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Abstract
Eye-tracking metrics offer valuable insights001
into human visual attention during language002
comprehension, yet existing research and re-003
sources in this area are limited. To bridge004
this gap, we introduce Gaze Responses for005
Evaluating AI Texts (GREAT), a comprehen-006
sive dataset capturing human eye-movement007
patterns during screen reading of passages gen-008
erated by large language models (LLMs). The009
dataset includes raw eye-movement recordings,010
reading-time measures, and post-reading eval-011
uations for LLM-generated passage pairs se-012
lected from MT-Bench dataset, alongside rig-013
orous validation metrics. The collected eye-014
tracking metrics demonstrate strong explana-015
tory power in predicting text quality. When in-016
tegrated with negative log-likelihood (NLL),017
a commonly used metric for evaluating text018
quality, it substantially enhances model per-019
formance across all standard statistical cri-020
teria. These findings demonstrate that eye-021
tracking data effectively complement prob-022
abilistic metrics, improving predictive accu-023
racy for text quality assessment. The full024
dataset and some processing code are pub-025
licly available at https://anonymous.4open.026
science/r/eye-track.027

1 Introduction028

Understanding how humans perceive and evalu-029

ate machine-generated text is a growing area of030

research in natural language processing (NLP), es-031

pecially as large language models (LLMs) become032

increasingly integrated into real-world applications.033

Despite progress in automatic metrics—from n-034

gram-based scores like BLEU (Papineni et al.,035

2002) and ROUGE (Lin, 2004) to model-based036

ones like BERTScore (Zhang et al., 2019) and037

BLEURT (Sellam et al., 2020)—they often miss038

human preference nuances, while human evalua-039

tions, though reliable, are costly and inconsistent.040

This highlights the need for scalable, cognitively041

grounded alternatives.042

Eye-tracking has long been established as a ro- 043

bust method in psycholinguistics for studying cog- 044

nitive processing during reading. Metrics such as 045

fixation duration, saccade frequency, and regres- 046

sion behavior (backward saccades) offer real-time 047

insights into a reader’s attention, effort, and com- 048

prehension. These metrics have been extensively 049

validated as indicators of text difficulty and are 050

linked to theoretical constructs like surprisal and 051

information density (Smith and Levy, 2013; Meis- 052

ter et al., 2021; De Varda and Marelli, 2023; Shain 053

et al., 2024). However, their application to the eval- 054

uation of machine-generated text—especially from 055

modern LLMs—remains relatively underexplored. 056

Naturally, some recent endeavors have started 057

exploring the relationship between eye-movement 058

and LLM-generated texts (Bolliger et al., 2024). 059

However, still little is known about the strength of 060

the relations (Oh and Schuler, 2022). It is not clear 061

whether the eye-movement metrics can directly re- 062

flect the quality of model-generated texts, whether 063

they are correlated with human judges’ preferences, 064

and to what extent the metrics can be used as a way 065

for evaluation (Lopez-Cardona et al., 2025). 066

In this study, we focus on studying the end users’ 067

instantaneous eye-movement reaction to the model- 068

generated texts through a comprehensive exper- 069

imental investigation that bridges psycholinguis- 070

tic methods with modern NLP evaluation. We in- 071

troduce GREAT (Gaze Responses for Evaluating 072

AI Texts), a dataset that captures eye-movement 073

data from human readers as they read and evaluate 074

LLM-generated responses. Based on the MT-Bench 075

dataset, which provides human preference labels 076

for pairs of LLM-generated texts, the collected 077

dataset includes not only gaze data but also reading 078

times, fixation patterns, and post-reading quality 079

judgments. By systematically analyzing this data, 080

we aim to uncover how various aspects of reading 081

behavior—both temporal and spatial—can serve as 082

proxies for human assessments of text quality. 083
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Our central research question is: To what ex-084

tent can gaze-based features predict the perceived085

quality of LLM-generated text, especially when086

compared to or combined with model-based met-087

rics such as NLL? To explore this, we evaluate088

the predictive power of several eye-tracking fea-089

tures—fixation time, pixel dwelling time, and back-090

ward saccade frequency—and assess how well091

these features align with human preferences in the092

MT-Bench evaluation framework. To sum up, our093

work offers the following two major contributions:094

• A novel eye-tracking dataset (GREAT) that095

captures rich, fine-grained gaze behavior from096

participants reading LLM-generated text pairs.097

• Validation: We demonstrate that eye-tracking098

metrics significantly enhance the predictive099

power of text quality assessment when com-100

bined with traditional measures like negative101

log-likelihood (NLL).102

2 Experiment Setup103

2.1 Textual materials104

Our study is enabled by the MT-Bench and Chat-105

bot Arena dataset (henceforth MT-bench) (Zheng106

et al., 2023). MT-Bench is an open-ended question-107

answer dataset created for evaluating chatbots’ con-108

versational skills and instruction-following capa-109

bilities, comprising 30,000 machine-generate con-110

versations with human preference annotations to111

support further research. We meticulously curated112

a targeted subset of plain content from this dataset113

to serve as the reading materials, guided by the114

following principles:115

Text length To prevent scrolling or page flipping,116

it is essential that the texts presented to partici-117

pants fit entirely within a single screen. The aver-118

age length of the final selected texts is accordingly119

set to 65 words.120

Text domain To accommodate the diverse back-121

grounds of the participants, we exclude text ma-122

terials related to mathematics and programming123

code, and retain only those written in plain English,124

with their source from Wikipedia, news articles,125

etc. This ensures that the majority of subjects can126

understand the material without difficulty caused127

by domain knowledge.128

With the above selection standards, we aim to129

investigate how the quality and complexity of tex-130

tual content influence visual attention and reading131

behavior. This approach also allowed us to explore132

Read Text1, 2

Mark
Pref.
Text

Track 
Eye 

Gaze 
Path

Grade Text 1, 2

15ⅹ

Text1 Text2

Lorem ipsum dolor sit amet, consectetur 
adipiscing elit. Integer nec odio. Praesent 
libero. Sed cursus ante dapibus diam. Sed 
nisi. Nulla quis sem at nibh elementum 
imperdiet. Duis sagittis ipsum. Praesent 
mauris. Fusce nec tellus sed augue semper 
porta. Mauris massa. Vestibulum lacinia 
arcu eget nulla.

Figure 1: Task workflow for dataset construction. Par-
ticipants completed 15 sessions, each involving the se-
quential reading of two texts while their eye gaze was
recorded. After reading, participants rated their relative
preference for the texts using a five-point scale displayed
beneath the text pairs on the grading interface.

whether metrics derived from machine judgment 133

correlate with gaze-based indicators of text qual- 134

ity, thereby linking the subjective experience of 135

reading with objective model evaluations. 136

2.2 Data Collection 137

2.2.1 Participants 138

A total of 38 participants (10 female; mean age 139

= 20.76 years, SD = 1.96), all enrolled in bache- 140

lor’s or master’s programs with full-time English 141

training, took part in the eye-tracking experiment. 142

Before the experiment, each participant was re- 143

quired to complete a questionnaire assessing their 144

English proficiency. An overview of the partici- 145

pants’ self-reported proficiency levels is provided 146

in Appendix B, which is compared with the typical 147

score bands from various common English profi- 148

ciency tests (e.g., TOEFL, IELTS, CET-4/CET-6) 149

to contextualize these levels (refer to Table 4). 150

2.2.2 Apparatus 151

The experiment was conducted in a relatively con- 152

trolled environment, and unrelated personnel were 153

cleared during the experiment. Set up screens and 154

provide noise-cancelling headphones to reduce ex- 155

ternal distractions. Before the start of the experi- 156

ment, the participants were asked to complete the 157

calibration, ensuring the effectiveness of the col- 158

lected data. During the experiment, the participants 159

were instructed to remain immobile. The display 160

screen used in the experiment is 28 inches, and the 161

resolution is 2560 × 1440 pixels. Eye movement 162

data were recorded using a commercial eye tracker, 163

operating at a sampling rate of 60 Hz. 164

2.2.3 Procedure 165

We recruited 38 participants for our eye-tracking 166

reading experiment. Each participant watched a pre- 167

recorded demonstration video explaining the exper- 168
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imental procedure. Participants were instructed to169

read the text at their own pace without being tested170

on comprehension and to remain as still as possi-171

ble. To ensure accurate eye-tracking data collection,172

each participant has completed a six-point calibra-173

tion procedure before the given task.174

Participants used custom keyboards during the175

experiment to minimize distractions, prevent acci-176

dental touches, and reduce data noise caused by177

looking for the keyboard. The reading process was178

divided into two stages: reading and rating. In the179

reading stage, participants pressed the "start" but-180

ton to display the text and the "end" button to con-181

clude the reading session before proceeding to the182

next phase. Each participant completed two read-183

ing sessions before moving on to a rating task, in184

which they used a five-point Likert scale (Likert,185

1932) to indicate their preference for the two texts186

they had just read. To maintain a high level of atten-187

tion, participants were required to complete their188

preference selection within 30 seconds. Each sub-189

ject completed 15 cycles of this reading and rating190

process.191

To ensure the authenticity of the preference se-192

lection, the texts being compared were displayed193

on the screen. Participants selected their preferred194

text from the options at the bottom of the screen,195

followed by a confirmation pop-up. To prevent ac-196

cidental submissions, a throttle measure was imple-197

mented, ensuring that the submission could not be198

made more than once within one second.199

3 Data Processing200

3.1 Data Cleaning201

To enhance statistical validity, samples with total202

reading duration outside the range of the mean plus203

or minus two standard deviations were excluded.204

Additionally, samples with insufficient valid gaze205

points were removed to control for technical arti-206

facts and ensure the data accurately represent par-207

ticipants’ cognitive behavior. In addition, data that208

was not rated in a timely manner was deleted. With209

such a criterion, 83 pairs of reads were excluded,210

resulting in 487 pairs of reading data retained.211

The eye tracker used in our experiment records212

binocular data, capturing gaze positions from both213

the left and right eyes. To reduce systematic error214

and enhance the accuracy of gaze estimation, we215

compute the average of the left and right eye po-216

sition signals, following established practices in217

eye-tracking methodology (Hooge et al., 2019).218

The Area of Interest (AOI) is defined as the 219

bounding box of a word (distinguished by a space), 220

with punctuation marks incorporated into the pre- 221

ceding word (Holmqvist and Andersson, 2017; Hes- 222

sels et al., 2016; Hooge et al., 2025). By setting the 223

boundary of the reading content, the gaze points 224

located outside the expected reading area (e.g., 225

the edges of the screen) are excluded. Remaining 226

points will be assigned to the nearest AOI. 227

A common issue in eye-tracking experiments 228

is vertical drift, characterized by a gradual dis- 229

placement of the recorded gaze coordinates over 230

time (Carr et al., 2022; Chen et al., 2021; Frank 231

and Aumeistere, 2024). It can be resolved by 232

clustering-based classification approaches (e.g., 233

AgglomerativeClustering in scikit-learn). 234

To detect microsaccades, we employed a 235

velocity-based algorithm (Engbert and Kliegl, 236

2003; Nyström and Holmqvist, 2010), which iden- 237

tifies saccadic events as velocity outliers relative to 238

the overall distribution. To minimize noise and en- 239

hance signal stability, eye movement data were first 240

smoothed using a five-sample weighted moving av- 241

erage. Assuming an approximately normal distribu- 242

tion of velocity values, the detection threshold was 243

defined as two standard deviations above the mean 244

velocity across all samples. This approach has been 245

shown to offer robust and consistent performance 246

in identifying microsaccadic activity. 247

To analyze the reading trajectory, we adopt a 248

time-space-based clustering method known as Spa- 249

tial Temporal-DBSCAN (Birant and Kut, 2007). By 250

setting temporal and spatial thresholds, the fixation 251

points are clustered in time and space, and certain 252

noisy data is excluded. The clusters are assigned 253

to the corresponding AOI regions to analyze the 254

scan paths. The scanning path over the area of in- 255

terest (AOI) is illustrated in Figure 4; for additional 256

details, refer to Appendix C. 257

3.2 Dataset Overview 258

In this study, the dataset we introduced captures de- 259

tailed behavioral traces of readers during the read- 260

ing process by these attributes: 261

Reading Time: Time for reading a text. The av- 262

erage reading time in the dataset is 21369.07 ms 263

(SD = 9345.94). A maximum of 12.51% of read- 264

ing time is concentrated within the interval [17756, 265

20756]. 266

Pixel Dwelling Time (PDT): Average eye move- 267

ment time per pixel. The average PDT in the dataset 268

is 1.9 ms per pixel (SD = 1.11). A maximum of 269
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21.48% of PDT is concentrated within the interval270

[1.34, 1.84]. The data volume around 4.5 ms per271

pixel gradually approaches zero.272

Saccade Frequency (SF): Ballistic movements,273

the eye rapidly shifts its focus from one fixation274

point to another. The average number of saccades275

is 109.10 (SD = 45.70). A maximum of 17.16%276

of SF is concentrated within the interval [97, 117].277

Backward Saccade Frequency (BSF): Backward278

Saccade refers to the reader moving their eyes back-279

ward to the text they have previously read. The av-280

erage number of backward saccades is 48.44 (SD281

= 18.64). A maximum of 32.48% of PDT is con-282

centrated within the interval [46, 61].283

Fixation Time (FT): The definition of fixation284

time is the total reading duration minus the sac-285

cade time. The average fixation time is 18614.25286

ms (SD = 8572.29). A maximum of 13.57% of287

PDT is concentrated within the interval [19528,288

22528].289

Negative Log-Likelihood (NLL) quantifies the290

uncertainty of a language model by measuring the291

negative log-probability it assigns to each word292

given its preceding context. Formally, for a se-293

quence of word–context pairs (xi, yi), NLL is de-294

fined as:295

L(θ) = −
N∑
i=1

log p (yi | xi; θ)296

where p(yi | xi; θ) is the model’s predicted prob-297

ability. In this study, NLL was computed using298

the LLaMA-7B model (Touvron et al., 2023) to299

provide a consistent estimate of token-level un-300

certainty across different texts. Notably, GPT-4-301

generated texts displayed the narrowest NLL dis-302

tribution, reflecting stable predictive confidence,303

while Claude-v1 (Anthropic, 2023) outputs exhib-304

ited a broader, more skewed distribution with oc-305

casional high NLL values, suggesting greater vari-306

ability in prediction difficulty.307

MT-bench Score (MT) & Experiments score308

(EXP): The score of text materials from MT-bench309

(1.0, 1.5, 2.0) and the score of text materials during310

experiments (1.0, 1.25, 1.5, 1.75, 2.0). The ma-311

jority scores of MT demonstrate clear preferences312

between text pairs. A similar pattern is observed in313

the EXP results. The texts from the gpt-3.5-turbo314

(OpenAI, 2023) model are the largest, and its dis-315

tribution covers all MT and EXP values, especially316

the proportion of MT = 2.0 and EXP = 2.0 is rela-317

tively high. The GPT-4 model (OpenAI et al., 2024)318

has the least amount of text data and a relatively 319

uniform distribution of ratings. The LLaMA-13B 320

(Touvron et al., 2023) model has a high proportion 321

of text generation on MT = 1.0 and EXP = 1.0. 322

Appendix D illustrates more detailed statistics 323

about the dataset. 324

3.3 Dataset Validation 325

To assess the reliability and validity of our 326

dataset, we conducted both benchmark-based and 327

correlation-based validation analyses. Specifically, 328

we evaluated the agreement between participants’ 329

experimental preference scores and the standard- 330

ized MT-Bench scores. After aligning the scoring 331

scales for comparability—where scores of 1.25 332

and 1.75 were mapped to 1.0 and 2.0, respectively, 333

while all other values remained unchanged—the 334

matching accuracy reached 80%, consistent with 335

prior findings reported by Zheng et al. (Zheng et al., 336

2023). This level of agreement provides strong sup- 337

port for the methodological robustness and external 338

validity of our experimental framework. 339

Additionally, we investigated the relationship
between fixation duration and the surprisal of texts,
which is defined as:

Surprisal(wt) = − log p (wt | w1, . . . , wt−1)

captures the notion that less predictable words are 340

cognitively more demanding and are therefore asso- 341

ciated with increased reading times (Wilcox et al., 342

2025). To empirically evaluate this relationship, 343

we computed Pearson and Spearman correlation 344

coefficients between surprisal values and fixation 345

durations across the dataset (Mukaka, 2012). The 346

analysis revealed weak but statistically significant 347

positive correlations (ρPearson = 0.107, ρSpearman = 348

0.072, both at p < 0.001 level). This is consistent 349

with predictions derived from established cognitive 350

models of reading, such as E-Z Reader (Reichle 351

et al., 1998) and SWIFT (Engbert et al., 2002). 352

While the positive association supports the the- 353

oretical link between lexical predictability and 354

reading behavior, the relatively low magnitude of 355

the correlation indicates that a broader set of fac- 356

tors likely influences fixation duration. These may 357

include individual cognitive differences, reading 358

strategies, task demands, and syntactic or discourse- 359

level complexity (Sheridan and Reichle, 2016). To- 360

gether, these results suggest that the dataset cap- 361

tures psycholinguistically sound variance while 362

also reflecting the multifactorial nature of human 363

reading behavior. 364
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4 Experiments365

Building upon the demonstrated utility of our366

dataset for analyzing reading behavior, this section367

investigates the nuanced influence of eye gaze fea-368

tures on human preferences when evaluating LLM-369

generated texts. Grounded in psycholinguistic re-370

search, eye-tracking metrics offer a valuable win-371

dow into the non-cognitive dimensions of reading,372

reflecting the intricate interplay of attention, cog-373

nitive load, and comprehension processes within374

human-machine interaction contexts. To rigorously375

examine these relationships, we employ a series of376

linear mixed-effects models. This statistical frame-377

work was chosen to enable a detailed examination378

of the effects of linguistic features on eye-tracking379

variables.380

4.1 Multicollinearity analysis and variable381

selection382

The limited proportion of variance in the outcome383

measure explained by language model identity sug-384

gests that the disparities observed between different385

models are primarily inherent to their architecture386

and training, rather than significantly contributing387

to the explanation of variation in our target vari-388

able. Consequently, to more effectively isolate the389

effects of eye-tracking and linguistic features as po-390

tential indicators of underlying cognitive process-391

ing, language model identity was excluded from392

subsequent analyses.393

To address multicollinearity among candidate394

predictors for MT-score prediction, we use Vari-395

ance Inflation Factors (VIF) (Toothaker, 1994) as a396

diagnostic tool to quantify how much the variance397

of each predictor is inflated due to correlations with398

other predictors, guiding feature selection toward399

independent and interpretable variables. We retain400

predictors with VIF values below 5, indicating ac-401

ceptable levels of multicollinearity.402

Predictor VIF ↓

Experiment Score 1.010692
Negative Log-Likelihood (NLL) 1.195635
Fixation Time (FT) 1.335048
Pixel Dwelling Time (PDT) 1.832083
Backward Saccade Frequency (BSF) 2.255633

Table 1: The predictors with small VIF values.

Predictors exhibiting VIF values exceeding this403

threshold would typically be considered for exclu-404

sion or further investigation to mitigate the adverse 405

effects of high intercorrelation. Based on Table 1, 406

we include NLL (linguistic predictor) and three 407

eye-tracking metrics—PDT, BSF, and FT—as pre- 408

dictors in subsequent models. 409

4.2 Hypotheses 410

We propose the following hypotheses regarding 411

the relationship between eye-tracking variables and 412

perceived text quality (measured via MT-score): 413

• H1: Lower Pixel Dwelling Time (faster read- 414

ing speed) positively predicts perceived text 415

quality, reflecting smoother and more fluent 416

reading behavior. 417

• H2: Increased Backward Saccade Rate pos- 418

itively predicts text quality, indicating more 419

frequent regressions during reading are asso- 420

ciated with better comprehension, deeper pro- 421

cessing, or higher-quality writing. 422

• H3: Longer Fixation Time is negatively asso- 423

ciated with quality judgments as it implies that 424

the comprehension process demands greater 425

cognitive effort. 426

• H4: Combining temporal (Fixation Time), 427

spatial (Pixel Dwelling Time), and difficulty 428

(Backward Saccade Frequency) eye-tracking 429

metrics improves predictive accuracy beyond 430

either metric individually, demonstrating their 431

complementary contributions. 432

We posit that gaze-based measures offer a richer 433

and more direct window into readers’ cognitive 434

engagement with text than purely statistical linguis- 435

tic features. Specifically, these metrics provide a 436

multidimensional characterization of reading be- 437

havior: Fixation Time captures processing effort, 438

Pixel Dwelling Time reflects reading efficiency, 439

and Backward Saccade Frequency indicates com- 440

prehension difficulty. These features serve as key 441

predictors in our analysis, enabling a detailed exam- 442

ination of how different aspects of reading behavior 443

manifest in response to text quality. 444

4.3 Mixed-effect linear models 445

This section presents mixed-effects regression mod- 446

els examining the relationship between human- 447

judged text quality scores (MT-Score) and 448

predictors–NLL and eye-tracking metrics including 449

PDT, BSF, and FT. Random intercepts account for 450

variability across text generators and participants. 451

The findings offer strong support for the earlier hy- 452

potheses, showing that both cognitive processing 453

5



(a) NLL

(d) FT

(b) PDT

(c) BSF

P = 0.07

P = 0.74

ß for log(PDT) = 0.885

0.00

0.25

0.50

0.75

−2 −1 0 1 2
log(PDT)

Pr
ed

ic
te

d 
Pr

ob
ab

ilit
y

Effect of log(PDT) on Probability of MT = 2

P = 0.28

P = 0.79

ß for BSF = 0.015

0.25

0.50

0.75

0 40 80 120 160
BSF

Pr
ed

ic
te

d 
Pr

ob
ab

ilit
y

Effect of BSF on Probability of MT = 2

P = 0.68

P = 0.3

ß for log(FT) = −0.519

0.3

0.5

0.7

8 9 10
log(FT)

Pr
ed

ic
te

d 
Pr

ob
ab

ilit
y

Effect of log(FT) on Probability of MT = 2

P = 0.1

P = 0.98

ß for log(NLL) = 0.027

0.00

0.25

0.50

0.75

1.00

100 150 200 250 300
log(NLL)

Pr
ed

ic
te

d 
Pr

ob
ab

ilit
y

Effect of log(NLL) on Probability of MT = 2

Figure 2: Distributions of the four main predictors, NLL, PDT, BSF, and FT, grouped by MT-Score values (1.0,
1.5, and 2.0). Red dots on the left represent the median of each distribution. The four corresponding probability
curves (right blue) show the effect of four main predictors on the probability of MT = 2.0, along with the regression
coefficients (shadow areas are 95% confidence intervals).

and model uncertainty are significant predictors of454

perceived text quality.455

Model β SE t-value Effect Direction

MNLL 2.699× 10−2 3.174× 10−2 8.504 Positive
MPDT 8.850× 10−1 1.467× 10−1 6.034 Positive
MBSF 1.520× 10−2 4.163× 10−3 3.651 Positive
MFT −5.188× 10−1 1.477× 10−1 −3.514 Negative

Table 2: Parameter estimates, standard errors, t-values,
and model selection criteria (AIC, BIC) for mixed-
effects models predicting MT-Score from individual
predictors. Random intercepts for both Generator and
Subject were incorporated in all single predictor models,
except for MNLL, which included a random intercept for
Generator only.

Base Model (MNLL) As a foundational model,456

MNLL examines the effect of token-level uncer-457

tainty, measured via NLL, on perceived text quality.458

The model is specified as:459

MT ∼ β0 + βNLL · NLL + (1|Generator) + ϵ460

, where β0 is the intercept, (1|Generator) is a ran-461

dom effect accounting for variability across differ-462

ent text generators from the MT-Bench dataset, and463

ϵ is residual error.464

The coefficient for NLL is positive and highly465

significant (see Table 2), indicating that texts with466

higher token-level surprisal tend to receive higher467

MT-Scores. This finding corroborates prior work468

suggesting that readers favor content that is more469

novel or informative (Gehrmann et al., 2019), and470

it establishes a benchmark for evaluating the added471

predictive value of eye-tracking measures.472

Model 1: Effect of Pixel Dwelling Time (MPDT) 473

PDT as a measure of reading time can reflect the 474

average duration of visual attention for a reading 475

session (Rayner, 1998). We fit a mixed-effect linear 476

model with name MPDT, formulated as: 477

MT ∼β0 + βlog(PDT) · log(PDT) 478

+ (1|Generator) + (1|Subject) + ϵ 479

The formula includes random intercepts for both 480

the generator and the subject. Results show a sta- 481

tistically significant positive effect of PDT on MT- 482

Score (see Table 2), indicating that longer visual 483

attention is associated with higher subjective qual- 484

ity ratings. This finding supports hypothesis H1, 485

indicating that increased cognitive engagement, as 486

reflected by PDT, corresponds to more favorable 487

human evaluations. 488

Model 2: Effect of Backward Saccade Fre- 489

quency (MBSF) BSF captures the rate of regres- 490

sions—eye movements returning to earlier parts 491

of the text—typically linked to increased cognitive 492

effort during reading, such as resolving ambiguity 493

or reprocessing complex content. To evaluate its re- 494

lationship with perceived text quality, we estimated 495

a mixed-effects linear model (MBSF) defined as: 496

MT ∼β0 + βBSF · BSF 497

+ (1|Generator) + (1|Subject) + ϵ 498

Results show a statistically significant positive ef- 499

fect of BSF on MT-Score (see Table 2), indicat- 500

ing that texts eliciting more backward saccades 501
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tend to receive higher human quality ratings. This502

supports hypothesis H2, suggesting that readers503

engage more deeply—and perhaps more favor-504

ably—with texts that prompt increased rereading505

behavior.506

Model 3: Effect of Fixation Time (MFT) FT507

measures the cumulative duration of a participant’s508

gaze fixations on a given text, serving as an indica-509

tor of processing effort during reading. To investi-510

gate its role in predicting perceived text quality, we511

specified MFT as follows:512

MT ∼β0 + βlog(FT) · log(FT)513

+ (1|Generator) + (1|Subject) + ϵ514

The model reveals a significant negative rela-515

tionship between FT and MT-Score (see Table 2),516

indicating that shorter fixation durations are asso-517

ciated with higher subjective quality ratings. This518

finding supports hypothesis H3, suggesting that519

more easily processed texts, reflected in reduced520

fixation time, are perceived as higher in quality.521

The distribution and regression results of the522

base model and all three single predictor models523

are shown in Figure 2.524

Multi-Predictor Models Integrating multiple525

eye-tracking predictors can capture complementary526

aspects of reading behavior that jointly improve the527

assessment of text quality (Mathias et al., 2018).528

Model AIC BIC R2 Adj. R2

Base Model
MNLL 1003 1017 6.182× 10−2 6.085× 10−2

Single Predictor Models
MPDT 1067 1086 6.436× 10−2 6.340× 10−2

MFT 1094 1113 1.343× 10−2 1.242× 10−2

MBSF 1093 1112 3.255× 10−2 3.155× 10−2

Multi-Predictor Models
MPDT+FT 1042 1066 9.122× 10−2 8.935× 10−2

MPDT+BSF 1069 1093 6.666× 10−2 6.474× 10−2

MFT+BSF 1069 1093 6.381× 10−2 6.188× 10−2

MEYE 1040 1069 9.924× 10−2 9.645× 10−2

MEYE+NLL 982.7 1016 11.91× 10−2 11.55× 10−2

Table 3: Model Performance Comparison: AIC, BIC,
R2, and Adjusted R2 for models predicting text quality
grading (MT) using individual and combined metrics.
EYE denotes the combination of three eye-tracking met-
rics—PDT, FT, and BSF—for brevity.

To evaluate the predictive capacity of various529

models for text quality grading, in Table 3 we530

compared their performance across four key met-531

rics: Akaike Information Criterion (AIC) (Bozdo-532

gan, 1987), Bayesian Information Criterion (BIC)533

(Schwarz, 1978), coefficient of determination (R2), 534

and adjusted R2 (R2
adj). AIC and BIC measure 535

model quality by balancing goodness-of-fit with 536

complexity, where lower values indicate more par- 537

simonious models (Lehtonen et al., 2019). R2 quan- 538

tifies the proportion of variance explained by the 539

predictors, while R2
adj adjusts for model complex- 540

ity, allowing for fairer comparisons between mod- 541

els with differing numbers of features. 542

Relative to the base model MNLL, which uses 543

only NLL as a predictor, all two-predictor com- 544

binations involving eye-tracking metrics (e.g., 545

MPDT+FT, MFT+BSF) demonstrate improved ex- 546

planatory power across all evaluation metrics. This 547

confirms that gaze-derived behavioral features pro- 548

vide meaningful information beyond token-level 549

model uncertainty (Wiechmann et al., 2022). No- 550

tably, the MPDT+FT model achieves the lowest AIC 551

and BIC along with the highest R2 and R2
adj, indi- 552

cating the most favorable trade-off between model 553

fit and complexity among the combinations. 554

MEYE, which integrates the effects of PDT, 555

FT, and BSF, shows a modest improvement over 556

MPDT+FT, though it yields a slightly higher BIC, 557

indicating a minor trade-off in model parsimony. 558

By combining the eye-tracking metrics and NLL, 559

When the eye-tracking metrics are combined 560

with NLL, the model MEYE+NLL achieves the 561

best performance across all four evaluation crite- 562

ria—AIC, BIC, R2 R2
adj. The substantial increase 563

in both goodness-of-fit measures suggests that eye- 564

tracking features serve as a valuable complement 565

to NLL in predicting text quality grading, offering 566

robust empirical support for H4. 567

4.4 Correlations with other variables 568

Model name, a categorical factor representing dif- 569

ferent language models (e.g., Claude-v1, GPT- 570

3.5-Turbo, GPT-4, LLaMA-13B, Vicuna-13B-v1.2 571

(Chiang et al., 2023), and Alpaca-13B), exhibits 572

high correlation with mt-scores but is excluded 573

from predictive models to avoid confounding. This 574

is due to its nature as a label rather than a mechanis- 575

tic predictor, impairing interpretability regarding 576

why different models yield distinct MT scores (Gel- 577

man and Hill, 2006; Shmueli, 2010). Moreover, lin- 578

ear models including model_name yielded higher 579

R-squared values, indicating that model identity 580

strongly predicts MT-score. To isolate the effects 581

of eye gaze variables within a consistent model 582

context, we exclude model_name from the main 583

predictive models, thereby controlling for model 584

7



generation capabilities and focusing on cognitive585

processing indicators.586

5 Related Works587

5.1 Eye Tracking Metrics588

In recent years, eye-tracking technology has been589

widely applied in the study of text readability590

and comprehension. Here are two important eye-591

tracking indicators, fixations and backward sac-592

cades. Eye fixations, occurring when the eyes re-593

main relatively still, allow the reader to extract594

information from the text. Backward saccades, the595

reader’s actions of moving their eyes (regress) back596

to previously read material in the text (i.e., regres-597

sion). Generally, research indicates that as text dif-598

ficulty increases, fixation durations lengthen, the599

scanning distance shortens, and there are more600

backward saccades during reading (Rayner, 1998,601

2009). In multiple languages, these eye movement602

features are significantly correlated with traditional603

readability scores, indicating that eye movement604

data can effectively reflect the difficulty of read-605

ing text (Baazeem et al., 2021, 2025; Atvars and606

Aigars, 2017). From this, we can infer that the read-607

ing duration will also increase as the difficulty of608

the text increases, which will also be a variable609

studied in this project.610

5.2 Text quality assessment611

Text quality assessment is a core issue in natural612

language processing. With the development of deep613

learning technology, researchers have proposed var-614

ious evaluation methods, ranging from traditional615

rule-based metrics, such as BLEU (Papineni et al.,616

2002) and ROUGE (Lin, 2004), to modern pre-617

trained model-based evaluation methods, such as618

BERTScore (Zhang et al., 2019) and BLEURT (Sel-619

lam et al., 2020). Among these language model-620

based evaluation methods, NLL is commonly used621

to describe and quantify the predictability of lan-622

guage and its impact on cognitive effort, especially623

as it can more accurately reflect the difficulty of624

reading compared to traditional readability formu-625

las (Klein et al., 2025). (Smith and Levy, 2013)626

showed that NLL is directly proportional to read-627

ing time. The higher the NLL of a word, the longer628

the reader will stay on the word.629

5.3 Human judgements of generated texts630

Using human judges as a source of evaluation for631

model-generated texts is a well-practiced (Celikyil-632

maz et al., 2020), which is one of the three major 633

text generation evaluation methods. However, there 634

is a great variation in the way humans assess it. 635

Hashimoto et al. (2019) points out the shortcom- 636

ings of human evaluation scores – the lack of pref- 637

erences over diverse texts. The article (van der Lee 638

et al., 2019) highlights the importance of using mul- 639

tiple raters in the evaluation process. The article 640

(van der Lee et al., 2021) emphasizes the selection 641

of a sample that reflects the target audience and 642

considers how to reduce the sequential effect. 643

MT-Bench dataset (Zheng et al., 2023) is used 644

as the experimental material in this study. The orig- 645

inal dataset is a collection of multiple language 646

models’ responses to a set of prompts that come 647

in pairs, covering multiple domains, along with hu- 648

man judges’ preferences for each pair (which one 649

wins over the other). 650

Based on existing research, our study chooses 651

to use LLM-generated text, combining the two eye 652

movement variables, duration and back, and NLL, 653

with human evaluations, to investigate the quality 654

of the model’s generated text. 655

6 Conclusions 656

In this study, we introduced the GREAT dataset, 657

a useful resource for analyzing human cognitive 658

responses to different LLM-generated text con- 659

tent. The dataset comprises a comprehensive set of 660

eye gaze measurements collected from controlled 661

screen reading experiments. Our preliminary anal- 662

ysis of the data demonstrates that eye movement 663

features, such as reading duration, reading speed, 664

forward/backward saccades, and fixation time, are 665

significantly correlated with human judgments of 666

text quality. Among these features, the effect of 667

reading speed is the most significant – almost the 668

same level as that of the negative likelihood of texts 669

(or surprisal). Our analysis validates the GREAT 670

dataset as a robust resource for evaluating LLMs 671

using a human-as-judge approach. The GREAT 672

dataset offers new insights into how individuals 673

interact with and evaluate machine-generated con- 674

tent, highlighting the potential of eye-gaze features 675

as objective indicators of text quality. 676
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7 Limitations677

While all participants in our study were experi-678

enced English users with at least a decade of lan-679

guage exposure, they were not native speakers,680

which may introduce subtle differences in read-681

ing behavior compared to L1 readers. Addition-682

ally, the dataset used in our experiment is limited683

in domain scope, which may affect the generaliz-684

ability of our findings across different text types685

or genres. Our focus on English texts further nar-686

rows the applicability of the results to other lan-687

guages, particularly those with distinct linguistic or688

orthographic characteristics. The experimental set-689

ting, while controlled, may also influence natural690

reading behavior; participants read in a lab envi-691

ronment with tasks that might not fully replicate692

everyday reading conditions. Future work could693

address these limitations by including a more di-694

verse participant pool, expanding text types and695

domains, incorporating multilingual materials, and696

considering ecologically valid reading settings to697

support more comprehensive insights into eye gaze698

behavior.699

8 Ethic Statement700

All participants in this study were informed of701

the research objectives, procedures, and their702

rights prior to enrollment. The following princi-703

ples guided the ethical conduct of the research:704

• Informed Consent Participants provided writ-705

ten informed consent after receiving a detailed706

explanation of the study, including the use of707

eye-tracking technology, the nature of tasks708

(reading and rating texts), and the voluntary709

nature of their participation. They were ad-710

vised that they could withdraw from the study711

at any time without penalty.712

• Confidentiality of Personal Information713

Personal data, including names, genders,714

ages, and English proficiency details, were715

anonymized and stored securely. Access to716

raw data was restricted to authorized re-717

searchers only. Unless explicitly permitted by718

the participant, no personally identifiable in-719

formation (PII) was shared with third parties.720

Government authorities or ethics review com-721

mittees could access de-identified data for reg-722

ulatory purposes, in accordance with institu-723

tional policies.724

• Data Usage and Security Eye-tracking 725

recordings, reading time measures, and pref- 726

erence ratings were used solely for research 727

purposes outlined in this study. All data were 728

encrypted during storage and transmission. 729

Participant identities were separated from re- 730

search data, and only aggregated, anonymized 731

results were reported in publications or pre- 732

sentations. 733

• Participant Obligations Participants were 734

instructed to maintain the confidentiality of 735

experimental materials and procedures. They 736

were explicitly advised not to disclose details 737

about the study (e.g., text content, rating crite- 738

ria) to third parties to prevent contamination 739

of results. 740

• Ethical Review This study was conducted in 741

compliance with the Declaration of Helsinki 742

and approved by the institutional ethics com- 743

mittee [insert specific committee name if ap- 744

plicable]. All procedures were designed to 745

minimize potential risks and maximize the 746

scientific value of the research. The collected 747

data do not contain any personal information 748

such as name or personal ID. 749

By adhering to these principles, the research 750

team ensures the protection of participant rights 751

and maintains the integrity of the study. 752
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A Details of the experiment1053

During the experiment, participants interact with1054

a simplified interface to minimize distractions and1055

accidental input errors. Custom keyboard bindings1056

are used:1057

• Navigation: The left and right arrow keys1058

move the focus between options.1059

• Selection: The enter key submits the chosen1060

option.1061

After reading each text pair (displayed sequen-1062

tially), participants select their preferred option us-1063

ing these keys. The task is self-paced, with no time1064

limits or comprehension checks. The figure 3 shows1065

the experimental interface and sequence.1066

B Score Bands and Grades from Various1067

English Proficiency Tests1068

In summary, level B accounts for the largest pro-1069

portion of 32.4%, followed by level C and D with1070

29.7% and 24.3% respectively, and the remaining1071

level A and E accounts for 5.4% and 8.1%, a dis-1072

tribution that approximates a normal distribution.1073

Here we present the score bands and grades Table 41074

from various English proficiency tests for reference.1075

level NCEE CET-4 CET-6 IELTS TOEFL

level A / / / 8+ 105+
level B 140+ 600+ 600+ 7-7.5 90-105
level C / / 500-600 6-6.5 75-90
level D 130-140 500-600 425-500 5-5.5 60-75
level E 120-130 425-500 / / /

Table 4: Exam type and score levels for different exams.
NCEE: National College Entrance Examination

1076

Proficiency Level Participant Proportion Equivalent Test Scores

A (Advanced) 5.4% IELTS 8+ / TOEFL 105+
B (Upper-Intermediate) 32.4% IELTS 7–7.5 / TOEFL 90–105
C (Intermediate) 29.7% IELTS 6–6.5 / TOEFL 75–90
D (Lower-Intermediate) 24.3% IELTS 5–5.5 / TOEFL 60–75
E (Basic) 8.1% CET-4 425–500

Table 5: English proficiency distribution and equivalent
standardized test scores

C Scan path1077

Eye movement trajectories during reading were an-1078

alyzed using the Spatial Temporal-DBSCAN clus-1079

tering algorithm, which integrates temporal and1080

spatial thresholds to cluster fixation points and fil-1081

ter noise. AOIs were defined as bounding boxes1082

around individual words (with punctuation merged 1083

into preceding words). Mapping fixations to AOIs 1084

revealed: 1085

D Metrics of dataset 1086

D.1 Metrics over dataset 1087

The figure 5 represents the distributions of at- 1088

tributes over models. 1089

• PDT Distribution: As shown in the figure 5a, 1090

the distribution is unimodal, with a prominent 1091

peak at low PDT values and a long right tail. 1092

In other words, the majority of PDT values 1093

cluster in the lower range, and the percentage 1094

falls off sharply beyond the peak. The distribu- 1095

tion is therefore skewed to the right, with the 1096

highest concentration at small PDT values. 1097

• BSF and Saccade Distribution: As shown in 1098

the figure 5b, the BSF distribution is unimodal 1099

with a clear peak at a moderate frequency, and 1100

then drops off rapidly at higher frequencies. 1101

In contrast, the saccade frequency distribu- 1102

tion peaks at a higher frequency but with a 1103

smaller maximum percentage, and it decays 1104

more gradually. In summary, BSF frequen- 1105

cies are mostly concentrated in the mid-range 1106

(producing a sharp peak), whereas saccade 1107

frequencies are more broadly spread with a 1108

flatter peak. 1109

• FT, Grading time and Reading time Distri- 1110

bution: As shown in the figure 5c, the reading 1111

time distribution is unimodal, peaking around 1112

19,000 ms and then gradually declining; it 1113

spans a wide range up to the highest time bins, 1114

indicating that some reading durations extend 1115

into tens of seconds. The fixation time distri- 1116

bution is relatively flat and appears to have 1117

two modest peaks: one near 15,000 ms ( 14%) 1118

and another around 21,000 ms ( 15%), sug- 1119

gesting a broad spread of fixation durations. 1120

In contrast, the grading time distribution is 1121

strongly peaked at very short durations: its 1122

peak is around 6,000 ms (about 33%) and it 1123

falls off steeply thereafter. This indicates that 1124

most grading has a short duration. 1125

D.2 Metrics over model 1126

The figure 6 represents the distributions of at- 1127

tributes over models. The left subfigure 6a illus- 1128

trates the Negative Log-Likelihood (NLL) dis- 1129

tribution across different language models, which 1130
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Figure 3: Experiment interface. Participants press start to begin reading a text pair, then end to proceed to rating.
Keyboard bindings (left/right arrows and enter) simplify option selection.

Figure 4: An example of scanning a path, where a box
represents an Area-of-Interest (AOI). The circles repre-
sent the gaze locations, where a larger circle indicates
a longer fixation time. The red lines represents regres-
sions.

quantifies the uncertainty of text generation. Key1131

observations include:1132

• GPT-4’s Predictability: GPT-4 exhibits the1133

narrowest NLL distribution, centered around1134

a mean of 150 with a small standard deviation1135

(σ = 25). This indicates that GPT-4 gener-1136

ates text with consistently high predictability,1137

aligning with its reputation for producing co-1138

herent and contextually stable outputs.1139

• Claude-v1’s Variability: Claude-v1 displays1140

a skewed NLL distribution with a higher mean1141

(220) and larger σ (80). The presence of fre-1142

quent high-NLL values indicates that its gen-1143

erated text often contains unpredictable or1144

less coherent segments. This variability may1145

stem from Claude-v1’s approach to generating1146

more creative or diverse content, which can1147

occasionally lead to linguistic discontinuities.1148

• LLaMA-13B and Alpaca-13B: These open-1149

source models show broader NLL distribu-1150

tions compared to GPT-4 but are more concen-1151

trated than Claude-v1. The higher NLL val-1152

ues (relative to GPT-4) suggest greater lexical1153

uncertainty, which may reflect their smaller1154

training datasets or less refined fine-tuning.1155

The right subfigure 6b compares the MT-score 1156

scores (1.0–2.0) with the experimental rating 1157

scores (EXP, 1.0–2.0), providing insights into hu- 1158

man preference alignment across models: 1159

• GPT-3.5-Turbo’s Dominance: GPT-3.5- 1160

Turbo has the largest number of texts and a 1161

balanced distribution across MT-score scores, 1162

with a high proportion of MT-score=2.0 1163

(50%) and EXP = 2.0 (45%). This sug- 1164

gests strong alignment between automated 1165

MT-score scores and human judgments, 1166

likely due to its ability to generate fluent, 1167

task-relevant responses. The concentration 1168

of EXP scores at 1.75–2.0 highlights its 1169

popularity among participants, possibly 1170

driven by its optimal balance of readability 1171

(low NLL) and informativeness (moderate 1172

surprisal). 1173

• GPT-4’s Uniform Quality: GPT-4 has fewer 1174

texts but exhibits a uniform distribution of MT- 1175

score and EXP scores, with 50% rated MT- 1176

score=2.0 and no scores below MT-score=1.5. 1177

This reflects its consistent high quality, as hu- 1178

man raters rarely deemed its outputs subpar. 1179

• LLaMA-13B’s Lower Performance: 1180

LLaMA-13B shows a dominance of low 1181

scores (MT-score=1.0: 60%), indicating 1182

poor human preference. This correlates with 1183

its higher NLL values, suggesting that less 1184

predictable text structure leads to increased 1185

cognitive effort (e.g., longer Fixation Time) 1186

and lower perceived quality. 1187

• Model-Specific Trends: Vicuna-13B-v1.2 1188

and Alpaca-13B show moderate performance, 1189

with MT-score=1.5 as their modal score. Their 1190

EXP distributions are slightly skewed toward 1191

higher values, suggesting that fine-tuning on 1192

instruction-following tasks improves readabil- 1193

ity compared to base models like LLaMA- 1194

13B. 1195
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Figure 5: The distributions of attributes over models.
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Figure 6: The distributions of attributes over models.

Cross-Figure Insights1196

• Correlation Between NLL and Human Rat-1197

ings: Models with lower NLL (e.g., GPT-4)1198

generally receive higher EXP scores, support-1199

ing the hypothesis that token-level predictabil-1200

ity contributes to perceived quality. However,1201

the combination of NLL and eye-tracking met-1202

rics (e.g., PDT, BSF) in Model MEYE+NLL1203

(Table 3) demonstrates that gaze data adds1204

unique explanatory power beyond linguistic1205

features alone.1206

• Implications for LLM Evaluation: The fig-1207

ures underscore the value of incorporating eye-1208

tracking into LLM assessment. For example,1209

Claude-v1’s high NLL variability may not be1210

fully captured by traditional metrics, but eye-1211

movement patterns (e.g., inconsistent fixation1212

durations) can reveal hidden weaknesses in1213

text flow.1214

By integrating quantitative NLL distributions1215

with qualitative human ratings, these figures pro-1216

vide a comprehensive view of how model archi- 1217

tecture influences both linguistic predictability and 1218

reader experience, reinforcing the necessity of mul- 1219

timodal evaluation frameworks like GREAT. 1220
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