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ABSTRACT

Machine learning applications such as finance and medicine demand accurate and
justifiable predictions, barring most deep learning methods from use. In response,
previous work combines decision trees with deep learning, yielding models that
(1) sacrifice interpretability for accuracy or (2) sacrifice accuracy for interpretabil-
ity. We forgo this dilemma by jointly improving accuracy and interpretability us-
ing Neural-Backed Decision Trees (NBDTs). NBDTs replace a neural network’s
final linear layer with a differentiable sequence of decisions and a surrogate loss.
This forces the model to learn high-level concepts and lessens reliance on highly-
uncertain decisions, yielding (1) accuracy: NBDTs match or outperform modern
neural networks on CIFAR, ImageNet and better generalize to unseen classes by
up to 16%. Furthermore, our surrogate loss improves the original model’s accu-
racy by up to 2%. NBDTs also afford (2) interpretability: improving human trust
by clearly identifying model mistakes and assisting in dataset debugging. Code
and pretrained NBDTs are at github.com/alvinwan/neural-backed-decision-trees.

1 INTRODUCTION

Many computer vision applications (e.g. medical imaging and autonomous driving) require insight
into the model’s decision process, complicating applications of deep learning which are tradition-
ally black box. Recent efforts in explainable computer vision attempt to address this need and can
be grouped into one of two categories: (1) saliency maps and (2) sequential decision processes.
Saliency maps retroactively explain model predictions by identifying which pixels most affected the
prediction. However, by focusing on the input, saliency maps fail to capture the model’s decision
making process. For example, saliency offers no insight for a misclassification when the model
is “looking” at the right object for the wrong reasons. Alternatively, we can gain insight into the
model’s decision process by breaking up predictions into a sequence of smaller semantically mean-
ingful decisions as in rule-based models like decision trees. However, existing efforts to fuse deep
learning and decision trees suffer from (1) significant accuracy loss, relative to contemporary mod-
els (e.g., residual networks), (2) reduced interpretability due to accuracy optimizations (e.g., impure
leaves and ensembles), and (3) tree structures that offer limited insight into the model’s credibility.

To address these, we propose Neural-Backed Decision Trees (NBDTs) to jointly improve both
(1) accuracy and (2) interpretability of modern neural networks, utilizing decision rules that pre-
serve (3) properties like sequential, discrete decisions; pure leaves; and non-ensembled predictions.
These properties in unison enable unique insights, as we show. We acknowledge that there is no
universally-accepted definition of interpretability (Lundberg et al., 2020; Doshi-Velez & Kim, 2017;
Lipton, 2016), so to show interpretability, we adopt a definition offered by Poursabzi-Sangdeh et al.
(2018): A model is interpretable if a human can validate its prediction, determining when the model
has made a sizable mistake. We picked this definition for its importance to downstream benefits we
can evaluate, specifically (1) model or dataset debugging and (2) improving human trust. To ac-
complish this, NBDTs replace the final linear layer of a neural network with a differentiable oblique
decision tree and, unlike its predecessors (i.e. decision trees, hierarchical classifiers), uses a hierar-
chy derived from model parameters, does not employ a hierarchical softmax, and can be created from
any existing classification neural network without architectural modifications. These improvements
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tailor the hierarchy to the network rather than overfit to the feature space, lessens the decision tree’s
reliance on highly uncertain decisions, and encourages accurate recognition of high-level concepts.
These benefits culminate in joint improvement of accuracy and interpretability. Our contributions:

1. We propose a tree supervision loss, yielding NBDTs that match/outperform and out-
generalize modern neural networks (WideResNet, EfficientNet) on ImageNet, TinyIma-
geNet200, and CIFAR100. Our loss also improves the original model by up to 2%.

2. We propose alternative hierarchies for oblique decision trees – induced hierarchies built
using pre-trained neural network weights – that outperform both data-based hierarchies
(e.g. built with information gain) and existing hierarchies (e.g. WordNet), in accuracy.

3. We show NBDT explanations are more helpful to the user when identifying model mis-
takes, preferred when using the model to assist in challenging classification tasks, and can
be used to identify ambiguous ImageNet labels.

2 RELATED WORKS

Saliency Maps. Numerous efforts (Springenberg et al., 2014; Zeiler & Fergus, 2014; Simonyan
et al., 2013; Zhang et al., 2016; Selvaraju et al., 2017; Ribeiro et al., 2016; Petsiuk et al., 2018;
Sundararajan et al., 2017) have explored the design of saliency maps identifying pixels that most in-
fluenced the model’s prediction. White-box techniques (Springenberg et al., 2014; Zeiler & Fergus,
2014; Simonyan et al., 2013; Selvaraju et al., 2017; Sundararajan et al., 2017) use the network’s pa-
rameters to determine salient image regions, and black-box techniques (Ribeiro et al., 2016; Petsiuk
et al., 2018) determine pixel importance by measuring the prediction’s response to perturbed inputs.
However, saliency does not explain the model’s decision process (e.g. Was the model confused early
on, distinguishing between Animal and Vehicle? Or is it only confused between dog breeds?).

Transfer to Explainable Models. Prior to the recent success of deep learning, decision trees were
state-of-the-art on a wide variety of learning tasks and the gold standard for interpretability. Despite
this recency, study at the intersection of neural network and decision tree dates back three decades,
where neural networks were seeded with decision tree weights (Banerjee, 1990; 1994; Ivanova &
Kubat, 1995a;b), and decision trees were created from neural network queries (Krishnan et al., 1999;
Boz, 2000; Dancey et al., 2004; Craven & Shavlik, 1996; 1994), like distillation (Hinton et al., 2015).
The modern analog of both sets of work (Humbird et al., 2018; Siu, 2019; Frosst & Hinton, 2017)
evaluate on feature-sparse, sample-sparse regimes such as the UCI datasets (Dua & Graff, 2017) or
MNIST (LeCun et al., 2010) and perform poorly on standard image classification tasks.

Hybrid Models. Recent work produces hybrid decision tree and neural network models to scale up
to datasets like CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), TinyImageNet (Le
& Yang, 2015), and ImageNet (Deng et al., 2009). One category of models organizes the neural
network into a hierarchy, dynamically selecting branches to run inference (Veit & Belongie, 2018;
McGill & Perona, 2017; Teja Mullapudi et al., 2018; Redmon & Farhadi, 2017; Murdock et al.,
2016). However, these models use impure leaves resulting in uninterpretatble, stochastic paths.
Other approaches fuse deep learning into each decision tree node: an entire neural network (Murthy
et al., 2016), several layers (Murdock et al., 2016; Roy & Todorovic, 2016), a linear layer (Ahmed
et al., 2016), or some other parameterization of neural network output (Kontschieder et al., 2015).
These models see reduced interpretability by using k-way decisions with large k (via depth-2 trees)
(Ahmed et al., 2016; Guo et al., 2018) or employing an ensemble (Kontschieder et al., 2015; Ahmed
et al., 2016), which is often referred to as a “black box” (Carvalho et al., 2019; Rudin, 2018).

Hierarchical Classification (Silla & Freitas, 2011). One set of approaches directly uses a pre-
existing hierarchy over classes, such as WordNet (Redmon & Farhadi, 2017; Brust & Denzler,
2019; Deng et al.). However conceptual similarity is not indicative of visual similarity. Other
models build a hierarchy using the training set directly, via a classic data-dependent metric like Gini
impurity (Alaniz & Akata, 2019) or information gain (Rota Bulo & Kontschieder, 2014; Biçici et al.,
2018). These models are instead prone to overfitting, per (Tanno et al., 2019). Finally, several works
introduce hierarchical surrogate losses (Wu et al., 2017; Deng et al., 2012), such as hierarchical
softmax (Mohammed & Umaashankar, 2018), but as the authors note, these methods quickly suffer
from major accuracy loss with more classes or higher-resolution images (e.g. beyond CIFAR10).
We demonstrate hierarchical classifiers attain higher accuracy without a hierarchical softmax.
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Figure 1: Hard and Soft Decision Trees. A. Hard: is the classic “hard” oblique decision tree. Each node
picks the child node with the largest inner product, and visits that node next. Continue until a leaf is reached.
B. Soft: is the “soft” variant, where each node simply returns probabilities, as normalized inner products, of
each child. For each leaf, compute the probability of its path to the root. Pick leaf with the highest probability.
C. Hard vs. Soft: Assume w4 is the correct class. With hard inference, the mistake at the root (red) is
irrecoverable. However, with soft inference, the highly-uncertain decisions at the root and at w2 are superseded
by the highly certain decision at w3 (green). This means the model can still correctly pick w4 despite a mistake
at the root. In short, soft inference can tolerate mistakes in highly uncertain decisions.

3 METHOD

Neural-Backed Decision Trees (NBDTs) replace a network’s final linear layer with a decision tree.
Unlike classical decision trees or many hierarchical classifiers, NBDTs use path probabilities for
inference (Sec 3.1) to tolerate highly-uncertain intermediate decisions, build a hierarchy from pre-
trained model weights (Sec 3.2 & 3.3) to lessen overfitting, and train with a hierarchical loss (Sec
3.4) to significantly better learn high-level decisions (e.g., Animal vs. Vehicle).

3.1 INFERENCE

Our NBDT first featurizes each sample using the neural network backbone; the backbone consists
of all neural network layers before the final linear layer. Second, we run the final fully-connected
layer as an oblique decision tree. However, (a) a classic decision tree cannot recover from a mistake
early in the hierarchy and (b) just running a classic decision tree on neural features drops accuracy
significantly, by up to 11% (Table 2). Thus, we present modified decision rules (Figure 1, B):

1. Seed oblique decision rule weights with neural network weights. An oblique decision tree
supports only binary decisions, using a hyperplane for each decision. Instead, we associate a weight
vector ni with each node. For leaf nodes, where i = k 2 [1,K], each ni = wk is a row vector from
the fully-connected layer’s weights W 2 RD⇥K . For all inner nodes, where i 2 [K+1, N ], find all
leaves k 2 L(i) in node i’s subtree and average their weights: ni =

P
k2L(i) wk/|L(i)|.

2. Compute node probabilities. Child probabilities are given by softmax inner products. For
each sample x and node i, compute the probability of each child j 2 C(i) using p(j|i) =
SOFTMAX(h~ni, xi)[j], where ~ni = (hnj , xi)j2C(i).

3. Pick a leaf using path probabilities. Inspired by Deng et al. (2012), consider a leaf, its class k
and its path from the root Pk. The probability of each node i 2 Pk traversing the next node in the
path Ck(i) 2 Pk \ C(i) is denoted p(Ck(i)|i). Then, the probability of leaf and its class k is

p(k) = ⇧i2Pkp(Ck(i)|i) (1)

In soft inference, the final class prediction k̂ is defined over these class probabilities,

k̂ = argmaxkp(k) = argmaxk⇧i2Pkp(Ck(i)|i) (2)

Our inference strategy has two benefits: (a) Since the architecture is unchanged, the fully-connected
layer can be run regularly (Table 5) or as decision rules (Table 1), and (b) unlike decision trees and

3



Published as a conference paper at ICLR 2021

...

x1

x2

xd

...

x3

ŷ1

ŷ2

ŷ3

ŷk w2 w3 w4w1

w5

w2 w3 w4

w6

w1

w5

w2 w3 w4

w6

w7

w1

Step A.
Load Weights

Step B.
Set Leaf Vectors

Step C.
Set Parent Vectors

Step D.
Set Ancestor Vectors

w4

w3

w2

w1

Figure 2: Building Induced Hierarchies. Step A. Load the weights of a pre-trained model’s final fully-
connected layer, with weight matrix W 2 RD⇥K . Step B. Take rows wk 2 W and normalize for each leaf
node’s weight. For example, the red w1 in A is assigned to the red leaf in B. Step C. Average each pair of leaf
nodes for the parents’ weight. For example, w1 and w2 (red and purple) in B are averaged to make w5 (blue) in
C. Step D. For each ancestor, average all leaf node weights in its subtree. That average is the ancestor’s weight.
Here, the ancestor is the root, so its weight is the average of all leaf weights w1, w2, w3, w4.

other conditionally-executed models (Tanno et al., 2019; Veit & Belongie, 2018), our method can
recover from a mistake early in the hierarchy with sufficient uncertainty in the incorrect path (Figure
1 C, Appendix Table 7). This inference mode bests classic tree inference (Appendix C.2).

3.2 BUILDING INDUCED HIERARCHIES

Existing decision-tree-based methods use (a) hierarchies built with data-dependent heuristics like
information gain or (b) existing hierarchies like WordNet. However, the former overfits to the data,
and the latter focuses on conceptual rather than visual similarity: For example, by virtue of being an
animal, Bird is closer to Cat than to Plane, according to WordNet. However, the opposite is true for
visual similarity: by virtue of being in the sky, Bird is more visually similar to Plane than to Cat.
Thus, to prevent overfitting and reflect visual similarity, we build a hierarchy using model weights.

Our hierarchy requires pre-trained model weights. Take row vectors wk : k 2 [1,K], each repre-
senting a class, from the fully-connected layer weights W . Then, run hierarchical agglomerative
clustering on the normalized class representatives wk/kwkk2. Agglomerative clustering decides
which nodes and groups of nodes are iteratively paired. As described in Sec 3.1, each leaf node’s
weight is a row vector wk 2 W (Figure 2, Step B) and each inner node’s weight ni is the average of
its leaf node’s weights (Figure 2, Step C). This hierarchy is the induced hierarchy (Figure 2).

3.3 LABELING DECISION NODES WITH WORDNET

WordNet is a hierarchy of nouns. To assign WordNet meaning to nodes, we compute the earliest
common ancestor for all leaves in a subtree: For example, say Dog and Cat are two leaves that share
a parent. To find WordNet meaning for the parent, find all ancestor concepts that Dog and Cat share,
like Mammal, Animal, and Living Thing. The earliest shared ancestor is Mammal, so we assign
Mammal to the parent of Dog and Cat. We repeat for all inner nodes.

However, the WordNet corpus is lacking in concepts that are not themselves objects, like object
attributes (e.g., Pencil and Wire are both cylindrical) and (b) abstract visual ideas like context (e.g.,
fish and boat are both aquatic). Many of these which are littered across our induced hierarchies
(Appendix Figure 14). Despite this limitation, we use WordNet to assign meaning to intermediate
decision nodes, with more sophisticated methods left to future work.

3.4 FINE-TUNING WITH TREE SUPERVISION LOSS

Even though standard cross entropy loss separates representatives for each leaf, it is not trained to
separate representatives for each inner node (Table 3, “None”). To amend this, we add a tree super-
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Table 1: Results. NBDT outperforms competing decision-tree-based methods by up to 18% and can also
outperform the original neural network by ⇠ 1%. “Expl?” indicates the method retains interpretable properties:
pure leaves, sequential decisions, non-ensemble. Methods without this check see reduced interpretability. We
bold the highest decision-tree-based accuracy. These results are taken directly from the original papers (n/a
denotes results missing from original papers): XOC (Alaniz & Akata, 2019), DCDJ (Baek et al., 2017), NofE
(Ahmed et al., 2016), DDN (Murthy et al., 2016), ANT (Tanno et al., 2019), CNN-RNN (Guo et al., 2018). We
train DNDF (Kontschieder et al., 2015) with an updated R18 backbone, as they did not report CIFAR accuracy.

Method Backbone Expl? CIFAR10 CIFAR100 TinyImageNet

NN WideResNet28x10 7 97.62% 82.09% 67.65%
ANT-A* n/a 3 93.28% n/a n/a

DDN NiN 7 90.32% 68.35% n/a

DCDJ NiN 7 n/a 69.0% n/a

NofE ResNet56-4x 7 n/a 76.24% n/a

CNN-RNN WideResNet28x10 3 n/a 76.23% n/a

NBDT-S (Ours) WideResNet28x10 3 97.55% 82.97% 67.72%
NN ResNet18 7 94.97% 75.92% 64.13%
DNDF ResNet18 7 94.32% 67.18% 44.56%
XOC ResNet18 3 93.12% n/a n/a

DT ResNet18 3 93.97% 64.45% 52.09%
NBDT-S (Ours) ResNet18 3 94.82% 77.09% 64.23%

vision loss, a cross entropy loss over the class distribution of path probabilities Dnbdt = {p(k)}Kk=1
(Eq. 1) from Sec 3.1, with time-varying weights !t,�t where t is the epoch count:

L = �t CROSSENTROPY(Dpred,Dlabel)| {z }
Loriginal

+!t CROSSENTROPY(Dnbdt,Dlabel)| {z }
Lsoft

(3)

Our tree supervision loss Lsoft requires a pre-defined hierarchy. We find that (a) tree supervision
loss damages learning speed early in training, when leaf weights are nonsensical. Thus, our tree
supervision weight !t grows linearly from !0 = 0 to !T = 0.5 for CIFAR10, CIFAR100, and
to !T = 5 for TinyImageNet, ImageNet; �t 2 [0, 1] decays linearly over time. (b) We re-train
where possible, fine-tuning with Lsoft only when the original model accuracy is not reproducible.
(c) Unlike hierarchical softmax, our path-probability cross entropy loss Lsoft disproportionately up-
weights decisions earlier in the hierarchy, encouraging accurate high-level decisions; this is reflected
our out-generalization of the baseline neural network by up to 16% to unseen classes (Table 6).

4 EXPERIMENTS

NBDTs obtain state-of-the-art results for interpretable models and match or outperform modern
neural networks on image classification. We report results on different models (ResNet, WideRes-
Net, EfficientNet) and datasets (CIFAR10, CIFAR100, TinyImageNet, ImageNet). We additionally
conduct ablation studies to verify the hierarchy and loss designs, find that our training procedure
improves the original neural network’s accuracy by up to 2%, and show that NBDTs improve gen-
eralization to unseen classes by up to 16%. All reported improvements are absolute.

4.1 RESULTS

Small-scale Datasets. Our method (Table 1) matches or outperforms recently state-of-the-art neural
networks. On CIFAR10 and TinyImageNet, NBDT accuracy falls within 0.15% of the baseline
neural network. On CIFAR100, NBDT accuracy outperforms the baseline by ⇠1%.

Large-scale Dataset. On ImageNet (Table 3), NBDTs obtain 76.60% top-1 accuracy, outperform-
ing the strongest competitor NofE by 15%. Note that we take the best competing results for any
decision-tree-based method, but the strongest competitors hinder interpretability by using ensembles
of models like a decision forest (DNDF, DCDJ) or feature shallow trees with only depth 2 (NofE).
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Figure 3: ImageNet Results. NBDT outperforms all competing decision-tree-based methods by at least 14%,
staying within 0.6% of EfficientNet accuracy. “EfficientNet” is EfficientNet-EdgeTPU-Small.

Method NBDT (ours) NBDT (ours) XOC NofE

Backbone EfficientNet ResNet18 ResNet152 AlexNet
Original Acc 77.23% 60.76% 78.31% 56.55%
Delta Acc -0.63% +0.50% -17.5% +4.7%
Explainable Acc 76.60% 61.26% 60.77% 61.29%

Table 2: Comparisons of Hierarchies. We demonstrate that our weight-space hierarchy bests taxonomy
and data-dependent hierarchies. In particular, the induced hierarchy achieves better performance than (a) the
WordNet hierarchy, (b) a classic decision tree’s information gain hierarchy, built over neural features (“Info
Gain”), and (c) an oblique decision tree built over neural features (“OC1”).

Dataset Backbone Original Induced Info Gain WordNet OC1

CIFAR10 ResNet18 94.97% 94.82% 93.97% 94.37% 94.33%
CIFAR100 ResNet18 75.92% 77.09% 64.45% 74.08% 38.67%
TinyImageNet200 ResNet18 64.13% 64.23% 52.09% 60.26% 15.63%

4.2 ANALYSIS

Analyses show that our NBDT improvements are dominated by significantly improved ability to
distinguish higher-level concepts (e.g., Animal vs. Vehicle).

Comparison of Hierarchies. Table 2 shows that our induced hierarchies outperform alternatives.
In particular, data-dependent hierarchies overfit, and the existing WordNet hierarchy focuses on
conceptual rather than visual similarity.

Comparisons of Losses. Previous work suggests hierarchical softmax (Appendix C.1) is necessary
for hierarchical classifiers. However, our results suggest otherwise: NBDTs trained with hierarchical
softmax see ⇠3% less accuracy than with tree supervision loss on TinyImageNet (Table 3).

Original Neural Network. Per Sec 3.1, we can run the original neural network’s fully-connected
layer normally, after training with tree supervision loss. Using this, we find that the original neural
network’s accuracy improves by up to 2% on CIFAR100, TinyImageNet (Table 5).

Zero-Shot Superclass Generalization. We define a “superclass” to be the hypernym of several
classes. (e.g. Animal is a superclass of Cat and Dog). Using WordNet (per Sec 3.2), we (1) identify
which superclasses each NBDT inner node is deciding between (e.g. Animal vs. Vehicle). (2) We
find unseen classes that belong to the same superclass, from a different dataset. (e.g. Pull Turtle
images from ImageNet). (3) Evaluate the model to ensure the unseen class is classified into the
correct superclass (e.g. ensure Turtle is classified as Animal). For an NBDT, this is straightforward:
one of the inner nodes classifies Animal vs. Vehicle (Sec 3.3). For a standard neural network, we
consider the superclass that the final prediction belongs to. (i.e. When evaluating Animal vs. Vehicle
on a Turtle image, the CIFAR-trained model may predict any CIFAR Animal class). See Appendix
B.2 for details. Our NBDT consistently bests the original neural network by 8%+ (Table 6). When
discerning Carnivore vs. Ungulate, NBDT outperforms the original neural network by 16%.

Mid-Training Hierarchy: We test NBDTs without using pre-trained weights, instead constructing
hierarchies during training from the partially-trained network’s weights. Tree supervision loss with
mid-training hierarchies reliably improve the original neural network’s accuracy, up to ⇠0.6%, and
the NBDT itself can match the original neural network’s accuracy (Table 4). However, this underper-
forms NBDT (Table 1), showing fully-trained weights are still preferred for hierarchy construction.

5 INTERPRETABILITY

By breaking complex decisions into smaller intermediate decisions, decision trees provide insight
into the decision process. However, when the intermediate decisions are themselves neural network
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Table 3: Comparisons of Losses. Training the NBDT using tree supervision loss with a linearly increasing
weight (“TreeSup(t)”) is superior to training (a) with a constant-weight tree supervision loss (“TreeSup”), (b)
with a hierarchical softmax (“HrchSmax”) and (c) without extra loss terms. (“None”). � is the accuracy
difference between our soft loss and hierarchical softmax.

Dataset Backbone Original TreeSup(t) TreeSup None HrchSmax

CIFAR10 ResNet18 94.97% 94.82% 94.76% 94.38% 93.97%
CIFAR100 ResNet18 75.92% 77.09% 74.92% 61.93% 74.09%
TinyImageNet200 ResNet18 64.13% 64.23% 62.74% 45.51% 61.12%

Table 4: Mid-Training Hierarchy. Constructing and using hierarchies early and often in training yields the
highest performing models. All experiments use ResNet18 backbones. Per Sec 3.4, �t,!t are the loss term
coefficients. Hierarchies are reconstructed every “Period” epochs, starting at “Start” and ending at “End”.

Hierarchy Updates CIFAR10 CIFAR100

Start End Period NBDT NN+TSL NN NBDT NN+TSL NN

67 120 10 94.88% 94.97% 94.97% 76.04% 76.56% 75.92%
90 140 10 94.29% 94.84% 94.97% 75.44% 76.29% 75.92%
90 140 20 94.52% 94.89% 94.97% 75.08% 76.11% 75.92%
120 121 10 94.52% 94.92% 94.97% 74.97% 75.88% 75.92%

predictions, extracting insight becomes more challenging. To address this, we adopt benchmarks and
an interpretability definition offered by Poursabzi-Sangdeh et al. (2018): A model is interpretable
if a human can validate its prediction, determining when the model has made a sizable mistake. To
assess this, we adapt Poursabzi-Sangdeh et al. (2018)’s benchmarks to computer vision and show (a)
humans can identify misclassifications with NBDT explanations more accurately than with saliency
explanations (Sec 5.1), (b) a way to utilize NBDT’s entropy to identify ambiguous labels (Sec.
5.4), and (c) that humans prefer to agree with NBDT predictions when given a challenging image
classification task (Sec. 5.2 & 5.3). Note that these analyses depend on three model properties that
NBDT preserves: (1) discrete, sequential decisions, so that one path is selected; (2) pure leaves,
so that one path picks one class; and (3) non-ensembled predictions, so that path to prediction
attribution is discrete. In all surveys, we use CIFAR10-trained models with ResNet18 backbones.

5.1 SURVEY: IDENTIFYING FAULTY MODEL PREDICTIONS

In this section we aim to answer a question posed in (Poursabzi-Sangdeh et al., 2018) ”How well
can someone detect when the model has made a sizable mistake?”. In this survey, each user is given
3 images, 2 of which are correctly classified and 1 is mis-classified. Users must predict which image
was incorrectly classified given a) the model explanations and b) without the final prediction. For
saliency maps, this is a near-impossible task as saliency usually highlights the main object in the
image, regardless of wrong or right. However, hierarchical methods provide a sensible sequence of

Table 5: Original Neural Network. We
compare the model’s accuracy before and af-
ter the tree supervision loss, using ResNet18,
WideResNet on CIFAR100, TinyImageNet.
Our loss increases the original network accu-
racy consistently by ⇠ .8�2.4%. NN-S is the
network trained with the tree supervision loss.

Dataset Backbone NN NN-S

C100 R18 75.92% 76.96%
T200 R18 64.13% 66.55%
C100 WRN28 82.09% 82.87%
T200 WRN28 67.65% 68.51%

Table 6: Zero-Shot Superclass Generalization. We eval-
uate a CIFAR10-trained NBDT (ResNet18 backbone) in-
ner node’s ability to generalize beyond seen classes. We
label TinyImageNet with superclass labels (e.g. label Dog
with Animal) and evaluate nodes distinguishing between
said superclasses. We compare to the baseline ResNet18:
check if the prediction is within the right superclass.

nclass Superclasses R18 NBDT-S

71 Animal vs. Vehicle 66.08% 74.79%
36 Placental vs. Vertebrate 45.50% 54.89%
19 Carnivore vs. Ungulate 51.37% 67.78%
9 Motor Vehicle vs. Craft 69.33% 77.78%
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Figure 4: CIFAR10 Blurry Images. To make the classification task difficult for humans, the CIFAR10 images
are downsampled by 4⇥. This forces at least partial reliance on model predictions, allowing us to evaluate
which explanations are convincing enough to earn the user’s agreement.

intermediate decisions that can be checked. This is reflected in the results: For each explainability
technique, we collected 600 survey responses. When given saliency maps and class probabilities,
only 87 predictions were correctly identified as wrong. In comparison, when given the NBDT series
of predicted classes and child probabilities (e.g., “Animal (90%) ! Mammal (95%)”, without the
final leaf prediction) 237 images were correctly identified as wrong. Thus, respondents can better
recognize mistakes in NBDT explanations nearly 3 times better.

Although NBDT provides more information than saliency maps about misclassification, a majority
– the remaining 363 NBDT predictions – were not correctly identified. To explain this, we note that
⇠ 37% of all NBDT errors occur at the final binary decision, between two leaves; since we provide
all decisions except the final one, these leaf errors would be impossible to distinguish.

5.2 SURVEY: EXPLANATION-GUIDED IMAGE CLASSIFICATION

In this section we aim to answer a question posed in (Poursabzi-Sangdeh et al., 2018) “To what
extent do people follow a model’s predictions when it is beneficial to do so?”. In this first survey,
each user is asked to classify a severely blurred image (Fig 4). This survey affirms the problem’s
difficulty, decimating human performance to not much more than guessing: 163 of 600 responses
are correct (27.2% accuracy).

In the next survey, we offer the blurred image and two sets of predictions: (1) the original neural
network’s predicted class and its saliency map, and (2) the NBDT predicted class and the sequence
of decisions that led up to it (“Animal, Mammal, Cat”). For all examples, the two models predict
different classes. In 30% of the examples, NBDT is right and the original model is wrong. In another
30%, the opposite is true. In the last 40%, both models are wrong. As shown in Fig. 4, the image
is extremely blurry, so the user must rely on the models to inform their prediction. When offered
model predictions, in this survey, 255 of 600 responses are correct (42.5% accuracy), a 15.3 point
improvement over no model guidance. We observe that humans trust NBDT-explained prediction
more often than the saliency-explained predictions. Out of 600 responses, 312 responses agreed with
the NBDT’s prediction, 167 responses agreed with the base model’s prediction, and 119 responses
disagreed with both model’s predictions. Note that a majority of user decisions (⇠ 80%) agreed
with either model prediction, even though neither model prediction was correct in 40% of examples,
showing our images were sufficiently blurred to force reliance on the models. Furthermore, 52% of
responses agreed with NBDT (against saliency’s 28%), even though only 30% of NBDT predictions
were correct, showing improvement in model trust.

5.3 SURVEY: HUMAN-DIAGNOSED LEVEL OF TRUST

The explanation of an NBDT prediction is the visualization of the path traversed. We then compare
these NBDT explanations to other explainability methods in human studies. Specifically, we ask
participants to pick an expert to trust (Appendix, Figure 13), based on the expert’s explanation –
a saliency map (ResNet18, GradCAM), a decision tree (NBDT), or neither. We only use samples
where ResNet18 and NBDT predictions agree. Of 374 respondents that picked one method over
the other, 65.9% prefer NBDT explanations; for misclassified samples, 73.5% prefer NBDT. This
supports the previous survey’s results, showing humans trust NBDTs more than current saliency
techniques when explicitly asked.

5.4 ANALYSIS: IDENTIFYING FAULTY DATASET LABELS

There are several types of ambiguous labels (Figure 5), any of which could hurt model performance
for an image classification dataset like ImageNet. To find these images, we use entropy in NBDT
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Figure 5: Types of Ambiguous Labels. All these examples have ambiguous labels. With NBDT (top), the
decision rule deciding between equally-plausible classes has low certainty (red, 30-50%). All other decision
rules have high certainty (blue, 96%+). The juxtaposition of high and low certainty decision rules makes
ambiguous labels easy to distinguish. By contrast, ResNet18 (bottom) still picks one class with high probability.
(Left) An extreme example of a “spug” that may plausibly belong to two classes. (Right) Image containing two
animals of different classes. Photo ownership: “Spug” by Arne Fredriksen at gyyporama.com. Used with
permission. Second image is CC-0 licensed at pexels.com.

RESNET-18 ENTROPY (BASELINE) NBDT PATH ENTROPY (OURS)

Figure 6: ImageNet Ambiguous Labels. These images suggest that NBDT path entropy uniquely identifies
ambiguous labels in Imagenet, without object detection labels. We plot ImageNet validation samples that in-
duce the most 2-class confusion, using TinyImagenet200-trained models. Note that ImageNet classes do not
include people. (Left) Run ResNet18 and find samples that (a) maximize entropy between the top 2 classes and
(b) minimize entropy across all classes, where the top 2 classes are averaged. Despite high model uncertainty,
half the classes are from the training set – bee, orange, bridge, banana, remote control – and do not show visual
ambiguity. (Right) For NBDT, compute entropy for each node’s predicted distribution; take the difference be-
tween the largest and smallest values. Now, half of the images contain truly ambiguous content for a classifier;
we draw green boxes around pairs of objects that could each plausibly be used for the image class.

decisions, which we find is a much stronger indicator of ambiguity than entropy in the original neural
network prediction. The intuition is as follows: If all intermediate decisions have high certainty
except for a few decisions, those decisions are deciding between multiple equally plausible cases.
Using this intuition, we can identify ambiguous labels by finding samples with high “path entropy”
– or highly disparate entropies for intermediate decisions on the NBDT prediction path.

Per Figure 6, the highest “path entropy” samples in ImageNet contain multiple objects, where each
object could plausibly be used for the image class. In contrast, samples that induce the highest
entropy in the baseline neural network do not suggest ambiguous labels. This suggests NBDT
entropy is more informative compared to that of a standard neural network.

6 CONCLUSION

In this work, we propose Neural-Backed Decision Trees that see (1) improved accuracy: NBDTs
out-generalize (16%+), improve (2%+), and match (0.15%) or outperform (1%+) state-of-the-art
neural networks on CIFAR10, CIFAR100, TinyImageNet, and ImageNet. We also show (2) im-
proved interpretability by drawing unique insights from our hierarchy, confirming that humans trust
NBDT’s over saliency and illustrate how path entropy can be used to identify ambiguous labels.
This challenges the conventional supposition of a dichotomy between accuracy and interpretability,
paving the way for jointly accurate and interpretable models in real-world deployments.
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