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Extensive benchmarking of a method that
estimates external model performance
from limited statistical characteristics
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Predictive model performance may deteriorate when applied to data sources that were not used for
training, thus, external validation is a key step in successful model deployment. As access to patient-
level external data sources is typically limited, we recently proposed amethod that estimates external
model performance using only external summary statistics. Here, we benchmark the proposed
method on multiple tasks using five large heterogeneous US data sources, where each, in turn, plays
the role of an internal source and the remaining—external. Results showed accurate estimations for all
metrics: 95therror percentiles for theareaunder the receiver operating characteristics (discrimination),
calibration-in-the-large (calibration), Brier and scaled Brier scores (overall accuracy) of 0.03, 0.08,
0.0002, and 0.07, respectively. These results demonstrate the feasibility of estimating the
transportability of predictionmodels using an internal cohort and external statistics. It may become an
important accelerator of model deployment.

Recent years have witnessed a sharp rise in the development of predictive
machine learning models for healthcare applications; a striking example is
the hundreds of prediction models for the diagnosis and prognosis of cor-
onavirus disease 2019 (COVID-19), developed or validated between 2020-
20221. As such models are often trained on data from a limited number of
“internal”, fully accessible data sources, their application to “external” data
—especially originating from different types of healthcare facilities, geo-
graphy, and patient population—may result in inadequate performance2,3;
e.g., such deterioration has been demonstrated for the widely implemented
Epic Sepsis Model4 or with various stroke risk scores in atrial fibrillation
patients5. Thus, the task of verifying model transportability across different
data sources, also known as external validation6, gradually becomes a
standard step in the life cycle of clinical prediction model development3.

Practically, testing the performance of a predictive model on an
external data source6 entails identifying themodel-relevant target units (e.g.,
patient cohort); extracting the underlying features (or independent vari-
ables) and outcome (dependent variable) for each unit; applying the model
and calculating thepredicted outcomevalues; and,finally, comparing the set
of predicted and observed outcome values to obtain the performance
measures of interest (e.g., area under the receiver operating characteristic,
AUROC), in the entire cohort and, potentially, in key strata to assess model
fairness6.

Accurately redefining and extracting data elements (target units, fea-
tures, outcome) in an external resource may be a daunting task. Harmo-
nizing data to use standardized data structure, content, and semantics

significantly reduces that burden, as definitions of model elements can be
shared and readily applied across data sources. Still, even with harmonized
data, external validation is an effortful task and, potentially, an iterative
process in model development, aiming at selecting a well-
performing model.

Previously, we developed amethod that estimates the performance of a
predictive model in external data sources, using only limited descriptive
statistics7 (Fig. 1). Briefly, the method seeks weights that induce internal
weighted statistics that are similar to the external ones; then compute per-
formance metrics using the labels and model predictions of the internal
weighted units. These statistics may be task-specific and characterize the
target population stratified by anoutcome value or,more generally, describe
the entire population (or predefined strata)within an external resource or in
a geographical entity. Accordingly, these characteristics may be specifically
extracted or could be obtained from previous studies, e.g., characterization
studies (e.g., ref. 8) and national agencies. Therefore, the proposed method
allows evaluation of model performance on external sources even when
unit-level data is inaccessible but statistical characteristics are available.
Moreover, once obtained, these statistics can be repeatedly used to estimate
the external performance of multiple models, thus considerably reducing
the overhead of external validation.

Here we assess the performance of the method in real-world clinical
settings using data from five US datasets and prediction models for various
outcomes. We leverage the infrastructure and tools developed by the
ObservationalHealthData Sciencesand Informatics (OHDSI, https://ohdsi.
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org/) community, a global, collaborative network of clinicians, researchers,
and data scientists, whose mission is to improve the use of observational
health data for research and healthcare decision-making.

Results
Benchmark overview
We set out to benchmark the accuracy of a method that estimates model
performance in external data sources using only their limited statistical
characteristics. Following Reps et al.9, we defined, in five US data sources, a
target cohort that included patients with pharmaceutically-treated depres-
sion; internally trained, in each given data source, models that predict
patients’ risk of developing diarrhea, fracture, gastrointestinal (GI)
hemorrhage, insomnia, or seizure; extractedpopulation-level statistics in the
remaining four external cohorts and used these to estimatemodels’ external

performance (namely, predictive accuracy and calibration); then compared
the estimated measures to the actual ones, as computed by testing the
models in each external cohort (Fig. 2).

Table 1 presents the baseline characteristics of the target cohort in each
data source as well as the prevalence of outcomes. Notably, age distribution
varies significantly across data sources; e.g., elderly individuals (aged 65
years ormore) amount to 0.7% in CCAE, 21–30% in the Optum® EHR and
Clinformatics® data sources, and 97% in MDCR. Moreover, MDCR lacks
children under 20 years whereas the other data sources have at least 8%.

Evaluation of the estimation method
In essence, the benchmarked method assigns weights to internal cohort
units to reproduce a set of external statistics; as such, it could not be applied
when certain statistics can not be represented as a weighted average of the

Fig. 1 | An illustration of the external performance estimation algorithm. The
model evaluator selects a set of features, based, e.g., on the model’s most important
ones (a), and asks each external collaborator to provide their statistics over these
features in their external cohort (b). The algorithm then attempts to weight the

internal cohort to reproduce the external statistics and uses various diagnostic
modules to test if the algorithm’s underlying assumptions are met. Finally, to assess
model performance, the algorithm applies the model to the internally weighted
cohort (c).

Fig. 2 | The evaluation benchmark. In each tested
configuration, we designated a data source as
internal, and used its cohort to train an outcome
prediction model. The performance of this model
was computed directly on each of the four remaining
external cohorts as well as estimated using their
statistics with the proposed algorithm. The estima-
tion error is defined as the absolute difference
between the actual and estimated performance.
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internal cohort’s features. For example, if statistics fromMDCD include the
proportion of subjects under 20 years, then there is no set of weights that
yields this proportion inMDCRbecause indicator features of this group are
zero in allMDCRunits.Additionally, the optimization algorithmmay fail to
find appropriate weights because of higher-order dependencies between
features.

Therefore, for a given pair of external and internal datasets, the success
of the weighting algorithm depends on the set of provided statistics. Spe-
cifically, the more features used, the harder it is to find a solution. On the
other hand, to provide accurate estimations, the weights should induce an
accurate approximation of the joint distribution over the features and
outcome, which affects model performance, suggesting that such features
should be included. Consequentially, to balance between these two con-
siderations, the benchmark used statistics of features with non-negligible
model importance in each configuration (see “Methods” for details).

In the main analysis, we tested 400 configurations over combinations
from five internal data sources; for each, the other four were marked as
external; and fourmodelswere constructed for everyoutcome.Among these
configurations, a few that used MDCR as the internal source failed to esti-
mate external performance: XGBoost seizure model on external dataset
MDCD, insomniamodel onOptum® EHR, and diarrheamodel onMDCD
and Optum® EHR. Additionally, the medium-sized logistic regression sei-
zure model failed on the external dataset CCAE.

Figure 3 compares the actual versus estimated external AUROC of
internally trained outcome prediction models in each data source. In
most cases, both the internal and external performance of the small linear
models was inferior to that of the other, comparably performing ones
(with the exception of insomnia, where the large logistic regression
model dominated). Importantly, the estimated and actual external per-
formance is similar, e.g., when training a linear diarrhea model with a
medium-sized feature set on CCAE, the internal AUROC is 0.61, the
actual external AUROC in MDCR is 0.587, and the estimated AUROC
is 0.585.

To visualize the error distributionof the benchmarkedalgorithm,Fig. 4
compares the external performance estimation error versus the difference
between internal and external performance as measured using AUROC,
calibration, Brier score, and scaled Brier score. The upper quartile of
AUROC estimation errors is usually below 0.02, whereas the values of
internal-external AUROC difference are higher; for example, the median
error in the internal resource MDCR benchmark is 0.011 (IQR
0.005–0.017), and the internal-external absolute difference is 0.027 (IQR
0.013–0.055). The other metrics accuracy differences are even more pro-
nounced; for example in MDCR, calibration differences are 0.013
(0.003–0.050) versus 0.329 (0.167–0.836), Brier score differences are 3.2 ⋅
10−5 (1.3 ⋅ 10−5–8.3 ⋅ 10−5) versus 0.012 (0.0042–0.018), and scaled Brier
score differences are 0.008 (0.001–0.022) versus 0.308 (0.167–0.440).

The effect of considered feature sets
To test the effect of the feature sets used for weighting, we applied the
algorithm with the medium-sized feature set and used the small and large
models (regardless of themodel’s features). The results of these tests suggest
that usingnon-model-related features results in failure toobtain appropriate
weights in some cases as well as less accurate results in others (Supple-
mentary Notes 1–4 and supplementary Figs. 1–6). Additionally, we com-
pared the estimation of linear model performance when using only
important features (coefficient absolute value ≥0.1) versus using all features.
The results suggest that using features with low coefficients leads to similar
consequences of using unrelated features, giving inferior approximations
relative to using important features.

Overall, the benchmarks that spanned various models and choices of
feature-sets selected for weighting suggest that a good practice for executing
the evaluation is using model specific feature sets and selecting them
according to their model’s importance.

The impact of sample size on estimation accuracy
Finally, using Clinformatics® as an internal data source, CCAE as an
external one, and the logistic regression with a large feature set configura-
tion, we tested the robustness of the estimation algorithm to internal and
external sample sizes. We sub-sampled the internal cohort with sizes that
range from1000 to 250,000 units and used these sub-samples as input to the
estimation algorithm, where the external statistics were computed from the
entire external cohort. Similarly, we sub-sampled the external cohort and
used the entire internal one to obtain the estimation. We applied this pro-
cedure for every outcomeusing two sub-samplingmethods: simple uniform
sampling and stratified sampling, wherewe preserve the original proportion
of the outcome. For example, in stratified sampling, a 1000-unit sub-sample
of Clinformatics® would have 8 seizure cases to maintain the pre-
valence of 0.8%.

Figure 5 shows the results of the size dependency benchmark. Both
internal and external sub-sample sizes have an impact on the performance
metrics, but the effect of the former is more pronounced: the algorithm fails
to converge in most cases with 1000 units and in some of those with 2000
units; the variance and upper quartiles are larger; and error convergence is
slower.

Discussion
We demonstrated the accuracy of a method that estimates the external
performance of prediction models when external unit-level data is inac-
cessible and uses only internal data and limited external statistics. Specifi-
cally, AUROCapproximation error 95th percentilewas 0.03, calibration-in-
the-large 0.08, Brier score 0.0002, and scaled Brier score 0.07. We recom-
mend to use the proposedmethodwith up to hundreds of features, as larger
scale problems have not been tested.

Table 1 | Baseline characteristics of target cohorts and outcome prevalence in sub-cohorts of patients with no recorded
corresponding outcome prior to the index

CCAE MDCD MDCR Optum® EHR Clinformatics®

N 2,365,324 660,158 205,789 3,309,284 1,678,579

Female 1,622,351 (68.6%) 478,848 (72.5%) 138,089 (67.1%) 2,297,254 (69.4%) 1,133,229 (67.5%)

Age ≤19 293,704 (12.4%) 197,335 (29.9%) 0 (0%) 273,708 (8.3%) 133,891 (8%)

Age 20–64 2,055,921 (86.9%) 442,793 (67.1%) 5760 (2.8%) 2,353,756 (71.1%) 1,035,538 (61.7%)

Age ≥65 15,699 (0.7%) 20,030 (3%) 200,029 (97.2%) 681,820 (20.6%) 509,150 (30.3%)

Seizure 9058 (0.5%) 6515 (1.4%) 1778 (1.2%) 18,597 (0.8%) 9341 (0.8%)

Diarrhea 54,302 (3.5%) 23,310 (5.7%) 7218 (5.7%) 86,972 (4%) 50,622 (4.7%)

Fracture 9772 (0.6%) 4407 (0.9%) 4281 (3.1%) 20,655 (0.9%) 16,618 (1.4%)

GI bleed 8172 (0.5%) 5700 (1.2%) 3304 (2.3%) 21,291 (0.9%) 12,775 (1%)

Insomnia 77,754 (5.2%) 30201 (7.3%) 6950 (5.5%) 114,422 (5.5%) 64,778 (6.5%)
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Outcome prevalence in the tested cohorts is low (0.5–7.2%), potentially
rendering some performance metrics (e.g., Brier) unreliable. Notably, estima-
tions remain accurate even with these metrics. Moreover, we also computed
calibration-in-the-large and scaled Brier scores, which are corrected for out-
comeprevalence and are, therefore, sensitive to small changes in the probability
estimations of the outcomes; estimation errors of thesemetricswere anorder of
magnitude lower than thedifferencesbetween their internal andexternal values.

Sampling benchmarks suggest that estimation accuracy depends on the
sample sizeof the external cohort and, toa larger extent, on thatof the internal
cohort. These tests showed that good accuracy required more than 32,000
units in the internal sample. However, note that, due to low outcome pre-
valence, this accounts for around 150 up to 2000 cases. The size of the smaller
group among cases and controls is likely the main determinant of accuracy.

The accuracy of the approximation algorithm depends on the diversity of
the internal cohort as well as on the proper selection of features and transfor-
mations on which statistics are shared. Following the diversity requirement, we

suggest inspecting the difference between internal and external statistics to
ensure that therearenounrepresentedexternal subgroups in the internal cohort,
aswell as using the tools provided in the package to assess overlap.Additionally,
for reweighing,we recommend selecting statistics that involve features that have
non-negligible predictive importance and the interactions of such features with
the outcome. Unrelated features may result in noisy estimations.

The contribution of this work goes beyond the paper that introduced
the tested framework7. First, experiments on real-world datasets give a
broader view of the strengths and weaknesses of the framework, suggesting
necessary conditions for accurate estimation. Second, these experiments
highlighted practical challenges, which led to further refinements and
improvements. These include guidelines to handle sparse and weakly
informative features, diagnostic tools to address extreme distribution shifts,
and a new customized optimization algorithm to handle large datasets, all
implemented in an R package (https://github.com/KI-Research-Institute/
LearningWithExternalStats).

Fig. 3 | Estimating external model discrimination (AUROC). Filled and empty diamonds correspond to internal and external test performance, respectively; estimated
AUROC values are marked by ×. Columns correspond to outcomes, and rows to internal data sources. LR logistic regresion.
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The problem of model evaluation under distribution shift has been
addressed in several previous studies but with different data availability
requirements. When no data is available, constrained sub-sampling of the
internal data allows to estimate the worst-case performance under user-

defined shifts indistributionsof variable subsets10. In caseswhere an external
unlabeled dataset is available, external performance can be evaluated using
density ratio estimation, possibly augmented by user knowledge about the
nature of the shift11. The method proposed here relies on a more common

Fig. 4 | Summary of estimation performance by internal source. Absolute dif-
ferences between estimated and actual external performance, as well as between
internal and external performance (a AUROC, b calibration-in-the-large, c Brier
score, d scaled Brier score). Each plot corresponds to an internal source, and boxes

summarize performance overall external sources, outcomes, and models. The box
center-line corresponds to the median and the box limits to the upper and lower
quartiles. The whiskers extend to 1.5 times the inter-quartile range or to the most
extreme value in the corresponding direction. Points correspond to outliers.
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scenario in which external statistics are available (or can be shared) but not
full access to datasets. Therefore, it strikes a balance between the need to rely
on specific information from external sources to give accurate estimations
and the lack of access to detailed data.

This work has several limitations. First, the accuracy of the proposed
method depends on the validity of the underlying assumptions of internal
dataset diversity as well as on the proper selection of features and trans-
formations. Therefore, this methodology should require thoughtful eva-
luation of the provided diagnostics and consideration of the included
features. Second, the tests focus on US sources, thereby potentially ignoring
geographic variability. Instead, we focused here on evaluation differences
that stem from different natures of sources (i.e., claims versus providers’
records), different health systems, and different populations. Third, it is
currently limited tomodels that have up to hundreds of features. Fourth, we
only used data sources mapped to OMOP format, thus avoiding the chal-
lenging task of standardizing cohort definition and feature extraction.
However, while theOMOP format facilitates faster andmore reliable cross-
dataset research, data-shifts may still prevail, e.g., from differences in
recording practices. It would be interesting to test the impact of the level of
standardization on estimation accuracy in future benchmarks. Fifth, esti-
mation accuracy depends on sample size. Specifically, the internal cohort
requires hundreds to a few thousands of cases. However, this requirement is
reasonable for models that are developed with external validity in mind.
Finally, we assessed themethod accuracy using AUROC, Brier score, scaled
Brier score, and calibration-in-the-large, which capture the main dimen-
sions of the model’s performance. Other measures exist but have not been
considered.

The proposed method is useful when only external summary statistics
are given, but unit-level data is unavailable. In particular, in collaborative
projects, themodel evaluator could request summary statistics fromexternal
collaborators; then test multiple models and select an optimal one based on
how well it is estimated to perform across external cohorts. This allows the
evaluator to internally evaluate several candidate models before applying
final evaluation, thereby expediting thedevelopmentprocess. In this case, an

optimal setting will include some external sources that provide the statistics
and others that allow final actual validation after model selection.

We note that while this benchmark focused on EHR basedmodels, the
tested method can be applied to models that are based on other data types.
For example, mobile and wearable devices can generate data that allows
training useful models that are based on a few dozens of features (e.g.,
refs. 12,13).

Future work can improve the usability of the evaluation method in
several ways. First, additional benchmarks on non-US datasets may shed
light on their performance under more diverse sources of variability. Sec-
ond, the ability to capture performance trends over time may also be an
important use case. Third, while the current benchmarks assume a colla-
borative environment that allows the sharing of all statistics that are relevant
to a specificmodel, it may be interesting to test its performancewith limited
or pre-computed statistics, for example, fromnational resources or database
profiles.

In conclusion, the results of this benchmark study show that given
sufficiently rich cohorts, a weighting approach gives an accurate estimation
of the model’s performance on external cohorts when only summary sta-
tistics are available. To facilitate this benchmark and general real-world
cases, we adapted the underlying algorithm to handle large datasets. The
tested approach may be useful both in preliminary assessments prior to
deployment to new settings as well as a means to expedite collaborative
model development.

Methods
Ethics
The use ofMerativeMarketScan® andOptum® databases were reviewed by
the New England Institutional Review Board and were determined to be
exempt from broad Institutional Review Board approval.

Study design
To investigate whether external summary statistics can be utilized to
accurately estimate external performance we designed an experiment to

Fig. 5 | The impact of internal and external data
size on evaluation accuracy. Each box corresponds
to ten tests that span the five outcomes and both
stratified and simple sampling. Only one test with an
internal sub-sample of size 1000 converged; there-
fore, its result is not shown. Internal sampling of
2000 units yielded five results. An external sampling
of 2000 yielded nine results. All other tests con-
verged successfully.

https://doi.org/10.1038/s41746-024-01414-z Article

npj Digital Medicine |            (2025) 8:59 6

www.nature.com/npjdigitalmed


compare the true external performance against the estimated performance
and the internal validation performance. This was performed across five
different observational healthcare data sources and five different
prediction tasks.

Data sources
Five observationalUS healthcare database sources, including four insurance
claims sources and one electronic healthcare record (EHR) source, were
included in this study. All the data resources were mapped to a common
format known as the Observational Medical Outcomes Partnership
(OMOP) Common Data Model14.

The Merative™MarketScan® Commercial Database (CCAE) includes
health insurance claims across the continuum of care (e.g., inpatient, out-
patient, outpatient pharmacy, carve-out behavioral healthcare) as well as
enrollment data from large employers and health plans across the United
States that provide private healthcare coverage for employees, their spouses,
and dependents. This administrative claims database includes a variety of
fee-for-service, preferred provider organizations, and capitatedhealth plans.

TheMerative™MarketScan®Multi-StateMedicaidDatabase (MDCD)
reflects the healthcare service use of individuals covered by Medicaid pro-
grams in numerous geographically dispersed states. The database contains
the pooled healthcare experience of Medicaid enrollees, covered under fee-
for-service andmanaged care plans. It includes records of inpatient services,
inpatient admissions, outpatient services, and prescription drug claims, as
well as information on long-term care. Data on eligibility, as well as service
and provider type, are also included. In addition to standard demographic
variables, such as age and gender, the database includes variables such as
federal aid category (income-based, disability, Temporary Assistance for
Needy Families) and race.

The Merative™ MarketScan® Medicare Supplemental Database
(MDCR) represents the health services of retirees in the United States with
Medicare supplemental coverage through employer-sponsored plans. This
database contains primarily fee-for-service plans and includes health
insurance claims across the continuum of care (e.g., inpatient, outpatient,
and outpatient pharmacy).

Optum®’s de-identified Clinformatics® Data Mart Database (Clin-
formatics®) is derived from a database of administrative health claims for
members of large commercial and Medicare Advantage health plans.
Clinformatics® is statistically de-identified under the Expert Determination
method consistent with HIPAA and managed according to Optum® cus-
tomer data use agreements. Administrative claims submitted for payment
by providers and pharmacies are verified, adjudicated, and de-identified
prior to inclusion. This data, including patient-level enrollment informa-
tion, is derived from claims submitted for all medical and pharmacy
healthcare serviceswith information related tohealthcare costs and resource
utilization. The population is geographically diverse, spanning all 50 states.

Optum® de-identified Electronic Health Record dataset (Optum®
EHR) is derived from dozens of healthcare provider organizations in the
UnitedStates, that includemore than57contributing sources and111Ksites
of care. The data is certified as de-identified by an independent statistical
expert following HIPAA statistical de-identification rules and managed
according to Optum® customer data use agreements. Clinical, claims, and
other medical administrative data is obtained from both inpatient and
ambulatory EHRs, practice management systems, and numerous other
internal systems. Information is processed, normalized, and standardized
across the continuumof care fromboth acute inpatient stays and outpatient
visits. Optum® EHR data elements include demographics, medications
prescribed and administered, immunizations, allergies, lab results (includ-
ing microbiology), vital signs and other observable measurements, clinical
and inpatient stay administrative data, and coding diagnoses and
procedures.

MDD study population
The target population consisted of patients with a diagnosis of major
depressive disorder (MDD) for the first time and an antidepressant

prescription recorded within 30 days of the initial MDD diagnosis. The
prediction index was the date of the first MDD record per patient.
Patients were excluded if they had less than 365 days of observation in the
database prior to the index or had a history of mania, dementia, or
psychosis. This definition has been used in prior OHDSI methodology
papers15.

Outcomes
Models were developed to predict the onset of five outcomes occurring
within one year after index: seizure, diarrhea, fracture, gastrointestinal (GI)
bleeding, and insomnia. All outcomeswere defined based on corresponding
diagnosis records; seizure and GI bleed also required that these diagnoses
were given during an inpatient or emergency room visit15. For each out-
come, patients were excluded if they had the outcome recorded prior to
the index.

Prediction tasks
The prediction tasks of interest were: for patients in theMDD study cohort,
predict the risk of outcome occurring for the first time within 1 day to
365 days after index.

Features
Three candidate feature sets were used to train prediction models:
• Small: only the patient’s sex and age at index one-hot-encoded into

5-year buckets (0–4, 5–9, etc).
• Medium: patient’s sex, age at index one-hot-encoded, and a con-

strained set of 64 phenotype predictors (see https://ohdsi.github.io/
PatientLevelPrediction/articles/ConstrainedPredictors.html for more
details).

• Large: patient’s sex, age at index one-hot-encoded, and thousands of
one-hot-encoded features representing whether the patient had a
record of each medical condition and drug code recorded in the
database prior to index. For example, diabetes is often recorded in
OMOP databases via the SNOMED-CT code 73211009. If a patient
had code 73211009 recorded prior to index, their feature value is 1 and
0 otherwise, for the feature “Had code 73211009 recorded prior
to index”.

Note that, by design, none of these features can bemissing. Age and sex
are required fields in OMOP data. The other features simply represent
whether a code is recorded, and this information is never unknown.

Model development and validation
Prediction models (logistic regression with L1 regularization and gra-
dient boosting machines) were developed within each data source per
prediction task. For each data source and prediction task pair, labeled
data were extracted consisting of the features and true outcome (whether
the patient developed the outcome within 1-year of prediction index:
class 1 represents those who did and class 0 represents those who did not)
for each unit (i.e., patient in the target cohort). A model was developed
using the labeled data by splitting the data into 75% training data and
25% testing data, then implementing 3-fold cross-validation using the
training data to identify the optimal regularization hyper-parameter and
then finally fitting amodel using the optimal hyper-parameter and all the
training data. Internal validation was performed by applying the model
to the left-out testing data and comparing the predicted risk with the true
outcome.

Each model was externally validated across the other data sources by
applying themodel tomake predictions using the labeled data from the four
other data sources and comparing the predicted riskwith the true label. This
provided the true external validation performance.

The proposed estimation of the external performance algorithm was
also implemented for each model, using summary statistics of the model’s
important features from each external cohort. This provided the estimated
external validation performances.
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Performance metrics
We assessed model discrimination using the area under the receiver oper-
ating characteristic curve (AUROC);model calibrationusing calibration-in-
the-large, i.e., the ratio of the mean predicted risk across the test study
population to the true observed risk; and overall accuracy using the Brier
score, corresponding to the sum of the squared differences between pre-
dicted risk and true label.

The tested cohorts have highly imbalanced outcome rates, which is
often the case in medical cohorts. As the Brier score is sensitive to such
imbalance, we also assessed the overall accuracy using the scaled Brier
score16. This score scales Brier by its maximum value under a non-
informative reference model that outputs a constant probability of the
outcome, regardless of the features. Specifically,

Brierscaled ¼ 1� Brier
Briermax

; ð1Þ

where Briermax ¼ pð1� pÞ and p is the mean of model’s predictions.

Overview of the external performance estimation method
The performance estimation algorithm is a scalable variant of the method
presented in ref. 7, as illustrated in Fig. 1. Given a classifier, an internal (test)
cohort, and summary statistics fromanexternal cohort, thismethod aims to
assign weights to units in the internal cohort that reproduce the statistical
properties of the external one. Next, it computes performancemetrics using
the classifier predictions and true labels on the weighted internal cohort.

In the next section, we will describe the previous method for com-
pleteness. In the following, we will introduce more efficient algorithms to
handle large cohorts.

Weighting an internal dataset to reproduce external statistics
and estimating performance
Suppose we have an internal test cohort Dint ¼ fxi; yigninti¼1 with nint units,
where xi are feature vectors, and yi are binary outcomes; as well as summary
statistics, μext, from an external cohort with next units. The summary sta-
tistics are defined as empirical averages of a set of transformations on unit-
level observations composed of features and an outcome label:

μext �
1
next

X

ðxi;yiÞ2Dext

ϕðxi; yiÞ; ð2Þ

where ϕ(xi, yi) is a vector valued function. For example,

ϕðxi; yiÞ ¼ fxi � yi; xi � ð1� yiÞ; yig ð3Þ

allows computation of feature means in subsets of units with and without
the outcome (as often reported in a study’s Table 1).

To produce a weighted cohort that has similar statistical properties as
the external cohort, we search for a set of non-negative weights fwigninti¼1 that
sum to one, such that μext ¼

P
ðxi;yiÞ2Dint

wi � ϕðxi; yiÞ. We refer to
fwi; xi; yigninti¼1 as a weighted cohort.

Our previous work cast the task of finding internal weights that
reproduce the external statistical properties as an optimization problem7.
We start by denoting the simplex of nint-dimensional weights by Δnint

, i.e.,

Δnint
� w 2 Rnint :

X
wi ¼ 1; wi ≥ 0

n o
: ð4Þ

As we assume that nint is larger than the dimension of ϕ, there may be
infinite number of possible weight vectorsw 2 Δnint

such thatΦ>
intw ¼ μext,

whereΦ is a matrix whose rows are ϕi≡ ϕ(xi, yi). Therefore, we propose to
search for weights that satisfy this equality and are as close to uniform as
possible. We use the Kulback-Leibler (KL) divergence as a measure of
proximity, where KLðw k 1=nÞ � P

wi
wi log

wi
1=n. This approach requires

solving the following optimization problem:

min
w

KLðw k 1=nÞ
such that Φ>

intw ¼ μext and w 2 Δnint
:

ð5Þ

KL-divergence is a convex function, and so are the constraints. Therefore,
generic convex optimization libraries allow minimizing this function while
satisfying the feature average equalities on cohorts with thousands of units7.

Given a weighted dataset fwi; xi; yigninti¼1 and probabilistic classifier
outputs fpigninti¼1, we compute different performance metrics, such as the
Brier score and AUROC, using weighted versions of these metrics. For
example, the Brier score measures the mean squared error of the prob-
abilistic predictions, i.e., 1

next

Pnext
i¼1 ðpi � yiÞ2. The weighted cohort allows to

approximate theBrier score in the external cohort simplyusing theweighted
score 1

nint

Pnint
i¼1 wiðpi � yiÞ2. To estimate the weighted AUROC, we use the

WeightedROC R package.

Efficient approximate weighting
As in this benchmarkwe deal with larger scale problems than those tested in
ref. 7, we developed a more efficient algorithm by approximating the pro-
blem represented in Equation (5). First, to satisfy equality constraints, we
formulate the following optimization problem:

min
w2Δnint

f ðwÞ � Φ>
intw � μext

�� ��2
2
: ð6Þ

Second, to maintain weights that are as close to uniform as possible, we use
an exponentiated gradient algorithm17 and initialize the algorithm with
uniform weights w0

i ¼ 1=nint. At every iteration t of the gradient descent
algorithm, it attempts to decrease the objective while maintaining the
normalization constraints using the following updates:

�w ¼ wte�α∇f ðwÞ ð7Þ

wtþ1 ¼ �wPn
i¼1 �wi

; ð8Þ

where∇ f(w) is thegradientof f, specifically,∇ f(w) =Φ(Φ⊤wt−μext), andα is a
pre-specifiedoptimizationrate.Asevery iteration locallyminimizes f(wt+1)+ α
⋅ KL(wt+1∥wt)17, it tends to reduce the objective while attempting to maintain
proximity between the weights in consecutive steps. Therefore, we use the
heuristic of initializing the search with uniform weights.

Assumptions and conditions for running the algorithm
We pose two assumptions about the underlying data distributions of the
internal and external cohorts that should be satisfied to give accurate esti-
mations. First, for all the features contributing to the prediction model,
whenever the external joint probability of a given feature and outcome
values is greater than zero, so is their internal one. We call this assumption
one-sidedpositivity, as it is analogous to thepositivity, also knownas overlap,
assumption in causal inference18. Second, we assume that the external dis-
tribution is relatively close to the internal one among the set of distributions
that have expectations μext. Intuitively, the plausibility of this assumption
increases with the richness of the transformation ϕ of which we share
external statistics. In other words, the assumption states that the statistics
sharedbetween the external and internal systemsare sufficient to give agood
approximation of the data shift between them.

Estimation pipeline
We implemented an estimation pipeline that combines the weighting
algorithm and various tests to assess the feasibility of accurate estimations.
Specifically, it includes the following steps:
1. Assess one-sided positivity for each element in the external statistics
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2. If one-sided positivity holds: run the optimization algorithm to solve
the problem represented in Equation (6) and obtain weights.

3. If external statistics are reproduced: estimate external performance
using the weighted dataset.

Confidence intervals can be computed using repeated re-sampling and
weighting of the internal cohort.

One-sided positivity tests
The following tests are performed before running the weighting algorithm,
to assess one-sided positivity:
1. Verify thatΦint andμext contain the same features and feature-outcome

transformations and do not contain missing values.
2. Unaryvariables: In case oneof the columnsofΦint has a constant value

across all units,make sure that thedifference between this value and the
corresponding entry in μext is less than a threshold (default 0.01).

3. Binary variables: First, if the external statistics of binary features are
exactly the sameas oneof the internal binary values,we assume that the
external cohort is composed of a sub-population with this value and
use only the corresponding sub-population in the internal cohort for
weighting. Second, we test if univariate weighting on this variable will
not result in assigning most of the weights to a few internal units.
Specifically, let n0 and n1 be the number of internal units with feature
values 0 and 1. Let p0 and p1 be the proportion of such units in the
external dataset. Then, we assume that when p20

n0
þ p21

n1
>ð 140Þ

2 most
weights will be assigned to a few samples and the variance of any
weighted estimator will be too large.

4. Continuous variables:Make sure that the external statistics is within
the range of the internal cohort values. We allow a small slack
(default 0.01).

Weighting algorithm pre-processing and parameter settings
Before running this algorithm, the features in the internal dataset are nor-
malized by subtracting the mean and dividing by the standard deviations.
The means and standard deviation are maintained and used later to apply
the same transformation to the external statistics. This step maintains the
relationships between the internal cohort and the external statistics while
improving numerical stability and standardizing decision threshold. The
convergence of the algorithm is examined by testing if the L2 norm of the
distance between theweighted internal and the external statistics is less than
a threshold (default value 10−5). Themaximum number of iterations in this
benchmark was set to 2000. If the weighting algorithm converges, we test
that the maximum standardized mean difference between the weighted
internal statistics and the external ones is less than a threshold (default 0.05).

Data availability
Datamay be obtained from a third party and are not publicly available. The
MarketScan CCAE, MDCD, and MDCR data that support the findings of
this study are available from Merative (contact at: https://www.merative.
com/documents/brief/marketscan-explainer-general) and the Optum EHR
and Clinformatics datasets are available from Optum (contact at https://
www.optum.com/en/business/life-sciences/real-world-data.html), but
restrictions apply to the availability of these data, which were used under
license for the current study.

Code availability
The benchmark code is available at https://github.com/ohdsi-studies/
ExternalValidation. The code of the weighting-based estimation algorithm
is available at https://github.com/KI-Research-Institute/LearningWith
ExternalStats.
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