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Abstract

Enzymes are biological catalysts with numerous
industrial applications, and they are categorized
by the Enzyme Commission (EC) number sys-
tem based on their catalytic activities. With over
200 million protein sequences identified, experi-
mental characterization of enzymes is impractical,
necessitating computational methods. Current ap-
proaches face challenges with class imbalance and
intrinsic hierarchy of the EC number system. This
study employs hierarchical contrastive learning
for EC number prediction, effectively integrating
the EC number hierarchy into the model. Our
approach addresses severe class imbalance and
improves prediction performance, particularly for
higher hierarchical levels and previously unseen
EC numbers, demonstrating enhanced robustness
and outperforming existing methods.

1. Introduction

Enzymes are specialized proteins that act as biological cat-
alysts, accelerating biochemical reactions crucial for life.
They are widely used in various sectors, including food,
pharmaceutical, and energy industries (Chapman et al.,
2018), driving active research to discover or engineer en-
hanced enzymes. The Enzyme Commission (EC) number
system is a hierarchical classification system that catego-
rizes enzymes based on the reactions they catalyze, with
four levels of increasing specificity that describe their func-
tion (Tipton & McDonald, 2018). Figure 1 provides an
overview and an example of the EC number system.

As of 2023, over 200 million protein sequences have been
identified (Consortium, 2022). However, experimentally
characterizing each one to determine its function is imprac-
tical. Consequently, only a small fraction of these proteins
has been experimentally identified as enzymes with specific
EC numbers, highlighting a pressing need for computational
research in this field.
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Deep learning has revolutionized the field of EC number
prediction, enabling the accurate prediction of EC numbers
for proteins based on their sequences. Initial approaches fo-
cused on training classification models, either using separate
models for each hierarchical level or by employing multi-
task learning, where each hierarchical level was treated as
a distinct task (Sureyya Rifaioglu et al., 2019; Ryu et al.,
2019; Sanderson et al., 2023). However, these models face
challenges with severe class imbalance. As of April 2022,
approximately 25.9% of 5,242 EC numbers are annotated
by a single protein, each of which is reviewed and reported
to Swiss-Prot (Appendix Table 1) (Consortium, 2022; Yu
et al., 2023). To address this imbalance, recent research has
adopted supervised contrastive learning (CL) (Memon et al.,
2020; Yu et al., 2023). Supervised CL involves training a
model that represents proteins with the same EC number
closely, while ensuring that proteins assigned to different
EC numbers are distinctly separated. This technique effec-
tively handles class imbalance, particularly for EC numbers
associated with a limited number of known enzymes (Yu
et al., 2023). However, previous CL-based approaches did
not account for the inherent hierarchy of EC numbers.

EC numbers are continuously added as new enzyme reac-
tions are discovered IUBMB). While computational meth-
ods cannot predict novel EC serial numbers, they can help
infer an enzymes function through higher-level class pre-
dictions. Therefore, accurately predicting higher-level EC
numbers not present in the training set is crucial.

In this paper, we employ hierarchical CL for EC number
prediction, explicitly incorporating EC number hierarchy
into our model. Our contributions are as follows:

* We demonstrate that hierarchical CL improves EC num-
ber prediction performance, particularly for higher lev-
els of hierarchy and for EC numbers that were not
present in the training set.

¢ Our results indicate that hierarchical CL enhances the
robustness of EC number prediction.

e Our results show that hierarchical CL outperforms
state-of-the-art (SOTA) EC number prediction meth-
ods.
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Figure 1. Overview of the Enzyme Commission (EC) number system, a hierarchical system for classifying enzymes based on the chemical
reactions they catalyze. Depiction of a segment within the EC number hierarchy, where lower levels denote more specific reactions.

2. Methods

The latest research on EC number prediction applied vanilla
supervised contrastive loss (Khosla et al., 2020) on EC num-
ber at lowest level. However, such approaches do not fully
leverage hierarchical nature of EC numbers. We propose
to use labels across all levels with hierarchical contrastive
learning frameworks.

2.1. Hierarchical Contrastive Learning

We employed Hierarchical Multi-label Contrastive (HMC)
loss (Zhang et al., 2022) as the loss function of our con-
trastive learning setting. HMC loss extends supervised con-
trastive loss by applying it to all hierarchical levels.

Denote a hierarchical level as [ € L. Then, the pair loss
between an anchor sample indexed by ¢ and the positive
sample indexed by p at level [ is defined as follows:

. exp(fi - [/7)
2aci ¢eP(fi- fa/T)
where A(i) is set of indexes in a batch except for i, and

T is temperature parameter. Then HMC loss is defined as
follows:
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where the penalty weight \; differs by each level in the
hierarchy, P, is the set of positive samples at level [ for
anchor sample indexed by 7. Basically, by leveraging all
levels in hierarchy, HMC loss encourages pairs that share
the ancestors more get closer. This enables model to output
embedding vectors that can preserve label hierarchy within
the embedding space. Additionally, positive pairs that share
hierarchy at certain level can be negative pairs at lower level
and become “hard negative” samples, which reduces the

need for hard negative mining. Penalty weight \; could be
tuned to optimal point that accomplish best performance. \;
were initially proposed to be functions proportional to the [,
but we used a list of fixed scalar values since detailed tuning
was needed.

In (Zhang et al., 2022), both HMC and Hierarchical Con-
straint Enforcing (HiConE) loss are used. HiConE loss en-
forces hierarchy by constraining the loss between pairs from
a higher level never become larger than the loss between
pairs from a lower level. However, in our experiments, the
constraints from HiConE loss was too strong that the model
lose its distinguishing power at lower levels.

3. Experiments
3.1. Experimental Setup
3.1.1. DATASETS

We utilized EC number annotations from Swiss-Prot, pro-
cessed by (Yu et al., 2023). Specifically, we used split30 and
split50 datasets, where protein sequences were split based
on sequence identity such that no enzymes in the test set
share more than 30%, 50% sequence identity with any en-
zymes in the training set, respectively. The dataset was split
into 5 folds, stratified by their labels, to perform 5-fold cross
validation. We used 80%, 10%, 10% as training, validation,
and test sets, respectively.

We evaluated the models using two independent test sets
from (Yu et al., 2023). The first test set, NEW-392, com-
prises 392 proteins released after the creation of the train-
ing dataset (April 2022). The second test set, Price-149,
contains 149 proteins that are challenging due to incorrect
or inconsistent labeling by automated annotation methods
(Price et al., 2018). Detailed statistics for the datasets are
provided in Appendix Table 1.
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3.1.2. MODEL ARCHITECTURE

To embed protein sequences, we employed ESM-2-650M
(Lin et al., 2023), a pretrained protein language model
trained on 65 million unique sequences, which leverages
transformer architectures to capture evolutionary relation-
ships and predict protein structures. To represent proteins
from the ESM embeddings, we used a multi-layer percep-
tron (MLP) with three hidden layers and layer normalization,
following the approach in (Yu et al., 2023). For detailed ar-
chitectural specifications and hyperparameters, please refer
to the Appendix B and Appendix Table 2.

3.1.3. INFERENCE

Inference was conducted based on the distance between EC
number and the query protein. First, we obtained the em-
bedding of each EC number as the center of the embeddings
of proteins associated with that EC number in the training
set. Then, we used the Euclidean distance between the EC
number embedding and the query protein embedding for
inference. For higher-level EC numbers, we assumed that
if an enzyme belongs to a specific child EC number (e.g.
X.Y.Z.-), it should also belong to the corresponding parent
EC number (e.g. X.Y.-.-). Therefore, we used the shortest
distance to any child EC number as the distance to the par-
ent EC number. To binarize labels based on the distance,
we applied maximum separation method used in (Yu et al.,
2023), which selects EC numbers that are most separated
from others. For evaluation, we only considered EC num-
bers present in the training set, as we cannot obtain centers
for EC numbers that are absent in the training set.

3.1.4. BENCHMARK MODELS AND EVALUATION
METRICS

We evaluated our model against three benchmark models:
(1) ESM-2: Vanilla ESM-2-650M without contrastive learn-
ing. (2) ESM-2+MLP: Conventional multi-task learning
setup where we fine-tuned ESM-2-650M with a 2-layered
MLP head for predicting level 4 EC numbers using (Zhu
et al., 2022). (3) CLEAN: The recent state-of-the-art model
utilizing supervised CL without considering EC number
hierarchy (Yu et al., 2023). CLEAN employs hard negative
mining to improve performance. As the original CLEAN
model was trained on ESM-1b, we retrained the model using
ESM-2-650M. We evaluated the models in terms of Area
Under Precision-Recall Curve (AUPRC), and F1 score at
each hierarchical level (levels 1 to 4). Given the multiple
classes at each level, we calculated weighted average of
AUPRC and F1 scores, with weights based on the number
of true instances for each class.

3.2. Results

Here, we report the performance of models trained on
split30 dataset; performance on the split50 dataset can be
found in Appendix D.2. Unless specified otherwise, the
results are from cross-validation.

3.2.1. HMC FOR LEVEL 3 AND LEVEL 4

We initially applied HMC to level 3 and level 4, with the
performances illustrated in Figure 2. When HMC is ap-
plied solely to level 4 (denoted as ‘Level3:Level4 ratio of
0:17), it functions identically to vanilla supervised CL. This
approach implicitly captures the EC number hierarchy, as
indicated by its performance on higher-level EC numbers.
Conversely, applying HMC exclusively to level 3 (denoted
as ‘1:0’) results in superior performance for higher-level EC
numbers but performs poorly for predicting level 4 EC num-
bers. This is because it treats different level 4 EC numbers
under the same level 3 EC numbers as identical.
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Figure 2. Performance of HMC for EC number level 3 and level 4.
The figure shows AUPRC (left) and F1 score (middle) for HMC
with varying weights A; for level 3 and level 4, with stronger A3
indicated by darker colors. Each row represents the performance
for predicting each level of the EC number hierarchy. The vertical
line indicates the performance of HMC applied solely to level 4.
(right) UMAP visualization of level 4 EC number embeddings,
with EC numbers are colored based on their level 1 class.

To address this, we conducted a grid search to determine
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the optimal weight for level 3 (A3) while fixing the weight
for level 4 (\4) at 1. As shown in Figure 2, increasing A3
reinforces the hierarchy but can compromise performance
at level 4. Nonetheless, we could identify an optimal A3 that
improves performance for both level 3 and level 4.

We visualized the embeddings of level 4 EC numbers in
Figure 2. The results indicate that vanilla ESM-2 embed-
dings do not effectively capture the EC number hierarchy.
However, vanilla supervised CL (‘0:1°) implicitly learns
this hierarchy, with EC numbers clustered according to their
level 1 class. As we increase the weight to level 3 (\3), EC
numbers with common parents form tighter clusters. HMC
applied only to level 3 (‘1:0°) squashes different EC num-
bers into the same embeddings, failing to distinguish them
effectively.

3.2.2. EXTENSION OF HMC TO ALL LEVELS

We extended HMC to encompass all levels of EC number
hierarchy, from level 1 to level 4. The weight for each level
(Ay) is selected based on a incremental grid search from
lower levels to higher levels. We selected weights with the
highest AUPRC at level 4, then proceeded to the next level,
as described in Appendix D.1.
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Figure 3. Performance of HMC from level 1 to level 4. Perfor-
mance for predicting each level of the EC number hierarchy is
shown in each row. The vertical line indicates the performance of
HMC applied exclusively to level 4.

Our results indicate that by gradually incorporating the hier-
archical structure into the HMC loss, we can enhance per-
formance at higher levels while maintaining performance at
lower levels, as shown in Figure 3.

3.2.3. PREDICTION OF UNSEEN EC NUMBERS

Predicting level 4 EC numbers for entirely new enzymes
with previously undefined EC numbers is infeasible. How-
ever, higher-level predictions, such as level 3, are possible.
Accurately predicting the higher-level EC numbers is cru-
cial, in order to be confident on model’s prediction over
new proteins. Figure 4 illustrates the performance at level
[ for proteins with level (I + 1) labels unseen in training
dataset. Our results show that incorporating higher levels in
the HMC loss significantly improves the performance. This
is particularly effective for unseen or sparse labels, which
accounts for more than quarter of the level 4 EC numbers
(Appendix Table 1).
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Figure 4. The performance of HMC on unseen EC numbers. Each
row shows performance on level [ with instances whose label at
level (I 4+ 1) is unseen in training set.

3.2.4. EVALUATION AGAINST BENCHMARK MODELS

In Figure 6, we compared the performance of our models
to three benchmark models mentioned in 3.1.4. Overall,
our model ‘Levell &2&3&4’ and ‘Level2&3&4’° achieved
SOTA F1 score on New-392 and Price-149 datasets, across
different levels. Additionally, model ‘Level4’ shows better
F1 score than CLEAN overall. We suspect that the perfor-
mance gap is due to usage of hard negative mining, which
was analyzed with detail in (Robinson et al., 2020).
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Figure 5. Performance comparison to benchmark models. (left)
Performance on New-392 dataset (right) Performance on Price-149
dataset. Vertical line indicates the performance of HMC applied
solely on level 4.

3.2.5. ROBUSTNESS

In Figure 6, we counted the number of proteins with match-
ing predictions across all 5-fold models in New-392 and
Price-149 dataset. This measure indicates model robust-
ness. Our model achieves the highest consensus, with grad-
ual increase as more hierarchical level is incorporated. If
representations are clustered according to the hierarchical
structure, less errors will occur on descendent prediction,
benefiting from ancestor information. Thus above result
demonstrate that hierarchical contrastive learning improves
robustness.

3.2.6. CASE STUDY FOR IDENTIFYING THE FUNCTION
OF A NEwW ENZYME

This case study demonstrates the effectiveness of incor-
porating EC number hierarchy in predicting the function
of a new enzyme. AQOA1D8PHS52, from the NEW-392
dataset, belongs to 2.3.1.9 (acetyl-CoA C-acetyltransferase).
AOA1DSPHS52 was initially misclassified as 2.3.3.10
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Figure 6. Robustness of prediction results. The number of consen-
sus proteins for which all 5 models from cross validation predicted
identical EC numbers.

(hydroxymethylglutaryl-CoA synthase) when HMC loss
was applied solely on level 4. Although the model correctly
predicted the level 2 EC number, 2.3.-.- (Acyltransferases),
it failed at level 3. By considering the hierarchy of EC
numbers, the enzyme was accurately identified as 2.3.1.9.
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Figure 7. Case study for identifying the function of the enzyme
AOA1D8PH52 from the NEW-392 dataset. Initially misclassified
as 2.3.3.10 (hydroxymethylglutaryl-CoA synthase), incorporating
EC number hierarchy correctly identifies it as 2.3.1.9 (acetyl-CoA
C-acetyltransferase).

4. Conclusion

This study demonstrates the effectiveness of hierarchical
contrastive learning in EC number prediction. Our results
show that employing the hierarchical nature of EC number
improves the model performance and robustness over SOTA
models, particularly for higher level EC numbers and pre-
viously unseen EC numbers. These results highlight the
potential of hierarchical CL to advance the field of compu-
tational enzyme annotation, providing a robust and scalable
solution for the accurate prediction of enzyme functions.
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