objective is uniquely minimised by the true un-
normalised density. We then approximate this objective by

. 1 < ; i
Lain(®) = > Vo sa0(XL)) + o (X))

i=1
and choose § = argming Lyy.,, (0).

Unfortunately this approach in its current state is practi-
cally infeasible as the integrals involved in deriving the
marginal scores for any non-trivial problem will be in-
tractable. Hence, we must devise a way to estimate the
marginal scores without having to compute the integrals.
We tackle this issue in Section 4.2} but first we provide a
similar result for the case of truncated score matching.

4.1.1. TRUNCATED SCORE MATCHING

Truncated score matching can be adapted similarly to stan-
dard score matching by simply having marginal weighting
functions gy : X\ — [0, 00) for each subset A € supp(A)
and taking the marginal truncated Fisher divergence to be

. 2
Fra(0)= | an (X0 o (s (0) = snatxa)| ]

using integration by parts gives the following equivalence

Lrm(0):=E|> " ga(Xa); (sa:0(Xa)?+20;80:0(Xn);)
jea

+ E|D20;94(Xa)j80:0(Xn); (5)
jEA
—Fra(0) — C.

Proof given in Appendix We then take ﬁTMm as
the Monte-Carlo estimate of L);. We also construct simi-
lar objectives from sliced and denoising score matching as
well as a similar result for missing not at random data in
Appendix [A.T] We now move to the task of estimating the
marginal scores in these objectives.

4.2. Importance Weighting

Our first proposal is an importance weighting approach.
Let p’ be a density over R4~1*| which we can both eval-
uate and sample from then

, X!
/ qo(x)dx_) = Ex/ ~p |:(m
Rd— Al o

P } @
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Algorithm 1 Marginal IW Score Matching

Input: {XI(\?}Z-G[,L], qg, P, 00, 7 € N.
Set 6 = 0.
repeat
for i=1 to n do .
Sample { X'(4%)}, . from p’(.|X/(\?).
Use X/(\?, {XL(Xf)}kE[,,] to get Monte-Carlo esti-

mates, § Ai,T;g(XX_)), of the marginal scores by (7).
end for ‘
Use .§Ai,,,;g(X,(\?) to obtain [A/M/TMW’T(H) by @).
Compute VgIA/M/TM;n,T(H) and update the value of 6.
until Maximum iteration reached.

This allows us to define our marginal score estimate.

Definition 4.4 (Marginal Score Estimate). For a given A\ €
supp(A) ,x) € X, score model, sy, and r € N we take
our estimate of sg,» () to be

r (k)
~ 1 CI@(‘BA,X/_ )
Sarm0 = Vg, log < E /7%9 (7
Tl P (X_A )

where XL(}\), .. ,X’ff\) are IID copies of X’ , ~ p/.

4.2.1. IW SAMPLE OBJECTIVE

We can now plug these marginal score estimates into
our sample objective for either normal or truncated score
matching. We use M/TM to denote analogous definitions
and results for both marginal and truncated marginal score
matching. Let {Xl(\?}?:l be our samples from X,. We
then take our IW sample objective to be as L /M (0)
but with éAi,T;g(X/(\?) replacing SAi;g(XI(\?). The full ob-
jective is given in Appendix [E.T.1| We refer to this sample
objective as ﬁM /TM;H’T(H) and take our estimate to be

f := argmin -Z/M/TM;n,T ().
6

Algorithm [T] gives our high level estimation algorithm.

Remark 4.5. Algorithm [T] can directly be applied to both
sliced and denoised score matching by replacing equation

(@) by equations (I3)) and (I3) respectively.

4.2.2. FINITE SAMPLE BOUNDS

A benefit of truncated score matching is that it allows us to
work on distributions with densities bounded below which
enables us to give finite sample bounds for the error of our
estimated score w.r.t. our marginal objective. We briefly
present these now with more detail given in Appendix

Theorem 4.6. Suppose assumption[d.2]alongside assump-
tions [A] [AT1) [AI3| from the Appendix hold and let

On,r € O be the minimiser of IA/TM;HW(G). If© C RP
with diam(©) = A then for sufficiently large n,r

P<FTM(97L,T) >pP1 plOg(d’/LTA/5)> <.

min{r,n}

Note that r is the number of importance weighting samples
for each data sample and therefore is something we can
choose ourself. This means that with this approach we can
achieve approximately \/n convergence rates. A downside
however is that to achieve this we need r to be of order at
least n which would lead to an O(n?) computational cost.
In practice we find relatively strong performance choosing
r small. Setting it at 7 = 10 in our experiments.

Remark 4.7. The error presented is measured with respect
to our Marginal Fisher Divergence, rather than the full
Fisher Divergence (which would be the preferred accuracy
metric). Relating these two quantities requires connecting
the fully observed distribution to its marginals, a task that
depends on the specific form of the distribution. Inves-
tigating the assumptions and conditions under which this
connection can be made offers an interesting and valuable
direction for future research.

4.3. Gradient First Approach

A key limitation with an IW approach is that it will struggle
in higher dimensional scenarios. Additionally the impor-
tance weighting is embedded inside other functions which
leads to the same nested expectation issue as the EM ap-
proach of [Uehara et al.| (2020), causing bias in our esti-
mator. As an alternative to this we build upon a variational
approach initially discussed in the context of latent variable
models in|Vértes & Sahani|(2016);Bao et al.|(2020;[2021).

The core idea is to start with Ly as before and then take
gradients w.r.t. our parameters before then writing our ob-
jective in terms of expectations over X_|y,9. As we don’t
then need to take gradients of these expectations w.r.t. 6,
we can estimate them with any black-box method we de-
sire, opening the door for variational approximation to be
used. This approach has been explored for exponential
family distributions (Vértes & Sahani, 2016) and for de-
noising score matching (Bao et al.,|2021)) however we pro-
vide the most general version of this result which can be ap-
plied to any of the score matching methods and any model
class. We first introduce the following key Lemma.

Lemma 4.8. Fix A C [d],zx € X\. We have that for any
function hg : X — R.

son(@x) =E'[sg(@r, X 3)] ®)
VE/[he(w,\,X/_k)]ZE/[th(SCA,X/_)\)] (9)
+COV/(89(£L‘)\, X/,/\)7 he((L’)\, Xi/\))
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where V represents the gradient w.rt. either x or 6 and
here B/, Cov'are w.rt. X' || X\ =z ~ po(.|T)).

This results allows us to obtain our alternative objective.

Corollary 4.9. Let Ly be defined as in @]) We have that

VoLu(®) =E|2 % (Valsul 4 Bal)y) (10

JEA
- Eoo(Xa, X010 (000 |

where for any function hg : R* — R, \ C [d],

Uy (ho) =E'[Voho(Xn, X" )]

+ Cov’ (V@ log qo(Xa, X" 5), ho(Xa, X~ ))

and E', Cov' are w.rt. X' | X ~ po(.|Xa) with E being
wrt. Xp ~ p.

Proofs for both results are given in Appendix [C.3]

Crucially E’, Cov’can be estimated freely. This allows us to
use variational inference to approximate pg(x_|x,) and
in turn the expectations and covariances in (10).

Remark 4.10. We provide additional implementation de-
tails for computing this gradient estimate in Appendix [A.5]
We also discuss equivalences between this objective and
our marginal IW objective in[A.3]

We explore estimation of E’, Cov’in Sectionbut first
we provide a similar result for truncated score matching.

4.3.1. TRUNCATED SCORE MATCHING
We define a similar objective for truncated score matching.

Corollary 4.11. With L1y defined as in () we have that

VoLrm(0)=E l2z <gA(XA)j{\IjA(89(')? +0;50(.);)

JEA

~ B[s0(Xa, X ), 1¥a(50(),)}
+ ang(XA)jWA(59(~)j)>‘| (1D

with W and E defined as in Corollary 4.9

Proof given in Appendix [C.I.I] Similar results for sliced
and denoising score matching are given in Appendix [A.T]

4.3.2. VARIATIONAL APPROXIMATION

We can now use variational approximation to estimate the
expectations and covariances in Corollaries 4.9 & [4.11]
Specifically, let p;,(x_x|zx) be some generative condi-
tional distribution dependent upon parameter ¢. We want to
train p/, to approximate ps. We may write ¢(¢) to highlight

the dependence on our current parameter estimate however
we will omit this for brevities sake. The following propo-
sition from [Bao et al.| (2020) shows us how to train ¢.

Proposition 4.12 (Bao et al.[(2020)). For distributions p’,p
let F(p'|p) and KL(p'|p) be the Fisher and KL divergences
between p' and p. We have that for any X C [d], z) € X

o (B2

+B
go(xx, X' )

KL(pG (@) lpe(|22)) = B

F(py(|z2)lpo(-|22)) = E [HVX/A log (ps (X”xl2x))

— Sp w)\a H :|

where expectations are wrt. X', ~ py(.|zy) and B
is a constant not depending upon ¢ (but will depend on
0.) In other words we can fit to the conditional density
po(.|xN) given only the unconditional unnormalised den-
sity qo(x, .) or full score sg(xy, .).

This allows us to train p/, (.| ) to approximate the condi-
tional density, pp(.|Z). In our case we won’t be learning
this variational model for a fixed x ) or even fixed observed
coordinates A. Hence we take our objective to be one of

|

X AX
o e (00
q0(Xa, X y)
with (Xa, X7 5) ~ py(XZA[XA)p(Xa). We then take
and Jg, Jr to be the Monte-Carlo approximations with
samples (X, X’ ) from the same distribution.

JKL(d),H) =K

Jr(9,0) =

Remark 4.13. Jp has the advantage of not needing to know
the normalising constant of g, = Ny - py, either.

Remark 4.14. As ¢ depends upon 60, we need to update
it each time we update 6. In practice we find taking 10
gradient steps of ¢ for each gradient step of 6 to work well.

With this, we define V/\gLM/TM(G) to be the
Monte-Carlo estimate of (IO)/(TT) with samples

{(X/(\i7 /(Z ))}(m )e[n)x[r] Where X() are our orig-
inal corrupted data samples from p and X_(ixk) are our

variational samples from pj, (. |X/(\?). We can now state our
full variational approach which is given in Algorithm 2]

Remark 4.15. Algorithm [2] can directly be applied to both
sliced and denoised score matching by replacing equation

(T0) by equations (14) and (T6) respectively.
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Algorithm 2 Marginal Variational Score Matching

Input: {X{}icin). a0, P> 0o, do, L €N, r € N.
Set 6 = 6y, ¢ = ¢y.
repeat
for/ =1to L do )
For i € [n] sample X’(*) from p;ﬁ(|X1(\z))

Use {(X[(\i,),Xi(j\)i)}ie[n] to get Monte-Carlo ap-

proximates of Ji 1, (¢, 0) given by JK;/F(¢, 0).
Compute V¢JKAL/F(¢, 0) and update ¢.
end for 4 _
Fori € [n] samp‘e {X'@R) Y, from p’qﬁ(.\X&)).
Use {(X/(\?, X’_(Xf))}(i,k)e[n] «[r] to get our Monte-
Carlo estimate, V/;LM /TM(G) using equation
(TO)/(TD).
Use this gradient estimate to update 6.
until Maximum iterations reached.

5. Results

Here we go through simulated results comparing our IW
approach (Marg-IW) in Algorithm[T]and our variational ap-
proach (Marg-Var) in Algorithm [2]to the EM approach of
Uehara et al.|(2020). We also compare to a naive marginal-
isation approach involving zeroing out the missing dimen-
sions and only taking the observed output dimensions of
the score, which we call Zeroed Score Matching. This ap-
proach is the natural adaptation of MissDiff from |Ouyang
et al.| (2023) away from NN to explicitly parameterised
models. We describe Zeroed Score Matching and its re-
lation to MissDiff in Appendix [D.2] In our experiments,
we highlight a unique strength of our methods by applying
them to explicitly parameterised score models. We could
however, equally apply them to more complex, noninter-
pretable models such as NNs. More implementation details

can be found in Appendix |I|

5.1. Parameter Estimation

5.1.1. TRUNCATED GAUSSIAN MODEL

In this experiment a 10-dim normal distribution is set up
with fixed mean and random covariance before being trun-
cated on the first 3 dimensions. 1000 samples are taken
and corrupted independently on each coordinate with prob-
ability 0.2. For each of our methods a Gaussian score is fit
and the Fisher divergence between this score and the truth
computed. This is repeated 200 times with the mean Fisher
divergence alongside 95% C.Ls then presented in figure|[T}
More details in Appendix [E33.1] Marg-IW and EM per-
form best with Marg-Var approaching asymptotically. We
see the effect of Zeroed’s naive marginalisation as it does

'All code and data for the experiments presented can
also be found at https://github.com/joshgivens/
ScoreMatchingwithMissingData

Y —t— Marg-IW (Ours)
g —4— Marg-Var (Ours)
o —4— Zeroed
U 2
S EM
[a)]
511
<
0
2
0_ ____________________________
200 400 600 800 1000

Sample Size

Figure 1: Average Fisher Divergence for Gaussian score
estimates alongside 95% C.1.s Lower is better.

not converge, a phenomenon we discuss more in Appendix
D2] In Appendix [B.I.1] we present the average mean and
precision estimation error for this experiment. In Appendix
[B:1.2| we present the untruncated results and illustrate how
the naive marginalisation poorly models strong relationship
between dimensions 1 and 10.

5.1.2. NON-GAUSSIAN MODEL
For this experiment we tested our parameter estimation for
a an ICA inspired unnormalisable model of the form

p(x) x exp Z 9;sz2$?.
4,3

Here we parameterise our model identically with the aim
of estimating 6*. We vary the dimension of X and plot
the estimation error with a sample size of 1,000 and each
coordinate missing independently with probability 0.5. The
results are presented in Figure 2]

—4— Marg-IW (Ours)
—4— Marg-Var (Ours)
—4— Zeroed

EM

10 20 30 40 50
Dimension

Theta Error
N

Figure 2: Average Fisher Divergence for Gaussian score
estimates alongside 95% C.I.s. Lower is better.

Our variational method (Marg-Var) consistently yields the
lowest error. Moreover, as the dimensionality increases, the
performance gap between Marg-Var and the other meth-
ods widens. This supports the notion that our approach is
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more accurately able to capture complex marginalisations
than the competing approaches which fail as the dimen-
sion grows. We note that all other methods perform com-
parably with the performance of EM and Marg-IW being
indistinguishable, a pattern we observe throughout our ex-
periments. This similarity is unsurprising both approaches
use self normalised importance weighting to approximate
conditional expectations with respect to our current score
estimate while being broadly motivated by fitting to the
marginal scores. Nevertheless, the precise mechanism for
this similarity remains unclear and warrants further explo-
ration. Additional experiments exploring the effect of sam-
ple size and missingness probability on estimation accuracy

are given in appendix [B.1.3]

5.2. Gaussian Graphical Model Estimation

Gaussian graphical models (GGM) are a popular way of
modelling dependence between dimensions of data. Let us
assume that the underlying data follows a Gaussian distri-
bution with mean p € R and precision P € R4*?, In this
setting, a Bayesian network (BN) can represent the depen-
dencies between the dimensions of X with the (undirected)
edges of the BN exactly being the non-zero off-diagonal
entries of the precision, P. Hence estimating the precision
matrix P gives the BN. Score matching has been shown to
be an effective way of achieving this with L1-regularisation
on the off-diagonal of P to push terms to 0 (Lin et al., 2016
Yu et al., 2018)). Decreasing the level of L1-regularisation
then gives a range of classifiers with increasing True and
False positive rates (TPR/FPR) as the level of regularisa-
tion decreases. Score matching can also be applied to trun-
cated GGMs where we aim to learn the original BN but
only observe the samples inside some truncated region.

We apply our methods to learn GGMs and truncated GGMs
with missing data as well. We use varying levels of L1 reg-
ularisation on our objective via proximal stochastic gradi-
ent descent in our optimisation (Beckl 2017).

5.2.1. STAR SHAPED TRUNCATED GRAPHICAL MODEL
Here we create a star shaped GGM in which one node has
a high probability of being connected with each other node
independently and all other connections have probability
0. We truncate the data along a random hyperplane such
that 20% of the distribution lies outside of the truncation
boundary. Each coordinate is then MCAR independently
with the same probability. We run multiple experiments
with this probability ranging from 0.2 to 0.9 and present the
results in figure[3] As we can see here Marg-Var performs
best with all other approaches performing comparably. For
illustrative purposes, we plot individual ROC curves from
this experiment in Appendix [B.2.3]

—4— Marg-IW (Ours)
0.7 1 —#— Marg-Var (Ours)
—4— Zeroed

0.6 EM

0.2 0.4 0.6 0.8
Missingness Probability

Figure 3: Mean AUC of star graph edge detection with
varying missingness alongside 95% C.I.s. Higher is better.

5.2.2. UNSTRUCTURED DENSE GRAPHICAL MODEL

Here we create a GGM by making each edge occur inde-
pendently with probability 0.5. The rest of the experiment
was constructed as before. Results are given in Figure [4]
Again we can see that our variational approach performs

—4— Marg-IW (Ours)
0709 4 Marg-Var (Ours)
0.654 —+— Zeroed

EM
0.60 -

0.2 0.4 0.6 0.8
Missingness Probability

Figure 4: Mean AUC of dense graph edge detection with
varying missingness alongside 95% C.I.s. Higher is better.

best though not as clearly as in the previous example. We
believe this to be because for more unstructured problems,
naive marginalisation performs moderately well.

5.2.3. INCREASING NUMBER OF STARS

To explore this further, we construct and experiment where
we vary the number of star centres (high degree nodes)
while keeping the edge density constant. We present the re-
sults in Figure@ As we increase the number of star centres,
Marg-Var no longer noticeably outperforms the other ap-
proaches. This is because as the number of stars increases,
(i.e. the structure of the graph decreases) naive marginali-
sation is a better approximation. This is illustrated on the
marginal precisions themselves in Appendix [B.2.1]

5.2.4. S&P 100
Here we took closing price data over 5 years for the 100
stocks in the S&P 100 with each stock being a dimension
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Figure 5: Mean AUC with 95% C.1Ls for edge detection as
number of star centres in graph varies. Higher is better.

and each day being a sample. Gaussian graphical models
with various levels of connectivity were then constructed
using standard score matching on the fully observed data.
The data was then artificially corrupted and each missing
score matching approach applied. The AUC was then cal-
culated for each method taking the GGM from fully ob-
served score matching as the ground truth. More details
given in appendix [E:3.3] The results are shown in figure [6]

—4— Marg-IW (Ours)
—4— Marg-Var (Ours)
—4— Zeroed

EM

0.2 0.4 0.6 0.8
Missing Probability

Figure 6: Mean AUC of various methods when compared
to non-corrupted score matching with 95% confidence in-
tervals on stocks in S&P 100. Higher is better.

As we can see Marg-Var clearly out performs all the other
approaches which appear to perform equivalently.

5.2.5. YEAST DATA

Here data first introduced in Brem & Kruglyak| (2005)
is used consisting of readings of expression for 7086
genes/ORFs across 262 yeast segregants. Each gene repre-
sents a dimension with each segregant representing a sam-
ple. We subset the data to take the 106 genes present in at
least 95% of the samples with the aim of learning the rela-
tionship between them. The same approach as the previous
section is applied with the results shown in figure[7] Again
Marg-Var clearly outperforms the other approaches which
all perform comparably.

0.9 A1
L 0.81
<D( —4— Marg-IW (Ours)
0.71 —— Marg-Var (Ours)
064 —+— Zeroed
EM
012 Ot4 0t6 Or8

Missing Probability

Figure 7: Mean AUC of various methods when compared
to non-corrupted score matching with 95% confidence in-
tervals on genetic yeast data. Higher is better.

6. Conclusion

To conclude, score matching is a versatile method whose
applications at the heart of modern machine learning prob-
lems. In this work we have tackled the problem of adapt-
ing score matching to partially missing data. We have pre-
sented two separate but related approaches to this method,
one using importance weighting and another using varia-
tional approximation. We have also provided extensions of
these methods to truncated score matching, sliced and de-
noising score matching. For truncated score matching with
our IW approach we have provided finite sample bounds on
the accuracy of the estimated score in terms of the marginal
truncated Fisher divergence.

We have provided several simulated and real world experi-
ments demonstrating our methods’ efficacy for both param-
eter estimation and downstream GGM edge detection. We
have shown the benefits and drawbacks of each approach
with IW performing best in lower dimensional settings with
less data and the variational approach performing best in
more complicated higher dimensional settings.

There is, however still much work to be done in this area.
From a theoretical perspective, while we have finite sam-
ple bound on the error of our loss, marginal nature of the
loss makes it unclear exactly how this translates to param-
eter or general score model accuracy, leaving room for fur-
ther theoretical exploration. From an implementation per-
spective, variational inference in the presence of missing
data requires accounting for the randomness of “latent” and
“observed” variables. The standard variational inference
technique can be further refined to accommodate this set-
ting. Finally, since our method is compatible with denoised
score matching, it can naturally be extended to diffusion-
based model. This paves the way for future work on ap-
plying our approach to generative modelling with diffusion
processes in the presence of missing data.
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A. Additional Theoretical Results

Here we present some interesting results which we feel help further build up the landscape of our method but were unable
to fit within the main body of the paper.

A.1. Additional Methods

Firstly some additional adaptations of score matching. Most of these are relatively immediate adaptations following our
framework for missing score matching although there are some important aspects and caveats which make them worth
officially documenting. Missing and sliced score matching are introduced in detail in Appendix D}

A.1.1. TRUNCATED SCORE MATCHING
We have already presented truncated score matching in the paper however we present it in more details alongside its
assumptions here.

Assumption A.1. For any A € supp(A),f € ©:
* X, is connected, open and Lipschitz;
* Das s dne € HH(X0);
* px, gx are continuously differentiable and gp,  is twice continuously differentiable;

o for any &, € OX), and j € A we have

lim  sx(za);pa(®r)ga(Ta)vs(2h) = 0.
:c;—>wk

where v(z, ) is the normal vector to the boundary 0.X .
This now leads us to our proposition on the validity of our population objective.

Proposition A.2. Suppose that assumptions[4.2) & [A. 1| hold. Then we have
Jrum(0) = E {ga(X)[sa;0(Xa) — sa(Xa)|I*} = Lt (8) — C (12)

where C'is does not depend upon 0. As a direct result for § a minimiser of L (0) we have that 55(X) = s(X) as.

Proof. Proof given in Appendix O

A.1.2. MISSING SLICED SCORE MATCHING

For readers who are unfamiliar with sliced score matching we provide a brief introduction in Appendix [D.3] For sliced
score matching the only adaptations we need to make is to use our marginal scores and now alter our projection vectors to
be over the appropriate subspace. Thus our objective becomes

Lem(0) = E2 {Vx, (Vi sa0(Xa)} | Va + Vi sa0(Xa)]
= Fsm(0) — C

where for any A € supp(A), Vi is a RV on R/ satisfying E[V,,C} | positive definite and E[||Vy[|?] < oc.
To write this and it’s gradient in terms of the full score, sy we can again use Lemma@
This gives the following results

Proposition A.3.
Loui(8) =2E [E' [Vix, (Vi s0(Xa, X25) " V)| + E/[(V T s0(Xa, X2 0))2) — E'[(V T s0(Xa, XL )] (13)

VoLsu(0) =2E {\pA (VXA (Vi so()) " VA)) L0y (VT 50())2) — BV s0(Xa, X ) Wa (VT s6() } (14)

12
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where for any function hg : R — R,
U (hg) =E'[Voho(Xa, X' )] + Cov' (Vo log go(Xa, X' ), ho(Xa, X' 1))
and E', Cov' are w.r.t. X' \|Xa ~ po(.|Xa) with E being w.r.t. X5 ~ p.
Proof. We first have that
Lsu(0) = E [2{Vx, (VB Tso(Xa, X )aD} ' Va + (VI E s (Xa, X7 0)0)?]]

=E [ 2D ViV, E[so(Xa, X" 1);] Vi | + (VA B [s6(Xa, X' 4)A])
JEA

= { QZV VXASQ(XA,X )j]+COV(SQ(XA,X/_A),SQ(XA,X/_A)J'))TVA
JEA

+ o0 X X))
]E[(z]E’ [VXA (Vi s6(Xa, X7 ) VA)}+IE’[(VT39(XA,X’_A))2]—E’[(VTSQ(XA,X’_A))]Q)

LRV s6(Xa, X'Am]

= 2B [E [V, (Vi s0(Xa, XL0) " VA)| + BNV s0(Xa, XL0))%] = E'[(V T 86(Xa, X))
The second results directly from applying Lemma 48| again alongside the chain rule.

A.1.3. MISSING DENOISED SCORE MATCHING
As with sliced score matching the adaptation is relatively immediate however we do first need to make some further
restrictions on our noising process. Specifically we require that for any ¢ € [0,1], and 7,5' € [d] we have X (t); L

X (t);71X(0);.

In most practical implementations each coordinate is independently noised therefore satisfying this condition. We require
this to allow us to easily write the marginal transition kernel for any A € supp(A) given by px(zx(¢)|z2(0)). We then
make our population objective

Lom(0) =E [v(t) {[sa:6(Xa (), )]+ x, (1) log pa (X ()| X4 (0)) }]

We can again write this in terms of sy as we do in the following proposition

Proposition A 4.
2
Lpwm(9) )Y E [so(Xa, X20)5]7 4 Viaw logpa(Xa ()| X4 (0)) (15)
JeA
V@LDM( {ZE So XA X ) ] (El[ajSQ(XA(f),XLA)j] (16)
JEA

+ COV/(SQ(XA(t)7X/_A7 SB(XA(t)vX/—/M t)j))

+ Vx.o) IOgPA(XA(tNXA(O))H

13
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where for any function hg : R — R,
W (hg) =E'[Voho(Xa(t), X" 5)] + Cov' (Vg log qo(Xa(t), X" 5), ho(Xa(t), X" 4))
and E', Cov' are w.r.t. X' \|Xa(t) ~ po(.|Xa) with E being w.r.t. Xx(t) ~ py.

Proof. Using Lemma[4.8] we have that

Lom(0) =B |v(t) Y sau(X(0)a,8); + Vi, logpa(Xa(t)|Xa(0))
JEA

=E [v(t) { S E [so(Xa(t). X' . 1);]" + Vi, logpa(Xa (1) Xa(0))
JEA

A second application of the lemma then gives,

VoLpm(0) = E V(t){ D E [so(Xa(t), X4, 1);] (]E'[ajse(XA(t)yXiA)j]

jEA

+ Covl(se(Xa(t) XL 5, ), 86(Xa (1), X p.1),)})

+ Vx, ) IngA(XA(t”XA(O))}] :

A.1.4. MISSING NOT AT RANDOM DATA

So far we have assumed that our data is missing completely at random so that X, |A = A ~ X. In other words, we could
treat corrupted samples as though they were simply marginal samples and still perform valid inference. Often however,
such an assumption is unrealistic and the probability of parts of a sample begin missing depends upon the sample itself.
Generally this is split into two cases. Missing at Random (MAR) and Missing not at Random (MNAR). MAR data occurs
when the probability of a coordinate being missing depends only upon other coordinates of the sample. This means that
M; 1 X;|X_;. In MNAR data we allow M to depend upon X; as well meaning that an observations value determines
its own probability of being missing.

Here we will focus in the MNAR scenario and treat the MAR scenario as a special case of this. The core idea of this
approach will be to work with a "joint" score rather than a marginal score. Before we do this we need to set-up our MNAR
case. Specifically for A € supp(A) define the event

Ey={X,#9X , =0}

and define @) (X) := P(F)|X). Throughout we will assume each @) to be known. This is often an unrealistic assumption
however this allows us the flexibility of having a method which is independent of how the ¢, are learned.

To work with this MNAR data we need to define some adaptations of densities and score functions.

Definition A.5. X with PDF p and event E define p(x; E) to be the "joint" density satisfying
/ p(x; E)dz =P({X € B}UE)
B

forall B € By.

From this and with our particular events we can redefine the missing score as,

sx(xr) = Vg, logpa(za; Ey) (17

~atog ([ e Eyae ) a8)
= Vg, log (/p(w)w(w)de)

14
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Remark A.6. this missing score is not the same as the marginal score. We slightly abuse notation here using the same
notation as we did for the marginal score. This is however reasonable as for the MCAR case the marginal score and the
missing score are identical.

With this newly defined score, we can proceed similarly to the MCAR case and use the objective ﬁM(G) defined in (@) or
(3) but with our new defined score. We now show a provide a similar justification for this approach as in the MCAR case
but first need to introduce an additional assumption.

Assumption A.7. For each A € supp(A), P(Ex|X) > 0 as..

Remark A.8. We do not require every missingness pattern to have positive probability just that if a missingness pattern
does have positive probability, it has positive probability for every possible underlying sample.

This then leads us to our desired result.

Proposition A.9. Suppose with are in our MNAR set-up and assume that assumptions & [A.7 hold and that there
exists 0* with sg«(X) = s¢(X) a.s.. Then if 0 is a minimiser of Lyi(0) where the missing scores are defined by (17| then
55(X) = s(X) as..

The proof for this is similar to the MCAR case and is given in Appendix [C.1.2]

Now we have our objective we need to see how we can derive s, (x)). Again we can do this similarly to the MCAR case.
Let gp be our estimate of the unnormalised density then

Sx0(xx) = Vg, logpae(xa; EN)

= Vaz, 1og/ po(x; Ey)dx_p
X_x

—Vailos [ pi(e)e(@)de-s
X_x

=Vz, 1og/ qo(x)px(x)dr_p
X
QO<5L')\;X/_>\)@/\<CL')\7X/_>\)}
p/(XL)\)
1 [ao(@a, X Pga(er, X P
~Va, 1og;z )
p (X A )

= Vg, logE, {

k=1
As a result we can approximate our objective analogously to our approach for MCAR data.

A.2. Finite Sample Bounds for Truncated Importance Weighted Score Matching
To be able to prove finite sample bound results we first need to present some key definitions.

Definition A.10 (Approximate Truncated Marginal Score Matching Objective). For n,r € N, § € © take our sample
objective to be

i

- 1< NN i i R i ONT i
Lrntinr(0) = 3~ gn (XX 8o (XD P 4290, XAV 0 - 8o (XR)) + 2V o gn, (K1) T, 0 (K1)
i=1 ‘ ‘

with §, ,.¢(x) being our estimated marginal score from Deﬁnition
Additionally we define

qut9 (w)

vadOt(vm(M(m))
P (x-n) '

p'(T-»)

fo,A(dJ,a) = M f17>\(w,0) =

p'(z-na) for(x,0) =

We now set-up the following assumptions

Assumption A.11. There exists a > 0 s.t. forallz € X', A € supp(A), k € {0,1,2}

15
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* N fea(@,0)ll; ga(®r); [[Vayga(za)|< a,
. %< fo(z,0)

Remark A.12. It is this assumptions which restrict us from obtaining a similar result in the non-truncated case as it is
unrealistic to have both 2 < fo \(x) and p(@,) — 0 as [|@,||— oo.

Assumption A.13. For each A € supp(A), [ € {0,1,2} we have that for any 0,6’ € ©:

[ fix(z,0) = for(z,0')|< My(x)p(0,0"),
where My, (X, x_»), Mi(xx, X’ ,) are sub-Gaussian with parameters oy », Uz/ﬁ)\ respectively forall z_) € X_,.

Remark A.14. This assumption is immediately satisfied if © is compact and f; »(x, §) are pointwise Lipschitz w.r.t. 6.
Hence this assumption is slightly weaker than a uniformly lipschitz assumption

We can now state our theorem

Theorem A.15. Assume that assumptions hold and let 0,,, € © C RP be the minimisers of
ZALTM;H,T (0). If © C RP then for sufficiently large n,r

P <FTM<en,r> > LB SOV g, [ploglndiom(O)8) g (1) (C N 1g<n/6>)> <

r

where (1, B2 depend upon a, B3 depends upon a, {0, 0-/_>\7l}(17)\)6{0’172}Xsupp(1\) and C depends upon a,
{]E[Mk:(X)\; X/_)\)}}(Z,A)G{O,I,Z}Xsupp(A)~

Proof. The proof for this alongside multiple intermediary results can be found in[C.2] O

Here we have shown convergence of our sample/approximate objective to the population objective. This combined with
proposition [A.2] which states that our population objective is minimised by the true score suggests that our approach does
give valid inference for learning the score. A key limitation of our result is that to obtain convergence, we require r—>00.
Furthermore, to obtain log(n) /n rate convergence we need r to be of the same order as n. As the computational complexity
of our algorithm in O(nr), this suggests that to obtain our desired convergence to the population objective will have O(n?)
computational complexity.

Remark A.16. Our dependency on our Lipschitz constants only enters into the C' term with the associate sub-Gaussian
parameters entering only into the o.

Remark A.17. Dependence upon g simply requires g and Vg bounded. This is achieved on a compact X' by g(x) =
ming cyx d(a, 2’) and on a non-compact space by g(x) = ming cox d(x,z’) A\ 1.

A.3. Relationship between IW and Variational objectives

Despite being derived quite differently from the marginal score matching objective. We show below that the two objectives
are actually identical in some cases. Specifically, when the IW density p’ doesn’t depend upon the observed data x, we
can treat the importance weighted approach as an importance weighting approximation of the gradient estimate in (T0).
We demonstrate this through the two results below
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Lemma A.18. For some density p’ which generates 1ID samples { X /_(];) Yrer let

a0 (T, Xl,(i))
Wy = ————~—

k
P (X%
r —1
Wy = Wk (Z wk/>
k'=1
) 1
897)\(:13)\) — va IOg — Z Wi
k=1
. 1 —
Biulgo (X)) = = 3~ wugo(@r, X))
k=1
. 1 — 1 — 1 — :
Covin(F(X),90(X)) = =Y @rgo(ar, X' D) f(ar, X' D) - ( wkge<wA,X_&’>> ( wkme’_(i’))
k=1 "= =i
Then
8o () = Eiw[so(zr, X )] (19)
VEiw[go(®r, X' 3)] = Eiw[Vgo(@r, X' )] + Coviu(so(@r, X" ), go(@r, X)) (20)

where N represents the gradient w.r.t. x or 0. In other words, we can take importance weights first then gradients (LHS)
or gradients and then importance weights (RHS).

Proof. Proof given in Section[C.4] O

Corollary A.19. We have that

VoL(0;xr, X' ) = — 2B [s0(2r, X 5)i] {Em[vose(iva’_A)d + Coviy (Vo log go(za, X 4), SG(CCMX/_A)i)}
+ 2(Eiw [Voso(xr, X 5)?] + Coviy (Vo logga(zr, X' 0), s0(zr, X' 4)?)) 2D
+ 2(E;[Vodise(xr, Xy )i] + Coviy (Vo log go(za, X! 5), 9;80(x, X/ 4)i))

Proof. Proof given in Section[C.4] O

A.4. Exploring the Marginal Fisher Divergence for Normal Distributions

While intuitively the Fisher divergences of the marginal distributions should act as effective proxies for the Fisher diver-
gence for the fully observed distributions, we would like to be able to examine the relationship between the two more
explicitly. We do know that marginal Fisher divergences will be zero when then fully observed distributions equivalent
however here we give a more detailed examination in the case of normal distributions.

Suppose that X ~ N (u, P~1)

p(r) = o~ 5 (@ — ) Ple — w)} +C

with C' a constant w.r.t. . We then have that
s(@) = —P(z — )

If we suppose that our unnormalised density/score model is of the form

ao() = exp{;w: — o) Pyl - u9>} = 59 = Pyl — o)

17
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Then with the marginal Fisher taken to be
Far(0) = Eax, [llsa(Xa)so:ll?]

where here for each A € supp(A), sy, Sp.» are the true marginal scores. Using properties of the normal distribution and
the Schur complement we know that the precision of X is given by

—1
{(P_l))\,)\} = Pax— Py aP2{ _ P

Plugging this in we get

Fu(6) =E H(PA,A — Popan)Xa + (PA,—AP__/i_AP—A,A - PH;A,—APQ_;iA’,APQ;—A,A)XA

— ((Paa — PA,fAP:/{’,ApfA,A)IJJA — (Po.ap — P@;A,fAPgTiAy,APQ;fA,A)N@;A)

|

This shows why naive marginalisation by zeroing out missing coordinates of our score would not work as in this case the
Fisher divergence would be given by
21

which encourages Pp; ) to be close to Py y — P,\,_,\P:Al’f)\P_,\M\ for all A € supp(A) meaning it will not give us the
true density.

Fum(0) H (Paa — Pa, APA _AP-aA) = Poan)Xa — ((Paa — Ph, APA _AP-aa)pn — Poa atbo:n)

A.5. Variational Pseudo-loss

When using (I0) it is helpful to be able to view it as the gradient of some pseudo-loss allowing it to plug into a more
standard ML framework where we calculate the loss, take the gradient w.r.t. our parameter using auto-differentiation, and
update our parameter estimate based on this. The below result show how we can do this by creating a loss with certain
instances of our parameter detached from the computational graph.

Proposition A.20. Let
J(0,0 ,xx, X)) = —2E[sg (mx, X" 5 )i] {E[so(zr, X" 1)i] + Cov’ (logqo(r, X" ), sor(2x, X" 4)i) }
+2(E’[so(w)\,X' A)F] + Cov’ (log go(x, X »), sor (zr, X A)f))
+ 2(E'[0;80(xx, X" )il + Cov’ (log go(x, X »), 0i80/ (mr, X 1))

where B/, Cov’ are w.rt. X' || X\ = x ;0 Then

Vo L0, 2y) = J(e,e’,m)‘

9
06

Proof. This just follows directly from the exchangeability of expectations and gradients (when the gradient is w.r.t. some-
thing independent of the expectation distribution.) O

Hence we can use this loss (by replacing all instances of 6" with # and then detaching them from the computation graph)
to treat our problem as a standard gradient descent problem.

Note that while we can treat this like a loss for our optimisation, our intent is not actually to minimise it. The estimated form
of the loss is given in the proof of Corollary .9 which is given in[C.3]|but we state it again explicitly here for convenience.

> =B [sp(Xa, X 3);1% + 2B [s0(Xa, X' 0)7] + 2B [0i50(Xa, X/ 4);]
JEA

18



Score Matching with Missing Data

C
[}
= €20 —— Marg-IW (Ours)
N 2.0 —4— Marg-IW (Ours) = —— Marg-Var (Ours)
E —4— Marg-Var (Ours) E 1.5 —4— Zeroed
o 1.51 —— Zeroed () EM
C EM C
© © 1.0 A
@ 1.0 ‘T\H k7
&) 0 0.5
o T | §
© o
%) ‘B 0.0 fommmmmm oo o
00 ===z mmmmmmmm oo -9 200 400 600 800 1000
200 400 600 800 1000 & Sample Size

Sample Size

(b) Average error in estimation of the Precision (Frobenius
(a) Average error in estimation of the Mean (L2 norm).  Norm).

Figure 8: Average parameter estimation error for truncated Gaussian score estimates alongside 95% confidence intervals
under various methods.

B. Additional Experimental Results

Here we present some additional experimental results not in the main body of the paper.

B.1. Parameter Estimation

B.1.1. TRUNCATED GAUSSIAN MODEL

Here we present the accompanying mean and precision error results for Gaussian model estimation experiment presented
in Section[5.1.1] These results are presented in Figure|[8]

B.1.2. UNTRUNCATED GAUSSIAN MODEL
Here we present the untruncated version of the experiment presented in the main paper. Details of the distribution are the
same as presented in Appendix [E-3]but without the truncation.

8 2.5 1 —4— Marg-IW (Ours)
< 5ol —— Marg-Var (Ours)
()] .
o —4— Zeroed
O 1.5 A
S EM
0 1.0
—
Q
£ 0.5 A
n
2
0.0 f=—======———m—mmm——mm— oo
200 400 600 800 1000

Sample Size
Figure 9: Average Fisher Divergence with 95% C.L.s for various approaches. Lower is better.

As we can see we obtains similar results here as in the truncated case.

We also illustrate what the true covariance and precision matrix look like for this example alongside the naive marginali-
sation in order to highlight where Zeroed Score Matching goes wrong.

In Figure[T0] we can see the covariance and precision of a sample distribution where we can clearly see the strong depen-
dence of dimensions 1 and 10 relative to the others.

In Figure [TT] we can see the naive and true marginal precisions when dimension 1 is missing. For this plot the values have
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Figure 10: Covariance and precision from a sample distribution from our normal experiment.

been cube-rooted in order to emphasize the difference between zero and non-zero entries. Here we can see that the naive
marginalisation wouldn’t capture the dependence between dimension 10 and the other dimensions that gets introduced
when dimension 1 is removed. This means that a naive marginalisation would assume that dimension 10 must have a
direct dependence on dimensions 2-9 even when that is not true. Interestingly, the rest of the marginalisation seems very
similar suggesting that in some potentially less structured cases, naive marginalisation can provide a semi-reasonable
approximation. This supports the results we see in our GGM estimation where highly structured graphs like star graphs
are much more affected naive marginalisation than unstructured graphs.

B.1.3. NON-GAUSSIAN ESTIMATION

Here we present further experiments exploring the non-Gaussian model presented in Section[5.1.2] Here we fix the dimen-
sion as 10. In Figure[I2a] we fix the missing probability as 0.5 and vary the sample size. In Figure [I2b] we fix the sample
size as 1000 and vary the missing probability.

From Figure [T2a we see that both EM and Marg-IW have the smallest estimation error for larger sample sizes. Zeroed
Score Matching has the largest estimation error due to its inability to appropriately marginalise the distribution. In Figure
[I2b] we observe that Marg-Var has the smallest estimation error with its performance convergence to that of Marg-IW and
EM as the missing probability increases.

B.2. GGM Estimation

B.2.1. VARYING NUMBER OF STAR CENTRES

Here we present illustrations of the marginalisations for our star-shaped graphs with 1 node and then 5 nodes both with the
same edge density.

In Figure [T3]we show the covariance, precision, marginal covariance, and marginal precision for a star graph with 1 centre
where the marginal terms are with dimension 1 removed. As we can see clearly the only meaningful structure left in the
graph after marginalisation are in the negative precision terms which the model naive marginalisation fails to capture.

In Figure [T4 we show the same thing for the case of a star graph with 5 centres. As we can see in the 5 centre case, the
naive marginalisation picks up most of the structure as there are fewer negative terms which it ignores and also lots of
additional positive terms which it does successfully pick up.

B.2.2. VARYING NUMBER OF DIMENSIONS
Here we use our same star-shaped GGM as in the main paper but with a varying number of dimensions. Throughout 1,000
samples are used and each coordinate is missing independently with probability 0.7. Results are presented in Figure[T3]

As we can see, for higher dimensions the variational approach clearly performs best however at lower dimensions the other
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Figure 11: Marginalisation of the precision to remove dimension 1 by the naive approach (i.e. subsetting the precision)
and the correct approach. All values cube-rooted for contrastive purposes.

approach catch up and even overtake it. This is because at lower dimensions, IW can effectively model the marginalisation
of the score and so the more complicated variational approach is not required.

B.2.3. INDIVIDUAL ROC CURVES

Here we present individual ROC curves from Section [5.2.1| with a missing probability of 0.5. Here we specifically present
the ROC curves from the first 4 runs out of the 50 performed for the experiment. These ROC curves are displayed in Figure
[T6] We observe that Marg-Var has consistently the best ROC curves of any of the methods.

C. Additional Proofs
C.1. Marginal Score Matching Objectives
proof of Proposition[d.3] For the first claim we have that

Elllsa0(Xa) — sa(Xa)II?] = E[l[sa0(Xa)l1%] + E[[sa (Xa)]1?] — 2E[sp:6(Xa) " s4(Xa)]

=C+E[lsap(X)P] -2 Y PMA= A)/ pa(®x)sx0(2) " sa(n)de,
A€supp(A) X

= C+E[|sap(Xa)P) =2 > PMA= A)/ Vaapa(@2) " 8x0(22)da)
A€supp(A) X
d
—CtBllsso(XlF -2 Y BA=NY [ Vams@)sualen)dos
A€supp(A) j=17%

Hence by integration by parts we have
E[l|sa6(Xa) = sa(Xa)lI’] = C + E[l|sas0(Xa)[*]

-2 > ]P’(A:)\)Z{

A€supp(A) JEX
=E[|[san0(Xa)[°] + 2E[Vx, - sa6(Xa))] +C

lim p,\(ZL’A)SA;e(w,\)—/ p,\(JJA)jS,\;a(w,\)jdmA}
i —0X X

Tj

justifying our first claim. Hence if 6 minimised our objective then it minimises

Elllsa:0(Xa) — sa(Xa)[?).
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Lower is better

As there exists a "true" # we know that this objective is minimised at 0 and so we must have s, ;(X)) = sx(X») a.s. for
all X € supp(A). By our assumption this then gives p;(X) = p(X) a.s. . O

C.1.1. TRUNCATED SCORE MATCHING
Proof of Proposition[A.2] We mostly use (Liu et al., 2022). We firstly have that

Elga(Xa)llsan(Xa) — sa(Xa)|?]
= Elga(Xa)llsa(Xa)l1?] + Elga(Xa)lsa:0(Xa)[I’] = 2E[ga(Xa)sa;0(Xa) " sa(X4)]

Now we have that

E[ga(Xa)sa0(Xa) " sa(X4)]
= > P(A=NE[ga(Xa)san(Xa) sa(Xa)A = A

A€supp(A)
0
= Z P(A = )\) Z/ gA(aZ)\)Sg;A(IB)\)%p)\(CL‘)\)d:B)\
A€supp(A) jex’ X J
0
= > PA= )\)Z/ gr(@2) 8035 () 5 —Pa(@x)dwa
A€supp(A) Jea /X Zj
a 0
(a) Z P(A = A)Z{/ gx(x)sg:x(Tx)pA(TA)vj(TN)ds — / . [g,\(:cA)sf;;,\(acA)j]p,\(wA)d:c,\}
A€supp(A) JEX X x UT;
0 0
8 Z P(A =) Z/ {gA(wA)ﬂse;A(wA)j + 8g,\(-’B,\)S,\;e(fB,\)] pa(xa)dxy
AeP(d) jex’ X Zj Lk

= —E[Vx, 91 (Xa)"51:0(Xa) + ga(Xa)sn:0(Xn)]

where (a) is given by Green’s Theorem and (b) is given by our limiting condition. Plugging this back into our original
result gives

Elga(Xa)l|sa0(Xa) — sa(Xa)|?]

Elga(Xa) (Ilsa0(Xa) 42V x, - sa:0(XA)) + Vx,9a(Xa) " sa:0(X2)]

= LTM(Q)
From our conditions we also know that 8* is a minimiser of .J(#) hence by our conditions it is the unique minimiser.
Therefore 6* is the unique minimiser of Ly (6) O
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Figure 13: Covariance, precision, and marginalisations of the precisions to remove dimension 1 by the naive approach (i.e.
subsetting the precision) and the correct approach. All values cube-rooted for contrastive purposes.

C.1.2. MNAR PROOFS
Proof of Proposition[A.9 Firstly we have that

E [|[sa,5x (Xa) = 88,20:0(Xa)[I”] = E [[l8a, 500 (Xa) > ~284,5, (Xa) " 84,20:0(X2)] + C
where C' does not depend upon #. Examining the second term closer we see that

> /XSA(wA)TSA;e(-’BA)pA(-’BA;EA)de

A€supp(A)

= Z Z/ sx(@r)jsx0(xx)jpa(z; Ex)dzy

A€Esupp(A) JEX

= > > | Vapa(®aE))jsae(ma)day

A€supp(A) jEX X

0 . .
= g E / pa(xx; Ey) s>\ o(xx)jdey asaresult of integration by parts
AEsupp(A) jEA j

=Exa[Vx, - sa0(Xa)]
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1 T v 1 -
100 Wit Al | BF 4 I 10 '
159 AR i r0.5 151 F0.5
204 iy . 201

254 " ] | ] i 0.0 25 0.0
304 Bie @ | 3= T 30

351 - —0.5 35 r—0.5
404 - . 401

451 : I—l.O 45 I_l'o
50 50

1 5 1015 20 25 30 35 40 45 50 1 5 1015 20 25 30 35 40 45 50

(a) Covariance (b) Precision

11 14

! | ! 1
lo- 1.0 1o 1.0
15 05 151 F0.5
20 20
25 0.0 25 0.0
30+ 301
351 r—0.5 351 F—0.5
401 40 1
a5 I—l.o 45 I—1.o
50 50

1 5 10 15 20 25 30 35 40 45 50 1 5 10 15 20 25 30 35 40 45 50
(c) Naive Marginalisation (d) True Marginalisation

Figure 14: Covariance, precision, and marginalisations of the precisions to remove dimension 1 by the naive approach (i.e.
subsetting the precision) and the correct approach. All values cube-rooted for contrastive purposes.

Hence we have
E [[lsa(Xa) = sa,5a0(Xa)lI°] = E [lsa0(Xa)[*+2Vx, - sa:0(Xa)] +C
Hence, just as in Proposition .3] this is minimised when
A (X)) = sa0(Xn)

a.s. for all A € supp(A). We then have that for any A € supp(A)

sa(xy) = sxpo(xy) forallzy € Xy
PaEs () = pEye(xy) forallzy € &)
< P(Ealza)pa(er) = pro(za)P(Ealza) forall zy € X))
< pa(xy) =pag(xy) forallzy € Xy
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0.95 A

0.90 A

O
= 0.85 A
< —— Marg-IW (Ours)
0.80 1 —— Marg-Var (Ours)
—4— Zeroed
0.75 EM
.‘L) ' '”1|0 2|0 ' ' 5|0' 1(|)0
Dimension

Figure 15: Mean AUC of various methods for edge detection of star-shaped GGM as we increase the dimension presented
alongside 95% confidence intervals.

C.2. Finite Sample Bound Proofs

Here we give some key results alongside their proof to allow us to obtains finite sample bounds for truncated score match-
ing. This first result is what really underpins our approach.

Proposition C.1. Let (O, d) be a compact metric space and for any 6 > 0 denote the n-covering number of © by N (n, ©).
Now define random functions Z(0), Z.(6)© — R for all v € N (with r deterministic) such that for any 6 € ©

P (12:(0) — 2(0)|> ) < (e, 7)

If we additionally assume that Z,., Z Lipschitz with constants C'., C' respectively then we have then

P (sup |Z.(0) — Z(0)| >e+n(C, + C’)) < N(n,0)d(e,r)
6co

Proof. Let01,...,0n(,,0) be an n cover of © then we have that

sup|Z,(0) — Z(0)]
)

<sup{ _min {12,06) - 2.(00)] +1(20) - 2@)|+12,(60 - 2(60)]}}

oco | JEIN(1,9)] JE[N(n,0)

3sup{ i {|Zr<e>—zr<el>+|Z<e>—z<el>|}{ _ }|zr<el>—2<e|}}

<su min C.+C)le—0 4+  max Z:(0) — Z(0 by our Lipschitz condition
<swp{ min, ((CorON0 0D |+ max (1Z,0) - Z@)]) byourLi

<(Cr4+C)n+  max  {[Z.(01) — Z(6;)|} by definition of 01, ...,0n(;.e)
JEIN(n,0)]

Therefore we have the following relationship between events:
{sup|ZT(0)—Z(0)| >5+2M77} C U 1260 -2z@6) >«
oo JEIN(™,O)]
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First 4 ROC curves for missing probability 0.5

1.0 1
0.8
0.6
0.4
—— Marg-IW (Ours) —— Marg-IW (Ours)
0.2 —— Marg-Var (Ours) 0.2 1 —— Marg-Var (Ours)
—— Zeroed —— Zeroed
0.0 —— EM 0.0 —— EM
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.01 1.0 1
0.8 A 0.8
0.6 0.6
0.4+ 0.4
—— Marg-IW (Ours) —— Marg-IW (Ours)
0.2 —— Marg-Var (Ours) 0.2 1 —— Marg-Var (Ours)
—— Zeroed —— Zeroed
0.0 —— EM 0.0 —— EM
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 16: ROC Curves in 4 separate runs for GGM estimation of a model truncated normal distribution with a star-shaped
Precision matrix.
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This therefore gives

1 A
P <sup Lp(x®,0) ~E[f(X,0)]| > e +n(C, + c))
pco |1
<P U 126 - 200> ¢
JE[N(n,0)]
N(n,9)

Remark C.2. This result does not require C,., C too be deterministic. A feature that we will be exploiting later on.

To be able to say meaningful statements about our Lipschitz bounds for our proof, it will also be helpful to make subgaus-
sian statements about nested sums. We give to results to enable this now

Lemma C.3. Let X,Y be independent RVs and define a function g : X x Y — R. Now suppose that for any x € X,
g(x,Y) is sub-Gaussian with parameter o. We then have that E[g(X,Y)|Y] is sub-Gaussian with parameter o

Proof. As g(x,Y) sub-Gaussian we have that for any A > 0
/\2
Blexp (M (e, ) ~ gl V)] < e { 25 |
Our aim is to then use this to bound

E fexp {A (E[g(X, V) |Y] - E[g(X, Y)])}].

We first have that E[g(X,Y)] = E[E[¢(X,Y)|X]] = E[E[¢g(X,Y)|X]|Y] which in turn gives

E[exp {A (E[g(X, V) Y] = E[g(X, Y)])}] = E[exp {A (E[g(X,Y) — E[g(X, V)| X][Y])}]
<E[E[exp{A(9(X,Y) —E[g ( Y)|X])} Y]] Dby Jensen’s inequality
= E[Efexp{A(9(X,Y) — E[g(X,Y)|X])} | X]]
S:ERE[EXP {A(g(z,Y) —Eg ( ,Y)])}] by independence

)\2
< exp{Q}.
o

O

Lemma C4. Let X,Y be independent RVs on spaces X,Y and g : X x Y — Rs.t. foranyx € X,y € Y g(x,Y) and
9(X,y) are sub-Gaussian with parameters oy ,ox respectively. Let {X(i)}?zl and {Y(k')}zzl be IID copies of X,Y

respectively then
2 2 2 2
> s) < nexp {6 04Ym} Jrexp{E U4Xn}

(v

ZZQ @ y®) —Elg(X,Y)]

i=1 k=1
Proof Again let WO = |137  g(XO y®) — E[g(X® V) XD]|, We aim to bound W@ as well as
| i Elg(X @, Y)[ X O]~ E[g(X, Y)]|

27



Score Matching with Missing Data

For W®) we have that

P(W® > ) = EP(W® > ¢| X )]

Pl
_E {eXp{f 0] oy {2

Zg Xy k) —Eg(X,v)| X ]

Therefore we have that

Additionally from Lemma|C.3|we have that E[g(X, Y")|X] is sub-Gaussian with parameter o giving us that

2 2
>5> <exp{—€ UXn}
2
2 2 2 2
>E> §nexp{—8 (;Yr} —|—exp{—€ USXn}

P ( L Blp(x®, Y1X ) - Elg(x.¥)
i=1

Hence combining these we get

r iig(x(i)7y(k)) _E[g(X7Y)]

1
p<
nr <
i=1 k=1

To proceed we define the intermediary step between the population objective and the sample objective this is

n

1 1 ;
Irn(®) = 532 Vo - nco(X0) 4 g lanso (X )

i

3

Proposition C.5. Forr € N let {X/(k)}zz1 be 1ID copies of X' ~ p’ and assume that supp(X) C supp(X’). For 0 € ©
and qg : X — [0, 00), with ||gg||1 < oo define RVs Yy, Yy ;- by

1
2(6) = Lrsia = (X0) (Vixa - 50006) + 3300 ()12 + Va0 (0) om0 (X0)

. 1, . 1
Zr(0) = Lrm;1,-(0) = ga (tr (Vx,8ar0(X))+ 2|3A,T;B(XA)||2> + §VXA9A(XA)TSA;9(XA)

Suppose that the following hold for all x € X, A € supp(A)
e 0<ag < for(z,0) <bo
* 1z, 0)[I< by
o |fo(x,0)|< by

* ga(Tr) < co
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* Ve (@)ll< a

Then we have that

(2:0) - 20> 2) < (4+ 2 exp {21}
with « depending upon ag, by, b1, ba, cg, c1.
Proof. First define

1« :
Yi(0) = E[fia(Xa, X 5, 0)|Xa, Al Vi (0) = ;Zfl,A(XA,X_(i))-

Using the definition of the marginal and estimated marginal score we then have that
() |, 1% 0)
Yo(0) 2 Yo(0)?

2,(6) = ga(X) (ggg; M0 >+ 3V ()T TG

Z(0) = ga(Xa) + V xa9A(Xa) ' ot

~—

We can therefore write write |Z (0) — Z(0)] as
2r(0) | LY (0)  Y20)  LY3(0)|°| | |Vxa9a(Xa)Y1(0) Vi, ga(Xa)Y1,(0)
12:40) = 20 = s (X0) |20 + 3R vy R || e e
< 2, (0) —Va(0)] | [Yo.(6) — Yo(O)] IY2(0)]
- Yo(0) Yo(0)Yo,-(6)
LI OF = 1RO 1 |vo,0)2 - Yo(0)?] ¥, (6)?
2 Yo(6)2 2 Yo(0)2Yo.(6)2
N [Vx,ga(Xa) T (Y1,-(6) = Y1(8))] N Y0,-(6) = Yo(8)[ |Vx,94(Xa) "Y1 (6)]
Yo(0) Yo(0)Yo,-(0)
< Y2, (0) — Y2(0)|  [¥o.r(0) —2Yo(9)\bz
ap (%)

2 2
E\IIYLT(@)II — Y2 (0)] \ L L[Yor(0) - Yo(0)*] 7
2 ag 2 ag
[Y1,-(0) = Y1(O)| x| [Yo,-(0) — Yo(0)] c1by
+ + 5
ap ag
o Yo, (0) =Y ()] [¥o,r(6) — Yo(6)[ Do
< + 3
ap Qg

1Y, (0) = Yi(0)|? a1 | 1[0, (0) — Yo(0)] bob?
+ - ; + - .

2 ag 2 agy
N 1Y1,-(0) = Y1(0)|| ex N |Yo,-(6) — Yo(0)| c1b1

ap ag

Now if we define the events

Eo(9) = {IYO,T(@) —Yo(0)[> ¢ (6b2 /\ 3bob2 /\ 60151)}

{0 -vo: (A2 )]
{1¥2,(0) - v20)1> =2 }

Eq(0) :

Es(0) :
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then we have that

{12:(6) = 2(8)|< e} € | En(9)

=1

Using standard Hoeffding bounds for Ey(6), E2(#) and union bounds in conjunction with Hoeffding bounds for E4 () we
get that

> —
P(EO(G)) 1 2€Xp{ 5 r (36b2b2 /\ b4b4 /\ 366%1)2[)2>}
P(E1(0)) > 1 — 2dexp { —2r “i/\ i
)= O T AT
2
P(Eg(@))>1—26xp{ € TO}.

Hence

P(|Z.(0) — Z(0)|> ) < (4+2d)exp{—ign} with

{6b0b2 3b2b2 601b1b0 3b2 601b1 6b2 }
& ‘= max

2 0T 4 2 20
ag ag ag ag = aop Qo

proof of Theorem[AT3] Our strategy will be as follows:
* Use our bound on | Z,.(0) — Z(0)| from Propositionto bound | Loy (6) — L (0)].
« Use a covering number argument alongside Lemma|[C.4|to bound supy | Long;n, - (6) — Ln (6)].
* Use a similar approach to bound supy| L, (6) — Ltam(6)].
* Combine these to bound |Lrap.p, »(0) — Lrn(0)]

For the first step we have that

P(|Latin,r(0) = Lragen (0)]> €) < P (UW“ L‘f)<e>|>s>

< Z (1Z1.(0) — i O)]> 2)

3

= S P(1Z,(0) - 2(6)|> <)

i=1

e'm

it e {22}
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where

’ 2
T i ! (k)
%Zk:l f2,A(X/(\)7X_(i) 0 1 H Zk‘ 1f1A XAwaAvg)H
r (1) y'(k) / 2
v L=t Joa (X3, X240, 0) 2 ( S foa (XY ,(/k\)ae))

N
YY) A (X A (x D, xR
1 k
Ly fxy, x%)

2
E {fg,MXX%X'A,e)‘XX)] X HE {fl,MXX%X'A,e)‘XX)}

LO(0) = ga, (X))

T

£17(0) = g, (X)) " 12 RE
E[fo,MXA ,X’Aﬁ)‘XA] [m( ¢ ,X'Aﬂ)‘XX)}

i 4 "(k i

. Elga, (X T AP, x5 x ()
"k 1
Elfo(X{, X %) x ()

We now try and derive a Lipschitz constant for both L,, , and L,,. Define g : X — R by

(@) = L My(a) + bi+ﬁ+clbl Mo(z) + + ) My ()
T = 4 2 a?  2af  ad 0 2a0 ag) "

Then we have that For L,, . we have

n T

1 i
Lt o (8) = L (6)] < p(6.6) — > g(x{?, x' %
z:l k=1

=Ch.»

similarly we have

n

1 i
| L1nn (0) = Lo ()] < p(0,0) fZ lg(x, X2 )1x).

3

Z:Cn

Using an identical argument to Proposition [C.I|can get the following bound for any 7, > 0:

2
B(suplL1ua(8) = Lratin,r (0)[> €1+ 11(Crr + Cn)) > N (11, ©)n(4 + 2d) exp {_ZT}
S

Hence we now need to bound C,, and C,, .. We know that both of these terms converge to C' := E[g(X, X} )]. To obtain
rates on this convergence we make sub-Gaussian statements about g. Specifically for _, € X we have that (X, _))
is sub-Gaussian with parameter

1 bg b? c1by ay a
ox=—0 3t | 5+t5 17t —35 Joox+ |53+ |0
ap ao 2a4 ag 2a5  ag

We can therefore immediately bound C,, — C' using Lemma|[C.3|and Hoeffding bounds to get

P(C, — C >¢e) =E[P(C, — C > ¢|A)]
en
<& oo {-T})
o] T
=~ exp Q02 [
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where ¢ := maxp esupp(a) oa- To bound C,, . — C' we can use Lemmalglto get

E[P(Cp, — C > e)|A] = l ( ZZQ XD y®) _E[g(X,Y)] > ¢

i=1 k=1

‘& e2m N e2n

nexp{ ——o— expl ——s

= P17 802, P17 802
e2m N en
=nexp{ ——r- expd ———
P 8c'2 P 8c2

with o', 0", define identically to o, o\ with 0y ) replaced with o; _, and o) replaced with o’ ,. As a result we get that

)

P(SHBMTM?“(Q) — Lp(0)]> 1 +2m(C+¢))
c6

gn

2 2 2
< N(m,@)n(4—|—2d)exp{—gagn} +nexp{—§072} —|—2exp{—802}

Now we have the bound on supg| L, (6) — Lram(6)]. We aim to bound supy|Lrwm;n (6) — Lram(0)]. To that end we
have

a.s. and so we can use Hoeffding bounds to get

P(|Lrm;n(0) — LTm(0)]> €) < exp {_;Z/L} )

Again using an argument similar to Proposition [C.I|we have for any 7, > 0

2
]P’(Sup|Ln(9) — LTM(0)|> €9 +772(2C + 53) < N(’I]Q,@) exp {— 22 } +]P(Cn —-C> 53)
€O

Combining these two results gives that for any € > 0
P( §1€1P|LTM(9) — Lrmin,r(0)[> €1 + €2 + 11 (2C + 2e3) + 12(2C + €3))
< ]P’(SUP|LTM(9) —L,(0)]>e1+2n(C+e3)U 21618|LTM;71(‘9) — Lonin,» (0)]> €2 + 12(2C + €3))
< ]P’(SUP|LTM(9) Lp(0)ler +2m(C +e3)) + P(glelg\LTM;n(@ = Lrngn,r (0)|2 €2 +m2(2C + £3))

0€©

of })HP(C ~C>e3) +P(Cpy — C > e3)

< N(m,0)n(4 + 2d) exp {—eima®} + N(n2, ©) (exp {

2

2 2
9 9 ean esm esn
< N(n1,0)n(4 + 2d) exp { —eima’} + N (120) (exp {— 5 }) + nexp {_80'2 } + 2exp {_802} (22)

Take 11 = 1/r and 73 = 1/n so that for sufficiently large n,r N (11, 0) < exp {plog ((3/2) diam(©)r)} and N (12, 0) =
exp {plog ((3/2) diam(©)n)}. Plugging this into gives

P (Sup|LTM(9) — LTM;n,r(9)|Z g1+ &2+ 1/7"(20 + 283) + ]./TL(2C + ES))
0cO

e3n

3 3 2
n(4 + 2d) exp {plog 3 diam(0©)r — efna} + exp {plog 3 diam(©)n — 207 } +(2+mn)exp {_8(0837?7/)2}
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Now if we take each of these terms to be equal to 6/3 gives for sufficiently large n,r

P( sup| Lrat(6) — Lrntons (0)[261 \/ plogldnr dam®)/0) g, \/ plogn dian(©)/9)

0€O
e () (e P ) <

where 81 = 2L, 8y = 90/, B3 = 10(c V ¢”). As there exists §* € © a minimiser of L7y (#) we now have that

[L(0n) = L(O7)| < |L(On) = L (0n)[+] L (07) = L(67)].

Finally we know that Jry(0) = Lt () + C and under a correctly specified model L(6*) = 0. Therefore we have that

(1 Onr)[> 22) < P(sup|Lrngn (0) = Lraa(0)[> €)
€
and so we have our result simply replacing By with 23y,. O

C.3. Gradient First Proofs
Proof of Lemma First we have that for any \, x,

500 (®2) = Va, log/pe(w)dwﬂ

_ Va, [ po(z)dz_y

[ pe(m)dx_y

[ Va,pe(x)da_

B p(x_»)
Z/vam log py(x)da_x
= wax\mxﬂ[s@(a:)%]'

Taking expectations on both side w.r.t. (A, X ) proves equation (§).

For (@) we have again for any A, x,,
VEY: o, l00(@n, X ) = [ Vipaleoslen)on(@)das
:/pQ(w—A|w>\)v90(w)diL'—)\ + /Vpe(w—xlwx)ge(w)dw—x

- / po(@—s|z2)Vgo(a)dz_y + / po(@—_x|x)V log po(_» |2 g6 () d_»

=E'[Vgo(zr, X" ,)] + E'[Viogpe(zx, X' \)ge(xx, X )]
—E'[Vlogps(za)ge(za, X )]

=E'[Vgs(xx, X_,)] +E[Viogpg(xr, X_\)ge(xx, X )]
— 5o (22)E [go (2, X_ )]

=E'[Vgp(xr, X_))] + E'[Viogpa(x, X.y)ge(zx, X )]
—E'[Vlogps(zx, X" \)]E [g0(xr, X )]

=E'[Vgo(zx, X )] + Covyp, (so(@r, XL 3), go(zr, X))

Where again here V represents the gradient w.r.t. either « or . We can again take expectations on both sides w.r.t. A, X
to get our result. O
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Proof of Corollary@d.9) First define

Ly (6;xy) 223 S 9(.’13)\) + Sx; 9(31;')\)

JEA

so that E[Lyi(0; Xa)] = Ly (6). Then using our two score identities, (8) & (9) we can re-write L(6; x) as

x) = E[sg(xr, X' );]° + 20,E [sp(xx, X ,);] by @)
JEA

= ZEI[SQ(CB,MX/,A)]'P +E'[0;80(xA, X" \);] + Var(so(zr, X' »);) by @)
JEX

= —E[sg(r, XL,);]* + 2B [sg(2x, X ,)7] + 2B [0;56 (@, 7))
JEA

Where all expectations are w.r.t. X’ ,| X = x; 0 Now using the fact that
, 2
Vo (E/[so(@r, X 0)]) = 2Bso(@a, X 2);]VoE [sg(@x, X,
and using (9) again on each term of the above gives followed by taking expectations w.r.t. A, X gives the result. [

C.3.1. TRUNCATED SCORE MATCHING
Proof of Corollary[.I1] Now using Lemma[4.8] we know that this can be re-written as

ng ) (E'[sg(2r, XL 3),1% + 2 Var'(sg (@, XL))5) + 2E'[9;59 (22, XL 1);]) + 20;9(@r) ;B [s0(2r, X )]

—ZQA @), (—E [sg(mx, X 3);]7 + 2E [sg(@r, X' \)7] + 2E[0;80(xx, X 1);]) + 20;9(xx);E [sp(wx, X )]

Now taking gradient w.r.t. 6 we get

VoL(0;xy) Zg)\ T j{ — 2F/[sg(z);](E'[Veso(x);] + Cov'(Vglog go(x), se(x);))
JEA

+ 2(E'[Vgso(x)3] + Cov' (Vg log go(x), so(x)7))
+ 2(E/[Vod;s0(@),] + Cov' (Vo log s (), 0150 (w);)) }

+20;9(x\); {E/[Vese(f)j] + Cov'(Vg log go (), Se(w)j)}-

C.4. IW and Gradient First Relationships
Proof of LemmalA.18 We first have that,

Sg.a ()

1 T
v:.l!A log ; Z Wy
1=1

_ % ZZ:l vmxwi
% Z:=1 Wi

1 ;
=Y WiV, log (@, X1%)

i=1

=Eiw [VCEAZOQQB(CL'M X:(ZA))] = Ezw [Se(fB,\> /( )) ]
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Where the penultimate result uses the fact that V,, w; = w; log go(xx, X /_(Z)\))
Additionally,
r k
_ mG 22:1 Wrgo (3(3,\7 XL(I;\)) (vwx Zk:l wk) (Z::l WkYe (:13)\, XL(A)))

va: hatEiw[ge(w)\aX/— )} = T - r
A A D k=1 Wk (> k=1 wk)2

For the second term we can again use Vg, w, = wi Vg, logpg (T, Xi(’;)) to write this as

Eiw [Vaylogpe (@, XL )| Eiwlge (2, XL ,)]
The first term we can write as
i1 wy log po(zx, X\ )go(xr, X)) N D i1 WkVa, go(xr, XL y)
D i1 Wk D1 W
=B [l0g po (@, X 3)g0 (2, XL3)] + Eiro [V, go (T2, X )]

Combining these 2 gives our desired results. O

Proof of Corollary[A. 19 The exact same arguments give us the second result but with the importance weighting identities

(19) and (20) replacing () & ©). O

D. Additional Score Matching Details & Extensions

In this section we give some additional details on score matching and introduce some pre-existing score matching exten-
sions and methods. For some of these approach we can adapt our method to work with them while others act as comparison
points for our approach.

D.1. Classical Score Matching
The assumptions for the classical score matching result presented in (I)

Assumption D.1. For

(a) The pdf p(x) is differentiable w.r.t. x;

(b) Our score estimating function sy is differentiable w.r.t. x;
(© E[l|so(X)IIPLE[lls(X)]|*] < oo

(d) p(x)sg(x) — 0 whenever ||z||— occ.

D.2. Zeroed Score Matching and MissDiff

In this section we take x$ to be the vector in R¢ with (z{); = z; if i € \ and 0 otherwise and then take X9 to be the RV
equivalent.

MissDiff is a generative modelling technique that aims to learn generative models from corrupted tabular data using diffu-
sion models with denoising score matching. Throughout their method sg is assumed to be a neural network. The core idea
is to replace the standard score matching objective with

B, x4 (0).x2 ) [#(O]I8(XR (1), 8)a — Vix, 1) log p(Xa (£)[ Xa(0))] .

Essentially, missing values are zero imputed and then the score is tested only on output dimensions whose input dimensions
are non-missing. The idea of this approach is that it trains s¢( (¢), ) » to approximate the true marginal score sy, (x (), t)
which in turn encourages sy (x(t), t) to approximate the full score sq(z(t), t).

For comparison purposes, we adapt this in two ways to create Zeroed Score Matching. Firstly we change the objective
to standard score matching and secondly we no longer require s to be a neural network. Thus our adapted version of the
MissDiff objective is

i/Zeroed(€> =E v(X/[{)A . SQ(XR)A + ”sG(X/O&)A” . (23)
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The key issue with this approach is that with sy no longer necessarily a neural network it is not reasonable (or indeed even
possible) for sy to model both the joint and marginal scores. In other words we cannot expect both sy(xS) = s, (z,) and
sp(x) = s(x) making it a naive marginalisation method for the score.

We can give a brief example with a multidimensional normal distribution. Supposed that X ~ N(0,3) with P := ¥~1.
Then the score is s(x) = —Px which we would model with sp(x) = —Fyx. Under the Zeroed scheme, we would take
the marginal score to be

sxo(x) = (—Pa:?\)A

= =Py x0T

However we know that if X ~ N (0, ¥y) with ¥y = Pgl then X\ ~ N(0, X »,¢) and so we should take

53,0(®) = —(Zan0) " Tea = — (B )an) "2
and crucially, Py x # ((P~')x.x) 7! unless P = 1.
We illustrate this for our simulated experimental settings in Appendices &
We also explore the implications of this for the marginal Fisher divergence for the normal in Appendix[A.4]
D.3. Sliced Score Matching
One issue with score matching is that V cdotsg(x) is computationally expensive to compute for large d. A solution to

this was proposed in |Song et al.| (2020) where, instead of testing the full score 1-dimensional projections/slices are tested
instead. This is done by introducing another RV V on (X, Bx) satisfying E[V] = 0 and E[V'V ] positive semi-definite.

The original objective is then
2
Py(0) = E [{V (s(X) — s9(X))}]
Which then leads to the following equivalence

Ls(0) = E2{Vx(V so(X))} V + (VT 85(X))?
— Fs—C.

which is less computationally expensive w.r.t. d and can be approximated with samples of X and V. For the proof of this
results and the precise conditions see|Song et al.| (2020).

D.4. Denoised Score matching
Denoised score matching is another adaptation which removes the need to takes derivatives of the score all together (Vin-
cent, 2011). As we will see later on it is also the method used most prominently in diffusion processes.

In denoising score matching we construct a collection of RVs {X(¢)}7, with X(0) = X and X(t)|X(0) ~
N(m(t)X(0),0(t)I,). We assume that the noise o(t) grows sufficiently so that X (T') is approximately an Isotropic
Gaussian. The aim is now to estimate s(x,t) := V, log p;(a) where p; is the PDF of X (¢). The denoising score matching
objective is then.

Elv(t)llso(X (),) = V() Vo log p(X (1) X (0) 3] = E [v(t)[ls6 (X (1), ) + p(X (£)| X (0))[|]

where here ¢ is treated as random and uniformly distributed on {1,...,T}, p(x(t)|x(0)) is the transition kernel from
X(0) to X(t) and A(t) is a self-specified weighting function over time. Due to our choice of noising process,
Va( logp(a(t)]x(0)) = ;Ha(t) — m(t)z(0).

Remark D.2. Convention is to up-weight larger values of ¢ as earlier parts of the reverse diffusion process (hence later parts
of the original diffusion process) are seen as the most complex and where most of the data’s structure is learned.
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Our estimate is thus

1 i i i
0 = argmin — > v(t;)[|se(X ' (t:), ;) + Vo log p(X @ (1) X D) (0))[|?

n
OERP 1EN

where t1, . .., t, are sampled uniformly from [0, 7.

Remark D.3. Originally denoising score matching was proposed for a single fixed ¢ however for the purpose of generative
modelling and annealed Langevin dynamics, multiple noise levels or even a continuous noising processes are used.

E. Additional Details

E.1. Objectives

E.1.1. MARGINAL IW SCORE MATCHING OBJECTIVE

Let {X;\(j’k) } =1 be IID copies of X with known PDF p/(z4, ). Our full sample objective is given by

i (i i
VXa)QQ(X/(\:aX,(A'f)) VX( )QO(XA ,T (Ak))
l Z’r’ Ay l ZT Ay
. 1 n r k=1 p’(X/(i’k)) r k=1 (X (1 k))
LM;n,T(e) = — E QVX(i‘) . ) + . (24)
n < Aj 1 a0 (X)) 1 qs(X )
Zk‘ 1 ,(X (k)Y k)) Zk‘ 1 ’(L k))

E.1.2. MARGINAL TRUNCATED IW SCORE MATCHING
Our full sample objective for truncated IW missing score matching is given by

“0) 2

i "(i,k P
990 (X1 X3 9;00(X\) 2!

1 T 1 T
R . 1 n T Zk:l p,(X’(i,k)) r Zk:l p(X L (1 k))
Ltinr (0) = — Z g(XA(i) )i § 205 0) + o) (25)
n &~ ¢ i 1 90 (X)) 1 q0(X4;)
i=1jen: Zk 1 ,(X’(z k)) Zk 1 ox o Gk k))
Lr 200X X GP)
N = Ty
+ 209(X5,) .
1
Zk 1 P (X v (k)Y k))

E.2. Variational Modelling Details

For our purposes our variational model p;) has to able able to model pg(x_|x,) for any value of A C d. For our model
we take X' || X\ = @) ~ N(ugp(xy), JiI).

Hence we require i to take in any subset of coordinates and output the complementing coordinates We achieve this by
creating u;, a d-dim in to d-dim out Neural Network with 2 hidden layers of 200 nodes as per Burda et al. (2016)). For the

input we replace x with 23 the zero filled version inline with the approach taken in MissDiff (Ouyang et al.,2023). That
is (z{); = 0if j ¢ X and is ; otherwise. As output we then simply take the appropriate coordinates. We can write this
more succinctly as

po(@n) = p(x3)-x
We also experimented with making N;a a 2d dim input NN and taking
frg (@) = piy (S, m) _x
where m is the d-dimensional binary mask for the corruption similarly to GAIN (Yoon et al., 2018)) however this did not
seem to provide any advantage. We also experimented with making o4 depend upon x, however we found this made

training much more unstable.
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E.3. Experiment Implementation Details

E.3.1. NORMAL DISTRIBUTION ESTIMATION

The mean is taken fixed at 1 = (0.5,...,0.5) . We randomly construct the covariance by first sampling eigenvalues uni-
formly on [0.5, 1.5] and then sampling choosing eigenvectors uniformly on the unit hypersphere for the first 9 dimensions.
We then construct the the 10th dimension strong dependence on only the first dimension by taking X1y = %X 1+ %Z with
Var(Z) = Var(X). The data is then truncated to be above the 10% quantile or each of the first three dimensions.

In each case batches of 100 samples were taken and a learning rate of 0.01 was used with Adam used as the optimisation
algorithm. Our score model was parameterised in terms of the Cholesky decomposition of the precision matrix in order to
ensure the Precision estimate stayed positive definite. For our Importance weighting and the EM approach of [Uehara et al.
(2020), an isotropic Gaussian with mean 0 and coordinatewise variance of 16 was used.

E.3.2. GAUSSIAN GRAPHICAL MODEL ESTIMATION
For Gaussian graphical model estimation we add L1 regularisation thereby modifying our objective to be

Lov(0)+v Y. [Pyl

125<j'<d

where 0 = (u, P) with P being our precision estimate. We minimise the objective by performing proximal gradient
descent on Lty (6). Specifically for a learning rate v, a current estimate of 6 given by #; and an estimate of the gradient
given by ;. We take our estimate to be h. , (6, — vn;) where

B —~n forB >~y
h(B) =40 for —yn < B>y
B+n for 3 < —vn

In our experiments we start with a precision estimate being P = I and with a large value of y and, run 200 iterations, and
then decrease the value of v every 10 subsequent iterations for 100 sequentially smaller values of . At the end of each
block of 10 iterations the precision matrix is taken and an adjacency matrix is produced by thresholding the entry’s values
at some small value. The TPR and FPR are then calculated for each of these increasingly dense matrices and then an ROC
curves plotted using these values. The AUC of this ROC is then computed which is the statistic reported in the plots.

We took L1 regularisation to ensure that at the highest level the graph had no edges and at the lowest level the graph had
all possible edges. For this experiment, this was achieved with v € (10~7,10~%). Throughout we took the threshold for
edge presence to be 0.002.

E.3.3. REAL WORLD DATA

For these experiments we chose the range of L1 regularisation similarly to ensure a full range of edge densities (here this
meant v € (10',107*) and then constructed a semi-automated procedure for choosing the threshold for edge presence.
There is precedent for choosing the detection threshold after L1 regularisation as per Fattahi & Sojoudi|(2019). We did this
by choosing the non-zero threshold at the smallest value that gave a sufficiently smooth increase in edge density between
the snapshots where we sample our estimated adjacency matrices.

Specifically the smoothness we were trying to achieve was avoid sudden decreases in the edge density as our regularisation
level decreased. Our rough measure of this was to sum up all the negative jumps between sequential adjacency matrix
estimates where the previous jump had been positive. This sum was then taken as our measure of "jumpiness" with larger
values representing a larger level. Visually inspecting the change in positive level over time we find that a level of 0.01 for
high-dimensional cases and a level 0.05 for low dimensional cases represented a relatively smooth change in edge density.
The smallest non-zero threshold that satisfied this was then chosen by iterative shrinking grid search.

To test the performance of our adjacency matrix estimates, we estimated the adjacency matrix using standard score match-
ing on the non-corrupted data. We estimated these adjacency matrices at 5 pre-determined values of edge densities given
specifically, 0.05,0.1,0.15,0.20.25. This lead to 5 different "ground truth" adjacency matrices. For each method, the
AUC was calculated for each of these "ground truth" adjacency matrices and these 5 AUCs averaged. For each missing
probability, 25 random samples of the corruption were produced and this AUC metric calculated. The average of these was
then plotted alongside 95% confidence intervals.
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The S&P 100 was taken from the S&P 500 data between 2013 and 2018 given in https://www.kaggle.com/
datasets/camnugent/sandp500 with the 100 stocks that made up the S&P 100 taken from roughly the mid-point
of the time period which we obtained fromhttps://en.wikipedia.org/w/index.php?title=S%26P_100&
01did=666413597.

The yeast data was obtained from https://ftp.ncbi.nlm.nih.gov/geo/series/GSEInnn/GSE1990/
mat rix//which was accessed viahttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1990
and other subsets have previously been studied in the context of GGM estimation in|Yang & Lozano|(2015).

All data can also be found in the GitHub repository at |https://github.com/joshgivens/
ScoreMatchingwithMissingData.
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