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ABSTRACT

Machine learning techniques have shown great potential in enhancing macro
placement, a critical stage in modern chip design. However, existing methods
primarily focus on online optimization of intermediate surrogate metrics that are
available at the current placement stage, rather than directly targeting the cross-
stage metrics—such as the timing performance—that measure the final chip qual-
ity. This is mainly because of the high computational costs associated with per-
forming post-placement stages for evaluating such metrics, making the online op-
timization impractical. Consequently, these optimizations struggle to align with
actual performance improvements and can even lead to severe manufacturing is-
sues. To bridge this gap, we propose LaMPlace, which Learns a Mask for op-
timizing cross-stage metrics in macro placement. Specifically, LaMPlace trains
a predictor on offline data to estimate these cross-stage metrics and then lever-
ages the predictor to quickly generate a mask, i.e., a pixel-level feature map that
quantifies the impact of placing a macro in each chip grid location on the design
metrics. This mask essentially acts as a fast evaluator, enabling placement de-
cisions based on cross-stage metrics rather than intermediate surrogate metrics.
Experiments on commonly used benchmarks demonstrate that LaMPlace signifi-
cantly improves the chip quality across several key design metrics, achieving an
average improvement of 9.6%, notably 43.0% and 30.4% in terms of WNS and
TNS, respectively, which are two crucial cross-stage metrics that reflect the final
chip quality in terms of the timing performance.

1 INTRODUCTION

Electronic Design Automation (EDA) aims to streamline the chip design process through efficient
automation techniques (MacMillen et al., 2000; Markov et al., 2012). It involves a lengthy workflow
that includes several stages such as logic synthesis, floorplanning, placement, clock tree synthesis
(CTS), and routing, with the ultimate goal of optimizing the performance, power, and area (PPA)
metrics of the final chip product (Rabaey et al., 2002; Wang et al., 2009). Within this workflow,
macro placement is a crucial step, which involves positioning large rectangular circuit modules—
such as memories, customized IPs, and interfaces—on a chip canvas. It determines the overall chip
layout and impacts subsequent stages such as cell placement, CTS, and routing, thus significantly
influencing the final PPA objectives (Chen et al., 2023).

Recent advances have shown that machine learning (ML) techniques have a promising potential
in enhancing macro placement. These techniques are expected to autonomously explore the vast
design space and generate chip layouts that are comparable to, or even superior to, those designed by
human experts, while significantly reducing the time required for placement and shortening time-to-
market. Traditionally, the macro placement task has been viewed as a black-box optimization (BBO)
problem, tackled with optimization techniques such as simulated annealing (SA) and evolutionary
algorithms (EA) (Kirkpatrick et al., 1983; Ho et al., 2004; Murata et al., 1995; Shi et al., 2023). In
their work AlphaChip, published on Nature, Mirhoseini et al. (2021) first proposed to model macro
placement as a Markov decision process (MDP), where the positions of macros are sequentially
determined, and they addressed the problem using reinforcement learning (RL). Since then, there
has been a surge of research on RL-based methods for macro placement (Cheng & Yan, 2021; Cheng
et al., 2022; Lai et al., 2022; 2023; Geng et al., 2024).
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mHPWL

Final PPA

WNS, TNS, …

mCongestion

LaMPlace can optimize cross-stage metrics

Macro Placement Cell Placement Clock Tree Synthesis Routing

HPWL

Wirelength

MaskPlace

ChiPFormer

WireMask-BBO

AlphaChip

DREAMPlace

Stages:

Metrics:

Methods: Previous works focus on intermediate surrogate 

metrics, but what matters is how to improve PPA.

Congestion

Figure 1: Illustration of post-placement stages in the EDA workflow, the metrics available at
each stage, and the optimization objectives of some previous works. Our main contribution is to
optimize the cross-stage metrics to improve the final PPA, rather than intermediate surrogate metrics.

Despite the achievements, existing methods primarily focus on optimizing intermediate surrogate
metrics that are readily available at the current stage (see Figure 1). To name a few, MaskPlace (Lai
et al., 2022), ChiPFormer (Lai et al., 2023), WireMask-BBO (Shi et al., 2023), and Efficient-
Place (Geng et al., 2024) all focus on efficient optimization of the macro half-perimeter wire
length (mHPWL), which is available immediately after macro placement, without considering stan-
dard cells (the relatively smaller components). AlphaChip (Mirhoseini et al., 2021) and DREAM-
Place (Lin et al., 2019; 2020; Gu et al., 2020; Liao et al., 2022) mainly optimize the full-netlist
half-perimeter wire length (HPWL) and congestion, which are available after cell placement but
before CTS. Although DeepPR (Cheng & Yan, 2021) and PRNet (Cheng et al., 2022) propose to
optimize the wirelength (WL) by integrating placement and routing, they do not consider the CTS
stage and often produce infeasible outcomes due to overlaps. These intermediate surrogate met-
rics are commonly favored by RL and BBO methods because of their relatively low computational
costs. However, as noted by a recent work (Wang et al., 2024), there exists a considerable misalign-
ment between the surrogate metrics and the PPA metrics, such as worst negative slack (WNS) and
total negative slack (TNS), which actually reflect the final chip quality but have not yet been ade-
quately considered in the AI community (Cheng et al., 2023). Incorporating these design metrics at
the macro placement stage is crucial for aligning with the industry’s ongoing pursuit of the “shift-
left” (Chen et al., 2024), i.e., advancing key processes earlier in the development cycle to improve
outcome predictability and efficiency. The oversight on these essential metrics primarily arises from
two reasons. On one hand, RL and BBO methods typically require extensive evaluations (i.e., re-
ward computations) during online optimization. On the other hand, the PPA metrics are inherently
cross-stage metrics, and evaluating them is highly time-consuming, requiring not only a full place-
ment, including macro and cell placement, but also post-placement stages such as CTS and routing.
The substantial time costs make the online optimization practice of RL and BBO impractical.

To tackle the aforementioned challenge, we propose LaMPlace, a novel method that Learns a Mask
for optimizing cross-stage metrics in macro placement. LaMPlace offers two principle insights for
macro placement. First, to mitigate the high computational costs of online optimization, we adopt
a supervised learning paradigm, training a predictor for desired metrics on offline data. This offline
setting is practical in industry, as substantial chip data can be collected from chip design projects.
The trained predictor serves as a placement simulator, allowing for the estimation of cross-stage
metrics at a relatively low computational cost. Second, to facilitate efficient placement, we shift
from learning a predictor that outputs a single value for each placement to learning to generate a
mask, i.e., a pixel-level feature map that quantifies the incremental objectives as each macro is placed
sequentially. To achieve this, we model the predictor as a polynomial function of pair-wise distances
between macros, with learnable coefficients. This polynomial formulation allows us to quickly
generate a mask to guide the placement decisions in real-time. Leveraging this mask, LaMPlace
employs a simple yet effective greedy policy, sequentially placing macros while maintaining local
optimality at each step. We evaluate the effectiveness of our proposed LaMPlace on commonly used
benchmarks, considering several cross-stage design metrics. The results demonstrate that LaMPlace
significantly improves the chip quality across these metrics, achieving an average improvement of
9.6%, notably 43.0% and 30.4% in terms of WNS and TNS, respectively, which are two crucial
cross-stage metrics that reflect the final chip quality in terms of the timing performance.
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2 PRELIMINARIES

2.1 MACRO PLACEMENT

Chip placement involves strategically arranging a set of chip modules, including macros (large mod-
ules such as memories, customized IPs, and interfaces) and cells (small modules like logic gates), on
a chip canvas, subject to the non-overlap constraint. As an integral part of the entire EDA workflow,
the ultimate goal of macro placement—and indeed, all these related steps—is to optimize the power,
performance, and area (PPA) metrics of the final chip product. As illustrated in Figure 1, evaluating
the final PPA involves several stages and is very time-consuming. Therefore, a variety of heuristic
metrics have been proposed in order to guide the optimization at intermediate stages. In this section,
we present some important concepts and metrics to facilitate a better understanding of the macro
placement task (Rabaey et al., 2002; Wang et al., 2009).

PPA refers to performance, power, and area, which are three key dimensions to assess the quality of a
chip product. These are not measured by a single metric but through a series of critical metrics. They
include, but are not limited to, worst negative slack (WNS), total negative slack (TNS), number of
violating paths (NVP), and physical area utilization. Optimizing the PPA metrics, as a fundamental
objective of EDA, has been extensively explored in the industry through expert-designed heuristics.
However, in the AI community, the challenge of PPA optimization has not been adequately recog-
nized (Wang et al., 2024). Bridging this gap and enhancing the integration of AI strategies in PPA
optimization are core aspirations of this paper.

Worst Negative Slack (WNS) and Total Negative Slack (TNS) are crucial metrics to assess the
timing performance of a chip circuit. Slack refers to the difference between a signal’s expected
and required arrival times, and negative slack indicates a timing violation. WNS identifies the worst
negative slack in a circuit, highlighting the most critical timing issue, while TNS sums up all negative
slacks, reflecting the overall timing issues. These two metrics, as representatives of PPA metrics, are
considered as evaluation metrics to demonstrate the effectiveness of our method.

Congestion evaluates the density of wires in different chip regions. High congestion in certain areas
can pose substantial challenges during the routing stage. While not a direct component of the PPA
metrics, managing congestion effectively is essential to ensure that the chip can be successfully
manufactured. Congestion is typically estimated after CTS but before detailed routing, allowing for
adjusting macro placement and routing strategies to mitigate potential issues. It is also used as an
evaluation metric in this paper.

Wire Length (WL) is the total length of all wires connecting all modules in a chip. half-perimeter
Wire Length (HPWL) is the sum of half-perimeters of bounding boxes that encompass all pins in
each net. It is widely used as an estimation of WL and is obtained after cell placement. Macro
HPWL (mHPWL) further simplifies HPWL by only considering the macros. It is favored in recent
studies as it can be immediately obtained after macro placement. These metrics are thought to
correlate with the final PPA, but they do not directly reflect the chip quality. In this paper, we include
HPWL as an evaluation metric mainly for a better comparison with previous methods, demonstrating
the effectiveness of our approach for optimizing cross-stage metrics.

2.2 RELATED WORK

Existing methods for macro placement can be roughly categorized into analytical methods, black-
box optimization (BBO)-based methods, and reinforcement learning (RL)-based methods.

Analytical methods formulate the optimization objective, such as HPWL, as an analytical func-
tion of module coordinates, which is solvable via quadratic programming (Kahng et al., 2005;
Viswanathan et al., 2007a;b; Spindler et al., 2008; Chen et al., 2008; Kim et al., 2012; Kim &
Markov, 2012; Cheng et al., 2018) or direct gradient descent (Lin et al., 2019; 2020; Gu et al., 2020;
Liao et al., 2022). Although efficient, they rely on differentiable surrogate metrics and struggle with
complex and black-box PPA metrics.

BBO-based methods view macro placement as a BBO problem and solve it using algorithms like
SA and EA (Kirkpatrick et al., 1983; Ho et al., 2004; Murata et al., 1995; Shi et al., 2023; Sher-
wani, 2012; Shunmugathammal et al., 2020; Vashisht et al., 2020; Murata et al., 1996; Chang et al.,
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2000; Roy et al., 2006; Khatkhate et al., 2004). They require numerous evaluations, which are
highly time-consuming when considering cross-stage metrics. Notably, WireMask-BBO (Shi et al.,
2023) introduces an efficient greedy algorithm for optimizing mHPWL based on the concept of
wiremask (Lai et al., 2022). In this work, we develop a learnable mask instead of the wiremask, and
adopt the greedy algorithm from Shi et al. (2023) for efficient optimization.

RL-based methods have recently emerged, starting from AlphaChip (Mirhoseini et al., 2021),
which first modeled macro placement as a Markov Decision Process (MDP). DeepPR (Cheng &
Yan, 2021) and PRNet (Cheng et al., 2022) integrate placement and routing but do not consider CTS
and the non-overlap constraint. MaskPlace (Lai et al., 2022) introduces the wiremask concept, later
adopted by Shi et al. (2023) and Geng et al. (2024) to significantly improve efficiency. The suc-
cessful application of wiremask also motivates us to learn a mask for fast macro placement. These
methods require extensive online learning steps, making it challenging to directly optimize PPA as
rewards. ChiPFormer (Lai et al., 2023) employs offline RL to reduce the online learning costs. How-
ever, it relies on a pre-trained expert policy and does not adequately consider the desired metrics.
Additionally, achieving an optimal performance still requires extensive online fine-tuning steps.

2.3 WIREMASK FOR FAST MHPWL OPTIMIZATION
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Figure 2: An example from Geng et al. (2024) to
illustrate of the concept of the wiremask.

The concept of wiremask was first introduced
by Lai et al. (2022) and later adopted by Shi
et al. (2023) and Geng et al. (2024) for fast
optimization of the macro half-perimeter wire
length (mHPWL). Figure 2 illustrates the wire-
mask with a trivial example. In the left fig-
ure, M1 and M2 represent two macros that
have already been placed, and M3 represents
the next macro to be placed. The red and green
solid boxes indicate the bounding boxes of two
nets. The current mHPWL is the sum of half-
perimeters of these boxes, i.e., mHPWL =
w1 + h1 + w2 + h2. When M3 is placed at
a specific grid position, we can easily calculate
the increment of mHPWL. Here we use the bottom-left corner of macros to denote their positions.
As shown in the right figure, the wiremask is a matrix that quantifies the increase in mHPWL result-
ing from placing M3 at each specific grid position. The wiremask can be computed quickly because
the mHPWL increment is an explicit function of the macro positions. To determine the next macro
position, we can first calculate the wiremask and then greedily select a feasible position that results
in the smallest mHPWL increase. Empirical results from Shi et al. (2023) and Geng et al. (2024)
demonstrate that this greedy approach yields sufficiently good mHPWL performance.

Motivation of LaMPlace If we learn a predictor with the full placement as input, it can serve
as a sparse reward model. However, its black-box nature makes it hard to develop an optimization
algorithm as efficient as the one with wiremask. This insight motivates us to explore how to learn
a mask for more general metrics, similar to how wiremask works for mHPWL. We recognize that
mHPWL is essentially in form of a combination of (Manhattan) distances between macros, enabling
fast calculation of the mHPWL increase at each position and each step. We further observe that
the computational principles behind wiremask can be generalized to any polynomial functions with
respect to pair-wise distances between macros. This motivates us to learn a predictor in form of
polynomials and leverage it to generate a mask to guide the optimization process.

3 METHODOLOGY

This section introduces our proposed framework LaMPlace. An overview of LaMPlace is shown
in Figure 3, which outlines two main components. First, we train a predictor for the cross-stage
metrics using Laurent polynomial approximation. The coefficients of the polynomials are treated as
learnable flows, which we refer to as L-flows. Second, we leverage the trained predictor to generate
a mask, termed as L-mask, to guide the efficient macro placement. We present detailed explanations

4
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(a) Training the predictor
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WNS

TNS

Congestion

HPWL

Figure 3: Overview of LaMPlace. (a) We construct an offline dataset by executing placement and
post-placement stages to obtain placement solutions and their corresponding cross-stage metrics. A
predictor in form of a Laurent polynomial is trained on this dataset. (b) Using the trained predictor,
we reformulate the macro placement task as a polynomial optimization problem. We leverage the
predictor to generate the L-mask to guide the sequentially greedy algorithm for fast placement. (c)
LaMPlace outperforms existing methods across several key design metrics. The results are averaged
over 8 chip circuits and then normalized to [0, 1] for a better visualization.

of these components in Section 3.1 and Section 3.2, respectively. Additional implementation details
can be found in Appendix A. We will release the code once the paper is accepted.

3.1 PREDICTING METRICS USING LAURENT POLYNOMIAL APPROXIMATION

Graph Representation A chip netlist consists of various nets representing the interconnections
between macros and standard cells. We represent a netlist as a graph G(V,E), where V denotes the
nodes and E the edges. Given the high number of standard cells—often surpassing 100, 000 in a
single chip—it is impractical or inefficient to represent all macros and cells as individual nodes.
Therefore, consistent with previous works, in our graph representation, each node represents a
macro. However, unlike prior approaches that disregard standard cells in the graph representation,
we incorporate standard cell information by introducing edge features that quantify the connectiv-
ity between macros, taking into account paths that include standard cells. Specifically, these edge
features capture the number of pathways connecting two macros, with paths differentiated by the
number of standard cells they traverse. Such a representation enables us to take the standard cells
into consideration with a relatively low computational overhead. More details about the node and
edge features can be found in Appendix A.1.

Laurent Polynomial Approximation Based on the aforementioned graph representation, we
adopt a graph neural network (GNN), denoted as GNNθ, to extract node features hv for each
node v ∈ V . These features are stacked as a matrix H = (h1, · · · ,h|V |)

⊤ ∈ R|V |×d, writ-
ing H = GNNθ(G). We consider a set of Λ metrics, which are evaluated using EDA tools. In
this work, we consider 4 different cross-stage metrics, including HPWL, congestion, WNS, and

5
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TNS. Each evaluation metric yλ is supposed as a function of the netlist G and the macro positions
X = (x1, · · · ,x|V |)

⊤ ∈ R|V |×2, writing yλ = fλ(H,X), where fλ(·) represents a EDA tool
to run the post-placement stages and obtain the final metrics. Notably, this function is translation-
invariant1 with respect to the macro positions. Therefore, we re-express it as a function of the
pairwise distances ri,j(X) = ∥xi − xj∥2 between every two macros i and j.

We predict each metric yλ using a Laurent polynomial function of the pair-wise distances:

ŷλ = f̂λ(H,X) =
∑
k∈K

∑
1≤i<j≤|V |

a
(λ,k)
i,j (H) · ∥xi − xj∥k2 . (1)

In Formula 1, K denotes a set of integers indicating the exponents in the polynomial, and a
(λ,k)
i,j (H)

are the coefficients, calculated as:

a
(λ,k)
i,j (H) =

1

2

(
h⊤
i M

(λ,k)hj + h⊤
j M

(λ,k)hi

)
, (2)

where M (λ,k) ∈ Rd×d are learnable weight matrices. Intuitively, each a
(λ,k)
i,j captures the relation-

ship between two macros i and j, analogous to the concept of flows in networks. Therefore, we refer
to these coefficients as “learnable flows”, or “L-flows”. Further discussions are in Appendix A.2.

Training the Predictor To train the predictor, we construct a dataset D using a collection of C
chip netlists {Gc}Cc=1, each represented as a graph Gc. For each netlist, we generate a set of M dif-
ferent placements {Xc,m}Mm=1 by running the available placement tool like DREAMPlace with dif-
ferent seeds. Subsequent stages—such as cell placement, clock tree synthesis (CTS), and routing—
are run with existing EDA tools to yield the cross-stage evaluation metrics y

(λ)
c,m = fλ(Gc,Xc,m)

for each λ ∈ [Λ]. Then we obtain a dataset

D =
{(

Gc,Xc,m, y(λ)c,m

)∣∣∣ c ∈ [C],m ∈ [M ], λ ∈ [Λ]
}
. (3)

For each chip Gc and placement Xc,m, we give the predict as ŷ(λ)c,m = f̂λ(GNNθ(Gc),Xc,m). We
use the MSE loss to train the predictor:

LMSE =
1

CMΛ

∑
c,m,λ

(
ŷ(λ)c,m − y(λ)c,m

)2

. (4)

We additionally adopt a pair-wise ranking loss to boost the training effectiveness, which is defined
as:

LRank =
∑
λ

∑
y
(λ)
c1,m1

>y
(λ)
c2,m2

Zc1,m1,c2,m2 log
(
1 + exp

(
ŷ(λ)c2,m2

− ŷ(λ)c1,m1

))
, (5)

where

Zc1,m1,c2,m2
=

∣∣∣∣∣∣
exp

(
y
(λ)
c1,m1

)
− exp

(
y
(λ)
c2,m2

)
∑

c,m exp
(
y
(λ)
c,m

)
∣∣∣∣∣∣ (6)

are weighted coefficients defined following previous works (Chen et al., 2023). We use the combi-
nation of these two loss functions to effectively train the predictor:

L = β1 · LMSE + β2 · LRank, (7)

where β1, β2 are hyperparameters.

3.2 LEARNABLE-MASK-GUIDED GREEDY ALGORITHM FOR EFFICIENT PLACEMENT

Optimization Problem Formulation In the macro placement phase, the chip canvas is discretized
as an N × N grid, and the feasible macro positions are the grid corners, denoted as X . With the
predictor in hand, the task of macro placement is recast as an optimization problem. Without loss of

1Here ‘translation-invariant’ is an approximate description, indicating that the target metrics are primarily
influenced by the relative positions of macros.
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generality, we assume that, for all metrics, a lower value indicates better performance. Formally, the
goal is to minimize the predicted metrics subject to no overlap:

argmin
X∈X |V |

∑
λ∈[Λ]

αλf̂λ(H,X)

s.t. Overlap(G,X) = 0,

(8)

where f̂λ(H,X) are polynomial functions defined in Equation 1, and αλ are hyperparameters.
Unlike wiremask, an advantage of our method is the ability to control the weights of every metrics,
effectively balancing the multi-objective optimization problem.

Efficient Greedy Policy Despite the simple polynomial formulation, solving the above optimiza-
tion problem is still challenging due to the large number of macros and the non-overlap constraint.
This highlights the necessity of the polynomial form of the predictor, which enables us to design
a greedy algorithm for fast placement. Specifically, we sequentially determine the position of one
macro at each step. At the tth step, the positions of the first t− 1 macros are already determined. We
place the tth macro position greedily by solving the following problem:

argmin
xt∈X

∆t(xt) =
∑
λ∈[Λ]

αλ

∑
k∈K

t−1∑
i=1

a
(λ,k)
i,t (H) · ∥xt − xi∥k2

s.t. Overlap(G,x1, · · · ,xt) = 0.

(9)

Generating Learnable Mask In Formula 9, ∆t(xt) represents the increase of the objective func-
tion from Formula 8 when placing the new macro at the grid xt. The matrix ∆t containing ∆t(xt)
values for all xt ∈ X is analogous to the wiremask used in the previous works (Lai et al., 2022;
Shi et al., 2023; Geng et al., 2024), which has shown promising potential in improving placement
efficiency (Shi et al., 2023). As our ∆t(xt) is learnable rather than pre-defined by mHPWL, it
extends wiremask to any learnable metrics. Therefore, we refer to ∆t as a “learnable mask”, or
an “L-Mask”. Thanks to the polynomial form of the predictor, the L-mask can be computed very
efficiently. Notice that the coefficients a

(λ,k)
i,j are position-agnostic and need to be computed only

once before the placement process:

A(λ,k) =
1

2
H

(
M (λ,k) +M (λ,k)⊤

)
H⊤, a

(λ,k)
i,j =

[
A(λ,k)

]
i,j

. (10)

Here A(λ,k) is the matrix with a
(λ,k)
i,j as entries, indicating the L-flow between each pair of macros.

This approach keeps the computational cost of the GNN module very low. At each step t during
placement, we only need to calculate the distances between each grid position and the placed macros,
which can be efficiently computed through tensor computation. See Algorithm 1 for more details.

L-Mask-Guided Black-Box Optimization The L-mask derives an efficient greedy placement
policy, which can be used to boost any sequential placement approach by restricting the solution
space. In this paper, we showcase its application within the WireMask-BBO framework proposed
by Shi et al. (2023). Specifically, in this framework, the placement task is recast as a BBO problem,
with the macro positions as the optimization variables. The genotype solutions are randomly initial-
ized and optimized using the algorithms such as EA. For each genotype solution, we use the L-mask
to record the increment of target metrics and greedily improve the genotype solution by sequentially
moving the macros to the nearest optimal grid. See Algorithm 2 for more details.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks We primarily assess our method on the ICCAD2015 benchmark (Kim et al., 2015),
which consists of eight large-scale chip circuits. Notably, some recent works (Cheng & Yan, 2021;
Cheng et al., 2022; Lai et al., 2022; 2023; Shi et al., 2023) have commonly used benchmarks from
ISPD2005 (Nam et al., 2005) and ICCAD2004 (Adya et al., 2009). However, the circuits in these
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benchmarks are in a simplified Bookshelf format, lacking the original LEF/DEF files and miss-
ing design information necessary for evaluating PPA in later stages. Consequently, obtaining PPA
metrics on these benchmarks is infeasible. In contrast, the circuits in the ICCAD2015 benchmarks
are from the ICCAD2015 contest for timing-driven placement. They include timing libraries and
design constraints, allowing for proper evaluation. More details can be found in Appendix A.4.
Additionally, we assess the zero-shot generalization capability of LaMPlace on a recently released
benchmark, ChipBench (Wang et al., 2024). ChiPBench provides an opensource dataset, containing
6 industry circuits, and a comprehensive benchmark for PPA evaluation.

Baselines We compare LaMPlace with several recent advanced placement methods. DREAM-
Place (Lin et al., 2019; 2020; Gu et al., 2020; Liao et al., 2022) is an analytical method initially
designed for cell placement. We use its latest version, which integrates timing optimization, to per-
form mixed-size placement, moving both macros and standard cells together. WireMask-BBO (Shi
et al., 2023) is a recent state-of-the-art method for optimizing mHPWL. It implements various BBO
algorithms, with WireMask-EA demonstrating the best overall performance, so we use WireMask-
EA for comparison. The placement algorithm of LaMPlace operates under the same settings as
WireMask-EA but utilizes our learned L-mask instead of the wiremask. ChiPFormer (Lai et al.,
2023) is a representative RL-based method, which has been pre-trained on an offline dataset. We
load their pre-trained model and fine-tune it on each circuit for comparison.

Evaluations Metrics As explained in Section 2.1, we use four key metrics for evaluation: HPWL,
congestion (Cong.), WNS, and TNS. These metrics are crucial for improving the final chip quality
but are time-consuming to evaluate as they involve stages after macro placement. For better repro-
ducibility, we use open-source tools to estimate the desired metrics. Specifically, we run DREAM-
Place (Liao et al., 2022) for cell placement to report HPWL and congestion, and OpenTimer (Huang
& Wong, 2015) for timing analysis to estimate WNS and TNS. Although the model is not directly
trained on the final PPA metrics obtained after all stages, our experiments have demonstrated its
effectiveness in optimizing cross-stage metrics and ultimately improving the final PPA.

Training and Inference For training LaMPlace, we use the first six circuits in ICCAD2015 for
training, specifically superblue1, 3, 4, 5, 7, and 10. The last two circuits, superblue16 and 18, are
excluded from the training set to demonstrate generalization to unseen data. This is a default dataset
partition just according to the circuit indices. We run DREAMPlace for mixed-size placement to
generate 200 layouts for each training circuit and evaluate them to obtain the desired metrics, which
serve as training labels. This process results in a dataset of 1, 200 placement-labels pairs as the
offline dataset. Notably, this requires only 1, 200 evaluations in total on all six training circuits,
significantly fewer than RL and BBO methods, which typically require tens of thousands of steps
for convergence on each circuit. The predictor is trained on this dataset and then tested on all circuits.

As LaMPlace, WireMask-EA, and ChiPFormer share the same Python implementation for the can-
vas, we implement them under the same settings, where the chip canvas is divided into an 84 × 84
grid. For LaMPlace and Wiremask-EA, we execute the EA algorithm with 50 initial random rounds
followed by 20 evolutionary rounds. For ChiPFormer, we load their pre-trained model and fine-tune
it for 2, 000 steps. For DREAMPlace, we run it for mixed-size placement using its default parame-
ters, with the timing optimization process enabled. More details can be found in Appendix A.5.

4.2 MAIN RESULTS

Table 1 presents the main evaluation results for macro placement using different approaches. The re-
sults show that LaMPlace outperforms other baselines. Specifically, LaMPlace consistently achieves
the best average rank and the best timing results (i.e., the best TNS and WNS) across all cases, and
achieves the best congestion on almost all cases. For HPWL, it achieves comparable performance
with DREAMPlace, which directly optimizes HPWL as an analytical objective, and significantly
surpasses other methods. LaMPlace achieves an average improvement of 9.6% across the four met-
rics, compared to the best-performing performing methods on each of these metrics. Notably, it
achieves improvements of 43.0% and 30.4% on TNS and WNS, respectively. The overall perfor-
mance is visualized as a radar chart in Fig 3 (c). We visualize the obtained placement solutions in
Appendix B.8. We report the running time in Appendix B.6. We further conduct experiments on
ChiPBench Wang et al. (2024), which evaluates the post-routing PPA results. We run the placement
algorithm of LaMPlace directly on the industrial chips from ChiPBench without any fine-tuning.
The results are in Table 4 in Appendix B.1, which demonstrate that LaMPlace still outperform other
baselines on ChiPBench, demonstrating LaMPlace’s zero-shot generalization ability.
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Table 1: Comparisons of HPWL (×3.8 × 1011 um), Cong. (×10−2), TNS (×105ps), and WNS
(×103ps) for macro placement derived by different approaches. For HPWL and Cong., lower is
better, while for TNS and WNS, higher is better. The results for DREAMPlace, Wiremask-EA and
LaMPlace are obtained from three independent runs with different random seeds, and we report the
mean and standard deviations (mean±std) of each metric. Additionally, we report the average rank
of these methods on each circuit. We mark the best results in bold red, and we mark the second best
results in underlined blue.

superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18

DREAMPlace

HPWL 25.72
(±3.70)

7.42
(±0.76)

11.12
(±2.38)

6.12
(±1.44)

3.26
(±0.18)

17.35
(±2.24)

2.30
(±0.05)

36.07
(±8.93)

Cong. 2.02
(±0.06)

2.92
(±0.01)

1.62
(±0.02)

1.92
(±0.19)

1.13
(±0.09)

1.41
(±0.03)

2.20
(±0.01)

1.03
(±0.11)

TNS -5210.15
(±108.89)

-8029.97
(±2480.47)

-3764.22
(±417.03)

-22321.9
(±6238.18)

-7374.28
(±2188.93)

-7812.76
(±189.47)

-1526.1
(±33.52)

-751.27
(±249.91)

WNS -144.74
(±18.58)

-1335.9
(±346.77)

-241.24
(±66.36)

-3928.92
(±2760.68)

-414.00
(±199.55)

-339.27
(±118.58)

-107.05
(±1.16)

-88.11
(±10.53)

Rank 2.75 3.25 3.50 3.25 3.00 2.75 2.25 3.50

WireMask-EA

HPWL 85.71
(±17.34)

17.68
(±1.32)

8.17
(±3.75)

34.94
(±7.47)

5.39
(±1.06)

21.27
(±0.88)

11.74
(±1.98)

38289.15
(±6660.46)

Cong. 1.87
(±0.10)

2.48
(±0.02)

1.79
(±0.39)

1.84
(±0.04)

1.46
(±0.08)

1.19
(±0.02)

1.56
(±0.41)

1.00
(±0.04)

TNS -2524.56
(±164.00)

-2132.54
(±154.44)

-1966.08
(±208.84)

-2553.51
(±414.32)

-1628.77
(±109.99)

-8370.46
(±1070.55)

-18343.30
(±16445.55)

-406.01
(±100.69)

WNS -155.00
(±23.15)

-293.85
(±34.09)

-107.72
(±21.13)

-194
(±25.71)

-76.86
(±3.88)

-290.46
(±60.06)

-635.89
(±601.41)

-78.25
(±8.65)

Rank 3.25 2.25 2.75 2.50 3.00 2.75 3.25 2.50

ChiPFormer

HPWL 68.10 33.37 8.36 31.06 7.40 24.47 16.58 3528.80

Cong. 2.05 2.49 1.92 0.95 1.87 1.19 1.28 1.00

TNS -2150.53 -2447.33 -1586.05 -3176.20 -1489.84 -7862.58 -15426.07 -378.90

WNS -132.74 -229.20 -85.28 -202.47 -68.99 -256.34 -322.05 -80.57

Rank 2.50 3.00 2.75 2.50 3.00 2.75 2.75 2.75

LaMPlace

HPWL 49.17
(±15.71)

22.25
(±2.91)

4.47
(±1.94)

31.48
(±6.25)

3.22
(±0.29)

22.13
(±2.66)

7.61
(±0.51)

16.94
(±7.14)

Cong. 1.51
(±0.04)

2.34
(±0.03)

1.54
(±0.07)

1.54
(±0.15)

0.87
±0.04

1.06
(±0.02)

2.03
(±0.01)

0.74
(±0.02)

TNS
-2422.01

(±272.73)
–1797.7

(±115.81)
-1424.31
(±63.10)

-2889.21
(±121.14)

-1585.32
(±201.6)

-7613.01
(±453.81)

-1514.73
(±524.61)

-426.91
(±52.83)

WNS -127.31
(±13.23)

-174.94
(±46.02)

-84.01
(±9.61)

-178.18
(±29.39)

-66.02
(±7.28)

-224.34
(±21.05)

-36.87
(±11.04)

-66.93
(±11.62)

Rank 1.50 1.50 1.00 1.75 1.25 1.50 1.75 1.25

4.3 ANALYSIS

Case Study We visualize the placement results for the compared methods in Figure 4. In this
case, existing methods exhibit excellent mHPWL results, but LaMPlace outperforms them on the
actual design metrics. Notably, LaMPlace tends to place macros along the borders of the canvas,
reserving the center for standard cells. This is a behavior of experienced designers, because this
strategy, though increasing mHPWL, can improve the final results empirically (Chiou et al., 2016).
Surprisingly, LaMPlace discovers this optimization technique without any prior knowledge. We
further use a commercial EDA tool, Cadence Innovus, to analyze the final PPA results, demonstrating
the effectiveness of LaMPlace to actually enhance the chip quality. The results are in Apendix B.2.

Correlation Analysis To underscore the significance of cross-stage metric optimization, validate
our motivation, and provide insights to the research community, we present the correlations between
the metrics involved in this work in Figure 5. The results are derived by collecting all layouts gen-
erated by the tested methods on all circuits. We calculate pair-wise Pearson correlation coefficients,
which reflect their linear correlations. Figure 5(a) illustrates the correlation coefficients between the
four evaluation metrics. The results indicate that HPWL and congestion exhibit a positive corre-
lation, and TNS and WNS also show a positive correlation. However, HPWL and congestion do
not significantly correlate with TNS and WNS. This suggests that placement is a complex multi-
objective optimization problem, and optimizing a single metric alone is insufficient. Figure 5(b)
shows the correlation between the evaluation metrics and different optimization surrogates. The re-
sults show that the predicted values strongly positively correlate with the true metrics. In contrast,
the commonly used intermediate surrogate metric, mHPWL, fails to positively correlate with all the
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(a) WireMask-EA: mHPWL = 7.27 ×105

HPWL = 11.60 ×109, Cong. = 1.78 ×10−2

TNS = -1920.33 ×105, WNS = -87.09 ×103

(b) ChiPFormer: mHPWL = 8.20 ×105

HPWL = 8.36 ×109, Cong. = 1.92 ×10−2

TNS = -1586.05 ×105, WNS = -85.28 ×103

(c) DREAMPlace: mHPWL = 22.80 ×105

HPWL = 6.59 ×109, Cong. = 1.39 ×10−2

TNS = -1871.03×105, WNS = -107.80 ×103

(d) LaMPlace : mHPWL = 100.66 ×105

HPWL = 2.48 ×109, Cong. = 1.04 ×10−2

TNS = -1451.41 ×105, WNS = -77.61 ×103

Figure 4: Visualization of full-netlist placement results of su-
perblue4 using different methods. Macros are marked in red, while
standard cells are represented in blue. The evaluation metrics are la-
beled under each figure.

HPWL Cong. TNS WNS

H
P

W
L

C
on

g.
T

N
S

W
N

S

1.00 0.78 -0.06 -0.21

0.78 1.00 -0.20 -0.25

-0.06 -0.20 1.00 0.74

-0.21 -0.25 0.74 1.00

(a) Pair-wise correlation coefficients
between four evaluation metrics.

pHPWL pCong. pTNS pWNS mHPWL Pred

H
P

W
L

C
on

g.
T

N
S

W
N

S

0.90 0.84 -0.15 -0.43 -0.17 0.26

0.84 0.87 -0.27 -0.49 -0.16 0.12

-0.21 -0.23 0.68 0.56 0.46 0.59

-0.28 -0.25 0.52 0.46 0.34 0.41

(b) Correlation coefficients between
mHPWL, predicted value of LaMPlace
and four evaluation metrics.

Figure 5: Correlation
analysis. The prefix ‘p’ de-
notes the predicted values
and the ‘Pred’ represents
the weighted sum of them.

metrics as our predictor does. The metric “Pred” represents the sum of predicted values, serving
as the optimization objective for placement as introduced in Section 3.2. The results demonstrate
that “Pred” has a positive correlation with all metrics, highlighting its effectiveness to serve as an
optimization objective. These findings reveal the fundamental reasons for LaMPlace’s superiority
in multi-objective optimization compared to previous works.

Ablation Study We conduct comparative experiments to demonstrate the effectiveness of the Lau-
rent polynomial form. Specifically, in Equation 1, we define K as a set of integers indicating the
orders of terms in the polynomial. In the main experiments, we empirically set K = {1, 0,−1,−2}.
We further investigate the effect of the choice of K, and the results are presented in Table 8 in Ap-
pendix B.3. The findings indicate that the Laurent polynomial form, rather than general polynomials,
can indeed enhance performance.

As shown in Equation 8, the optimization objective during the placement phase is defined as f̂ =∑
λ∈[Λ] αλf̂λ(H,X), which is the weighted summation of different metrics, achieving a trade-

off among these metrics. We further conduct experiments to investigate the impact of the hyper-
parameters αλ. Results are in Table 9 in Appendix B.4, which demonstrate that adjusting these
hyperparameters can strategically control the weights of the metrics.

We also conduct an ablation study on the number of layers in the GNN architecture. The results are
shown in Figure 12 in Appendix B.5, demonstrating that the model performance is overall robust
against the GNN architecture.

Prediction Error Analysis We analyze the correlation between the placement quality and the
prediction error. The results are shown in Figure 13 in Appendix B.7. The results demonstrate the
positive correlation between the placement quality and the prediction error, while the placement
quality is overall robust against the variations. We also present the training curves of several key
metrics regarding the prediction error in Figure 14 in Appendix B.7.

5 CONCLUSIONS

In this paper, we propose LaMPlace, a novel macro placement method that learns a mask to opti-
mizes cross-stage metrics, rather than intermediate surrogate metrics. It introduces a predictor, in
form of Laurent polynomial functions, for cross-stage metrics. This formulation derives a sequen-
tially greedy policy for efficient placement. Experiments demonstrate that LaMPlace can signifi-
cantly improve the chip quality in terms of several key design metrics.
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REPRODUCIBILITY STATEMENT

We provide the following information for the reproducibility of our proposed LaMPlace. The
method is detailed in Section 3. The implementation details are provided in Appendix A. The
experimental details and results are in Section 4 and further elaborated in Appendix A.5. Moreover,
we will make our source code publicly available once the paper is accepted for publication.
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A IMPLEMENTATION DETAILS

A.1 GRAPH REPRESENTATION

2-path 1-path not a directed 
1-path

directed 2-
path

Figure 6: Illustration of directed and undirected k-path. The blue rectangles represent macros
and orange dots represent cells. We mark the undirected and directed datapaths in two separate parts
of the figure. In the right part, the connection directions are depicted with arrows.

We use a graph to represent each circuit. A circuit netlist often comprises hundreds of macros
and numerous standard cells. We treat macros as nodes and capture the cell information as edge
feature. We denote a path (which is connected by nets) consisting of k cells between two macros
as a k-path, illustrated in Figure 6. For any two macros, notated as nodei and nodej , the number
of k-paths between them is denoted by N (k)

ij . We establish an edge between any two nodes, if
there exists a path with depth not exceeding D between them. D represents the maximum depth
of paths considered. The dataflow metric is used in EDA community to capture the “information
closeness” between them (Vidal-Obiols et al., 2019; 2021). To capture the cell information, we
introduce dataflow as our edge feature:

df
(D)
i,j =

∑
1≤k≤D

(
1

2
)k · N (k)

ij , (11)

Each net compromises both input and output components. Therefore, the connections between
circuit modules are actually directed, analogous to the directed edges in a graph. Based on this,
we introduce the concept of directed k′-path, as illustrated in Figure 6. We denote the number of
directed k′-paths between nodei and nodej byN ′(k′)

ij . The corresponding directed dataflow df
′(D′)
ij

can be calculated in the same way as Equation 11. We use both the directed and undirected cell
connection information to establish the graph.

We formulate the circuit as a graph G = (Vm, Edf ). Here Vm ∈ RNm×dm and Edf ∈ RNe×de , where
Nm and Ne refer to the number of macros and edges. dm and de denote the number of feature
channels for node and edge respectively. We assign three channels to our node feature Vm, which
are physical information: sizex and sizey , namely the two-dimensional physical size of the macro;
logical information: npin, namely the number of pins of the macro, which reflects the connected
complexity of the macro. Based on the prior discussion, We assign a feature of de = D +D′ + 4
channels to each edge. The edge feature of the nodei and nodej connection can be specifically
denoted:

Eij = (df
(D)
ij ,N (0)

ij , · · · ,N (D)
ij , df

′(D′)
ij ,N ′(0)

ij , · · · ,N ′(D′)
ij ). (12)

In our work, we set D = 2 and D’ = 10, obtaining a 16-channels edge feature.
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A.2 L-MASK

As described in 2.3, LaMPlace aims to learn a L-mask for more general metrics of a chip circuit. In
Appendix A.1, we have introduced the concept of dataflow, which is designed manually to quantify
the connectivity properties between two macros. As shown in Equation 2, the coefficients a(λ,k)i,j take
a similar form with dataflow, which captures the pair-wise relationships between macros. Therefore,
we refer to these coefficients as “learnable flows” (L-flows). Compared to dataflow, our learnable L-
flows have Stronger representational capacity. Since L-flow is learned by predicting the cross-stage
metrics, it can better correlate with the final chip quality.

L-mask is derived from L-flows. L-mask has a similar form with wiremask, namely, an n×n pixel-
level feature map that represents the increase in the L-flow value if a macro is placed in a specific
position. We detail the computation process for the L-mask in Algorithm 1. We also visualize the
process of L-mask guiding placement in Figure 7.

Algorithm 1 Calculation of L-Mask

Input: Placed macros P , macro to be placed macroi, L-flow a
(k,λ)
i,j

Parameters: Number of canvas partitions n, sum weight αλ

Output: L-mask L
Initialize L as n× n grids of 0
for macroj in P do

Get the grid position of macroj , (xj , yj)
Initialize Gx,Gy as n× n grids
for x← 0 to n− 1 do

for y ← 0 to n− 1 do
Gx[x][y]← x
Gy[x][y]← y

R←
√
(Gx − xj)2 + (Gy − yj)2, quantifying the distance from grid cells to (xj , yj)

L← L+
∑

λ αλ

∑
k a

(k,λ)
i,j ·Rk

Return: The L-mask L

(a) L-mask (b) Legalization-mask

(c) Pre-Placement (d) Step of Placement

Figure 7: Illustration of L-mask guided macro placement. In the L-mask figure (a), the blue
pixels indicate the local minimum points. A legalization mask is applied to the L-mask to ensure no
overlap. The white areas in Figure (b) indicates the legal positions for placement. Then, the legal
position (no overlap) with the lowest L-mask value is selected for placing the next macro, which is
represented by the blue macro in figure (d).
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A.3 PLACEMENT ALGORITHM

We formulate the macro placement task as a black-box optimization problem. Evolutionary algo-
rithm (EA) are employed where the genotype-phenotype mapping is greedily guided by L-mask. The
random initial process records one best solution with the lowest predicted value and the following
evolutionary process improves this solution by mutation. The mutation operator are implemented
by randomly swapping the position of two macros. More algorithm details are demonstrated in
Algorithm 2

Algorithm 2 Placement Algorithm

Input: Netlist G = (Vm, Edf ), L-flow Lfk
i,j

Parameters: Number of initial random turns Ninit, Number of evolutionary turns Nea

Output: Placement P
For each macroi ∈ Vm, compute the connection weight of it, i.e.,

∑
j,k

∣∣Lfk
i,j

∣∣
Order all macros in decreasing order based on their connection weight, obtaining the ranked
macro {macro∗1, · · · ,macro∗n}
for turns in Ninit do

Random initialize position for each macro∗i , denoted by pi
Initialize placed-macros position as empty set, P
Initialize best placement P ∗ with best value V ∗

for each macro∗i do
Calculate the L-mask Li based on placed-macros P and L-flow Lfk

i,j with the process in
Algorithm 1
Q← argminLi

Select q from Q which is closest to the macro initial position pi
Incorporate macro∗i with position q to P

Generate the predicted value V of final placement P
if V < V ∗ then
V ∗ ← V
P ∗ ← P

for turns in Nea do
Initialize position for each macro∗i as p∗i from P ∗

Swap positions of two randomly selected macro
Initialize placed-macros position as empty set, P
for each macro∗i do

Calculate the L-mask Li based on placed-macros P and L-flow Lfk
i,j with the process in

Algorithm 1
Q← argminLi

Select q from Q which is closest to the macro initial position p∗i
Incorporate macro∗i with position q to P

Generate the predicted value V of final placement P
if V < V ∗ then
V ∗ ← V
P ∗ ← P

Return: The best placement P ∗
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A.4 BENCHMARK DETAILS

Table 2: Statistics of public benchmark circuits.

Circuit Macros Standard Cells Nets Pins Area Util(%)

superblue1 424 1215820 1215710 3767494 85
superblue3 565 1219170 1224979 3905321 87
superblue4 300 801968 802513 2497940 90
superblue5 770 1090247 1100825 3246878 85
superblue7 441 1937699 1933945 6372094 90
superblue10 1629 984379 1898119 5560506 87
superblue16 99 985909 999902 3013268 85
superblue18 201 771845 771542 2559143 85

Table 2 details the statistics for eight circuits from the ICCAD2015 dataset. Since larger modules
generally exhibit greater complexity, modules larger than ten times the average area are selected as
macros for placement. The “Macros” column specifies the quantity of macros chosen for placement
in our study.

A.5 EXPERIMENTAL DETAILS

We report some important hyperparameters and settings in this section. Further details can be found
in our code once the paper is accepted to be published. In our work, all the experiments are con-
ducted on a single machine with NVidia GeForce GTX 3090 GPUs and Intel(R) Xeon(R) E5-2667
v4 CPUs 3.20GHz.

For the predictor training stage, we used DREAMPlace to generate 200 layouts and the correspond-
ing metrics for each of six training circuits. This involved conducting 200 mixed-size placement
runs for each circuit, each run using a different seed and the default settings. One fifth of the train-
ing set was selected as the validation set. We use the Adam optimizer to train our model for 400
epochs with a batch size of 60. We select the best model checkpoint based on the highest Kendall
coefficient evaluated on the validation set. The Kendall coefficient is used to evaluates the ranking
performance, as stated in (Chen et al., 2023). The learning rate is initialized to 0.001 and decays
exponentially.

For the placement stage, since LaMPlace employs the same EA-search framework as WireMask-EA,
which is thoroughly discussed in (Shi et al., 2023), we use the same configurations as WireMask-
EA. The only difference lies in replacing the mHPWL-based WireMask with our L-mask. Both
methods perform 50 random search iterations and 20 evolutionary iterations to obtain the final macro
placement results. We fine-tune the pre-trained Chipformer model using its open-source code to
generate macro placements for each test case. Since LaMPlace, Wiremask-EA and Chipformer all
treat the chip canvas as a grid, as proposed in (Lai et al., 2022), we partition the grid into 84 × 84
across all the cases, aligning with (Lai et al., 2023). The evaluation of macro placement is conducted
through cell placement using DREAMPlace and timing analysis with OpenTimer. In order to reduce
the influence of randomness in a reasonable way, we pick five best macro placement layouts for
each method and record the best evaluation result. For DREAMPlace, we obtain the mixed-size
placement results with its default settings.

A.6 MODEL ARCHITECTURE AND HYPERPARAMETERS

We provide the structure and hyper-parameter details of our prediction model in this section. All the
MLPs have two layers and use ReLU() as the activation function. We use the graph introduced in
A.1 as our input. The details of the model hyper-parameter are shown in Table 3.
The input node and edge features are embedded using two MLP encoders. Next, multiple GNNs
are employed to extract graph information, generating the node embeddings hi. After embedding
hi through the output encoder MLP, pairs of linear layers are used to obtain the Laurent polynomial
coefficients between two nodes, as shown in Equation 2. Specifically, the message-passing process
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Table 3: Hyper-parameters of prediction model

module layer name layer size output size
16× 256

edge encoder MLP 1 ReLU() (num of edges, 256)
256× 256
3× 256

node encoder MLP 2 ReLU() (num of nodes, 256)
256× 256

graph encoder GNN ×5 256× 256 for all MLPs (num of nodes, 256)

256× 256
ouput encoder MLP 3 ReLU() (num of nodes, 256)

256× 256

L-flow decoder Linear Layer ×16 256× 256 for all layers (num of nodes, num of nodes, 16)

in a GNN can be represented by the following equations:

mij = ϕe

(
contact(h

(l)
i , eij)

)
mi =

∑
j∈N (i)

mji

h(l+1) = ϕh(h
(l) +mi),

(13)

where N (i) is the neighbour of nodei, and ϕe, ϕh are non-linear mappings implemented by MLP.

A.7 PAIR-WISE RANK LOSS

Learning to Rank is a machine learning framework that constructs a ranking model to optimize
the correlation between predicted values and ground truth metrics. The pair-wise ranking method
simplifies this problem into a binary classification task, focusing on distinguishing which candidate
in a given pair is better. Given a pair of macro placement solutions, < Xi,Xj >, the predictor
outputs their corresponding predicted metrics, < ŷi, ŷj >. If the true metrics satisfy yi > yj ,
denoted as Xi ≻ Xj , the predicted probability of Xi being better than Xj is:

P (Xi ≻ Xj) =
1

1 + exp{−(ŷi − ŷj)}
.

The rank loss for this pair is computed using a binary cross-entropy function, incorporating the
difference caused by swapping the ranks of samples i and j:

Lij = log{1 + exp{−(ŷi − ŷj)}}|∆Zij |,
where ∆Zij quantifies the difference in ranking caused by the swap, calculated using the softmax
function:

∆Zij =
exp(yi)∑
p exp(yp)

− exp(yj)∑
p exp(yp)

.

The total rank loss aggregates the pair-wise losses across all pairs and metrics:

LRank =
∑
λ

∑
y
(λ)
c1,m1

>y
(λ)
c2,m2

Zc1,m1,c2,m2
log

(
1 + exp

(
ŷ(λ)c2,m2

− ŷ(λ)c1,m1

))
,

where λ denote each metric, and:

Zc1,m1,c2,m2 =

∣∣∣∣∣∣
exp

(
y
(λ)
c1,m1

)
− exp

(
y
(λ)
c2,m2

)
∑

c,m exp
(
y
(λ)
c,m

)
∣∣∣∣∣∣ .

This approach ensures that the ranking model effectively learns to prioritize solutions with higher
metrics while considering the relative importance of each pair.
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B ADDITIONAL RESULTS

B.1 RESULTS ON CHIPBENCH

We conduct experiments on ChiPBench Wang et al. (2024). We run the placement algorithm of
LaMPlace directly on the industrial chips from ChiPBench without any fine-tuning, and follow
their proposed workflow to obtain the final PPA metrics. The results are in Table 4. Notice that
the baselines are tuned on the new dataset while our approach LaMPlace is not, demonstrating
LaMPlace’s zero-shot generalization ability.

Table 4: Post-routing PPA results—Wirelength (um), Congestion, Power (W), WNS (ps), TNS
(ps) and NVP—on ChiPBench. For WNS and TNS, higher is better, and for other metrics, lower
is better. Additionally, we report the average rank of these methods on each circuit. We mark the
best results in bold red, and we mark the second best results in underline blue. LaMPlace achieves
the best overall performance though baselines are tuned on the dataset while LaMPlace is not.

swerv wrapper ariane133 bp fe bp bp be ariane136

DREAMPlace

Wirelength 4525348 6348638 2823861 9347541 3518916 6831531
Congestion 0.366 0.2138 0.5084 0.4088 0.5165 0.2306

Power 0.645674 0.367289 0.2942135 0.2500424 0.458286 0.570734

WNS -1.06067 -0.540441 -1.11661 -2.10779 -2.16346 -1.35843

TNS -780.20 -690.27 -473.261 -14.6088 -3648.02 -3269.22

NVP 1608 2307 1849 192 6026 4350

Rank 2.29 2.00 2.14 1.86 3.00 2.14

WireMask-EA

Wirelength 4854661 6583143 2783740 10002159 3574875 6945252

Congestion 0.41 0.23 0.51 0.44 0.52 0.24

Power 0.67 0.37 0.31 0.25 0.47 0.57

WNS -1.02747 -0.417093 -1.66571 -1.93591 -2.14159 -1.72648

TNS -873.506 -329.353 -777.42 -21.8123 -4093.97 -4268.61

NVP 1518 1970 2628 326 5131 3628

Rank 2.71 2.86 3 3 3 2.286

Chipformer

Wirelength 5019849 6581086 2073376 8970666 3572070 6869186

Congestion 0.43 0.23 0.38 0.39 0.52 0.24

Power 0.67 0.37 0.30 0.25 0.43 0.57

WNS -1.19 -0.55 -1.20 -1.75 -2.17 -1.39

TNS -1282.24 -860.95 -1000.19 -502.98 -3541.82 -3603.53

NVP 2139 2703 2714 2179 5100 3609

Rank 2.67 2.50 3.17 3.00 3.33 3.33

LaMPlace

Wirelength 4123153 6947307 1874385 9840460 2854486 7051781

Congestion 0.35 0.24 0.34 0.42 0.41 0.24

Power 0.636157 0.364683 0.294396 0.257111 0.415 0.545532
WNS -1.02 -0.19 -1.07 -1.73 -1.97 -1.13
TNS -740.69 -120.30 -880.39 -53.47 -2325.43 -2806.97
NVP 1424 1533 2676 400 4687 3469
Rank 1.00 2.00 1.83 2.83 1.00 2.00

B.2 CASE STUDY ON PPA METRICS

We further evaluate those methods with the actual post-routing PPA metrics, using the Commercial
Tool Innovus. The test metrics include routing wirelength (rWL), horizontal and vertical overflow
(rOverflowH and rOverflowV respectively), post-routing timing metrics (TNS, WNS) and number
of violations (NVP), i.e., the count of timing violation paths in a chip design. The detailed results
are provided in Table 5, Table 6 and Table 7. Figure 8, Figure 9, and Figure 10 also provide the
visualization of the final chip layouts. Figure 11 displays a histogram of the timing slack distribution
for violated paths. Compared to other methods, the distribution for LaMPlace placements is more
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concentrated near zero. These results demonstrate that LaMPlace significantly enhances the final
PPA results compared with other tested methods.

Table 5: Post-routing PPA results on superblue4, computed using Innovus. We mark the best
results in bold red.

rWL(×108um) rOverflowH(%) rOverflowV(%) WNS(ps) TNS(×105ps) NVP
DREAMPlace 2.15 71.62 46.67 -105.013 -4.47 45567
Wiremask-EA 1.90 70.90 19.40 -109.103 -2.69 22007

Chipformer 1.84 69.93 17.51 -85.923 -2.17 22627
LaMPlace 1.53 9.93 0.32 -87.170 -1.77 13045

Table 6: Post-routing PPA results on superblue16, computed using Innovus. We mark the best
results in bold red.

rWL(×108um) rOverflowH(%) rOverflowV(%) WNS(ps) TNS(×105ps) NVP
WireMask-EA 1.13 9.21 0.15 -53.04 -2.12 21399

Chipformer 1.17 6.44 0.17 -91.19 -2.73 34606
DREAMPlace 1.41 16.31 1.66 -57.18 -1.90 30737

PolyMaP 1.04 1.26 0.10 -45.06 -1.36 18776

Table 7: Post-routing PPA results on superblue18, computed using Innovus. We mark the best
results in bold red.

rWL(×108um) rOverflowH(%) rOverflowV(%) WNS(ps) TNS(×105ps) NVP
WireMask-EA 0.99 20.18 17.38 -61.63 -1.33 33151

Chipformer 0.95 18.41 12.44 -50.227 -0.64 17365
DREAMPlace 1.92 69.31 15.41 -65.014 -1.94 28477

PolyMaP 0.95 9.48 5.79 -88.967 -0.51 11495

(a) WireMask-EA (b) ChiPFormer

(c) DREAMPlace (d) LaMPlace

Figure 8: Visualization of post-routing results of superblue4 using Commercial Tool Innovus.
The red area denotes the overflow area.
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(a) WireMask-EA (b) ChiPFormer

(c) DREAMPlace (d) LaMPlace

Figure 9: Visualization of post-routing results of superblue16 using Commercial Tool Innovus.
The red area denotes the overflow area.

(a) WireMask-EA (b) ChiPFormer

(c) DREAMPlace (d) LaMPlace

Figure 10: Visualization of post-routing results of superblue18 using Commercial Tool Innovus.
The red area denotes the overflow area.
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(a) WireMask-EA (b) ChiPFormer

(c) DREAMPlace (d) LaMPlace

Figure 11: Histogram of post-routing timing slack results of superblue4 using Commercial Tool
Innovus. The x-axis denotes the timing slack, while the y-axis quantifies the count of paths falling
within specified timing slack intervals

B.3 COMPARISON STUDY ON K

Table 8 presents the results of different choices of K, which is defined in Equation 1. The experi-
ments are conducted with the same settings as the main experiments, expect for the different choices
of K. According to the results, we empirically set K = {1, 0,−1,−2} in the main experiments.

Table 8: Comparisons of HPWL (×3.8 × 1011 um), Cong. (×10−2), TNS (×105ps), and WNS
(×103ps) for macro placement derived by LaMPlace under different choices of K.

K superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18

{1, 0,−1,−2}

HPWL 49.17 22.25 4.47 31.48 3.22 22.13 7.61 16.94

Cong. 1.51 2.34 1.54 1.54 0.87 1.06 2.03 0.74

TNS -2422.01 -1797.7 -1424.31 -2889.21 -1585.32 7613.01 -1514.73 -426.91

WNS -127.31 -174.94 -84.01 -178.18 -66.02 -224.34 -36.87 -66.93

{0,−1,−2}

HPWL 31.05 18.44 6.61 20.61 4.49 20.59 6.22 4.99

Cong. 1.62 2.41 1.64 1.523 1.31 0.99 2.05 0.78

TNS -3510.3152 -2157.98 -1764.7 -2541.66 -1249.57 -7203.3 -941.28 -378.25

WNS -167.51 -381.78 -104.92 -193.68 -51.11 -235.91 -30.89 -69.61

{2, 1, 0,−1,−2}

HPWL 55.53 27.11 8.69 69.01 3.5 25.32 7.59 8.46

Cong. 1.8 2.5 1.85 1.98 1.67 1.25 2.12 0.87

TNS -1834.42 -1839.52 -1713.99 -3637.1 -1311.24 -7866.22 -1487.49 -375.03

WNS -140.41 -185.5 -108.25 -164.98 -47.65 -292.77 -33.96 -50.09

{1, 0,−2}

HPWL 38.08 21.57 8.07 45.29 4.99 11.6 6.93 28.47

Cong. 1.63 2.47 1.58 1.36 1.17 1.02 2.06 0.83

TNS -3510.32 -2496.02 -1481.85 -2363.5 -1702.37 -8591.41 -1294.61 -250.23

WNS -167.51 -402.34 -84.96 -152.54 -66.42 -394.28 -36.36 -73.41

B.4 COMPARISON STUDY ON {αλ}λ∈Λ

We further study how the coefficients {αλ}λ∈Λ affect the placement results. To this end, we adjust
{αλ}λ∈Λ to emphasize each of the metrics on the circuit superblue4. The results show that adjusting
the hyperparameters can effectively control the final placement results. In main experiments, we
simply set αλ = 1 for all λ.
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Table 9: Results of different weights of metrics. Here the four coefficients correspond to HPWL,
Cong., TNS, and WNS, respectively. The results are obtained on superblue4. We highlight the best
result for each metric in bold, which aligns with our coefficients modification.

{αλ}λ∈Λ HPWL Cong. TNS WNS

{1, 1, 1, 1} 5.47 1.63 -1763.62 -123.71

{1, 1, 1, 5} 4.734 1.47 -1708.66 -81.45
{1, 1, 5, 1} 7.28 1.71 -1579.60 -90.47

{1, 5, 1, 1} 4.35 1.41 -1880.33 -84.07

{5, 1, 1, 1} 1.83 1.45 -1606.05 -99.03

B.5 COMPARISON STUDY ON GNN LAYERS

We conduct an additional ablation study on the number of layers in the GNN architecture. The
results are shown in Figure 12, demonstrating that the model performance is overall robust against
the GNN architecture.
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Figure 12: Ablation study on the number of layers of GNN. We present the training curves of the
ranking loss with different GNN layers. The results are robust against the model architecture.

B.6 RUNTIME ANALYSIS

We report the running time of the compared methods in Table 10. Both LaMPlace and Wiremask-EA
undergo 50 initial turns followed by 20 evolutionary turns. The runtime for Chipformer is derived
from fine-tuning a pre-trained model, while DREAMPlace conducts a mixed-size placement.

Table 10: Running time(h) of compared methods to obtain the placement results.

superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18

DREAMPlace 0.28 0.25 0.14 0.34 0.46 0.47 0.20 0.18
Wiremask-EA 0.15 0.34 0.15 0.46 0.25 1.28 0.05 0.15

Chipformer 0.95 0.02 0.35 2.09 1.43 1.44 0.17 0.07
LaMPlace 0.22 0.38 0.11 0.72 0.21 3.16 0.01 0.05
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B.7 ANALYSIS ON TRAINING LOSS

We analyze the correlation between the placement quality and the prediction error. The results are
shown in Figure 13. The results demonstrate the positive correlation between the placement quality
and the prediction error, while the placement quality is overall robust against the variations. We also
present the training curves of several key metrics regarding the prediction error in Figure 14.
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Figure 13: The correlation between placement quality and prediction error. We use models
from 8 different checkpoints to compute ranking loss and perform macro placement on superblue16.
The placement quality is evaluated by the average normalized values of the four considered metrics,
lower indicating better. The results show that placement quality positively correlates with ranking
loss, but it is still robust against variations.
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Figure 14: Training curves of several key metrics regarding the prediction error. The metrics
include MSE loss, pair-wise ranking loss, Pearson and Kendall’s Tau correlation coefficient. The
results are computed on the validation set.

B.8 VISUALIZATION OF PLACEMENT

We include the visualized results of DREAMPlace, WireMask-EA, Chipformer and LaMPlace in
Figure 18, 16, 17 and 15. The visualizations highlight the distinct placement patterns of differ-
ent methods. ChipFormer and WireMask-EA often place macros irregularly toward the center.
DREAMPlace places macros and cells densely in the central area, optimizing HPWL but leading
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to suboptimal PPA. In contrast, LaMPlace learns to place macros near edges or corners. From the
perspective of an expert designer, this is usually a preferred practice as it benefits the back-end
processes.

(a) superblue1 (b) superblue3 (c) superblue4 (d) superblue5

(e) superblue7 (f) superblue10 (g) superblue16 (h) superblue18

Figure 15: Visualization of full-netlist placement results of all circuits in ICCAD2015 using
LaMPlace. Macros are marked in red, while standard cells are represented in blue.

(a) superblue1 (b) superblue3 (c) superblue4 (d) superblue5

(e) superblue7 (f) superblue10 (g) superblue16 (h) superblue18

Figure 16: Visualization of full-netlist placement results of all circuits in ICCAD2015 using
WireMask-EA. Macros are marked in red, while standard cells are represented in blue.

(a) superblue1 (b) superblue3 (c) superblue4 (d) superblue5

(e) superblue7 (f) superblue10 (g) superblue16 (h) superblue18

Figure 17: Visualization of full-netlist placement results of all circuits in ICCAD2015 using
Chipformer. Macros are marked in red, while standard cells are represented in blue.
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(a) superblue1 (b) superblue3 (c) superblue4 (d) superblue5

(e) superblue7 (f) superblue10 (g) superblue16 (h) superblue18

Figure 18: Visualization of full-netlist placement results of all circuits in ICCAD2015 using
DREAMPlace. Macros are marked in red, while standard cells are represented in blue.

B.9 DREAMPLACE RESULTS DISABLING TIMING-DRIVEN OPTION.

We disable the timing-driven option in DREAMPlace, and evaluate timing results using OpenTimer.
The results are included in Table

Table 11: Evaluation Results—HPWL (×3.8 × 1011um), Cong. (×10−2), TNS (×105ps), and WNS
(×103ps)—for DREAMPlace(mixed-size with timing-driven disabled)

superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18
HPWL 22.8 26.5 8.2 29.02 20.76 1.81 10.5 7.29
Overflow 2.29 1.89 2.26 2.36 1.43 1.43 2.16 1.92
TNS -6888.7 -2659.75 -1640.86 -11715.85 -4233.2 -3243.64 -2235.03 -445.23
WNS -236.96 -327.83 -70.9 -362.18 -248.36 -268.71 -103.83 -73.2

B.10 ABLATION ON TRAINING DATASET

We conduct an ablation study to evaluate the impact of different sizes of the offline training dataset.
In the manuscript, we use offline data from circuits superblue1, 3, 4, 5, 7, and 10 for training. For
this ablation study, we train our model using the following subsets of circuits: (1) superblue1 and 3,
and (2) superblue1, 3, 4, and 5. We provide the placement evaluation results for each ablation setting
in Table 12. The results demonstrate the robustness of our method to varying amounts of training
data. Also, it demonstrates using a larger training dataset shows some improvement in generalization
performance (better placement for superblue16, 18).

Table 12: Comparisons of HPWL(×3.8× 1011 um), Cong. (×10−2), TNS (×105ps), and WNS
(×103ps) with different training data sizes
Train on two circuits superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18
HPWL 52.26 13.65 5.31 29.89 2.48 23.41 6.48 14.06
Overflow 1.39 2.28 1.16 1.284 0.89 0.92 2.03 0.89
TNS -2126.91 -1460.06 -1868.52 -2561.76 -2122.93 -8652.82 -1420.65 -586.32
WNS -123.28 -212.67 -108.27 -165.59 -61.64 -266.42 -37.97 -71.44

Train on four circuits superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18
HPWL 44.29 16.58 6.54 46.54 3.21 16.71 6.63 33.78
Overflow 1.47 2.29 1.08 1.01 0.83 1.01 1.99 0.74
TNS -1965.85 -1882.6 -1671.95 -2659.65 -978.51 -8944.52 -1751.44 -275.91
WNS -134.71 -230.69 -77.99 -156.55 -60.16 -324.07 -46.02 -49.01

Train on six circuits superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18
HPWL 52.36 18.38 3.6 34.55 3.41 23.16 5.07 29.84
Overflow 1.43 2.39 1.21 1.39 0.79 0.98 2.08 0.75
TNS -2020.33 -1456.38 -1338.81 -2719.28 -1160.47 -7339.67 -983.83 -335.66
WNS -128.37 -220.89 -78.29 -160.61 -79.15 -193.11 -35.66 -49.09

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C DISCUSSIONS

The increasing availability of large datasets in industrial environments highlights the potential of of-
fline training for AI-driven placement optimization. In large EDA companies, where substantial chip
data has already been accumulated, the focus is shifting toward leveraging existing datasets rather
than repeatedly collecting new online data. This trend underscores the feasibility and effectiveness
of offline pre-training approaches, such as the one proposed in this work, for modern placement
tasks.

Our method demonstrates remarkable data efficiency and generalization capabilities. With a rela-
tively modest dataset of 1,200 placement datapoints derived from open-source circuits, the model
achieves strong performance across unseen chip designs. This modest computational demand for
offline pretraining positions our approach as both practical and scalable. In contrast, prior reinforce-
ment learning (RL)-based methods often necessitate thousands of online training steps, significantly
increasing computational overhead and resource requirements.

Future research directions include exploring innovative data augmentation strategies to further en-
hance generalization. While directly perturbing chip layouts may inadvertently alter PPA metrics,
alternative strategies, such as generating placement solutions using diverse placement methods or
augmenting the dataset with more open-source netlists, hold promise. However, these strategies can
be time-intensive and require further investigation. Expanding the dataset and refining augmenta-
tion methods are priorities for future work, aiming to strengthen the applicability and robustness of
offline-trained models in diverse design environments.
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