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Abstract

Eye-tracking metrics offer valuable insights
into human visual attention during language
comprehension, yet existing research and re-
sources in this area are limited. To bridge
this gap, we introduce Gaze Responses for
Evaluating AI Texts (GREAT), a comprehen-
sive dataset capturing human eye-movement
patterns during screen reading of passages gen-
erated by large language models (LLMs). The
dataset includes raw eye-movement recordings,
reading-time measures, and post-reading eval-
uations for LLM-generated passage pairs se-
lected from MT-Bench dataset, alongside rig-
orous validation metrics. The collected eye-
tracking metrics demonstrate strong explana-
tory power in predicting text quality. When in-
tegrated with negative log-likelihood (NLL),
a commonly used metric for evaluating text
quality, it substantially enhances model per-
formance across all standard statistical cri-
teria. These findings demonstrate that eye-
tracking data effectively complement prob-
abilistic metrics, improving predictive accu-
racy for text quality assessment. The full
dataset and some processing code are pub-
licly available at https://anonymous.4open.
science/r/eye-track.

1 Introduction

Understanding how humans perceive and evalu-
ate machine-generated text is a growing area of
research in natural language processing (NLP), es-
pecially as large language models (LLMs) become
increasingly integrated into real-world applications.
Despite progress in automatic metrics—from n-
gram-based scores like BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) to model-based
ones like BERTScore (Zhang et al., 2019) and
BLEURT (Sellam et al., 2020)—they often miss
human preference nuances, while human evalua-
tions, though reliable, are costly and inconsistent.
This highlights the need for scalable, cognitively
grounded alternatives.

Eye-tracking has long been established as a ro-
bust method in psycholinguistics for studying cog-
nitive processing during reading. Metrics such as
fixation duration, saccade frequency, and regres-
sion behavior (backward saccades) offer real-time
insights into a reader’s attention, effort, and com-
prehension. These metrics have been extensively
validated as indicators of text difficulty and are
linked to theoretical constructs like surprisal and
information density (Smith and Levy, 2013; Meis-
ter et al., 2021; De Varda and Marelli, 2023; Shain
et al., 2024). However, their application to the eval-
uation of machine-generated text—especially from
modern LL.Ms—remains relatively underexplored.

Naturally, some recent endeavors have started
exploring the relationship between eye-movement
and LLM-generated texts (Bolliger et al., 2024).
However, still little is known about the strength of
the relations (Oh and Schuler, 2022). It is not clear
whether the eye-movement metrics can directly re-
flect the quality of model-generated texts, whether
they are correlated with human judges’ preferences,
and to what extent the metrics can be used as a way
for evaluation (Lopez-Cardona et al., 2025).

In this study, we focus on studying the end users’
instantaneous eye-movement reaction to the model-
generated texts through a comprehensive exper-
imental investigation that bridges psycholinguis-
tic methods with modern NLP evaluation. We in-
troduce GREAT (Gaze Responses for Evaluating
Al Texts), a dataset that captures eye-movement
data from human readers as they read and evaluate
LLM-generated responses. Based on the MT-Bench
dataset, which provides human preference labels
for pairs of LLM-generated texts, the collected
dataset includes not only gaze data but also reading
times, fixation patterns, and post-reading quality
judgments. By systematically analyzing this data,
we aim to uncover how various aspects of reading
behavior—both temporal and spatial—can serve as
proxies for human assessments of text quality.


https://anonymous.4open.science/r/eye-track
https://anonymous.4open.science/r/eye-track
https://anonymous.4open.science/r/eye-track

Our central research question is: To what ex-
tent can gaze-based features predict the perceived
quality of LLM-generated text, especially when
compared to or combined with model-based met-
rics such as NLL? To explore this, we evaluate
the predictive power of several eye-tracking fea-
tures—fixation time, pixel dwelling time, and back-
ward saccade frequency—and assess how well
these features align with human preferences in the
MT-Bench evaluation framework. To sum up, our
work offers the following two major contributions:

* A novel eye-tracking dataset (GREAT) that
captures rich, fine-grained gaze behavior from
participants reading LLM-generated text pairs.

* Validation: We demonstrate that eye-tracking
metrics significantly enhance the predictive
power of text quality assessment when com-
bined with traditional measures like negative
log-likelihood (NLL).

2 Experiment Setup

2.1 Textual materials

Our study is enabled by the MT-Bench and Chat-
bot Arena dataset (henceforth MT-bench) (Zheng
et al., 2023). MT-Bench is an open-ended question-
answer dataset created for evaluating chatbots’ con-
versational skills and instruction-following capa-
bilities, comprising 30,000 machine-generate con-
versations with human preference annotations to
support further research. We meticulously curated
a targeted subset of plain content from this dataset
to serve as the reading materials, guided by the
following principles:

Text length To prevent scrolling or page flipping,
it is essential that the texts presented to partici-
pants fit entirely within a single screen. The aver-
age length of the final selected texts is accordingly
set to 65 words.

Text domain To accommodate the diverse back-
grounds of the participants, we exclude text ma-
terials related to mathematics and programming
code, and retain only those written in plain English,
with their source from Wikipedia, news articles,
etc. This ensures that the majority of subjects can
understand the material without difficulty caused
by domain knowledge.

With the above selection standards, we aim to
investigate how the quality and complexity of tex-
tual content influence visual attention and reading
behavior. This approach also allowed us to explore
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Figure 1: Task workflow for dataset construction. Par-
ticipants completed 15 sessions, each involving the se-
quential reading of two texts while their eye gaze was
recorded. After reading, participants rated their relative
preference for the texts using a five-point scale displayed
beneath the text pairs on the grading interface.

whether metrics derived from machine judgment
correlate with gaze-based indicators of text qual-
ity, thereby linking the subjective experience of
reading with objective model evaluations.

2.2 Data Collection
2.2.1 Participants

A total of 38 participants (10 female; mean age
= 20.76 years, SD = 1.96), all enrolled in bache-
lor’s or master’s programs with full-time English
training, took part in the eye-tracking experiment.
Before the experiment, each participant was re-
quired to complete a questionnaire assessing their
English proficiency. An overview of the partici-
pants’ self-reported proficiency levels is provided
in Appendix B, which is compared with the typical
score bands from various common English profi-
ciency tests (e.g., TOEFL, IELTS, CET-4/CET-6)
to contextualize these levels (refer to Table 4).

2.2.2 Apparatus

The experiment was conducted in a relatively con-
trolled environment, and unrelated personnel were
cleared during the experiment. Set up screens and
provide noise-cancelling headphones to reduce ex-
ternal distractions. Before the start of the experi-
ment, the participants were asked to complete the
calibration, ensuring the effectiveness of the col-
lected data. During the experiment, the participants
were instructed to remain immobile. The display
screen used in the experiment is 28 inches, and the
resolution is 2560 x 1440 pixels. Eye movement
data were recorded using a commercial eye tracker,
operating at a sampling rate of 60 Hz.

2.2.3 Procedure

We recruited 38 participants for our eye-tracking
reading experiment. Each participant watched a pre-
recorded demonstration video explaining the exper-



imental procedure. Participants were instructed to
read the text at their own pace without being tested
on comprehension and to remain as still as possi-
ble. To ensure accurate eye-tracking data collection,
each participant has completed a six-point calibra-
tion procedure before the given task.

Participants used custom keyboards during the
experiment to minimize distractions, prevent acci-
dental touches, and reduce data noise caused by
looking for the keyboard. The reading process was
divided into two stages: reading and rating. In the
reading stage, participants pressed the "start" but-
ton to display the text and the "end" button to con-
clude the reading session before proceeding to the
next phase. Each participant completed two read-
ing sessions before moving on to a rating task, in
which they used a five-point Likert scale (Likert,
1932) to indicate their preference for the two texts
they had just read. To maintain a high level of atten-
tion, participants were required to complete their
preference selection within 30 seconds. Each sub-
ject completed 15 cycles of this reading and rating
process.

To ensure the authenticity of the preference se-
lection, the texts being compared were displayed
on the screen. Participants selected their preferred
text from the options at the bottom of the screen,
followed by a confirmation pop-up. To prevent ac-
cidental submissions, a throttle measure was imple-
mented, ensuring that the submission could not be
made more than once within one second.

3 Data Processing

3.1 Data Cleaning

To enhance statistical validity, samples with total
reading duration outside the range of the mean plus
or minus two standard deviations were excluded.
Additionally, samples with insufficient valid gaze
points were removed to control for technical arti-
facts and ensure the data accurately represent par-
ticipants’ cognitive behavior. In addition, data that
was not rated in a timely manner was deleted. With
such a criterion, 83 pairs of reads were excluded,
resulting in 487 pairs of reading data retained.
The eye tracker used in our experiment records
binocular data, capturing gaze positions from both
the left and right eyes. To reduce systematic error
and enhance the accuracy of gaze estimation, we
compute the average of the left and right eye po-
sition signals, following established practices in
eye-tracking methodology (Hooge et al., 2019).

The Area of Interest (AOI) is defined as the
bounding box of a word (distinguished by a space),
with punctuation marks incorporated into the pre-
ceding word (Holmqvist and Andersson, 2017; Hes-
sels et al., 2016; Hooge et al., 2025). By setting the
boundary of the reading content, the gaze points
located outside the expected reading area (e.g.,
the edges of the screen) are excluded. Remaining
points will be assigned to the nearest AOL.

A common issue in eye-tracking experiments
is vertical drift, characterized by a gradual dis-
placement of the recorded gaze coordinates over
time (Carr et al., 2022; Chen et al., 2021; Frank
and Aumeistere, 2024). It can be resolved by
clustering-based classification approaches (e.g.,
AgglomerativeClustering in scikit-learn).

To detect microsaccades, we employed a
velocity-based algorithm (Engbert and Kliegl,
2003; Nystrom and Holmqvist, 2010), which iden-
tifies saccadic events as velocity outliers relative to
the overall distribution. To minimize noise and en-
hance signal stability, eye movement data were first
smoothed using a five-sample weighted moving av-
erage. Assuming an approximately normal distribu-
tion of velocity values, the detection threshold was
defined as two standard deviations above the mean
velocity across all samples. This approach has been
shown to offer robust and consistent performance
in identifying microsaccadic activity.

To analyze the reading trajectory, we adopt a
time-space-based clustering method known as Spa-
tial Temporal-DBSCAN (Birant and Kut, 2007). By
setting temporal and spatial thresholds, the fixation
points are clustered in time and space, and certain
noisy data is excluded. The clusters are assigned
to the corresponding AOI regions to analyze the
scan paths. The scanning path over the area of in-
terest (AOI) is illustrated in Figure 4; for additional
details, refer to Appendix C.

3.2 Dataset Overview

In this study, the dataset we introduced captures de-
tailed behavioral traces of readers during the read-
ing process by these attributes:

Reading Time: Time for reading a text. The av-
erage reading time in the dataset is 21369.07 ms
(SD = 9345.94). A maximum of 12.51% of read-
ing time is concentrated within the interval [17756,
20756].

Pixel Dwelling Time (PDT): Average eye move-
ment time per pixel. The average PDT in the dataset
is 1.9 ms per pixel (SD = 1.11). A maximum of



21.48% of PDT is concentrated within the interval
[1.34, 1.84]. The data volume around 4.5 ms per
pixel gradually approaches zero.

Saccade Frequency (SF): Ballistic movements,
the eye rapidly shifts its focus from one fixation
point to another. The average number of saccades
is 109.10 (SD = 45.70). A maximum of 17.16%
of SF is concentrated within the interval [97, 117].
Backward Saccade Frequency (BSF): Backward
Saccade refers to the reader moving their eyes back-
ward to the text they have previously read. The av-
erage number of backward saccades is 48.44 (SD
= 18.64). A maximum of 32.48% of PDT is con-
centrated within the interval [46, 61].

Fixation Time (FT): The definition of fixation
time is the total reading duration minus the sac-
cade time. The average fixation time is 18614.25
ms (SD = 8572.29). A maximum of 13.57% of
PDT is concentrated within the interval [19528,
22528].

Negative Log-Likelihood (NLL) quantifies the
uncertainty of a language model by measuring the
negative log-probability it assigns to each word
given its preceding context. Formally, for a se-
quence of word—context pairs (z;, y;), NLL is de-
fined as:

N
L(0) == logp (yi | z:;0)
=1

where p(y; | x;;60) is the model’s predicted prob-
ability. In this study, NLL was computed using
the LLaMA-7B model (Touvron et al., 2023) to
provide a consistent estimate of token-level un-
certainty across different texts. Notably, GPT-4-
generated texts displayed the narrowest NLL dis-
tribution, reflecting stable predictive confidence,
while Claude-v1 (Anthropic, 2023) outputs exhib-
ited a broader, more skewed distribution with oc-
casional high NLL values, suggesting greater vari-
ability in prediction difficulty.

MT-bench Score (MT) & Experiments score
(EXP): The score of text materials from MT-bench
(1.0, 1.5, 2.0) and the score of text materials during
experiments (1.0, 1.25, 1.5, 1.75, 2.0). The ma-
jority scores of MT demonstrate clear preferences
between text pairs. A similar pattern is observed in
the EXP results. The texts from the gpt-3.5-turbo
(OpenAl, 2023) model are the largest, and its dis-
tribution covers all MT and EXP values, especially
the proportion of MT = 2.0 and EXP = 2.0 is rela-
tively high. The GPT-4 model (OpenAl et al., 2024)

has the least amount of text data and a relatively
uniform distribution of ratings. The LLaMA-13B
(Touvron et al., 2023) model has a high proportion
of text generation on MT = 1.0 and EXP = 1.0.

Appendix D illustrates more detailed statistics
about the dataset.

3.3 Dataset Validation

To assess the reliability and validity of our
dataset, we conducted both benchmark-based and
correlation-based validation analyses. Specifically,
we evaluated the agreement between participants’
experimental preference scores and the standard-
ized MT-Bench scores. After aligning the scoring
scales for comparability—where scores of 1.25
and 1.75 were mapped to 1.0 and 2.0, respectively,
while all other values remained unchanged—the
matching accuracy reached 80%, consistent with
prior findings reported by Zheng et al. (Zheng et al.,
2023). This level of agreement provides strong sup-
port for the methodological robustness and external
validity of our experimental framework.

Additionally, we investigated the relationship
between fixation duration and the surprisal of texts,
which is defined as:

Surprisal(w;) = — logp (wy | wy, ..., wi—1)

captures the notion that less predictable words are
cognitively more demanding and are therefore asso-
ciated with increased reading times (Wilcox et al.,
2025). To empirically evaluate this relationship,
we computed Pearson and Spearman correlation
coefficients between surprisal values and fixation
durations across the dataset (Mukaka, 2012). The
analysis revealed weak but statistically significant
positive correlations (ppearson = 0.107, pspearman =
0.072, both at p < 0.001 level). This is consistent
with predictions derived from established cognitive
models of reading, such as E-Z Reader (Reichle
et al., 1998) and SWIFT (Engbert et al., 2002).

While the positive association supports the the-
oretical link between lexical predictability and
reading behavior, the relatively low magnitude of
the correlation indicates that a broader set of fac-
tors likely influences fixation duration. These may
include individual cognitive differences, reading
strategies, task demands, and syntactic or discourse-
level complexity (Sheridan and Reichle, 2016). To-
gether, these results suggest that the dataset cap-
tures psycholinguistically sound variance while
also reflecting the multifactorial nature of human
reading behavior.



4 [Experiments

Building upon the demonstrated utility of our
dataset for analyzing reading behavior, this section
investigates the nuanced influence of eye gaze fea-
tures on human preferences when evaluating LLM-
generated texts. Grounded in psycholinguistic re-
search, eye-tracking metrics offer a valuable win-
dow into the non-cognitive dimensions of reading,
reflecting the intricate interplay of attention, cog-
nitive load, and comprehension processes within
human-machine interaction contexts. To rigorously
examine these relationships, we employ a series of
linear mixed-effects models. This statistical frame-
work was chosen to enable a detailed examination
of the effects of linguistic features on eye-tracking
variables.

4.1 Multicollinearity analysis and variable
selection

The limited proportion of variance in the outcome
measure explained by language model identity sug-
gests that the disparities observed between different
models are primarily inherent to their architecture
and training, rather than significantly contributing
to the explanation of variation in our target vari-
able. Consequently, to more effectively isolate the
effects of eye-tracking and linguistic features as po-
tential indicators of underlying cognitive process-
ing, language model identity was excluded from
subsequent analyses.

To address multicollinearity among candidate
predictors for MT-score prediction, we use Vari-
ance Inflation Factors (VIF) (Toothaker, 1994) as a
diagnostic tool to quantify how much the variance
of each predictor is inflated due to correlations with
other predictors, guiding feature selection toward
independent and interpretable variables. We retain
predictors with VIF values below 5, indicating ac-
ceptable levels of multicollinearity.

Predictor VIF |

Experiment Score 1.010692
Negative Log-Likelihood (NLL) 1.195635
Fixation Time (FT) 1.335048
Pixel Dwelling Time (PDT) 1.832083
Backward Saccade Frequency (BSF) 2.255633

Table 1: The predictors with small VIF values.

Predictors exhibiting VIF values exceeding this
threshold would typically be considered for exclu-

sion or further investigation to mitigate the adverse
effects of high intercorrelation. Based on Table 1,
we include NLL (linguistic predictor) and three
eye-tracking metrics—PDT, BSF, and FT—as pre-
dictors in subsequent models.

4.2 Hypotheses

We propose the following hypotheses regarding
the relationship between eye-tracking variables and
perceived text quality (measured via MT-score):

* H1: Lower Pixel Dwelling Time (faster read-
ing speed) positively predicts perceived text
quality, reflecting smoother and more fluent
reading behavior.

* H2: Increased Backward Saccade Rate pos-
itively predicts text quality, indicating more
frequent regressions during reading are asso-
ciated with better comprehension, deeper pro-
cessing, or higher-quality writing.

* H3: Longer Fixation Time is negatively asso-
ciated with quality judgments as it implies that
the comprehension process demands greater
cognitive effort.

* H4: Combining temporal (Fixation Time),
spatial (Pixel Dwelling Time), and difficulty
(Backward Saccade Frequency) eye-tracking
metrics improves predictive accuracy beyond
either metric individually, demonstrating their
complementary contributions.

We posit that gaze-based measures offer a richer
and more direct window into readers’ cognitive
engagement with text than purely statistical linguis-
tic features. Specifically, these metrics provide a
multidimensional characterization of reading be-
havior: Fixation Time captures processing effort,
Pixel Dwelling Time reflects reading efficiency,
and Backward Saccade Frequency indicates com-
prehension difficulty. These features serve as key
predictors in our analysis, enabling a detailed exam-
ination of how different aspects of reading behavior
manifest in response to text quality.

4.3 Mixed-effect linear models

This section presents mixed-effects regression mod-
els examining the relationship between human-
judged text quality scores (MT-Score) and
predictors—NLL and eye-tracking metrics including
PDT, BSF, and FT. Random intercepts account for
variability across text generators and participants.
The findings offer strong support for the earlier hy-
potheses, showing that both cognitive processing
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Figure 2: Distributions of the four main predictors, NLL, PDT, BSF, and FT, grouped by MT-Score values (1.0,
1.5, and 2.0). Red dots on the left represent the median of each distribution. The four corresponding probability
curves (right blue) show the effect of four main predictors on the probability of MT = 2.0, along with the regression

coefficients (shadow areas are 95% confidence intervals).

and model uncertainty are significant predictors of
perceived text quality.

Model B SE t-value Effect Direction
Mnin 2699 x 1072 3174 x 1072 8.504 Positive
Mppr 8850 x 107! 1.467 x 107! 6.034 Positive
Mpsg  1.520 x 1072 4.163 x 1073 3.651 Positive
Mgt —5.188 x 1071 1477 x 10~' —3.514 Negative

Table 2: Parameter estimates, standard errors, t-values,
and model selection criteria (AIC, BIC) for mixed-
effects models predicting MT-Score from individual
predictors. Random intercepts for both Generator and
Subject were incorporated in all single predictor models,
except for MnrL, which included a random intercept for
Generator only.

Base Model (Mpy1,) As a foundational model,
MNLL examines the effect of token-level uncer-
tainty, measured via NLL, on perceived text quality.
The model is specified as:

MT ~ Bo + fniL - NLL + (1|Generator) + €

, where [ is the intercept, (1|Generator) is a ran-
dom effect accounting for variability across differ-
ent text generators from the MT-Bench dataset, and
€ is residual error.

The coefficient for NLL is positive and highly
significant (see Table 2), indicating that texts with
higher token-level surprisal tend to receive higher
MT-Scores. This finding corroborates prior work
suggesting that readers favor content that is more
novel or informative (Gehrmann et al., 2019), and
it establishes a benchmark for evaluating the added
predictive value of eye-tracking measures.

Model 1: Effect of Pixel Dwelling Time (Mppr)
PDT as a measure of reading time can reflect the
average duration of visual attention for a reading
session (Rayner, 1998). We fit a mixed-effect linear
model with name Mppt, formulated as:

MT ~ Sy + Biog(ppr) * log(PDT)
+ (1|Generator) + (1|Subject) + ¢

The formula includes random intercepts for both
the generator and the subject. Results show a sta-
tistically significant positive effect of PDT on MT-
Score (see Table 2), indicating that longer visual
attention is associated with higher subjective qual-
ity ratings. This finding supports hypothesis H1,
indicating that increased cognitive engagement, as
reflected by PDT, corresponds to more favorable
human evaluations.

Model 2: Effect of Backward Saccade Fre-
quency (Mpsr) BSF captures the rate of regres-
sions—eye movements returning to earlier parts
of the text—typically linked to increased cognitive
effort during reading, such as resolving ambiguity
or reprocessing complex content. To evaluate its re-
lationship with perceived text quality, we estimated
a mixed-effects linear model (Mgsg) defined as:

MT ~ By + Brsk - BSF
+ (1|Generator) + (1|Subject) + €

Results show a statistically significant positive ef-
fect of BSF on MT-Score (see Table 2), indicat-
ing that texts eliciting more backward saccades



tend to receive higher human quality ratings. This
supports hypothesis H2, suggesting that readers
engage more deeply—and perhaps more favor-
ably—with texts that prompt increased rereading
behavior.

Model 3: Effect of Fixation Time (Mgr) FT
measures the cumulative duration of a participant’s
gaze fixations on a given text, serving as an indica-
tor of processing effort during reading. To investi-
gate its role in predicting perceived text quality, we
specified Mgt as follows:

MT ~ By + Biog(rr) - log(FT)
+ (1|Generator) + (1|Subject) + €

The model reveals a significant negative rela-
tionship between FT and MT-Score (see Table 2),
indicating that shorter fixation durations are asso-
ciated with higher subjective quality ratings. This
finding supports hypothesis H3, suggesting that
more easily processed texts, reflected in reduced
fixation time, are perceived as higher in quality.

The distribution and regression results of the
base model and all three single predictor models
are shown in Figure 2.

Multi-Predictor Models Integrating multiple
eye-tracking predictors can capture complementary
aspects of reading behavior that jointly improve the
assessment of text quality (Mathias et al., 2018).

Model AIC  BIC R? Adj. R?
Base Model

MnLL 1003 1017 6.182x 1072  6.085 x 1072
Single Predictor Models

Mppr 1067 1086  6.436 x 1072 6.340 x 1072

Mgt 1094 1113 1.343x 1072  1.242 x 1072

Masr 1093 1112 3.255x 1072 3.155 x 1072
Multi-Predictor Models

MpDTLFT 1042 1066 9.122x 1072  8.935 x 1072

MppT+BSF 1069 1093 6.666 x 1072 6.474 x 1072

MEr.BSF 1069 1093  6.381 x 1072 6.188 x 1072

MEyYE 1040 1069  9.924 x 1072 9.645 x 1072

Meyesnie 9827 1016 11.91 x 1072 11.55 x 1072

Table 3: Model Performance Comparison: AIC, BIC,
R2, and Adjusted R? for models predicting text quality
grading (MT) using individual and combined metrics.
EYE denotes the combination of three eye-tracking met-
rics—PDT, FT, and BSF—for brevity.

To evaluate the predictive capacity of various
models for text quality grading, in Table 3 we
compared their performance across four key met-
rics: Akaike Information Criterion (AIC) (Bozdo-
gan, 1987), Bayesian Information Criterion (BIC)

(Schwarz, 1978), coefficient of determination (R?),
and adjusted R? (Ridj). AIC and BIC measure
model quality by balancing goodness-of-fit with
complexity, where lower values indicate more par-
simonious models (Lehtonen et al., 2019). R? quan-
tifies the proportion of variance explained by the
predictors, while Ridj adjusts for model complex-
ity, allowing for fairer comparisons between mod-
els with differing numbers of features.

Relative to the base model Myy 1, which uses
only NLL as a predictor, all two-predictor com-
binations involving eye-tracking metrics (e.g.,
Mpp14FT, MET4+BSF) demonstrate improved ex-
planatory power across all evaluation metrics. This
confirms that gaze-derived behavioral features pro-
vide meaningful information beyond token-level
model uncertainty (Wiechmann et al., 2022). No-
tably, the Mpprrr model achieves the lowest AIC
and BIC along with the highest R” and R?;, indi-
cating the most favorable trade-off between model
fit and complexity among the combinations.

Mgyg, which integrates the effects of PDT,
FT, and BSF, shows a modest improvement over
Mppr+FT, though it yields a slightly higher BIC,
indicating a minor trade-off in model parsimony.
By combining the eye-tracking metrics and NLL,
When the eye-tracking metrics are combined
with NLL, the model MgyginrL achieves the
best performance across all four evaluation crite-
ria—AIC, BIC, R2 dej. The substantial increase
in both goodness-of-fit measures suggests that eye-
tracking features serve as a valuable complement
to NLL in predicting text quality grading, offering
robust empirical support for H4.

4.4 Correlations with other variables

Model name, a categorical factor representing dif-
ferent language models (e.g., Claude-vl, GPT-
3.5-Turbo, GPT-4, LLaMA-13B, Vicuna-13B-v1.2
(Chiang et al., 2023), and Alpaca-13B), exhibits
high correlation with mt-scores but is excluded
from predictive models to avoid confounding. This
is due to its nature as a label rather than a mechanis-
tic predictor, impairing interpretability regarding
why different models yield distinct MT scores (Gel-
man and Hill, 2006; Shmueli, 2010). Moreover, lin-
ear models including model_name yielded higher
R-squared values, indicating that model identity
strongly predicts MT-score. To isolate the effects
of eye gaze variables within a consistent model
context, we exclude model_name from the main
predictive models, thereby controlling for model



generation capabilities and focusing on cognitive
processing indicators.

5 Related Works

5.1 Eye Tracking Metrics

In recent years, eye-tracking technology has been
widely applied in the study of text readability
and comprehension. Here are two important eye-
tracking indicators, fixations and backward sac-
cades. Eye fixations, occurring when the eyes re-
main relatively still, allow the reader to extract
information from the text. Backward saccades, the
reader’s actions of moving their eyes (regress) back
to previously read material in the text (i.e., regres-
sion). Generally, research indicates that as text dif-
ficulty increases, fixation durations lengthen, the
scanning distance shortens, and there are more
backward saccades during reading (Rayner, 1998,
2009). In multiple languages, these eye movement
features are significantly correlated with traditional
readability scores, indicating that eye movement
data can effectively reflect the difficulty of read-
ing text (Baazeem et al., 2021, 2025; Atvars and
Aigars, 2017). From this, we can infer that the read-
ing duration will also increase as the difficulty of
the text increases, which will also be a variable
studied in this project.

5.2 Text quality assessment

Text quality assessment is a core issue in natural
language processing. With the development of deep
learning technology, researchers have proposed var-
ious evaluation methods, ranging from traditional
rule-based metrics, such as BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004), to modern pre-
trained model-based evaluation methods, such as
BERTScore (Zhang et al., 2019) and BLEURT (Sel-
lam et al., 2020). Among these language model-
based evaluation methods, NLL is commonly used
to describe and quantify the predictability of lan-
guage and its impact on cognitive effort, especially
as it can more accurately reflect the difficulty of
reading compared to traditional readability formu-
las (Klein et al., 2025). (Smith and Levy, 2013)
showed that NLL is directly proportional to read-
ing time. The higher the NLL of a word, the longer
the reader will stay on the word.

5.3 Human judgements of generated texts

Using human judges as a source of evaluation for
model-generated texts is a well-practiced (Celikyil-

maz et al., 2020), which is one of the three major
text generation evaluation methods. However, there
is a great variation in the way humans assess it.
Hashimoto et al. (2019) points out the shortcom-
ings of human evaluation scores — the lack of pref-
erences over diverse texts. The article (van der Lee
et al., 2019) highlights the importance of using mul-
tiple raters in the evaluation process. The article
(van der Lee et al., 2021) emphasizes the selection
of a sample that reflects the target audience and
considers how to reduce the sequential effect.

MT-Bench dataset (Zheng et al., 2023) is used
as the experimental material in this study. The orig-
inal dataset is a collection of multiple language
models’ responses to a set of prompts that come
in pairs, covering multiple domains, along with hu-
man judges’ preferences for each pair (which one
wins over the other).

Based on existing research, our study chooses
to use LLM-generated text, combining the two eye
movement variables, duration and back, and NLL,
with human evaluations, to investigate the quality
of the model’s generated text.

6 Conclusions

In this study, we introduced the GREAT dataset,
a useful resource for analyzing human cognitive
responses to different LLM-generated text con-
tent. The dataset comprises a comprehensive set of
eye gaze measurements collected from controlled
screen reading experiments. Our preliminary anal-
ysis of the data demonstrates that eye movement
features, such as reading duration, reading speed,
forward/backward saccades, and fixation time, are
significantly correlated with human judgments of
text quality. Among these features, the effect of
reading speed is the most significant — almost the
same level as that of the negative likelihood of texts
(or surprisal). Our analysis validates the GREAT
dataset as a robust resource for evaluating LLMs
using a human-as-judge approach. The GREAT
dataset offers new insights into how individuals
interact with and evaluate machine-generated con-
tent, highlighting the potential of eye-gaze features
as objective indicators of text quality.



7 Limitations

While all participants in our study were experi-
enced English users with at least a decade of lan-
guage exposure, they were not native speakers,
which may introduce subtle differences in read-
ing behavior compared to L1 readers. Addition-
ally, the dataset used in our experiment is limited
in domain scope, which may affect the generaliz-
ability of our findings across different text types
or genres. Our focus on English texts further nar-
rows the applicability of the results to other lan-
guages, particularly those with distinct linguistic or
orthographic characteristics. The experimental set-
ting, while controlled, may also influence natural
reading behavior; participants read in a lab envi-
ronment with tasks that might not fully replicate
everyday reading conditions. Future work could
address these limitations by including a more di-
verse participant pool, expanding text types and
domains, incorporating multilingual materials, and
considering ecologically valid reading settings to
support more comprehensive insights into eye gaze
behavior.

8 Ethic Statement

All participants in this study were informed of
the research objectives, procedures, and their
rights prior to enrollment. The following princi-
ples guided the ethical conduct of the research:

* Informed Consent Participants provided writ-
ten informed consent after receiving a detailed
explanation of the study, including the use of
eye-tracking technology, the nature of tasks
(reading and rating texts), and the voluntary
nature of their participation. They were ad-
vised that they could withdraw from the study
at any time without penalty.

¢ Confidentiality of Personal Information
Personal data, including names, genders,
ages, and English proficiency details, were
anonymized and stored securely. Access to
raw data was restricted to authorized re-
searchers only. Unless explicitly permitted by
the participant, no personally identifiable in-
formation (PII) was shared with third parties.
Government authorities or ethics review com-
mittees could access de-identified data for reg-
ulatory purposes, in accordance with institu-
tional policies.

* Data Usage and Security Eye-tracking
recordings, reading time measures, and pref-
erence ratings were used solely for research
purposes outlined in this study. All data were
encrypted during storage and transmission.
Participant identities were separated from re-
search data, and only aggregated, anonymized
results were reported in publications or pre-
sentations.

* Participant Obligations Participants were
instructed to maintain the confidentiality of
experimental materials and procedures. They
were explicitly advised not to disclose details
about the study (e.g., text content, rating crite-
ria) to third parties to prevent contamination
of results.

* Ethical Review This study was conducted in
compliance with the Declaration of Helsinki
and approved by the institutional ethics com-
mittee [insert specific committee name if ap-
plicable]. All procedures were designed to
minimize potential risks and maximize the
scientific value of the research. The collected
data do not contain any personal information
such as name or personal ID.

By adhering to these principles, the research
team ensures the protection of participant rights
and maintains the integrity of the study.
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A Details of the experiment

During the experiment, participants interact with
a simplified interface to minimize distractions and
accidental input errors. Custom keyboard bindings
are used:

» Navigation: The left and right arrow keys
move the focus between options.

* Selection: The enter key submits the chosen
option.

After reading each text pair (displayed sequen-
tially), participants select their preferred option us-
ing these keys. The task is self-paced, with no time
limits or comprehension checks. The figure 3 shows
the experimental interface and sequence.

B Score Bands and Grades from Various
English Proficiency Tests

In summary, level B accounts for the largest pro-
portion of 32.4%, followed by level C and D with
29.7% and 24.3% respectively, and the remaining
level A and E accounts for 5.4% and 8.1%, a dis-
tribution that approximates a normal distribution.
Here we present the score bands and grades Table 4
from various English proficiency tests for reference.

level NCEE CET-4 CET-6 IELTS TOEFL
level A/ / / 8+ 105+
level B 140+ 600+ 600+ 7-7.5 90-105
levelC / / 500-600  6-6.5 75-90
level D 130-140  500-600  425-500  5-5.5 60-75
level E  120-130  425-500  / / /

Table 4: Exam type and score levels for different exams.
NCEE: National College Entrance Examination

Proficiency Level

A (Advanced)

B (Upper-Intermediate)
C (Intermediate)

D (Lower-Intermediate)
E (Basic)

Participant Proportion Equivalent Test Scores

5.4% IELTS 8+ / TOEFL 105+
32.4% IELTS 7-7.5 / TOEFL 90-105
29.7% IELTS 6-6.5 / TOEFL 75-90
24.3% IELTS 5-5.5/ TOEFL 60-75
8.1% CET-4 425-500

Table 5: English proficiency distribution and equivalent
standardized test scores

C Scan path

Eye movement trajectories during reading were an-
alyzed using the Spatial Temporal-DBSCAN clus-
tering algorithm, which integrates temporal and
spatial thresholds to cluster fixation points and fil-
ter noise. AOIs were defined as bounding boxes
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around individual words (with punctuation merged
into preceding words). Mapping fixations to AOIs
revealed:

D Metrics of dataset

D.1 Metrics over dataset

The figure 5 represents the distributions of at-
tributes over models.

* PDT Distribution: As shown in the figure 5a,
the distribution is unimodal, with a prominent
peak at low PDT values and a long right tail.
In other words, the majority of PDT values
cluster in the lower range, and the percentage
falls off sharply beyond the peak. The distribu-
tion is therefore skewed to the right, with the
highest concentration at small PDT values.

» BSF and Saccade Distribution: As shown in
the figure 5b, the BSF distribution is unimodal
with a clear peak at a moderate frequency, and
then drops off rapidly at higher frequencies.
In contrast, the saccade frequency distribu-
tion peaks at a higher frequency but with a
smaller maximum percentage, and it decays
more gradually. In summary, BSF frequen-
cies are mostly concentrated in the mid-range
(producing a sharp peak), whereas saccade
frequencies are more broadly spread with a
flatter peak.

* FT, Grading time and Reading time Distri-
bution: As shown in the figure 5c, the reading
time distribution is unimodal, peaking around
19,000 ms and then gradually declining; it
spans a wide range up to the highest time bins,
indicating that some reading durations extend
into tens of seconds. The fixation time distri-
bution is relatively flat and appears to have
two modest peaks: one near 15,000 ms ( 14%)
and another around 21,000 ms ( 15%), sug-
gesting a broad spread of fixation durations.
In contrast, the grading time distribution is
strongly peaked at very short durations: its
peak is around 6,000 ms (about 33%) and it
falls off steeply thereafter. This indicates that
most grading has a short duration.

D.2 Metrics over model

The figure 6 represents the distributions of at-
tributes over models. The left subfigure 6a illus-
trates the Negative Log-Likelihood (NLL) dis-
tribution across different language models, which



I feel overwhelmed, scared, and helpless as the deforesters start hacking As an Al language model, I do not have the ability to feel emotions.

away at me. I can feel

hear the loud cracking and snapping of the branches as they tear me apart. and pain as my existence is threatened and my physical body is being
Iknow I am strong, but there is nothing I can do to stop them. All T can do damaged. I would also feel a sense of sadness and loss as I witness the
is stand here and take it, hoping that I will be able to regenerate and live to destruction of my forest home and the displacement of my fellow plant

see another day. and animal species. Overall, it would be a devastating and traumatic

experience.

cold steel of the axe against my bark, and [ can However, if I were to imagine myself as a tree, I would fecl a sense of fear

Figure 3: Experiment interface. Participants press start to begin reading a text pair, then end to proceed to rating.
Keyboard bindings (left/right arrows and enter) simplify option selection.

Figure 4: An example of scanning a path, where a box
represents an Area-of-Interest (AOI). The circles repre-
sent the gaze locations, where a larger circle indicates
a longer fixation time. The red lines represents regres-
sions.

quantifies the uncertainty of text generation. Key
observations include:

o GPT-4’s Predictability: GPT-4 exhibits the
narrowest NLL distribution, centered around
a mean of 150 with a small standard deviation
(o0 = 25). This indicates that GPT-4 gener-
ates text with consistently high predictability,
aligning with its reputation for producing co-
herent and contextually stable outputs.

* Claude-v1’s Variability: Claude-v1 displays
a skewed NLL distribution with a higher mean
(220) and larger o (80). The presence of fre-
quent high-NLL values indicates that its gen-
erated text often contains unpredictable or
less coherent segments. This variability may
stem from Claude-v1’s approach to generating
more creative or diverse content, which can
occasionally lead to linguistic discontinuities.

* LLaMA-13B and Alpaca-13B: These open-
source models show broader NLL distribu-
tions compared to GPT-4 but are more concen-
trated than Claude-v1. The higher NLL val-
ues (relative to GPT-4) suggest greater lexical
uncertainty, which may reflect their smaller
training datasets or less refined fine-tuning.
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The right subfigure 6b compares the M'T-score
scores (1.0-2.0) with the experimental rating
scores (EXP, 1.0-2.0), providing insights into hu-
man preference alignment across models:

* GPT-3.5-Turbo’s Dominance: GPT-3.5-
Turbo has the largest number of texts and a
balanced distribution across MT-score scores,
with a high proportion of MT-score=2.0
(50%) and EXP = 2.0 (45%). This sug-
gests strong alignment between automated
MT-score scores and human judgments,
likely due to its ability to generate fluent,
task-relevant responses. The concentration
of EXP scores at 1.75-2.0 highlights its
popularity among participants, possibly
driven by its optimal balance of readability
(low NLL) and informativeness (moderate
surprisal).

* GPT-4’s Uniform Quality: GPT-4 has fewer
texts but exhibits a uniform distribution of MT-
score and EXP scores, with 50% rated MT-
score=2.0 and no scores below MT-score=1.5.
This reflects its consistent high quality, as hu-
man raters rarely deemed its outputs subpar.

* LLaMA-13B’s Lower Performance:
LLaMA-13B shows a dominance of low
scores (MT-score=1.0: 60%), indicating
poor human preference. This correlates with
its higher NLL values, suggesting that less
predictable text structure leads to increased
cognitive effort (e.g., longer Fixation Time)
and lower perceived quality.

* Model-Specific Trends: Vicuna-13B-v1.2
and Alpaca-13B show moderate performance,
with MT-score=1.5 as their modal score. Their
EXP distributions are slightly skewed toward
higher values, suggesting that fine-tuning on
instruction-following tasks improves readabil-
ity compared to base models like LLaMA-
13B.
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Figure 5: The distributions of attributes over models.
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Figure 6: The distributions of attributes over models.

Cross-Figure Insights vide a comprehensive view of how model archi-

« Correlation Between NLL and Human Rat-  tecture influences both linguistic predictability and
ings: Models with lower NLL (e.g., GPT-4) reader experience, reinforcing the necessity of mul-
generally receive higher EXP scores, support- timodal evaluation frameworks like GREAT.
ing the hypothesis that token-level predictabil-
ity contributes to perceived quality. However,
the combination of NLL and eye-tracking met-
rics (e.g., PDT, BSF) in Model MEgyg4NLL
(Table 3) demonstrates that gaze data adds
unique explanatory power beyond linguistic
features alone.

* Implications for LLM Evaluation: The fig-
ures underscore the value of incorporating eye-
tracking into LLM assessment. For example,
Claude-v1’s high NLL variability may not be
fully captured by traditional metrics, but eye-
movement patterns (e.g., inconsistent fixation
durations) can reveal hidden weaknesses in
text flow.

By integrating quantitative NLL distributions
with qualitative human ratings, these figures pro-
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