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Abstract

Effective attribution of causes to outcomes is crucial for optimiz-
ing complex supply chain operations. Traditional methods, often
relying on waterfall logic or correlational analysis, frequently fall
short in identifying the true drivers of performance issues. This
paper proposes a comprehensive framework leveraging data-driven
causal discovery to construct and validate Structural Causal Models
(SCMs). We contrast this approach with baseline models derived
from existing business definitions or metric-guided Large Language
Models (LLMs). The core methodology involves (1) discovering a
Directed Acyclic Graph (DAG) from observational data using the
PC (Peter-Clark) algorithm, (2) comparing it to a baseline DAG, (3)
building SCMs from these DAGs using DoWhy’s GCM module, (4)
rigorously validating both DAGs (via falsification tests) and SCMs
(via mechanism and model fit evaluations), and (5) utilizing the
validated SCM to perform advanced causal queries—including root
cause attribution, intervention analysis, and counterfactual rea-
soning. We illustrate the framework’s superiority over traditional
methods through its application to a supply chain KPI, demonstrat-
ing how it provides deeper, actionable insights. Results suggest that
data-driven SCMs, when properly validated, offer more robust and
nuanced attribution than simpler rule-based or purely qualitative
models. Our results maintain analytical accuracy while utilizing
representative metrics instead of proprietary organizational data.
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1 Introduction

In the intricate web of modern supply chains, pinpointing the pre-
cise causes of operational inefficiencies, delays, or cost overruns is a
formidable challenge. Traditional business intelligence often relies
on descriptive analytics, correlational studies, or pre-defined “wa-
terfall” logic for attribution. Waterfall attribution typically involves
a hierarchical, rule-based assignment of responsibility based on a
sequence of checks, which may not capture complex interactions,
feedback loops (when unrolled over time), or confounding factors
inherent in dynamic systems [1]. This involves assumption of in-
dependence among causes, reliance on binary causal attribution
(cause applies: Yes, No) and dependence on heuristic thresholds
to determine if a cause applies. Moreover, waterfall logic cannot
simulate what-if interventions—questions.

These limitations motivate a shift to Structural Causal Mod-
els (SCMs), which represent causal relationships as a system of
structural equations guided by a causal Directed Acyclic Graph
(DAG) [1]. Unlike waterfall rules, SCMs capture joint and condi-
tional dependencies among all variables, assign continuous causal
attributions, and support counterfactual and interventional queries.
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This paper introduces an end-to-end framework for building and
utilizing validated SCMs for causal attribution in supply chains.
Our primary approach focuses on data-driven causal discovery
using algorithms like the PC algorithm followed by the use of
LLMs to validate edges and break cyclicality [2] to learn the DAG
structure from observational data. We also consider a comparative
baseline approach where a DAG might be derived from existing
business rules, domain expertise, or guided Large Language Models
(LLMs) using predefined definitions of metrics to articulate current
understanding of the relationships between metrics [3, 6].

A cornerstone of our framework is rigorous validation at multi-
ple stages: the discovered DAGs are subjected to falsification tests
against data [4], and the subsequently constructed SCMs are evalu-
ated for their mechanistic plausibility and fit [5]. By focusing on a
well-validated, data-driven SCM, the framework aims to provide
more reliable causal insights than traditional methods or less rig-
orously validated models. We illustrate how this framework can
be applied to understand the drivers of a critical supply chain KPI
and demonstrate a variety of causal analyses (e.g., root cause at-
tribution, impact of interventions, counterfactual reasoning) that
are often intractable with simpler attribution models. This work
highlights the practical utility of modern causal inference tools like
DoWhy and its GCM module [7, 8] in moving beyond correlation
to causation for tangible operational improvements.

The contributions of this paper are:

(1) A comprehensive, multi-stage framework for data-driven
causal discovery, SCM construction, and robust validation
for attribution in supply chains.

(2) A comparative discussion highlighting the advantages of
SCM-based attribution over traditional waterfall logic and
simpler LLM-derived baselines.

(3) An illustration of the framework’s application to a complex
supply chain KPI, showcasing its ability to answer diverse
causal questions and provide actionable insights.

2 Background and Related Work
2.1 Limitations of Traditional Attribution

Traditional attribution in business settings, particularly "waterfall
logic," assigns causality based on a predefined, often linear, sequence
of checks or rules. For example, if an order is late, a waterfall might
first check for supplier delays; if none, then check for warehouse
processing time; if normal, then check for transport issues. While
simple to implement, this approach struggles with:

o Confounding: It often fails to account for common causes
affecting multiple stages.

o Interactions: It may not identify situations where multiple
factors jointly cause an outcome.

e Feedback: It typically cannot model cyclical relationships
(though SCMs represent DAGs, which are acyclic, they can
model systems that have feedback when unrolled over time
or by representing equilibrium states).

¢ Quantification of Effects: It usually provides a binary "re-
sponsible/not responsible" rather than quantifying the mag-
nitude of a cause’s impact.
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These limitations motivate the need for more sophisticated causal
modeling.

2.2 Causal Discovery from Data

The PC algorithm [2] is a well-known constraint-based method for
learning the structure of a DAG from observational data. It operates
by systematically performing conditional independence tests to
identify the "skeleton" of the graph and then orienting edges to
respect the identified independencies and avoid cycles. Key assump-
tions include causal sufficiency (no unobserved confounders) and
faithfulness (observed independencies reflect the true causal graph).
Libraries like ‘causal-learn’ offer practical implementations [10].

2.3 LLM:s in Causal Discovery

LLMs are being explored for their potential to contribute to causal
discovery by leveraging their embedded knowledge [3, 12]. Ap-
proaches include direct prompting for causal links [13] or using
LLMs to generate priors that can be combined with data-driven
methods [6]. The idea of using "metric definitions" suggests guiding
LLM prompts with specific criteria (e.g., related to known mecha-
nisms, impact types, or temporal precedence) to elicit more struc-
tured or reliable causal hypotheses. This can serve as a way to
formalize existing business understanding into a baseline causal

graph.

2.4 Structural Causal Models (SCMs)

An SCM defines a causal system through a DAG and a set of struc-
tural equations X; = f;(PA;, N;) for each variable X;, where PA;
are its direct causes (parents in the DAG) and N; are exogenous
noise terms [1]. SCMs explicitly model the mechanisms by which
causes generate effects. DoWhy’s GCM module [8] allows these
functions f; to be diverse, including linear models, non-linear ma-
chine learning models (e.g., within Additive Noise Models - ANMs),
or custom functions, and facilitates fitting these SCMs to data.

2.5 Validation of Causal Models
2.5.1 DAG Falsification. A hypothesized DAG implies specific con-

ditional independencies. Falsification tests (e.g., dowhy . gcm. falsify_graph

[4]) compare these model-implied independencies with those ob-
served in the data. Significant deviations can lead to the rejection
of the DAG.

2.5.2  SCM Evaluation. Once an SCM is fitted (i.e., functional forms
fi are chosen and parameters estimated), its validity needs assess-
ment. This includes:

e Mechanism Fit: How well does each equation X; = f;(PA;, N;)
predict X; given its parents? For ANMs, this involves check-
ing if the residuals N; are independent of PA;.

e Overall Model Fit: Does the SCM adequately reproduce the
observed joint distribution of the data? This involves a graph
falsification test to assess the probability the given DAG is
equivalent to a randomly generated one (see Figure 3)

e Sensitivity Analysis: How robust are the SCM’s conclu-
sions to changes in assumptions or parameters [11]?

The dowhy . gcm. evaluate_causal_model function provides tools
for assessing some of these aspects, such as the performance of
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individual mechanisms and the overall consistency of the GCM
with the data [5].

3 Proposed Causal Attribution Framework

Our framework (conceptually depicted in Figure 1) aims to provide
arobust methodology for causal attribution, particularly in complex
domains like supply chains.

Figure 1: Conceptual End-to-End Causal Attribution
Framework

(1) Observational Data Input
(2) Parallel DAG Discovery:
e Path A: Data-Driven (e.g., PC Algorithm) —
DAGpata
e Path B: LLM-Metric/Business Rule Based —
DAGt1Mm (Baseline)
(3) SCM Construction (for DAGpata & DAGr1Mm) using
DoWhy GCM
(4) Validation Phase:
e DAG Falsification (on DAGpata & DAGrM)
e SCM Evaluation (on SCMp,t, & SCM11Mm)
(5) Selection of Validated SCM (primarily SCMpyt, if su-
perior)
(6) Advanced Causal Queries (Attribution, Intervention,
Counterfactuals, etc.)
(7) Actionable Insights & Decisions

Figure 1: Overview of the proposed end-to-end causal attribu-
tion framework, highlighting parallel DAG discovery, SCM
construction, rigorous validation, and advanced causal query-
ing for deriving actionable insights.

3.1 Step 1: Data Acquisition and Preparation

Collect relevant time-series and cross-sectional data pertaining to
the supply chain processes and outcomes of interest. This includes
identifying key variables, handling missing data, and appropriate
transformations.

3.2 Step 2: Parallel DAG Discovery

3.2.1 Path A: Data-Driven DAG Discovery. Employ a data-driven
causal discovery algorithm, such as the PC algorithm (e.g., via
‘causal-learn‘ [10]), on the prepared observational dataset. This
yields DAGpat,, representing statistically inferred causal relation-
ships. Assumptions like causal sufficiency and faithfulness are crit-
ical here.

3.2.2  Path B: LLM-Metric/Business-Rule Derived DAG (Baseline).
This path aims to formalize existing domain knowledge or current
business understanding into a causal graph, DAGry M.

e Metric Definition: Define clear qualitative or quantitative
metrics that characterize expected causal links (e.g., "direct

physical impact,' "information flow dependency," "regulatory
constraint”).
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e LLM Elicitation: Use an LLM, prompted with descriptions
of system variables and the defined metrics, to suggest or
score potential causal relationships. This could involve struc-
tured querying for pairwise relationships or more complex
path elicitation.

¢ Business Rule Codification: Alternatively, existing doc-
umented business process flows or rule-based logic can be
translated into a DAG structure.

DAGy M serves as a baseline representing current hypotheses or a
qualitative understanding.

3.3 Step 3: Structural Causal Model (SCM)
Construction

For both DAGp,t, and DAGy 1 M, construct SCMs using ‘dowhy.gem’
(8].

(1) Mechanism Specification: For each node X; in a DAG,
assign a causal mechanism X; = f;(PA;, N;). This can be
achieved via dowhy.gcm. auto.assign_causal_mechanisms,
which selects appropriate models (e.g., Additive Noise Mod-
els with linear regression, GPs, or classifiers) based on data
types, or by manual specification using domain knowledge.
Model Fitting;: Fit the specified mechanisms to the observa-
tional data using ‘dowhy.gem fit()* to learn the parameters
of the functions f; and distributions of N;.

This results in SCMp,t, and SCMp 1 m.

—
)
~

3.4 Step 4: Validation

3.4.1 DAG Validation. Both DAGp,t, and DAGyy are critically
assessed using dowhy.gem. falsify_graph() [4]. This function
tests the conditional independencies implied by each DAG against
the observational data. Results (e.g., p-values for LMC violations)
indicate how consistent each graph structure is with the observed
data.

3.4.2 SCM Evaluation. The fitted SCMs (SCMpj,t, and SCMp1m)
are then evaluated using dowhy.gcm. evaluate_causal_model ()
[5]. This step assesses the goodness-of-fit of individual causal mech-
anisms (e.g., residual analysis for ANMs), the validity of modeling
assumptions (e.g., noise independence), and the overall ability of
the SCM to capture the joint data distribution.

3.5 Step 5: Advanced Causal Querying

The SCM that demonstrates better validation results ( SCMpy;, in
this paper’s narrative) is then used for in-depth causal analysis and
attribution. If DAGy 1\ captures distinct, domain-critical aspects
not statistically evident but deemed important, SCMy 1\ can be used
for qualitative what-if scenarios or to guide further data collection.
Key queries include:
¢ Root Cause Attribution: E.g,,
dowhy.gcm. attribute_anomalies() for specific outcomes.
e Intervention Analysis: E.g.,
dowhy.gcm. interventional_samples() to predict effects
of changes.
e Counterfactual Reasoning: E.g.,
dowhy.gcm. counterfactual_samples() for "what-if" on
past events.
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e Mediation Analysis: Decomposing effects into direct and
indirect pathways. This is especially valuable in scenarios
involving non-controllable factors, such as UpstreamDelays.
By identifying mediating variables, we can trace how these
non-actionable causes propagate through the system and de-
termine which downstream, controllable factors (e.g., acquir-
ing additional equipment to reduce EquipmentUtilization
saturation) can be adjusted to offset their impact.

e Causal Influence Quantification: E.g.,
dowhy.gcm.arrow_strength()
to measure direct link strengths.

4 TIllustrative Application: Analyzing "Capped
Out Hours"

We now illustrate the framework by applying it (conceptually) to
understand the causes of "Capped Out Hours" in a supply chain
logistics hub. "Capped Out Hours" (COH) is defined as the sum of
time a station (e.g., a delivery hub) was operating at or above its
designated capacity threshold prior to its daily order cutoff time.
High COH is undesirable as it often leads to diversion of order vol-
ume to more expensive third-party carriers, potential service delays
for customers, increased operational costs (overtime, expediting),
and an overall negative impact on network efficiency and customer
satisfaction. Typical suspected drivers include issues with demand
forecasting, inadequacies in tactical capacity cappings, problems
with asset/labor utilization and network disruptions.

4.1 Conceptual Experimental Setup

The conceptual experiment aims to identify which factors most
significantly contribute to a delivery station operating beyond its
planned capacity. By analyzing the relationships between these
variables and the outcome, we can gain insights into the key drivers
of operational strain and develop strategies to mitigate risks of
capacity overruns. Below we introduce such factors.

e Outcome Variable: CappedOutHours (continuous, non-
negative). This represents the number of hours a delivery
station operates beyond its planned capacity, indicating op-
erational strain.

e Potential Causal Factors (Nodes):

— DemandForecastError: Accuracy of predicting daily pack-
age volume, measured as Mean Absolute Percentage Error
(MAPE). Higher errors may lead to resource misalignment.

- ActuallnboundVolume: The actual number of packages
received by the station daily. Unexpected spikes can over-
whelm capacity.

- StationProcessingCapacity: The station’s ability to sort
and prepare packages for delivery, measured in units per
hour. This depends on staffing levels and available equip-
ment.

— UpstreamDelays: Delays in package arrivals from upstream
warehouses, measured in hours. Late arrivals can compress
processing time.

— StaffAvailability: The ratio of actual to scheduled staff
hours. Actual hours can be lower due to absenteeism.

— TacticalCapSetting: Manually set daily limits on volume
that can be processed in a warehouse, used to manage
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workload. May influence the likelihood of exceeding ca-
pacity.

— EquipmentUtilization: The percentage of time equipment
is operational. Equipment downtime can significantly im-
pact processing capacity.

— ExternalEvents: Unexpected occurrences like severe weather
or local disruptions that may affect operations. Recorded
as binary (occurred/did not occur) or categorical (type of
event).

e Data: Daily operational data collected from multiple pack-
age delivery stations over a one-year period. This includes
all variables mentioned above, providing a comprehensive
view of factors potentially influencing operational capacity
exceedance.

4.2 DAG Generation and Validation Results
4.2.1  DAG Discovery.

® DAGpata: The PC algorithm is run on the historical data.
(MNustrative DAG shown in 2).

e DAGLLM: An LLM is prompted with variable definitions
and causal "metric definitions" (e.g., "Metric 1: Is variable X
a direct input to the calculation or operational definition of
Y?" "Metric 2: Does standard business logic/SOP explicitly
state that X must be managed to control Y?"). This results in
a baseline DAG reflecting current business understanding
or easily articulated hypotheses.

Figure 2: Illustrative Data-Driven DAG for Capped Out
Hours Example Structure:

‘DemandForecastError’ — ‘TacticalCapSetting’
‘ActuallnboundVolume* — ‘CappedOutHours’
‘StationProcessingCapacity’ — ‘CappedOutHours"
‘TacticalCapSetting’ — ‘CappedOutHours’
‘StaffAvailability® — ‘StationProcessingCapacity"
‘EquipmentUtilization® — ‘StationProcessingCapac-
ity*
e ‘UpstreamDelays® — ‘ActuallnboundVolume* (affect-
ing timing/bunching)
o ‘ExternalEvents’ — “TrafficLevel® (unshown interme-
diate) — ‘CappedOutHours" (indirectly)

(An illustrative example)

Figure 2: Illustrative data-driven DAG for factors influenc-
ing ‘CappedOutHours‘. Arrows indicate hypothesized direct
causal influences learned via the PC algorithm.

4.2.2 DAG Validation . Figure 3 summarizes the falsification test
outcomes. DAGp,¢, shows significantly fewer conditional indepen-
dence violations (e.g., higher p-value from falsify_graph) com-
pared to DAGr v when tested against the observational data. This
suggests DAGp,t, is more consistent with the statistical patterns
in the specific dataset. DAGy 1\, while reflecting business logic,
might miss some statistical nuances or include links not strongly
supported by this particular dataset.
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| The given DAG is informative because @ / 1 of the permutations lie in the Markov
| equivalence class of the given DAG (p-value: 0.00).

| The given DAG violates 184/201 LMCs and is better than 100.0% of the permuted DAGs (p-value: 0.00).

| Based on the provided significance level (0.05) and because the DAG is informative,

| we do not reject the DAG.
e +

p-value TPa = 0.00
p-value LMC = 0.01

[ Violations of TPa of permuted DAGs

[0 Violations of LMC of permuted DAGSs

—== Violations of TPa of given DAG
Violations of LMC of given DAG

# Permutations
Noow s
s 8 8

5

il

0.0 0.2 0.4 0.6 0.8 10
Fraction of violations

o

Figure 3: Results of DAG falsification tests.

4.2.3 SCM Evaluation. SCMpat, (built from DAGp,t,) undergoes
evaluation using evaluate_causal_model. Hypothetically, the mech-
anisms for key drivers like ‘ActuallnboundVolume‘ and ‘Station-
ProcessingCapacity‘ show good fit (e.g., residuals appear random,
predictive performance within mechanism is high). SCMy 1 show
poorer fit for some mechanisms since the underlying links in DAG 1 m
are not statistically strong.

4.3 SCM-Powered Causal Analysis for COH

Based on stronger validation, SCMpa,t, is chosen for detailed causal
querying. Table 1 outlines the types of analyses performed.

4.4 Contrast with Waterfall Attribution

A traditional waterfall approach for COH might sequentially check:
1. Was ‘ActuallnboundVolume® > ‘TacticalCapSetting‘? If yes, at-
tribute to volume/caps. 2. If no, was ‘StaffAvailability* low? If yes,
attribute to staffing. This simplistic logic would miss:

e How ‘DemandForecastError‘ influences ‘TacticalCapSetting’
and subsequently COH.

e The quantitative impact of a 10% improvement in ‘Equip-
mentUtilization® versus a 10% increase in ‘StaffAvailability".

o The counterfactual scenario of what COH would have been
if multiple factors had been different simultaneously.

o Confounding effects, e.g., if ‘ExternalEvents® affect both ‘Up-
streamDelays‘ and ‘StaffAvailability*.

The SCM framework, by modeling the mechanisms and allowing
diverse queries (Table 1), provides a far richer and more reliable
attribution, leading to more informed interventions. For example,
SCM analysis might reveal that while ‘ActuallnboundVolume® is a
direct cause, improving ‘DemandForecastError has a larger total
(direct + indirect via “TacticalCapSetting®) effect on reducing COH
than previously assumed by simpler models.

5 Discussion

The proposed hybrid framework, culminating in a validated SCM,
offers significant advantages over traditional attribution methods
like waterfall logic, especially for complex systems such as supply
chains. By grounding causal claims in data-driven graph structures
and explicit mechanisms, it enables nuanced insights like quan-
tifying interventional impacts and attributing specific anomalies.
The data-driven DAG, when rigorously validated, provides a more
robust foundation than relying solely on pre-defined business rules
or purely qualitative LLM outputs, which served as useful baselines
in our conceptual application.

The inclusion of an LLM-driven path, guided by "metric defini-
tions," allows for the incorporation of domain knowledge or existing
hypotheses. Even if DAGy v is found to be less statistically robust
than DAGpat, (as per our results), it can still highlight areas where
business intuition diverges from data patterns, prompting further
investigation or targeted data collection. The tactful comparison is
key: the LLM/business-defined graph isn’t necessarily "wrong" but
may be incomplete or less precise than what can be learned from
and validated against specific operational data.

Key strengths include:

e Principled Attribution: Moves beyond correlation to model
causal mechanisms.

e Quantitative Insights: Enables prediction of interventional
outcomes and quantification of causal strengths.

e Comprehensive Validation: Incorporates both DAG falsi-
fication and SCM evaluation.

o Flexibility: DoWhy GCM supports diverse functional forms
for causal mechanisms.

Limitations persist:

e Data Requirements: Data-driven discovery requires suffi-
cient, high-quality observational data.

e Assumptions: PC algorithm and SCMs rely on assumptions
(e.g., causal sufficiency, faithfulness, correct functional forms)
that must be carefully considered.

e LLM Reliability: LLM outputs can be sensitive to prompting

and may reflect biases; "metric definitions" aim to mitigate

but not eliminate this.

Scalability: Constructing and validating complex SCMs

with many variables can be computationally intensive.

Future work should focus on enhancing the synergy between
data-driven and LLM-based approaches, potentially through itera-
tive refinement loops where LLMs help critique or improve data-
driven graphs, or where LLM-priors are more formally integrated
into data-driven search. Developing more sophisticated SCM vali-
dation metrics within accessible tools would also be beneficial.

6 Conclusion

This paper presented a hybrid framework for causal discovery
and attribution, emphasizing data-driven DAG learning and SCM
construction, validated against observational data and contrasted
with baseline models. Applied to a critical supply chain KPI like
"Capped Out Hours," the framework demonstrates its capability to
move beyond simplistic waterfall attribution, offering a richer, more
quantitative, and mechanistically interpretable understanding of
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Table 1: SCM Use Cases for Analyzing "Capped Out Hours" (COH) using Validated SCMpata

Causal Query Type Question for COH DoWhy GCM Function Potential Insight

Root Cause Attribution For days with high COH, attribute_anomalies(scm, Identifies key drivers for
which  upstream  factors ’CappedOutHours’, specific high COH instances;
(e.g., DemandForecastError, anomalous_samples) e.g., "70% of COH anomaly
StaffAvailability) con- on Day X attributed to low
tributed most to COH exceed- StaffAvailability!
ing a threshold?

Intervention Analysis

What would be the expected
change in average COH if ‘De-
mandForecastError® is reduced
by 10% through a new system?

What is the impact on COH if
‘StationProcessingCapacity® is
increased by 500 units/hr at a
specific station (subgroup)?

‘interventional_samples(scm,
"DemandForecastError’: lambda
x: x*0.9)°

Filter data for station, fit SCM
(or use conditional SCM if ‘Sta-
tion' is a parent), then ‘interven-
tional_samples’.

Quantifies impact of planned
changes; e.g., "A 10% reduction
in forecast error is predicted
to reduce average COH by 1.2
hours."
Station-specific
impact; allows targeted capac-
ity adjustments.

intervention

Counterfactual Reason-
ing

On a specific past day with high
COH and a known low ‘Equip-
mentUtilization‘, what would
COH have been if utilization
was at its 90th percentile target?

‘counterfactual_samples(scm,
"EquipmentUtiliza-

tion’: target_value, ob-
served_data=specific_day_data)‘

Understands impact of specific
past deviations; e.g., "If utiliza-
tion had been at target, COH on
Day Y would likely have been
2.5 hours lower"

Mediation Analysis

How much of the effect of ‘Up-
streamDelays‘ on COH is direct,
versus mediated through its im-
pact on ‘ActuallnboundVolume'
(timing/bunching)?

(Requires  careful  setup,
potentially using
‘dowhy.api.mediation’  with

SCM outputs or specific GCM
mediation if available)

Decomposes total effect into
pathways, clarifying mecha-
nisms.

Causal Influence Quan-
tification

What is the direct causal
strength of “TacticalCapSetting’

‘arrow_strength(scm, ’Capped-
OutHours’)*

Ranks direct drivers by impact
magnitude; e.g., "A unit change

on ‘CappedOutHours’ com-

pared to other direct parents?

in ‘TacticalCapSetting’ has X
times the impact on COH vari-
ance compared to a unit change
in ‘StationProcessingCapacity""

causal drivers. By leveraging tools like DoWhy GCM, this approach
allows for a range of advanced causal queries crucial for effective
operational decision-making and continuous improvement in com-
plex systems. While the data-driven path, when well-validated, is
posited as the more robust foundation for quantitative SCMs, the
integration of LLM-based insights (guided by metrics) can provide
valuable qualitative context and hypothesis generation.

7 Future Research

Future research should explore hybrid approaches that treat data-
driven and LLM-based methods as complementary rather than
competing. This need arises from the limitations of the current
plethora of validation tests available for evaluating causal models.
While each test provides useful insights, they tend to answer very
specific questions and fail to assess the overall practical utility of a
structural causal model (SCM) in complex real-world settings.

For instance, placebo tests are designed to check whether observed
causal effects could be due to random chance—but with large sample
sizes (as is typical at Amazon), p-values tend to be near zero, making

the test trivially passed regardless of model quality. Conditional in-
dependence (CI) tests, on the other hand, evaluate whether a graph
fits the data better than random DAGs. However, a DAG can pass
these tests even while containing many conditional independence
violations that materially impact causal estimates. Additionally, CI
test tends to favor PC algorithm generated graphs, as they are built
using conditional independence rules. Ultimately, even when sev-
eral tests are passed, their combined result is unlikely to reflect the
true practical effectiveness of the SCM—especially in large-scale,
high-dimensional systems.

A promising direction is to use LLMs to generate an initial DAG
based on domain knowledge—offering a representation of expert-
informed assumptions. This graph can then be refined via con-
ditional independence-based pruning, discarding edges not sup-
ported by the data. In initial experiments, however, we observed
that pruning can both improve or worsen validation results across it-
erations. This happens because while pruning edges may reduce the
number of CI violations, it also generates new, sparser graphs that
introduce more assumed independencies—which themselves must
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be validated. This tradeoff suggests that pruning is a non-monotonic [3] E.Kiciman, R. Ness, A. Sharma, and C. Tan, "Causal reasoning and large language
process. A more robust path forward could involve combinatorial models: A survey!" arXiv preprint arXiv:2305.00050, 2023. i

. . . A . [4] PyWhy Authors, "Falsification of User-Given Directed Acyclic Graphs,'
search algorithms that evaluate falsification metrics across multiple DoWhy Documentation. Accessed: May 13, 2025. [Online]. Available:
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