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Abstract

The Gromov-Wasserstein (GW) distance serves as a discrepancy measure between
metric measure spaces. Despite recent theoretical developments, its structural
properties, such as existence of optimal maps, remain largely unaccounted for.
In this work, we analyze the semi-discrete regime for the GW problem wherein
one measure is finitely supported. Notably, we derive a primitive condition which
guarantees the existence of optimal maps. This condition also enables us to derive
the asymptotic distribution of the empirical semi-discrete GW distance under
proper centering and scaling. As a complement to this asymptotic result, we also
derive expected empirical convergence rates. As is the case with the standard
Wasserstein distance, the rate we derive in the semi-discrete GW case, n−1/2, is
dimension-independent which is in stark contrast to the curse of dimensionality
rate obtained in general.

1 Introduction

The Gromov-Wasserstein (GW) distance, introduced by Mémoli in [35], enables a comparison be-
tween abstract metric measure (mm) spaces and provides an alignment plan between them. Precisely,
for two mm spaces, (X , dX , µ0) and (Y, dY , µ1), their (p, q)-GW distance is given by

Dp,q(µ0, µ1) =

(
inf

π∈Π(µ0,µ1)

∫∫ ∣∣dpX (x, x′)− dpY(y, y
′)
∣∣q dπ ⊗ π(x, y, x′, y′)

)1/q

, (1)

where Π(µ0, µ1) denotes the set of all couplings of µ0, µ1. The GW distances thus equals the least
amount of distance distortion one can achieve between the mm spaces when optimizing over all
possible alignments thereof (as modeled by couplings). Remarkably, Dp,q defines a metric on the
quotient space of all mm spaces obtained by identifying isomorphic mm spaces (i.e., when the
underlying measures µ0, µ1 are such that µ1 = f♯µ0 for an isometry f : X → Y). The ability of the
GW distance to meaningfully compare heterogeneous data has spurred its usage in many applications,
including generative modelling [5], graph matching [55], heterogeneous domain adaptation [43, 56],
spectral clustering [8], graph classification [48], object matching [34, 35] and shape analysis [19, 46].
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Despite these virtuous properties, there remains large gaps in our understanding of solutions to (1).
For instance, sufficient conditions for the existence of optimal couplings induced by a deterministic
map, dubbed Gromov-Monge maps, is still an open question (see Question 2.4 in [36]). Another
important drawback of the GW distance is that it suffers from the curse of dimensionality in statistical
estimation [57]. This work posits the semi-discrete setting for the GW problem as a natural class of
problems for which both of these issues can be addressed.

As a special instance of the general GW problem, the semi-discrete GW problem (SDGW) is obtained
when one of the marginals is discretely supported and the other is continuous. This setting falls
well within the scope of the GW problem due to the underlying heterogeneity and as it enables a
comparison of distributions supported on different spaces. To our knowledge, this paradigm has
not been explored in the context of the GW problem despite the interest in standard semi-discrete
optimal transport (SDOT). Indeed, the SDOT problem has seen use in diverse applications, ranging
from computer graphics [12, 31] and generative modelling [2, 7, 27] to fluid dynamics [13, 22] and
cosmology [32]. This interest is due, in large part, to the strong structural and statistical properties
inherent to the semi-discrete setting. For instance, the structure of optimal maps for the SDOT
problem as well as its stability properties were studied in [3, 28] whereas [15] proves a parametric
empirical convergence rate and limit distributions for the empirical SDOT cost (see the subsequent
literature review for details). Inspired by these results, the present paper studies the (2, 2)-GW
problem for marginals supported in Euclidean spaces under the semi-discrete paradigm. Our main
contributions are to first establish existence of Gromov-Monge maps for the SDGW problem under
primitive conditions and, subsequently, to prove finite sample convergence rates and limit distributions
for the empirical distance.

Literature review. In contrast to the standard optimal transport (OT) problem [1, 52, 53], little
is known about the structure of solutions to the quadratic GW (QGW) problem, D2,2(µ0, µ1), with
(µ0, µ1) ∈ P(Rd0)×P(Rd1). Indeed, conditions guaranteeing the existence of optimal plans for the
QGW problem which are induced by a map are generally unknown. A first result in this direction is
Theorem 9.21 in [47] which proves the existence of optimal maps for absolutely continuous measures
which are rotationally invariant about their barycenter. Proposition 4.2.4 in [51] proves such a result
under the assumption of compact support, absolute continuity of µ0, that d0 ≥ d1, and that the
cross-correlation matrix of an optimal coupling (

∫
xy⊺dπ(x, y)) is full rank along with an abstract

condition on the map. Under the same conditions, Theorem 5 in [18] shows that if the rank of the
cross-correlation matrix is at most d1 − 2, an optimal map exists and, otherwise there exists an
optimal plan induced by a bi-map (viz. two-way map). To our knowledge, these are the only such
results currently available in the literature. Until quite recently, a dual representation for the QGW
distance was also unavailable. This issue was addressed in [57], where a connection between the
QGW distance and an optimization problem involving a standard optimal transport problem with a
cost depending on the decision variables (5). By leveraging this variational formulation, the authors of
that work were able to obtain the first sample complexity result for the empirical Gromov-Wasserstein
distance, proving dimension-dependent rates which suffer from the curse of dimensionality. This rate
is improved as to depend on the lesser of the two ambient dimensions in [26].

We conclude with a brief survey of recent statistical developments for SDOT. From the statistical
lens, the empirical SDOT distance converges to its population counterpart in expectation at the rate√
Nn−1/2, where n is the number of samples when the cost is Euclidean [15]. This result contrasts the

dimension dependent rate, n−1/d, of standard optimal transport with the Euclidean cost for probability
measures on P(Rd) [21, 54]. [15] equally establishes the asymptotic distribution of empirical SDOT
for general non-negative costs (upon centering by the population quantity and scaling by

√
n) and

proves sufficient conditions for asymptotic normality. Their work also covers limit distributions for
the optimal potential under certain regularity conditions. This result is used in [42] to derive limit
distributions for the Lp error (p ≥ 1) of the empirical SDOT map and for linear functionals thereof.

2 Notation and preliminaries

For a nonempty subset S of a topological space S, ℓ∞(S) denotes the Banach space of bounded
real functions on S equipped with the supremum norm ∥ · ∥∞,S = supS | · |. The closure of S ⊂ S
is denoted S

S
. We denote by P(Rd) the set of all probability measures on Rd. For a measurable
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map T : Rd → Rd′ and µ ∈ P(Rd), T♯µ ∈ P(Rd′) is the pushforward measure defined by
T♯µ(A) = µ(T−1(A)) for every Borel set A ⊂ Rd′ . For µ ∈ P(Rd), µ̄ = (Id−Eµ[X])♯µ is the
centered version of µ. For p ≥ 1, Mp(µ) =

∫
∥ · ∥pdµ is the p-th moment of µ. The support of µ is

denoted spt(µ). The weak convergence of probability measures is denoted by w→ and convergence in
distribution by d→ (in the sense of Hoffmann-Jørgensen if necessary).

For matrices A,B ∈ Rd0×d1 , ⟨A,B⟩F = Tr (A⊺B) is the Frobenius inner product, ∥ · ∥F is the
induced norm, andBF (r) = {∥·∥F ≤ r}. For a setA ⊂ Rd, conv(A) is the convex hull ofA, lin(A)
is the linear hull of A, and, if A is compact, ∥A∥∞ = supx∈A ∥x∥. N0 = N ∪ {0}. For an open set
U ⊂ Rd, C∞

M (U) denotes the set of smooth functions, f : U → R, for which maxα∈Nd
0
∥∂αf∥∞,U ≤

M . We adopt the shorthand notation a ∨ b = max(a, b) and a ∧ b = min(a, b).

2.1 Optimal transport

We now recall some standard results from optimal transport (OT) theory. Fix measurable sets
X ⊂ Rd0 and Y ⊂ Rd0 . For µ0 ∈ P(X ), µ1 ∈ P(Y) and a continuous cost function c : X ×Y 7→ R
satisfying

∫
cdµ0 ⊗ µ1 <∞ and c(x, y) ≥ a(x) + b(y) for a ∈ L1(µ0), b ∈ L1(µ1),

OTc(µ0, µ1) := min
π∈Π(µ0,µ1)

∫
cdπ = max

ψ∈L1(µ1)

{∫
ψcdµ0 +

∫
ψdµ1

}
, (2)

where ψc : x ∈ X 7→ infY (c(x, ·)− ψ) is the c-conjugate of ψ (cf. e.g. Theorem 5.10 and Remark
5.14 in [53]). The first problem is dubbed the primal problem whereas the second is called the dual
problem and both admit solutions under these conditions. Moreover, solutions to the dual problem can
be assumed to be c-concave in the sense that ψ(y) = ϕc(y) = infX (c(·, y)− ϕ) for some function ϕ.
If ψ is c-concave and solves the dual problem, we call (ψ,ψc) conjugate potentials for OTc(µ0, µ1).
We say that conjugate potentials are unique up to constants if any two pairs of conjugate potentials
(ψ0, ψ

c
0), (ψ1, ψ

c
1) are such that ψ0 = ψ1 + a and ψc0 = ψc1 − a for some a ∈ R. A solution, π, to the

primal problem is called an optimal plan for OTc(µ0, µ1) and, if π = (Id, T )♯µ0 for a measurable
map T : X → Y , we call T an optimal map.

In the semi-discrete setting, µ0 ∈ P(Rd0) is supported in X , an open ball centered at 0 with finite
radius, and µ1 ∈ P(Rd1) is supported on the points (y(i))Ni=1 = Y . In this case, the dual OT problem
(2) reads

OTc(µ0, µ1) = max
z∈RN

{
N∑
i=1

ziµ1

(
{y(i)}

)
+

∫
min

1≤i≤N

{
c(·, y(i))− zi

}
dµ0

}
. (3)

We call a solution to (3) an optimal vector for OTc(µ0, µ1).

2.2 Gromov-Wasserstein distance

We focus on the (2, 2)-GW distance between probability measures, µ0 ∈ P(Rd0), µ1 ∈ P(Rd1) with
finite fourth moments,

D(µ0, µ1) =

(
min

π∈Π(µ0,µ1)

∫∫ ∣∣∥x− x′∥2 − ∥y − y′∥2
∣∣2 dπ ⊗ π(x, y, x′, y′)

)1/2

, (4)

which admits the following variational form (see Corollary 1 in [57]),

D(µ̄0, µ̄1)
2 = D1(µ̄0, µ̄1) + D2(µ̄0, µ̄1),

D1(µ0, µ1) =

∫
∥x− x′∥4dµ0 ⊗ µ0(x, x

′) +

∫
∥y − y′∥4dµ1 ⊗ µ1(y, y

′)− 4M2(µ0)M2(µ1),

D2(µ0, µ1) = min
A∈Rd0×d1

{
32∥A∥2F + OTA(µ0, µ1)

}
,

(5)
where OTA(µ0, µ1) = OTcA(µ0, µ1) for cA : (x, y) 7→ −4∥x∥2∥y∥2 − 32x⊺Ay and we recall
that µ̄i = (Id−Eµi [X])♯µi for i = 0, 1. Of note is that D1 is an explicit constant whereas D2 is a
minimization problem with objective function,

Φ(µ0,µ1) : A ∈ Rd0×d1 7→ 32∥A∥2F + OTA(µ0, µ1). (6)
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Further, if π⋆ is optimal for (4), then A⋆ = 1
2

∫
xy⊺dπ⋆(x, y) is optimal for (6) (see the proof of

Theorem 1 in [57]). Our first result is to further characterize solutions of (6),
Theorem 1 (On minimizers of (6)). If µ0 ∈ P(Rd0), µ1 ∈ P(Rd1) are compactly supported, then

1. Φ(µ0,µ1) is locally Lipschitz continuous and coercive. If all optimal plans for OTA(µ0, µ1)

admit the same cross-correlation matrix,
∫
xy⊺dπA(x, y), then Φ(µ0,µ1) is Fréchet differen-

tiable at A ∈ Rd0×d1 with
(
DΦ(µ0,µ1)

)
[A]

(B) = 64⟨A− 1
2

∫
xy⊺dπA(x, y),B⟩F .

2. If A⋆ minimizes (6), then 2A⋆ =
∫
xy⊺dπ⋆(x, y) ∈ BF (

√
M2(µ0)M2(µ1)) for some

optimal plan π⋆ for OTA⋆(µ0, µ1). If µ0, µ1 are centered, then π⋆ solves (4).

Theorem 1 shows that all minimizers of (6) are contained in BF (
√
M2(µ0)M2(µ1)) and, given such

a minimizer, a solution to (4) can be obtained. Although point 1 appears to directly imply point 2,
since a global minimizer of a differentiable coercive function must be a critical point, we stress that if
OTA(µ0, µ1) admits multiple optimal plans, Φ(µ0,µ1) may fail to be differentiable at A. Thus, the
proof of Theorem 1 (Appendix A.1) uses the Clarke subdifferential [10] to formalize this approach.

The assumption that all optimal plans for OTA(µ0, µ1) admit the same cross-correlation matrix
appears non-trivial to verify in general. For instance, a classical result guaranteeing uniqueness
of optimal plans and existence of optimal maps (Theorem 10.28 in [53]) requires that ∇xc(x, ·) is
injective. As ∇xcA(x, y) = −8x∥y∥2 − 32Ay, this condition can fail even in anodyne situations
(e.g. 0 ∈ int(spt(µ0)) and there exists y, y′ ∈ spt(µ1) ∩ ker(A)). The failure of this condition
constitutes a roadblock to proving the existence of optimal maps for (4), called Gromov-Monge
maps. In what follows, we demonstrate that, in the semi-discrete case, a simple condition guarantees
uniqueness of optimal plans and existence of optimal maps for OTA(µ0, µ1).

3 Structural properties

In the sequel, we restrict our attention to the semi-discrete Gromov-Wasserstein (SDGW) problem
wherein µ0 ∈ P(Rd0) is supported in X , an open ball centered at 0 with finite radius, and µ1 ∈
P(Rd1) is supported on the points (y(i))Ni=1 = Y . In light of Theorem 1, in the absence of a precise
characterization of the minimizers of Φ(µ0,µ1) in (6), a condition ensuring uniqueness of optimal
couplings for OTA(µ0, µ1) will prove useful in analyzing the SDGW problem. To this end, we
consider the following assumption.
Assumption 1. µ0 ∈ P(X ) is absolutely continuous with respect to the Lebesgue measure and, for
every i ̸= j with i, j ∈ {1, . . . , N} and t ∈ R, we have that

µ0

((
cA(·, y(i))− cA(·, y(j))

)−1

(t)

)
= 0, for A ∈ Rd0×d1 . (7)

Assumption 1 involves standard conditions on µ0 as to guarantee uniqueness of optimal couplings
and existence of optimal maps for OTc with c(x, y) = h(x− y) for h strictly convex (see Theorem
1.2 in [23]). Condition (7) is related to Y and is seen to hold under the following primitive condition.
Proposition 1 (Necessary and sufficient condition on Y). Let µ0 ∈ P(X ) be absolutely continuous
with respect to the Lebesgue measure. Assumption 1 is satisfied if and only if Y is such that
y(i) − y(j) ̸∈ ker(A) for every i ̸= j ∈ {1, . . . , N} with ∥y(i)∥ = ∥y(j)∥. In particular, if
∥y(i)∥ ≠ ∥y(j)∥ for every i ̸= j, Assumption 1 holds for any A ∈ Rd0×d1 .

The proof of Proposition 1 follows essentially from the structure of the cost function, see Ap-
pendix A.2. Of note is that Proposition 1 provides a necessary and sufficient condition for Assump-
tion 1 to hold at every A ∈ Rd0×d1 simultaneously. This condition is crucial in our study of limit
distributions for the empirical SDGW distance to guarantee e.g. uniqueness up to constants of optimal
potentials for OTA(µ0, µ1) uniformly in A.

Under Assumption 1, solutions of OTA(µ0, µ1) admit the following characterization.
Proposition 2 (On solutions of OTA(µ0, µ1)). Fix A ∈ Rd0×d1 and let zA be an optimal vector for
OTA(µ0, µ1). Under Assumption 1, the optimal plan is unique and is induced by the map

TA : x ∈ X 7→ y(IzA (x)), where IzA(x) ∈ argmin1≤i≤N

(
cA(x, y(i))− zAi

)
, (8)

4



which is uniquely defined µ0-almost everywhere.

The proof of Proposition 2 is standard, see Appendix A.3 for details. The following result is a direct
consequence of Theorem 1 and Proposition 2.

Theorem 2 (Existence of Gromov-Monge maps). Let A⋆ minimize Φ(µ0,µ1). If Assumption 1 holds
at A⋆, then there exists an optimal plan for the SDGW problem which is induced by the map TA⋆

given in (8). Furthermore, A⋆ = 1
2

∑N
i=1

∫
Lag

zA
⋆
,i

xdµ0(x)
(
y(i)

)⊺
, where LagzA⋆ ,i = {x ∈ X :

i ∈ argmin1≤i≤N
(
cA⋆(x, y(i))− zA

⋆

i

)
}.

The sets Lag defined in (2) are known as Laguerre cells. Proposition 1 provides a simple condition for
verifying Assumption 1 at A⋆ along with a condition guaranteeing that it holds at every A ∈ Rd0×d1 .
To our knowledge, this is the first result providing simple, explicit conditions which guarantee the
existence of Gromov-Monge maps for (4). Indeed, as mentioned previously, other results require
symmetry of the marginals or a priori knowledge of the rank of the cross-correlation matrix of an
optimal plan for (4); such conditions are restrictive, but may hold beyond the semi-discrete setting.

Remark 1 (Structure of solutions). If Assumption 1 holds at every A ∈ Rd0×d1 then a minimizer
A⋆ of Φ(µ0,µ1) must be such that A⋆

i(·) ∈ lin (Y) for i = 1, . . . , N . This observation can be used to
reduce the dimensionality of the problem defining D2 if dim(lin(Y)) < d1. In the limiting case that
the points (y(i))Ni=1 are colinear, the resulting problem is d0 dimensional for instance. Furthermore,
this endows us with an a priori upper bound on the rank of the cross-correlation matrix for πA⋆

solving OTA⋆(µ0, µ1); such conditions are broadly useful in the structural study of the GW problem
as evidenced by Proposition 4.2.5 in [51] and Theorem 5 in [18] described in the literature review.

4 Statistical properties

Throughout, we let X1, . . . , Xn and Y1, . . . , Yn be independent and identically distributed samples
from µ0 and µ1 respectively. We let µ̂0,n = 1

n

∑n
i=1 δXi

and µ̂1,n = 1
n

∑n
i=1 δYi

denote the
corresponding empirical measures. In what follows, we consider both the sample complexity of the
empirical SDGW distance D(µ̂0,n, µ̂1,n) as well as its asymptotic distribution under proper centering
and scaling. Our analysis uses the variational formula (5) along with the dual form for semi-discrete
OT (3). Overall, our proof technique is similar to that used to treat the standard SDOT cost [15].
However, we stress that the need for uniformity over costs cA substantially complicates the analysis
and requires developing new techniques.

4.1 Sample complexity

To derive the expected rate of convergence of D(µ̂0,n, µ̂1,n) to D(µ0, µ1), we show that the associated
potential vectors and their cA-conjugates lie in suitable classes of functions. As such, let M =
1
2∥X∥∞∥Y∥∞ ≥ 1

2

√
M2(ν0)M2(ν1) for any ν0 ∈ P(X ), ν1 ∈ P(Y) and define

G0,K =

{
x ∈ X 7→ min

1≤i≤N

{
cA(x, y(i))− zi

}
: A ∈ BF (M), z ∈ RN , ∥z∥∞ ≤ K

}
,

G1,K = {f : Y → R : ∥f∥∞,Y ≤ K} .

We show in Proposition 3 ahead that a dual vector to OTA(ν0, ν1) can always be identified with an el-
ement of G1,K for a choice ofK that is independent of (ν0, ν1) ∈ P(X )×P(Y) and A ∈ BF (M) (a
straightforward modification of that argument shows that K = 8∥X∥∞∥2Y∥2∞ + 64M∥X∥∞∥Y∥∞
suffices). Evidently, its cA-conjugate lies in G0,K when A ∈ BF (M). In what follows, we iden-
tify ν0 ∈ P(X ) and ν1 ∈ P(Y) with elements of ℓ∞(G0,K) and ℓ∞(G1,K) respectively by setting∫
gidνi = νi(gi) for every gi ∈ Gi,K and i = 0, 1. We now establish the expected rate of convergence

of µ̂i,n to µi in ℓ∞(Gi,K) (i = 0, 1).

Lemma 1. The classes G0,K and G1,K are, respectively, µ0-, µ1-Donsker. Moreover,

E
[
∥µ̂0,n − µ0∥∞,G0,K

]
≲K,Y,X

√
N + d0d1

n
and E

[
∥µ̂1,n − µ1∥∞,G1,K

]
≲K

√
N

n
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The proof of Lemma 1 follows similar lines to the proof of Theorem 2.6 in [15] with the added
complexity that the costs depend on A varying in BF (M). The crux of the argument is that these
function classes are indexed by parameters varying in compact subsets of RN+d0d1 for G0,K or RN
for G1,K and hence are simple enough as to admit finite bracketing entropy and uniform entropy
respectively (cf. e.g. [50]) whilst containing all relevant optimal potentials. The derived rates are
similar to that obtained in [15] for SOT with the addition of the factor d0d1 to account for the varying
costs, see Appendix A.4 for full details. With this, we obtain the first sample complexity results for
the SDGW problem.
Theorem 3. Let R = diam(X ) ∨ diam(Y), then

E
[
|D(µ0, µ1)

2 − D(µ̂0,n, µ̂1,n)
2|
]
≲K,X ,Y

(
2R4 +

√
N + d0d1 +

√
N
)
n−

1/2,

E [|D(µ0, µ1)− D(µ̂0,n, µ̂1,n)|] ≲K,X ,Y D(µ0, µ1)
−1

(
2R4 +

√
N + d0d1 +

√
N
)
n−

1/2.

The proof of Theorem 3 (Appendix A.5) leverages the variational form of the SDGW problem
(5) along with the existence of a minimizer of Φ(ν0,ν1) in BF (M) for any choice of (ν0, ν1) ∈
P(X )× P(Y) (see Theorem 1). With this, the question of sample complexity for empirical SDGW
reduces to that of empirical OT uniformly over the collection of costs (cA)A∈BF (M) which can be
addressed using Lemma 1. Of note is that D(µ0, µ1) > 0 in the semi-discrete case.

4.2 Limit distribution theory

We now derive the asymptotic distribution of the empirical SDGW distance. Our approach is based
on the extended functional delta method. This approach requires deriving a first order expansion of
the SDGW distance as a function of its marginals and proving that the relevant empirical processes
converge in a suitable space.

Precisely, we treat D as a functional on the set

P = {ν0 ⊗ ν1 : ν0 ∈ P(X ), spt(ν0) ⊂ spt(µ0), ν1 ∈ P(Y)} ,

which we treat as a subset of the space ℓ∞(F⊕
K), where F⊕

K = {f0 ⊕ f1 : f0 ∈ F0,K , f1 ∈ G1,K},
for F0,K = C∞

K (X ) +H0,K ∪ {0},

H0,K =

{
x ∈ X 7→ min

1≤i≤N

{
cA(x− ξ, y(i))− zi

}
: A ∈ BF (M), z ∈ RN , ∥z∥∞ ≤ K, ξ ∈ X

}
.

Here, for any ν0 ⊗ ν1 ∈ P and f0 ⊕ f1 ∈ F⊕
K , ν0 ⊗ ν1(f0 ⊕ f1) = ν0(f0) + ν1(f1) =

∫
f0dν0 +∫

f1dν1. Note that τ : {(ν0, ν1) ∈ P(X ) × P(Y) : spt(ν0) ⊂ spt(µ0)} 7→ ν0 ⊗ ν1 ∈ P is
one-to-one (see Proposition 6 in Appendix B), hence any functional on the latter set can be identified
with a functional on P; for convenience, we denote both functionals with the same symbol.

In what follows it will be convenient to work with the following extensions of the optimal vector and
its cA-conjugate which we call extended potentials.
Definition 1 (Extended potentials). Let X ◦ = 2X and Y◦ be an open ball centered at 0 with radius
r > 2∥Y∥∞. Let (ν0, ν1) ∈ P(X ◦) × P(Y◦) be such that ν1 is distributed on N points (y(i))Ni=1.
For A ∈ Rd0×d1 , let zA be an optimal vector for OTA(ν0, ν1). Then, the extended potentials for
OTA(ν0, ν1) are given by

φA : x ∈ X ◦ 7→ min
1≤i≤N

{
cA(x, y(i))− zAi

}
,

ψA : y ∈ Y◦ 7→ inf
x∈X◦

{
cA(x, y)− φA(x)

}
.

These potentials are defined on X ◦ and Y◦, as if ν ∈ P(Rd) is such that spt(ν) ⊂ B(r) for r > 0,
then ∥Eν [X]∥ ≤ Eν∥X∥ ≤ ∥ spt(ν)∥∞ < r, so B(r) − Eν [X] ⊂ 2B(r). Consequently, the
extended potentials (φA, ψA) are well-defined on spt(ν̄0)× spt(ν̄1) for any ν0 ⊗ ν1 ∈ P.

The extended potentials satisfy many of the useful properties exhibited by standard optimal potentials.
Among other results, we estabish that ψA is a proper extension of zA, proofs can be found in
Appendix A.6.
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Proposition 3 (Properties of extended potentials). Fix ν0 ∈ P(X ◦), ν1 ∈ P(Y◦) with spt(ν1) =
(ȳ(i))Ni=1, and A ∈ BF (M). Let zA be an optimal vector for OTA(ν0, ν1) and (φA, ψA) be
extended potentials. Then,

1. φA and ψA are concave and Lipschitz continuous with a shared Lipschitz constant which is
independent of A, ν0, ν1.

2. let Λj =
{
x ∈ X ◦ : argmin1≤i≤N

(
cA

(
x, y(i)

)
− zAi

)
= {j}

}
for j = 1, . . . , N . If As-

sumption 1 holds at A, then (Λj)
N
j=1 partitions X ◦ up to a measure zero set and φA is

differentiable at x ∈ Λj with

∇φA(x) = −8x∥y(j)∥2 − 32Ay(j), D2φA(x) = −8 Id ∥y(j)∥2.

3. For i = 1, . . . , N , ψA
(
ȳ(i)

)
= zAi . Further, zA, φA, ψA can be chosen such that ∥zA∥∞∨

∥φA∥∞,X◦ ∨ ∥ψA∥∞,Y◦ ≤ CM,X◦,Y◦ , where CM,X◦,Y◦ depends only on M,X ◦,Y◦.

4. If Assumption 1 holds at A, spt(ν0) has negligible boundary, and int(spt(ν0)) is connected,
then the pair (φA, ψA) is unique up to additive constants on int(spt(ν0))× spt(ν1).

With Proposition 3 in hand, we show stability of the SDGW distance in the sense of Hadamard.
Definition 2 (Hadamard directional derivative [41, 44]). Let D,E be normed spaces and fix a
non-empty set Θ ⊂ D. For θ ∈ Θ, the tangent cone to Θ at θ is given by

TΘ(θ) =
{
h ∈ D : h = lim

n→∞

θn − θ

tn
, for some θn ∈ Θ, θn → θ, tn ↓ 0

}
.

A map f : Θ → E is Hadamard directionally differentiable at θ ∈ Θ if there exists a map f ′θ :
TΘ(θ) → E satisfying

lim
n→∞

f(θ + tnhn)− f(θ)

tn
= f ′θ(h),

for any h ∈ TΘ(θ), tn ↓ 0, and hn → h in D with θ + tnhn ∈ Θ.

In our application, D is a functional on P ⊂ ℓ∞(F⊕
K). It is readily seen that P is convex as a

subset of ℓ∞(F⊕
K), so µ0 ⊗ µ1 + t(ν0 ⊗ ν1 − µ0 ⊗ µ1) ∈ P for t ∈ [0, 1] and TP(µ0 ⊗ µ1) =

{t−1(ν0 ⊗ ν1 − µ0 ⊗ µ1) : ν0 ⊗ ν1 ∈ P, t > 0}
ℓ∞(F⊕

K)
[41]. Given this expression, if f0 ⊕ f1 ∈

F⊕
K , then for any η ∈ TP(µ0 ⊗ µ1) and α ∈ R, αη(f0 ⊕ f1) = limn→∞ t−1

n (ν0,n ⊗ ν1,n − µ0 ⊗
µ1)(α(f0 ⊕ f1)) for some tn > 0, ν0,n ⊗ ν1,n ∈ P such that η extends uniquely to αF⊕

K . Such
extensions are used in the following results.

Theorem 4 (Stability of SDGW). Assume that ȳ(i) = y(i) − Eµ1
[X] (i = 1, . . . , N) is such that

∥ȳ(i)∥ ≠ ∥ȳ(j)∥ for i ̸= j, µ̄0 satisfies Assumption 1, spt(µ̄0) has a negligible boundary, and
int (spt(µ̄0)) is connected. Then, the map ν0 ⊗ ν1 ∈ P 7→ D(ν̄0, ν̄1)

2 is Hadamard directionally
differentiable at µ0 ⊗ µ1 with derivative

η ∈ TP(µ0 ⊗ µ1) 7→ η (f0 ⊕ f1) + inf
argminBF (M)(Φ(µ̄0,µ̄1))

{
η
(
L0(φ

(·))⊕ L1(ψ
(·))

)}
,

where fi = 2
∫
∥ · −x∥4dµi(x)− 4M2(µi)

∫
∥ · −Eµi

[X]∥2 for i = 0, 1, (φA, ψA) is any pair of
extended potentials for OTA(µ̄0, µ̄1) with A ∈ BF (M), and

L0(φ
(·)) : x ∈ X 7→ φ(·)(x− Eµ0

[X])− Eµ̄0
[∇φ(·)(X)]⊺x,

L1(ψ
(·)) : y ∈ Y 7→ ψ(·)(y − Eµ1

[X])− 8E(X,Y )∼π(·) [∥X∥2Y ]⊺y,

where πA is the unique optimal plan for OTA(µ̄0, µ̄1).

The proof of Theorem 4 relies on a connection between Hadamard directional differentiability and
Gâteaux directional differentiability (on P−µ0⊗µ1) for Lipschitz continuous maps Proposition 7 in
Appendix B. Using the decomposition D(ν̄0, ν̄1)

2 = D1(ν̄0, ν̄1)+D2(ν̄0, ν̄1), it suffices to separately
prove Hadamard directional differentiability of each summand at µ0 ⊗ µ1. The Hadamard directional

7



derivative of D1(ν̄0, ν̄1) is relatively straightforward to derive, whereas that of D2(ν̄0, ν̄1) requires a
more careful analysis.

Pending differentiability of ν0 ⊗ ν1 ∈ P 7→ OT(·)(ν̄0, ν̄1) ∈ ℓ∞(BF (M)), the chain rule for
Hadamard directionally differentiable maps along with a known result establishing Hadamard dif-
ferentiability of infimum-type functionals [6] prove differentiability of D2(ν̄0, ν̄1) given its vari-
ational form (5). A major obstacle to proving differentiability of OT(·)(ν̄0, ν̄1) is that the cen-
tered perturbations of µ1 may not be supported on Y − Eµ1

[X]. To account for this, we write
t−1

(
OT(·)(µ̄0,t, µ̄1,t)− OT(·)(µ̄0, µ̄1)

)
, for µi,t = µi + t(νi − µi) (i = 0, 1), ν0 ⊗ ν1 ∈ P as

t−1
(
OT(·)(µ̄0,t, µ̄1,t)− OT(·)(µ̄0,t, (Id−Eµ1

[X])♯µ1,t)
)

+ t−1
(
OT(·)(µ̄0,t, (Id−Eµ1

[X])♯µ1,t)− OT(·)(µ̄0, µ̄1)
)
,

and analyze each term separately. Complete details are included in Appendix A.7.

Of note is that Theorem 4 requires the optimal potentials to be unique up to additive constants for
every A ∈ BF (M), which can be guaranteed by appealing to Proposition 1 and Proposition 3.

Given Theorem 4, the subsequent limit distribution result follows by applying the extended func-
tional delta method [17, 20, 41, 45] once Donskerness of the class F0,K has been established (see
Appendix A.9 for a complete proof).

Theorem 5 (Semi-discrete GW limit distribution). In the setting of Theorem 4, for any K > 0, there
exists a tight µ0-Brownian bridge process Gµ0 in ℓ∞(F0,K), and a tight µ1-Brownian bridge process
Gµ1 in ℓ∞(G1,K) for which
√
n
(
D(µ̂0,n, µ̂1,n)

2 − D(µ0, µ1)
2
)

d→ Gµ0 (f0) +Gµ1(f1) + inf
argminBF (M)(Φ(µ̄0,µ̄1))

{
Gµ0

(
L0(φ

(·))
)
+Gµ1

(
L1(ψ

(·))
)}

.

In the absence of conditions guaranteeing the uniqueness of minimizers to Φ(µ̄0,µ̄1), the derived limit
distribution involves an inf over Gaussian processes and hence may fail to be normal. Remark that
the power of 2 in the empirical semi-discrete GW distance can be shed by applying the standard delta
method with the function

√
(·).

5 Conclusion

In this paper, we have provided a primitive condition which guarantees the existence of Gromov-
Monge maps for the SDGW problem. To our knowledge, this is the first result that does not
require high level conditions such as symmetry of the marginals or knowledge of the rank of the
cross-correlation matrix of an optimal coupling. This condition also enabled us to establish the limit
distribution of the empirical SDGW problem, where it is used to guarantee uniqueness of the extended
potentials up to constants. To complement this asymptotic result, we also derivethe finite-sample
performance of the empirical SDGW estimator, showing that it converges to its population-level
counterpart in expectation at a parametric rate. This result is in stark contrast to the dimension-
dependent rate obtained in the continuous regime [26, 57].
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A Proof of main results

A.1 Proof of Theorem 1

To simplify the proof of Theorem 1, we separately prove each statement as its own lemma.
Lemma 2. Φ(µ0,µ1) is Fréchet differentiable at A ∈ Rd0×d1 with derivative

(
DΦ(µ0,µ1)

)
[A]

(B) =

64⟨A − 1
2

∫
xy⊺dπA(x, y),B⟩F provided all optimal couplings for OTA(µ0, µ1) admit the same

cross-correlation matrix 1
2

∫
xy⊺dπA(x, y).

Proof. It is easy to see that ∥ · ∥2F is Fréchet differentiable at A with derivative 2⟨A, ·⟩F . For any
H ∈ Rd0×d1 , we have that

OTA+H(µ0, µ1)− OTA(µ0, µ1) ≤
∫
cA+HdπA −

∫
cAdπA = −32

∫
x⊺HydπA(x, y), (9)

for any choice of optimal plan πA for OTA(µ0, µ1). Similarly,

OTA+H(µ0, µ1)− OTA(µ0, µ1) ≥ −32

∫
x⊺HydπA+H(x, y), (10)

for any choice of optimal coupling πA+H for OTA+H(µ0, µ1). Now, consider an arbitrary sequence
Hn converging to 0. Note that

sup
x∈spt(µ0)
y∈spt(µ1)

|cA+Hn
(x, y)− cA(x, y)| = sup

x∈spt(µ0)
y∈spt(µ1)

|32x⊺Hny| ≤ 32 sup
spt(µ0)

∥·∥ sup
spt(µ1)

∥·∥∥Hn∥F → 0,

hence cA+Hn
→ cA uniformly on spt(µ0) × spt(µ1). It follows from Theorem 5.20 in [53] that,

for any subsequence n′ of n there exists a further subsequence n′′ along which πA+Hn′′
w→ π

for some optimal coupling π for OTA(µ0, µ1). Thus
∫
xy⊺dπA+Hn′′ (x, y) →

∫
xy⊺dπ(x, y) =∫

xy⊺dπA(x, y) by assumption. As the limit is the same regardless of the choice of subsequence,
conclude that

∫
xy⊺dπA+H(x, y) →

∫
xy⊺dπA(x, y) as H → 0, thus

∥H∥−1
F

∣∣∣∣OTA+H(µ0, µ1)− OTA(µ0, µ1) + 32

∫
x⊺HydπA(x, y)

∣∣∣∣
≤ 32

∥∥∥∥∫ xy⊺dπA+H(x, y)−
∫
xy⊺dπA(x, y)

∥∥∥∥
F

→ 0,

which proves the claim.

Lemma 3. Φ(µ0,µ1) is locally Lipschitz continuous and coercive.

Proof. Fix a compact set K ⊂ Rd0×d1 . For any A,A′ ∈ K, it follows from (9) and (10) that,

OTA′(µ0, µ1)− OTA(µ0, µ1) ≤ −32

∫
x⊺(A′ −A)ydπA(x, y)

≤ 32∥A′ −A∥F
∥∥∥∥∫ xy⊺dπA(x, y)

∥∥∥∥
F

,

OTA′(µ0, µ1)− OTA(µ0, µ1) ≥ −32∥A′ −A∥F
∥∥∥∥∫ xy⊺dπA′(x, y)

∥∥∥∥
F

,

that is,

|OTA′(µ0, µ1)− OTA(µ0, µ1)| ≤ 32∥A′−A∥F
(∥∥∥∥∫ xy⊺dπA′(x, y)

∥∥∥∥
F

∨∥∥∥∥∫ xy⊺dπA(x, y)

∥∥∥∥
F

)
.

Observe that, for any coupling π ∈ Π(µ0, µ1),
∥∥∫ xy⊺dπ(x, y)∥∥

F
≤

∫
∥x∥∥y∥dπ(x, y) ≤√

M2(µ0)M2(µ1) by Jensen’s inequality and the Cauchy-Schwarz inequality. Conclude that

|OTA′(µ0, µ1)− OTA(µ0, µ1)| ≤ 32
√
M2(µ0)M2(µ1)∥A′ −A∥F .

12



Further,
∣∣∥A∥2F − ∥A′∥2F

∣∣ = (∥A∥F + ∥A′∥F ) |∥A∥F − ∥A′∥F | ≤ 2 supK ∥ · ∥F ∥A−A′∥F .

To show coercivity, observe that, for any A ∈ Rd0×d1 and π ∈ Π(µ0, µ1),∫
−4∥x∥2∥y∥2 − 32x⊺AydπA(x, y) ≥ −4

√
M4(µ0)M4(µ1)− 32

√
M2(µ0)M2(µ1)∥A∥F

Hence 32∥A∥F + OTA(µ0,µ1)
∥A∥F

→ ∞ as ∥A∥F → ∞ proving coercivity.

Lemma 4. Let π ∈ Π(µ0, µ1) be arbitrary, then
∫
xy⊺dπ(x, y) ∈ BF (

√
M2(µ0)M2(µ1)).

Proof. By Jensen’s inequality,
∥∥∫ xy⊺dπ(x, y)∥∥

F
≤

∫
∥xy⊺∥F dπ(x, y) =

∫
∥x∥∥y∥dπ(x, y).

This final term is bounded above by
√∫

∥x∥2dπ(x, y)
∫
∥y∥2dπ(x, y) =

√
M2(µ0)M2(µ1) by

the Cauchy-Schwarz inequality.

We now prove point 2, concluding the proof of Theorem 1.

Proof of Theorem 1 2. By Rademacher’s theorem, Φ(µ0,µ1) is differentiable on a set Λ of full measure
and, by Theorem 8.1 in [9], the Clarke subdifferential of Φ(µ0,µ1) at A ∈ Rd0×d1 can be defined as
∂Φ(µ0,µ1)(A) = conv

({
limΩ∋An→A(DΦ(µ0,µ1))[An]

})
where Ω is any subset of Λ for which Λ\Ω

is negligible and it is presupposed that the limit converges. From Lemma 2, (DΦ(µ0,µ1))[An] can be
identified with 64

(
An − 1

2

∫
xy⊺dπAn(x, y)

)
where πAn is any optimal plan for OTAn(µ0, µ1) (by

assumption all such cross-correlation matrices are identical). As An → A, it follows from the proof
of Lemma 2 that πAn

w→ πA up to a subsequence, where πA is some optimal plan for OTA(µ0, µ1).
It follows that ∂Φ(µ0,µ1)(A) = 64A − 32 conv

({∫
xy⊺dπA(x, y) : ∃ πAn

w→ πA

})
such that

∂Φ(µ0,µ1)(A) = D
(
Φ(µ0,µ1)

)
[A]

for A ∈ Λ. If A ̸∈ Λ, the previous convex hull is simply a subset
of all cross-correlation matrices for some optimal plan for OTA(µ0, µ1). By Proposition 2.3.2 in
[11], if Ā is a local minimizer for Φ(µ0,µ1), then 0 ∈ ∂Φ(µ0,µ1)(Ā); in any case there must exist an
optimal plan πĀ for OTĀ(µ0, µ1) satisfying 2Ā =

∫
xy⊺dπĀ(x, y) ∈ BF (

√
M2(µ0)M2(µ1)) by

Lemma 4. As the global minimum is known to be attained, at least one local minimizer is globally
optimal.

Now, assume that µ0, µ1 are centered. It is straightforward to see that if A⋆ solves (6), then the
associated optimal plan πA⋆ satisfies

D1(µ0, µ1) + D2(µ0, µ1) =

∫∫ ∣∣∥x− x′∥2 − ∥y − y′∥2
∣∣ dπA⋆ ⊗ πA⋆(x, y, x′, y′),

such that πA⋆ is optimal for (4) (see Section 5.3 in [57] for details).

A.2 Proof of Proposition 1

It suffices to show that cA(·, y(i)) − cA(·, y(j)) is nonconstant on any set of positive (Lebesgue)
measure. To this end, for any x ∈ X and i ̸= j, observe that

∇x

(
cA(x, y(i))− cA(x, y(j))

)
= −8x

(
∥y(i)∥2 − ∥y(j)∥2

)
− 32A(y(i) − y(j)).

As such, if ∥y(i)∥ ≠ ∥y(j)∥, cA(x, y(i))− cA(x, y(j)) is constant on at most a set of measure zero,
as its gradient vanishes on at most one point. If ∥y(i)∥ = ∥y(j)∥, cA(·, y(i)) ̸≡ cA(·, y(j)) on X if
and only if y(i) − y(j) ̸∈ ker(A). □

A.3 Proof of Proposition 2

We first address uniqueness of the optimal plan. For any z ∈ RN , let ϕz : x ∈ X 7→
min1≤i≤N

{
cA(x, y(i))− zi

}
. If x ∈ X is such that ϕz(x) + ϕcz(y

(i)) = cA(x, y(i)) and
ϕz(x)+ϕ

c
z(y

(j)) = cA(x, y(j)) for some i ̸= j, then cA(x, y(j))−cA(x, y(i)) = ϕcz(y
(j))−ϕcz(y(i)).
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By Assumption 1, the previous equality occurs on a µ0-negligible set. It follows from Theorem 5.30
in [53] that the optimal plan for OTA(µ0, µ1) is unique and induced by a map.

We now derive the expression for the optimal map. Let ζ(y(i)) = zAi for i = 1, . . . , N . By (2) and
strong duality, ∫

ϕzA(x) + ζ(y)− cA(x, y)dπA(x, y) = 0.

As ϕzA(x) + ζ(y) ≤ cA(x, y) for (x, y) ∈ X × Y by definition, it follows that ϕzA(x) + ζ(y) =
cA(x, y) πA almost surely. As πA is induced by a map TA : X → Y , ϕzA(x) = cA(x, TA(x))−
ζ(TA(x)) µ0 almost everywhere. However, ϕzA(x) = min1≤i≤N

{
cA(x, y(i))− ζ(y(i))

}
, so the

prior equality can only occur if TA(x) = y(IzA (x)); by Assumption 1, IzA(x) is a singleton for µ0

almost every x ∈ X . □

A.4 Proof of Lemma 1

For any A,A′ ∈ BF (M) and z, z′ ∈ RN with ∥z∥∞ ∨ ∥z′∥∞ ≤ K,∣∣∣∣ min
1≤i≤N

{
cA(x, y(i))− zi

}
− min

1≤i≤N

{
cA′(x, y(i))− z′i

}∣∣∣∣ ≤ max
1≤i≤N

| − 32x⊺(A−A′)y(i) − (zi − z′i)|

≤ C(∥z − z′∥∞ + ∥A−A′∥F ),

for C = 1 ∨ 32∥X∥∞∥Y∥∞. Let T =
{
(z,A) ∈ RN ×BF (M) : ∥z∥∞ ≤ K

}
and identify it with

a subset of RN+d0d1 via τ : (z,A) ∈ T 7→ (z,A(·)1, . . . , A(·)d1). Let ∥τ(z,A)∥τT = ∥z∥∞ +

∥(A(·)1, · · · , A(·)d1)∥. By Theorem 2.7.11 in [50], N[ ](2Cϵ,G0,K , L
2(µ0)) ≤ N(ϵ, τT, ∥ · ∥τT ).

We now upper bound the covering number of τT . Observe that τT ⊂ BτT (K +M), the closed
ball in RN+d0d1 of radius K +M with respect to ∥ · ∥τT . The following argument is standard
(cf. e.g. Lemma 4.14 in [33]). Let Sϵ be an ϵ-net for BτT (K +M) with respect to ∥ · ∥τT .
By definition, ∪x∈Sϵ

(
x+ ϵ

2BτT (1)
)
⊂

(
K +M + ϵ

2

)
BτT (1) and, as the sets on the left hand

side are disjoint, |Sϵ|
(
ϵ
2

)N+d0d1
vol (BτT (1)) ≤

(
K +M + ϵ

2

)N+d0d1
vol (BτT (1)) i.e. |Sϵ| ≤(

2(K+M)
ϵ + 1

)N+d0d1
. It follows that N(ϵ, τT, ∥ · ∥τT ) ≤

(
2(K+M)

ϵ 1{ϵ≤K+M} + 1
)N+d0d1

.

We now provide an envelope for the class G0,K . For any j ∈ {1, . . . , N},

min
1≤i≤N

{
−8∥x∥2∥y(i)∥2 + 32∥x∥∥A∥F ∥y(i)∥ − zi

}
≤ min

1≤i≤N

{
cA(x, y(i))− zi

}
≤ −8∥x∥2∥y(j)∥2 + 32∥x∥∥A∥F ∥y(j)∥ − zj .

Letting,
∣∣min1≤i≤N

{
cA(x, y(i))− zi

}∣∣ ≤ 8∥x∥2∥Y∥2∞ + 32M∥Y∥∞∥x∥+K = F (x) such that
F (x) serves as an envelope for G0,K .

By Theorem A.2. in [49],
√
nE

[
∥µ̂0,n − µ0∥∞,G0,K

]
≲ ∥F∥L2(µ0)

∫ 1

0

√
1 + logN[ ](ϵ∥F∥L2(µ0),G0,K , L2(µ0))dϵ,

≤ 2C(K +M)

∫ ∥F∥
L2(µ0)

2C(K+M)

0

√
1 + (N + d0d1) log

(
2

ϵ
1{ϵ≤1} + 1

)
dϵ,

≤ ∥F∥L2(µ0) + 2C(K +M)
√
N + d0d1C

′,

forC ′ =
∫∞
0

√
log

(
2
ϵ1{ϵ≤1} + 1

)
dϵ <∞, where the first inequality holds up to a universal constant.

Consequently,
√
n
[
E∥µ̂0,n − µ0∥∞,G0,K

]
≲K,Y,X (N + d0d1)

1/2 proving the claim. Finiteness of
the first integral in the display implies µ0-Donskerness of G0,K by Theorem 3.1 in [37].
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Next, let f, g ∈ G1,K . Then, for any ν ∈ P (Y),

∥f − g∥2L2(ν) =

N∑
i=1

(
f(y(i))− g(y(i))

)2

ν({y(i)}) ≤ max
1≤i≤N

(
f(y(i))− g(y(i))

)2 N∑
i=1

ν({y(i)}),

that is, ∥f − g∥L2(ν) ≤ ∥zf − zg∥∞, where zf =
(
f
(
y(1)

)
, . . . , f

(
y(N)

))
satisfies ∥zf∥∞ ≤

K and zg is defined analogously. Thus, N(ϵ,G1,K , L
2(ν)) ≤ N(ϵ, {∥ · ∥∞ ≤ K}, ∥ · ∥∞) ≤(

2K
ϵ 1{ϵ≤K} + 1

)N
as before and, from Equation 2 in [49],

√
nE

[
∥µ̂1,n − µ1∥∞,G1,K

]
≲ K

∫ 1

0

sup
ν∈P(Y)

√
1 + logN(ϵK,G1,K , L2(ν))dϵ,

≤
∫ K

0

√
1 +N log

(
2

ϵ
1{ϵ≤1} + 1

)
dϵ,

≤ K +
√
NC ′,

such that
√
n
[
E∥µ̂1,n − µ1∥∞,G1,K

]
≲K N 1/2. Again, finiteness of the above integral implies that

G1,K is µ1-Donsker (see Theorem 2.5.2 in [50]). □

A.5 Proof of Theorem 3

Assume without loss of generality that µ0, µ1 are centered. By equations (26)-(28) in the proof of
Theorem 3 in [57],

E
[∣∣D(µ̂0,n, µ̂1,n)

2 − D(µ0, µ1)
2
∣∣] ≲ 2R4n−

1/2 + E [|D2(µ̂0,n, µ̂1,n)− D2(µ0, µ1)|] ,

up to universal constants. By the variational formulation of the SDGW problem (5) and Theorem 1,

|D2(µ̂0,n, µ̂1,n)− D2(µ0, µ1)| ≤ sup
A∈BF (M)

|OTA(µ̂0,n, µ̂1,n)− OTA(µ0, µ1)| .

For any A ∈ BF (M), let zA, zA,n be optimal vectors for OTA(µ0, µ1) and OTA(µ̂0,n, µ̂1,n)

respectively with ∥zA∥ ∨ ∥zA,n∥ ≤ K. Let ψA(y(i)) = zAi , ψA
n (y(i)) = zA,ni for i = 1, . . . , N .

Then,

OTA(µ̂0,n, µ̂1,n)− OTA(µ0, µ1) ≤
∫
(ψA
n )cAd(µ̂0,n − µ0) +

∫
ψA
n d(µ̂1,n − µ1),

OTA(µ̂0,n, µ̂1,n)− OTA(µ0, µ1) ≥
∫
(ψA)cAd(µ̂0,n − µ0) +

∫
ψAd(µ̂1,n − µ1).

As ψA, ψA
n ∈ G1,K and (ψA)cA , (ψA

n )cA ∈ G0,K , |OTA(µ̂0,n, µ̂1,n) − OTA(µ0, µ1)| ≤ ∥µ̂0,n −
µ0∥∞,G0,K

+ ∥µ̂1,n − µ1∥∞,G1,K
. Conclude from Lemma 1 that

E
[∣∣D(µ̂0,n, µ̂1,n)

2 − D(µ0, µ1)
2
∣∣] ≲K,X ,Y (

2R4 +
√
N + d0d1 +

√
N
)
n−

1/2.

The claimed result follows from the inequality |x− y| ≤ y−1|x2 − y2| for x ≥ 0, y > 0; noting that
D(µ0, µ1) nullifies if and only if µ0 and µ1 can be related by an isometric map. □

A.6 Proof of Proposition 3

For 1, concavity follows from the fact that φA and ψA are pointwise infima of concave functions (cf.
e.g. Theorem 5.5 in [39]). As for Lipschitz continuity, if x, x′ ∈ X ◦ and

|φA(x)− φA(x′)| ≤ max
1≤i≤N

∣∣∣cA (
x, y(i)

)
− cA

(
x′, y(i)

)∣∣∣ .
Further,

∣∣cA (
x, ȳ(i)

)
− cA

(
x′, ȳ(i)

)∣∣ ≤ 4∥Y◦∥2∞
∣∣∥x∥2 − ∥x′∥2

∣∣ + 32∥Y◦∥∞M∥x − x′∥, and∣∣∥x∥2 − ∥x′∥2
∣∣ = |∥x∥ − ∥x′∥| (∥x∥+ ∥x′∥) ≤ 2∥X ◦∥∞∥x − x′∥, proving Lipschitz continuity

with a constant which is independent of A, ν0, ν1. A similar argument applies to ψA. The maximum
of the two Lipschitz constants serves as a shared Lipschitz constant.
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As for 2, it follows from Rademacher’s theorem and (1) (cf. e.g. Theorem 9.60 in [40]) that
φA is differentiable a.e. on X ◦. On the other hand, φA is differentiable at x ∈ X ◦ if and only
conv

({
∇xcA(x, ȳ(i)) : i ∈ argmin1≤i≤N

(
cA(x, ȳ(i))− zAi

)})
is a singleton by Danskin’s theo-

rem (see Proposition B.25 in [4] and Theorem 25.1 in [39], observing that cA(·, ȳ(i)) is concave).
As ∇xcA(x, ȳ(i)) = −8x∥ȳ(i)∥2 − 32Aȳ(i), ∇xcA(x, ȳ(i)) = ∇xcA(x, ȳ(j)) for at most one x if

∥ȳ(i)∥ ≠ ∥ȳ(j)∥ for i ̸= j (namely x = 4A
(ȳ(i)−ȳ(j))

∥ȳ(j)∥2−∥ȳ(i)∥2 ) and at no points x if ∥ȳ(i)∥ = ∥ȳ(j)∥
for i ̸= j as ȳ(i) − ȳ(j) ̸∈ ker(A) by Proposition 1. As such, (Λj)Nj=1 must partition X ◦ up to a
negligible set and ∇φA = ∇xcA(x, ȳ(j)) on Λj . It is easy to see that Λj is an open set such that
D2φA can be computed classically on Λj .

To prove 3, by optimality of zA, φA(x) + zAi = cA(x, ȳ(i)) πA almost surely for any optimal
coupling πA for OTA(ν0, ν1) as in the proof of Proposition 2. Thus, there exists x(i) ∈ X ◦ for
which φA(x(i)) + zAi = cA(x(i), ȳ(i)) for i = 1, . . . , N . Hence,

ψA(ȳ(i)) = inf
X◦

{
cA(x, y(i))− φA(x)

}
≥ zAi ,

and this lower bound is attained at x(i), so ψA(ȳ(i)) = zAi for i = 1, . . . , N . For the second part,

−∥cA∥∞,X◦×Y◦ − max
1≤i≤N

zAi ≤ min
1≤i≤N

{
cA(x, ȳ(i))− zAi

}
≤ ∥cA∥∞,X◦×Y◦ − max

1≤i≤N
zAi ,

−∥cA∥∞,X◦×Y◦ − sup
X◦

φA ≤ inf
X◦

(
cA(·, y)− φA

)
≤ ∥cA∥∞,X◦×Y◦ − sup

X◦
φA,

as zA + a and its c-transform are also optimal for the dual problem, we may assume that
max1≤i≤N z

A
i = 0 such that |φA| ≤ ∥cA∥∞,X◦×Y◦ on X ◦ by the top equation, and, from the

bottom equation, −2∥cA∥∞,X◦×Y◦ ≤ ψA ≤ ∥cA∥∞,X◦×Y◦ on Y◦. As in 1, ∥cA∥∞,X◦×Y◦ can be
bounded by a constant which does not depend on A.

For 4, let πA be the unique optimal plan for OTA(ν0, ν1) (see Proposition 2). As before,
φA(x) = cA(x, y)−ψA(y) πA-almost everywhere. As φA is differentiable a.e. on X ◦, ∇φA(x) =
∇xcA(x, y) πA-almost everywhere. As spt(µ̄0) has negligible boundary, ∇φA is uniquely defined
(up to a negligible set) on int(spt(µ̄0)) which is connected, hence by a simple adaption of Theorem
2.6 in [14], any other extended potentials (φ̃A, ψ̃A) must satisfy ∇φA = ∇φ̃A almost everywhere
on int(spt(µ̄0)), so φ̃A = φA + a on int(spt(µ̄0)) for some a ∈ R. By the previous deliberations,
for i = 1, . . . , N , ψ̃A(ȳ(i)) = cA(x, ȳ(i))− φ̃A(x) = cA(x, ȳ(i))− (φA(x) + a) = ψA(ȳ(i))− a
on a set of positive µ0 measure. □

A.7 Proof of Theorem 4

The proof of Theorem 4 is broken down as follows. Appendix A.7.1 proves Hadamard directional
differentiability of D1(ν̄0, ν̄1) at µ0 ⊗ µ1 and Appendix A.8 proves differentiability of D2(ν̄0, ν̄1) at
µ0 ⊗ µ1. Together, this shows that D(ν̄0, ν̄1)2 = D1(ν̄0, ν̄1) + S2(ν̄0, ν̄1) is differentiable at µ0 ⊗ µ1.

A.7.1 Hadamard derivative of D1

The main result of this section is the following.

Proposition 4. The map ν0 ⊗ ν1 ∈ P 7→ D1(ν̄0, ν̄1) is Hadamard directionally differentiable at
µ0 ⊗ µ1 with derivative

η ∈ TP(µ0 ⊗ µ1) 7→η

(
2

∫
∥x− ·∥4dµ0(x)− 4M2(µ̄1)∥ · −Eµ0

[X]∥2

⊕ 2

∫
∥y − ·∥4dµ1(y)− 4M2(µ̄0)∥ · −Eµ1 [X]∥2

)
.

To prove Proposition 4, we first compute the Gâteaux directional derivative and subsequently show
Lipschitz continuity.
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Lemma 5. Fix ν0 ⊗ ν1 ∈ P. Let µi,t := µi + t(νi − µi) for i = 0, 1 and t ∈ [0, 1]. Then,

D1(µ̄0,t, µ̄1,t)− D1(µ̄0, µ̄1)

t
→ 2

∫∫
∥x− x′∥4dµ0(x)d(ν0 − µ0)(x

′)

+ 2

∫∫
∥y − y′∥4dµ1(y)d(ν1 − µ1)(y

′)

− 4

∫∫
∥x− Eµ0

[X]∥2∥y − Eµ1
[X]∥2d(ν0 − µ0)(x)dµ1(y)

− 4

∫∫
∥x− Eµ0

[X]∥2∥y − Eµ1
[X]∥2dµ0(x)d(ν1 − µ1)(y).

Proof. For any probability measure η on Rdi (i = 0, 1) with finite fourth moment,∫∫
∥x− x′∥4dη̄(x)dη̄(x) =

∫∫
∥x− x′∥4dη(x)dη(x),

hence, for i = 0, 1,∫∫
∥x− x′∥4dµ̄i,t(x)dµ̄i,t(x′)−

∫∫
∥x− x′∥4dµ̄i(x)dµ̄i(x′)

= 2t

∫∫
∥x− x′∥4dµi(x)d(νi − µi)(x

′) + t2
∫∫

∥x− x′∥4d(νi − µi)(x)d(νi − µi)(x
′).

(11)

On the other hand, letting fi(t) = Eµi
[X] + t (Eνi [X]− Eµi

[X]) for i = 0, 1 and t ∈ [0, 1],∫∫
∥x∥2∥y∥2dµ̄0,t(x)dµ̄1,t(y) =

∫∫
∥x− f0(t)∥2∥y − f1(t)∥2dµ0,t(x)dµ1,t(y)

=

∫∫
∥x− f0(t)∥2∥y − f1(t)∥2dµ0(x)dµ1(y)

+ t

∫∫
∥x− f0(t)∥2∥y − f1(t)∥2d(ν0 − µ0)(x)dµ1(y)

+ t

∫∫
∥x− f0(t)∥2∥y − f1(t)∥2dµ0(x)d(ν1 − µ1)(y)

+ t2
∫∫

∥x− f0(t)∥2∥y − f1(t)∥2d(ν0 − µ0)(x)d(ν1 − µ1)(y).

As ∥x− fi(t)∥2 = ∥x− Eµi [X]∥2 − 2t⟨x− Eµi [X],Eνi [X]− Eµi [X]⟩+ t2∥Eνi [X]− Eµi [X]∥2
for i = 0, 1 and the term involving inner products integrates to 0 w.r.t. µi,∫∫

∥x∥2∥y∥2dµ̄0,t(x)dµ̄1,t(y) =

∫∫
∥x∥2∥y∥2dµ̄0(x)dµ̄1(y)

+ t

∫∫
∥x− Eµ0

[X]∥2∥y − Eµ1
[X]∥2d(ν0 − µ0)(x)dµ1(y)

+ t

∫∫
∥x− Eµ0 [X]∥2∥y − Eµ1 [X]∥2dµ0(x)d(ν1 − µ1)(y)

+ o(t).

The above display, combined with (11) prove the claim.

Lemma 6. For any ν0 ⊗ ν1, ρ0 ⊗ ρ1 ∈ P, there exists a universal finite constant C for which
|D1(ν̄0, ν̄1)− D1(ρ̄0, ρ̄1)| ≤ C∥ν0 ⊗ ν1 − ρ0 ⊗ ρ1∥∞,F⊕

K
.

Proof. For i = 0, 1, we have that∫∫
∥x− x′∥4dν̄i(x)dν̄i(x′)−

∫∫
∥x− x′∥4dρ̄i(x)dρ̄i(x′) =

∫∫
∥x− x′∥4d(νi − ρi)(x)dνi(x

′)

+

∫∫
∥x− x′∥4dρi(x)d(νi − ρi)(x

′).
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As the functions x ∈ X 7→
∫
∥x − x′∥4dν0(x′), x ∈ X 7→

∫
∥x − x′∥4dρ0(x′) are smooth

with uniformly bounded derivatives of all orders (for some constant depending only on X ) and
∥
∫
∥ · −y′∥4dν1(y′)∥∞,Y ∨ ∥

∫
∥ · −y′∥4dρ1(y′)∥∞,Y is bounded by a universal constant, there

exists a universal constant C1 for which∣∣∣∣∣
1∑
i=0

(∫∫
∥x− x′∥4dν̄i(x)dν̄i(x′)−

∫∫
∥x− x′∥4dρ̄i(x)dρ̄i(x′)

)∣∣∣∣∣ ≤ C1∥ν0 ⊗ ν1 − ρ0 ⊗ ρ1∥∞,F⊕
K
.

(12)
Next, observe that∫∫

∥x∥2∥y∥2dν̄0(x)dν̄1(y) =
∫∫

∥x− Eν0 [X]∥2∥y − Eν1 [X]∥2dν0(x)dν1(y),

where, for i = 0, 1, ∥x−Eνi [X]∥2 = ∥x−Eρi [X]∥2+2⟨x−Eρi [X],Eρi [X]−Eνi [X]⟩+∥Eρi [X]−
Eνi [X]∥2, such that

∫
∥x−Eνi [X]∥2dνi(x) =

∫
∥x−Eρi [X]∥2dνi(x)−∥Eρi [X]−Eνi [X]∥2 and∫∫

∥x∥2∥y∥2dν̄0(x)dν̄1(y)

=

∫∫ (
∥x− Eρ0 [X]∥2 − ∥Eν0 [X]− Eρ0 [X]∥2

) (
∥y − Eρ1 [X]∥2 − ∥Eν1 [X]− Eρ1 [X]∥2

)
dν0(x)dν1(y)

=

∫∫
∥x− Eρ0 [X]∥2∥y − Eρ1 [X]∥2dν0(x)dν1(y)− ∥Eν0 [X]− Eρ0 [X]∥2

∫
∥y − Eρ1 [X]∥2dν1(y)

−
∫

∥x− Eρ0 [X]∥2dν0(x)∥Eν1 [X]− Eρ1 [X]∥2 + ∥Eν0 [X]− Eρ0 [X]∥2∥Eν1 [X]− Eρ1 [X]∥2.

Consequently,∫∫
∥x∥2∥y∥2dν̄0(x)dν̄1(y)−

∫∫
∥x∥2∥y∥2dρ̄0(x)dρ̄1(y)

=

∫∫
∥x− Eρ0 [X]∥2∥y − Eρ1 [X]∥2d(ν0 − ρ0)(x)dν1(y)

+

∫∫
∥x− Eρ0 [X]∥2∥y − Eρ1 [X]∥2dρ0(x)d(ν1 − ρ1)(y)

−
∫

∥x− Eρ0 [X]∥2dν0(x)∥Eν1 [X]− Eρ1 [X]∥2

−
∫

∥y − Eρ1 [X]∥2dν1(y)∥Eν0 [X]− Eρ0 [X]∥2

+ ∥Eν0 [X]− Eρ0 [X]∥2∥Eν1 [X]− Eρ1 [X]∥2.

(13)

As in the first part of the proof, x ∈ X 7→ ∥x − Eρ0 [X]∥2 is smooth with uniformly bounded
derivatives of all orders independently of the choice of ρ0 and ∥∥ · −Eρ1 [X]∥2∥∞,Y is bounded
uniformly in the choice of ρ1. Furthermore, ∥Eν0 [X]− Eρ0 [X]∥ ≤

√
d0∥Eν0 [X]− Eρ0 [X]∥∞ ≲X√

d0∥ν0 − ρ0∥
∞,C

⌊ d0
2

⌋+1

K (X )
as the coordinate projections are evidently smooth with uniformly

bounded derivatives on X . Moreover, ∥Eν1 [X] − Eρ1 [X]∥ ≤
√
d1∥Eν1 [X] − Eρ1 [X]∥∞ ≲Y

√
d1∥ν1 − ρ1∥∞,G1,K

as the coordinate projections are uniformly bounded on Y . Since C⌊ d0
2 ⌋+1

K (X )
and G1,K are symmetric (in the sense that G1,K = −G1,K) and contain 0, ∥ν0 − ρ0∥

∞,C
⌊ d0

2
⌋+1

K (X )
+

∥ν1 − ρ1∥∞,G1,K
≤ ∥ν0 ⊗ ν1 − ρ0 ⊗ ρ1∥∞,F⊕

K
. Applying this bound to (13) and combining with

(12) proves the claim.

Proof of Proposition 4. The proof of Proposition 4 follows from Lemmas 5 and 6 by applying
Proposition 7, noting that x ∈ X 7→ 2

∫
∥x−x′∥4dµ0(x

′)−4M2(µ̄1)∥x−Eµ0 [X]∥2 is smooth with
uniformly bounded derivatives of all orders, and y ∈ Y 7→ 2

∫
∥y − y′∥4dµ1(y

′)− 4M2(µ̄0)∥y −
Eµ1

[X]∥2 is uniformly bounded. Therefore, these functions lie, respectively, in F0,K and G1,K for
K sufficiently large.
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A.8 Hadamard derivative of D2

Throughout, we always choose versions of the extended potentials which are uniformly bounded by
Proposition 3. The main result of this section is as follows.

Proposition 5. The functional ν0 ⊗ ν1 ∈ P 7→ D2(ν̄0, ν̄1) is Hadamard directionally differentiable
at µ0 ⊗ µ1 with derivative

η ∈ TP(µ0 ⊗ µ1) 7→ inf
argminA∈BF (M)(Φ(µ̄0,µ̄1))

η
(
φA(· − Eµ0

[X])− Eµ̄0
[∇φA(X)]⊺(·)

⊕ ψA(· − Eµ1
[X])− 8E(X,Y )∼πA

[
∥X∥2Y

]⊺
(·)

)
.

As aforementioned, it suffices to establish Hadamard directional differentiability of the functional
ν0 ⊗ ν1 ∈ P 7→ OT(·)(ν̄0 ⊗ ν̄1) ∈ ℓ∞(BF (M)) such that differentiability of D2(µ̄0, µ̄1) follows
from the chain rule and a known result for differentiability of infimum-type functionals [6].

Lemma 7. Fix ν0 ⊗ ν1 ∈ P. Let µi,t := µi + t(νi − µi) for i = 0, 1 and t ∈ [0, 1]. Then, the
following limit holds in ℓ∞(BF (M))

OT(·)(µ̄0,t, µ̄1,t)− OT(·)(µ̄0, µ̄1)

t
→

∫
φ(·)(x− Eµ0

[X])d(ν0 − µ0)(x)

+

∫
ψ(·)(x− Eµ1 [X])d(ν1 − µ1)(x)

−
∫

∇φ(·)(x)⊺(Eν0 [X]− Eµ0
[X])dµ̄0(x)

− 8

∫
∥x∥2⟨y, (Eν1 [X]− Eµ1 [X])⟩dπ(·)(x, y),

(14)

where, for A ∈ BF (M), (φA, ψA) are extended potentials for OTA(µ̄0, µ̄1) and πA is the unique
optimal coupling.

To prove Lemma 7, we decompose OTA(µ̄0,t, µ̄1,t)− OTA(µ̄0, µ̄1) as

OTA(µ̄0,t, µ̄1,t)−OTA(µ̄0, µ̄1) = OTA(µ̄0,t, µ̄1,t)−OTA(µ̄0,t, µ̃1,t)+OTA(µ̄0,t, µ̃1,t)−OTA(µ̄0, µ̄1),

where µ̃1,t = (Id−Eµ1
[X])♯ µ1,t and separately analyze the two differences.

Lemma 8. Let πA be an optimal coupling for OTA(µ̄0, µ̄1) for A ∈ BF (M). Then,

OT(·)(µ̄0,t, µ̄1,t)− OT(·)(µ̄0,t, µ̃1,t)

t
→ −8

∫
∥x∥2⟨y, (Eν1 [X]− Eµ1

[X])⟩dπ(·)(x, y) in ℓ∞(BF (M)).

Proof. For t ∈ [−1, 1], let τt = Id−t (Eν1 [X]− Eµ1
[X]) such that µ̄1,t = (τt)♯µ̃1,t and µ̃1,t =

(τ−t)♯ µ̄1,t. Observe that if π̄ ∈ Π(µ̄0,t, µ̄1,t), then (Id, τt)♯ π̄ ∈ Π(µ̄0,t, µ̃1,t) and, conversely, if
π̃ ∈ Π(µ̄0,t, µ̃1,t), then (Id, τ−t)♯π̃ ∈ Π(µ̄0,t, µ̄1,t). Now, fix A ∈ BF (M) and let π̄A,t and π̃A,t
be optimal plans for OTA(µ̄0,t, µ̄1,t) and OTA(µ̄0,t, µ̃1,t) respectively. Then,

OTA(µ̄0,t, µ̄1,t)− OTA(µ̄0,t, µ̃1,t) ≥
∫
cA(x, y)dπ̄A,t(x, y)−

∫
cA(x, τt(y))dπ̄A,t(x, y),

OTA(µ̄0,t, µ̄1,t)− OTA(µ̄0,t, µ̃1,t) ≤
∫
cA(x, τ−t(y))dπ̃A,t(x, y)−

∫
cA(x, y)dπ̃A,t(x, y).

Note that

cA(x, τt(y)) = −4∥x∥2∥y − t (Eν1 [X]− Eµ1 [X]) ∥2 − 32x⊺A(y − t (Eν1 [X]− Eµ1 [X]))

= 8t∥x∥2⟨y, (Eν1 [X]− Eµ1
[X])⟩ − 4t2∥x∥2∥Eν1 [X]− Eµ1

[X]∥2

+ 32tx⊺A(Eν1 [X]− Eµ1
[X]) + cA(x, y).
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As µ̄0,t is mean-zero,∫
cA(x, τ−t(y))− cA(x, y)dπ̃A,t(x, y) = −8t

∫
∥x∥2⟨y, (Eν1 [X]− Eµ1

[X])⟩dπ̃A,t(x, y)

− 4t2M2(µ̄0,t)∥Eν1 [X]− Eµ1
[X]∥2,∫

cA(x, y)− cA(x, τt(y))dπ̄A,t(x, y) = −8t

∫
∥x∥2⟨y, (Eν1 [X]− Eµ1

[X])⟩dπ̄A,t(x, y)

+ 4t2M2(µ̄0,t)∥Eν1 [X]− Eµ1
[X]∥2.

Observe that µ̄0,t
w→ µ̄0, µ̄1,t

w→ µ̄1, µ̃1,t
w→ µ̄1 as t ↓ 0, hence also π̃A,t

w→ πA and π̄A,t
w→ πA,

where πA is the unique optimal plan for OTA(µ̄0, µ̄1) (see Theorem 5.20 in [53]). Consider

sup
A∈BF (M)

∣∣∣∣OTA(µ̄0,t, µ̄1,t)− OTA(µ̄0,t, µ̃1,t)

t
+ 8

∫
∥x∥2⟨y, (Eν1 [X]− Eµ1 [X])⟩dπA(x, y)

∣∣∣∣
≤ 8 sup

A∈BF (M)

∣∣∣∣∫ ∥x∥2⟨y, (Eν1 [X]− Eµ1
[X])⟩d(πA − π̃A,t)(x, y)

∣∣∣∣
+ 8 sup

A∈BF (M)

∣∣∣∣∫ ∥x∥2⟨y, (Eν1 [X]− Eµ1
[X])⟩d(πA − π̄A,t)(x, y)

∣∣∣∣
+ 4tM2(µ̄0,t)∥Eν1 [X]− Eµ1 [X]∥2.

(15)
The final term on the right hand side evidently converges to 0 as t ↓ 0. We now show that the first
term converges to 0 as well; convergence of the second term to 0 follows by analogy.

Let tn ↓ 0 with tn ≤ 1 be arbitrary and fix ϵ > 0. Let An ∈ BF (M) be such that

sup
A∈BF (M)

∣∣∣∣∫ ∥x∥2⟨y, (Eν1 [X]− Eµ1
[X])⟩d(πA − π̃A,t)(x, y)

∣∣∣∣
≤

∣∣∣∣∫ ∥x∥2⟨y, (Eν1 [X]− Eµ1
[X])⟩d(πAn

− π̃An,tn)(x, y)

∣∣∣∣+ ϵ.

For any subsequence n′, there exists a further subsequence n′′ along which An′′ → A ∈ BF (M)

by the Bolzano-Weierstrass theorem. As cAn′′ → cA uniformly on compact sets, πAn′′
w→ πA and

π̃An′′
w→ πA by Theorem 5.20 in [53]. As such,∫

∥x∥2⟨y, (Eν1 [X]− Eµ1 [X])⟩d(πAn′′ − π̃An′′ ,tn′′ )(x, y) → 0,

and, as this limit is independent of the choice of subsequence, the convergence holds along the
original sequence, yielding

lim sup
t↓0

sup
A∈BF (M)

∣∣∣∣∫ ∥x∥2⟨y, (Eν1 [X]− Eµ1 [X])⟩d(πA − π̃A,t)(x, y)

∣∣∣∣ < ϵ.

As ϵ is arbitrary, conclude that

lim
t↓0

sup
A∈BF (M)

∣∣∣∣∫ ∥x∥2⟨y, (Eν1 [X]− Eµ1
[X])⟩d(πA − π̃A,t)(x, y)

∣∣∣∣ = 0.

Similarly, the remaining term in (15) converges to 0 which concludes the proof.

As for the second limit, we first establish an auxiliary lemma.

Lemma 9. Let (φA
t , ψ

A
t ) be extended potentials for OTA(µ̄0,t, µ̃1,t) for t ∈ [0, 1]. For s ∈ (−1, 1),∫

φA
t (·−s(Eν0 [X]−Eµ0

[X]))dµ̄0−
∫
φA
t dµ̄0+s

∫
∇φA

t (·)⊺(Eν0 [X]−Eµ0
[X])dµ̄0 = rA,t(s),

where rA,t(s) = O(s2) as s→ 0 uniformly in the choice of t and A.
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Proof. Observe that spt(µ̃1,t) = spt(µ̄1) = Ȳ such that Proposition 3 2 can be applied. Let Λtj be
the corresponding Λj sets for t ∈ [0, 1]. For any (x, s′) ∈ X ◦ × (−1, 1) satisfying x− s′(Eν0 [X]−
Eµ0 [X]) ∈ Λtj , the map gx,t : s ∈ (−1, 1) 7→ φA

t (x− s(Eν0 [X]− Eµ0 [X])) is differentiable at s′
with

g′x,t(s
′) = −∇φA

t (x− s′(Eν0 [X]− Eµ0 [X]))⊺(Eν0 [X]− Eµ0 [X]),

g′′x,t(s
′) = (Eν0 [X]− Eµ0

[X])⊺D2φA
t (x− s′(Eν0 [X]− Eµ0

[X]))(Eν0 [X]− Eµ0
[X]),

g′′′x,t(s
′) = 0,

where the final equality follows from the fact that all derivatives of φA
t must be zero on Λtj , as its

Hessian is constant. For s ∈ (−1, 1), let Λtj,s =
{
x ∈ X ◦ : x− s(Eν0 [X]− Eµ0

[X]) ∈ Λtj
}

, then
µ̄0

(
∪Nj=1Λ

t
j,s

)
= 1. It readily follows that ht : s ∈ (−1, 1) 7→

∫
gx,t(s)dµ̄0(x) satisfies (cf. e.g.

Theorem 6.28 [29])

h′t(s) =

∫
g′x,t(s)dµ̄0(x), h′′t (s) =

∫
g′′x,t(s)dµ̄0(x), h′′′t (s) = 0.

Let Fx(s) = x− s (Eν0 [X]− Eµ0 [X]) and τ be sufficiently small that s+ τ ∈ (−1, 1), then

h′t(s+ τ) =

N∑
j=1

∫
Λt

j,s+τ

g′x,t(s+ τ)dµ̄0(x)

=

N∑
j=1

∫
Λt

j,s+τ

−∇φA
t (Fx(s+ τ))⊺(Eν0 [X]− Eµ0

[X])dµ̄0(x)

=

N∑
j=1

∫
1Λt

j,s+τ
(x)

(
8∥ȳ(j)∥2Fx(s+ τ) + 32Aȳ(j)

)⊺
(Eν0 [X]− Eµ0

[X])dµ̄0(x).

As 1Λt
j,s+τ

(x) → 1Λt
j,s
(x) and Fx(s + τ) → Fx(s) pointwise as τ → 0 (recall from the proof of

Proposition 3 point 2 that Λtj is an open set), it follows from the dominated convergence theorem that
h′t(s) is continuous; the same argument applies to the higher order derivatives. Thus, we can apply a
Taylor expansion to obtain that

ht(s)− ht(0)− sh′t(0) =
s2

2
h′′t (0),

as the third derivative vanishes. Observe that

|h′′t (0)| ≤
N∑
j=1

∫
Λt

j

8∥ȳ(j)∥2∥Eν0 [X]− Eµ0 [X]∥2dµ̄0(x) ≤ 8 diam(X )2
N

max
j=1

∥y(j)∥2,

proving the claim.

Lemma 10. The following limit holds in ℓ∞(BF (M)),

OT(·)(µ̄0,t, µ̃1,t)− OT(·)(µ̄0, µ̄1)

t
→

∫
φ(·)(x− Eµ0 [X])d(ν0 − µ0)(x)

+

∫
ψ(·)(x− Eµ1

[X])d(ν1 − µ1)(x)

−
∫

∇φ(·)(x)⊺(Eν0 [X]− Eµ0 [X])dµ̄0(x).

Proof. For A ∈ BF (M) and t ∈ [0, 1], let (φA
t , ψ

A
t ) denote the uniformly bounded extended

potentials for OTA(µ̄0,t, µ̃1,t) afforded by Proposition 3. Observe that

OTA(µ̄0,t, µ̃1,t)− OTA(µ̄0, µ̄1) ≤
∫
φA
t dµ̄0,t +

∫
ψA
t dµ̃1,t −

∫
φA
t dµ̄0 −

∫
ψA
t dµ̄1

=

∫
φA
t d(µ̄0,t − µ̄0) +

∫
ψA
t d(µ̃1,t − µ̄1),
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and

OTA(µ̄0,t, µ̃1,t)− OTA(µ̄0, µ̄1) ≥
∫
φA
0 dµ̄0,t +

∫
ψA
0 dµ̃1,t −

∫
φA
0 dµ̄0 −

∫
ψA
0 dµ̄1

=

∫
φA
0 d(µ̄0,t − µ̄0) +

∫
ψA
0 d(µ̃1,t − µ̄1).

Letting τt = Id−Eµ0 [X]− t (Eν0 [X]− Eµ0 [X]), we have by definition that∫
ψA
t d(µ̃1,t − µ̄1) = t

∫
ψA
t (· − Eµ1 [X])d(ν1 − µ1)∫

φA
t d(µ̄0,t − µ̄0) =

∫
φA
t ◦ τt − φA

t (· − Eµ0
[X])dµ0 + t

∫
φA
t ◦ τtd(ν0 − µ0)

= rA,t(t)− t

∫
∇φA

t (·)⊺(Eν0 [X]− Eµ0 [X])dµ̄0 + t

∫
φA
t ◦ τtd(ν0 − µ0),

where the final equality follows from Lemma 9. As φA
0 = φA and ψA

0 = ψA,

sup
A∈BF (M)

∣∣∣∣OTA(µ0,t, µ1,t)− OTA(µ0, µ1)

t
−
∫
φA(· − Eµ0

[X])d(ν0 − µ0)

−
∫
ψA(· − Eµ1

[X])d(ν1 − µ1) +

∫
∇φA(·)⊺(Eν0 [X]− Eµ0

[X])dµ̄0

∣∣∣∣
≤ sup

A∈BF (M)

∣∣∣∣∫ φA
t ◦ τt − φA(· − Eµ0 [X])d(ν0 − µ0)

∣∣∣∣
+ sup

A∈BF (M)

∣∣∣∣∫ ψA
t (· − Eµ1

[X])− ψA(· − Eµ1
[X])d(ν1 − µ1)

∣∣∣∣
+ sup

A∈BF (M)

∣∣∣∣∫ (
∇φA

t (·)−∇φA(·)
)⊺

(Eν0 [X]− Eµ0
[X])dµ̄0

∣∣∣∣+ o(1),

(16)

recalling that supt∈[0,1] supA∈BF (M) |rA,t(s)| = O(s2) as s→ 0 by Lemma 9. We will show that
each of the remaining terms on the right hand side converge to 0 as t ↓ 0, starting with the first.

Fix ϵ > 0. For any sequence tn ↓ 0 with tn ≤ 1, let An ∈ BF (M) be such that

sup
A∈BF (M)

∣∣∣∣∫ φA
tn ◦ τtn − φA(· − Eµ0 [X])d(ν0 − µ0)

∣∣∣∣
≤

∣∣∣∣∫ φAn
tn ◦ τtn − φAn(· − Eµ0

[X])d(ν0 − µ0)

∣∣∣∣+ ϵ.

Fix an arbitrary subsequence tn′ . Then, by the theorems of Bolzano-Weierstrass and Arzelà-Ascoli,
there exists a further subsequence n′′ along which An′′ → A ∈ BF (M) and (φ

An′′
tn′′ , ψ

An′′
tn′′ ) →

(φ,ψ) uniformly on X ◦ × Y◦ for some pair of continuous functions (up to extending the Lipschitz
potentials to the closures of the respective sets). We now show that (φ,ψ) is a pair of optimal
potentials for OTA(µ̄0, µ̄1). As φAn′′

tn′′ (x) + ψ
An′′
tn′′ (y) ≤ cAn′′ (x, y), φ(x) + ψ(y) ≤ cA(x, y). As

the potentials are uniformly bounded,∫
φ
An′′
tn′′ dµ̄0,t +

∫
ψ
An′′
tn′′ dµ̄1,t →

∫
φdµ̄0 +

∫
ψdµ̄1,

and, by Theorem 5.20 in [53],
∫
φdµ̄0 +

∫
ψdµ̄1 =

∫
cA(x, y)dπA(x, y) such that φ(x) + ψ(y) =

cA(x, y) πA-a.e. In particular, for µ̄0-a.e. x ∈ X ◦, φ(x) = inf1≤i≤N
(
cA(x, y(i))− ψ(y(i))

)
such that (ψ(y(1)), . . . , ψ(y(N))) is an optimal dual vector for OTA(µ̄0, µ̄1). By Proposition 3,
φ = φA + a on int(spt(µ̄0)) and ψ = ψA − a on Y − Eµ1 [X] for some a ∈ R. Thus,

∫
φ
An′′
tn′′ ◦

τtn′′d(ν0 − µ0) →
∫
φA(· − Eµ0

[X])d(ν0 − µ0) (recalling that spt(ν0) ⊂ spt(µ0) by definition of
P). A similar argument shows that

∫
φAn′′′ (·−Eµ0

[X])d(ν0−µ0) →
∫
φA(·−Eµ0

[X])d(ν0−µ0)

along a further subsequence n′′′ such that
∫
φ
An′′′
tn′′′ ◦ τtn′′d(ν0 − µ0)−

∫
φAn′′′d(ν0 − µ0) → 0. As
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the limit thus obtained is independent of the choice of subsequence, convergence holds along the
entire subsequence, so

lim sup
n→∞

∥∥∥∥∫ φ
(·)
tn ◦ τtn − φ(·)(x− Eµ0

[X])d(ν0 − µ0)(x)

∥∥∥∥
∞,BF (M)

≤ ϵ,

and as ϵ is arbitrary, limt↓0

∥∥∥∫ φ(·)
tn ◦ τtn − φ(·)(x− Eµ0 [X])d(ν0 − µ0)(x)

∥∥∥
∞,BF (M)

= 0. Simi-

larly, limt↓0

∥∥∥∫ ψ(·)
t (y − Eµ1

[X])− ψ(·)(y − Eµ1
[X])d(ν1 − µ1(y)

∥∥∥
∞,BF (M)

= 0.

As for the penultimate term, supA∈BF (M)

∣∣∫ (
∇φA

t (·)−∇φA(·)
)⊺

(Eν0 [X]− Eµ0
[X])dµ̄0

∣∣, fix a
sequence tn ↓ 0 with tn ≤ 1, ϵ > 0, and let An be such that

sup
A∈BF (M)

∣∣∣∣∫ (
∇φA

t (·)−∇φA(·)
)⊺

(Eν0 [X]− Eµ0 [X])dµ̄0

∣∣∣∣
≤

∣∣∣∣∫ (
∇φAn

tn (·)−∇φAn(·)
)⊺

(Eν0 [X]− Eµ0
[X])dµ̄0

∣∣∣∣+ ϵ.

From the previous part of the proof, for any subsequence n′ there is a further subsequence n′′ along
which An′′ → A ∈ BF (M) and φAn′′

tn′′ → φ uniformly on X ◦, where φ is continuous and coincides

with φA + a on int (spt(µ̄0)) for some a ∈ R. As φAn′′
tn′′ is a collection of concave functions on X ◦

(see Proposition 3), φ is concave on X ◦ by Theorem 10.8 in [39]. In particular, φ is differentiable a.e.
on X ◦ by Rademacher’s theorem, so the functions

hn′′ : t ∈ (−1, 1) 7→
∫
φ
An′′
tn′′ (· − t(Eν0 [X]− Eµ0

[X]))dµ̄0,

h : t ∈ (−1, 1) 7→
∫
φ(· − t(Eν0 [X]− Eµ0

[X]))dµ̄0,

are concave, differentiable, and hn′′ → h pointwise. It follows from Theorem 25.7 in [39] that
h′n′′(0) → h′(0), that is,∫

∇φAn′′
tn′′ (·)⊺(Eν0 [X]− Eµ0 [X])dµ̄0 →

∫
∇φ(·)⊺(Eν0 [X]− Eµ0 [X])dµ̄0.

As φ = φA + a on int(spt(µ̄0)), ∇φ = ∇φA on int(spt(µ̄0)) as well. A similar argument
shows that up to extraction of a further subsequence n′′′,

∫
∇φAn′′′ (·)⊺(Eν0 [X]− Eµ0

[X])dµ̄0 →∫
∇φA(·)⊺(Eν0 [X]− Eµ0 [X])dµ̄0. Conclude that∫

∇φAn′′′
tn′′′ (·)⊺(Eν0 [X]− Eµ0

[X])dµ̄0 −
∫

∇φAn′′′ (·)⊺(Eν0 [X]− Eµ0
[X])dµ̄0 → 0,

which is independent of the choice of original subsequence, so

lim sup
t↓0

sup
A∈BF (M)

∣∣∣∣∫ (
∇φA

t (·)−∇φA(·)
)⊺

(Eν0 [X]− Eµ0
[X])dµ̄0

∣∣∣∣ ≤ ϵ,

which shows that supA∈BF (M)

∣∣∫ (
∇φA

t (·)−∇φA(·)
)⊺

(Eν0 [X]− Eµ0 [X])dµ̄0

∣∣ → 0 as t ↓ 0.
Conclude that the right hand side of (16) converges to 0, proving the claim.

Lemma 11. For any ν0 ⊗ ν1, ρ0 ⊗ ρ1 ∈ P, there exists a finite universal constant C for which
∥OT(·)(ν̄0, ν̄1)− OT(·)(ρ̄0, ρ̄1)∥∞,BF (M) ≤ C∥ν0 ⊗ ν1 − ρ0 ⊗ ρ1∥∞,F⊕

K
.

Proof. Fix A ∈ BF (M) and let (φA
ν , ψ

A
ν ) and (φA

ρ , ψ
A
ρ ) be extended potentials for OTA(ν̄0, ν̄1)

and OTA(ρ̄0, ρ̄1) respectively satisfying the bounds from Proposition 3. Then,

OTA(ν̄0, ν̄1)− OTA(ρ̄0, ρ̄1) ≤
∫
φA
ν dν̄0 +

∫
ψA
ν dν̄1 −

∫
φA
ν dρ̄0 −

∫
ψA
ν dρ̄1,

OTA(ν̄0, ν̄1)− OTA(ρ̄0, ρ̄1) ≥
∫
φA
ρ dν̄0 +

∫
ψA
ρ dν̄1 −

∫
φA
ρ dρ̄0 −

∫
ψA
ρ dρ̄1.
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Let L denote the shared Lipschitz constant of the extended potentials from Proposition 3, then∫
φA
ν dν̄0 −

∫
φA
ν dρ̄0 =

∫
φA
ν (· − Eν0 [X])dν0 −

∫
φA
ν (· − Eρ0 [X])dρ0

≤
∫
φA
ν (· − Eρ0 [X])d(ν0 − ρ0) + L∥Eρ0 [X]− Eν0 [X]∥.

The same argument can be used to bound
∫
ψA
ν dν̄1 −

∫
ψA
ν dρ̄1. Whence,

OTA(ν̄0, ν̄1)− OTA(ρ̄0, ρ̄1) ≤
∫
φA
ν (· − Eρ0 [X])d(ν0 − ρ0) + L∥Eρ0 [X]− Eν0 [X]∥

+

∫
ψA
ν (· − Eρ1 [X])d(ν1 − ρ1) + L∥Eρ1 [X]− Eν1 [X]∥.

Following similar steps for the lower bound yields

OTA(ν̄0, ν̄1)− OTA(ρ̄0, ρ̄1) ≥
∫
φA
ρ (· − Eρ0 [X])d(ν0 − ρ0)− L∥Eρ0 [X]− Eν0 [X]∥

+

∫
ψA
ρ (· − Eρ1 [X])d(ν1 − ρ1)− L∥Eρ1 [X]− Eν1 [X]∥.

As in the proof of Lemma 6, ∥Eρ0 [X]−Eν0 [X]∥+∥Eρ1 [X]−Eν1 [X]∥ ≲X ,Y ∥ν0⊗ν1−ρ0⊗ρ1∥∞,F⊕
K

.
Observe that, by choosing K sufficiently large, φA

ρ (·−Eρ0 [X])|X ∈ H0,K and ψA
ρ (·−Eρ1 [X])|Y ∈

G1,K uniformly in the choice of marginals and A ∈ BF (M). Hence∣∣∣∣∫ φA
ρ (· − Eρ0 [X])d(ν0 − ρ0) +

∫
ψA
ρ (· − Eρ1 [X])d(ν1 − ρ1)

∣∣∣∣ ≤ ∥ν0 ⊗ ν1 − ρ0 ⊗ ρ1∥∞,F⊕
K
,

and the same bound holds for
∣∣∫ φA

ν (· − Eρ0 [X])d(ν0 − ρ0) +
∫
ψA
ν (· − Eρ1 [X])d(ν1 − ρ1)

∣∣. Con-
clude that

∥OT(·)(ν̄0, ν̄1)− OT(·)(ρ̄0, ρ̄1)∥∞,BF (M) ≲X ,Y ∥ν0 ⊗ ν1 − ρ0 ⊗ ρ1∥∞,F⊕
K
.

With these preparations, we now prove Proposition 5.

Proof of Proposition 5. Together, Lemmas 7 and 11 along with Proposition 7 imply Hadamard
directional differentiability of the map ν0⊗ ν1 ∈ P 7→ 32∥ · ∥2F +OT(·)(ν̄0, ν̄1) ∈ ℓ∞(BF (M)). As
the Gâteaux directional derivative of this map at µ0⊗µ1 is of the form (ν0⊗ν1−µ0⊗µ1)(f

(·)
0 ⊕f (·)1 )

where fA0 ⊕ fA1 ∈ F⊕
K for A ∈ BF (M) and a (uniform) choice of K sufficiently large. By

the same steps as the proof of Proposition 7, the Hadamard directional derivative is given by
η ∈ TP(µ0 ⊗ µ1) 7→ η(f

(·)
0 ⊕ f

(·)
1 ).

Proposition 5 then follows by applying Corollary 2.3 in [6] along with the chain rule for Hadamard
directionally differentiable maps pending the condition that A ∈ BF (M) 7→ 32∥A∥2F+OTA(µ̄0, µ̄1)
is continuous (although the cited result is stated under the assumption that the map is not identically
zero, this condition is not necessary) and, for any η ∈ TP(µ0 ⊗ µ1),

Υη : A ∈ BF (M) 7→ η
(
φA(· − Eµ0 [X])− Eµ̄0 [∇φA(X)]⊺(·)

⊕ ψA(· − Eµ1 [X])− 8E(X,Y )∼πA

[
∥X∥2Y

]⊺
(·)

)
,

is continuous.

The former condition was verified in Lemma 3. As for the latter condition, fix η ∈ TP(µ0 ⊗ µ1),
ϵ > 0 and let t > 0, ν0 ⊗ ν1 ∈ P be such that ∥t(ν0 ⊗ ν1 − µ0 ⊗ µ1) − η∥∞,F⊕

K
<

ϵ
2 . Let (An)n∈N ⊂ BF (M) converge to A ∈ BF (M). As in the proof of Lemma 10
we have that φAn(· − Eµ0

[X]) → φA(· − Eµ0
[X]) on int(spt(µ0)),

∫
∇φAn(x)dµ̄0(x) →
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∫
∇φA(x)dµ̄0(x), and ψAn(· − Eµ1 [X]) → ψA(· − Eµ1 [X]) on spt(µ1). Further, πAn

w→ πA
hence −8

∫
∥x∥2ydπAn(x, y) → −8

∫
∥x∥2ydπA(x, y). Hence

|Υη(An)−Υη(A)| ≤ ϵ+ t

∣∣∣∣∫ φAn − φA − Eµ̄0 [∇φAn(X)]⊺(·) + Eµ̄0 [∇φA(X)]⊺(·)d(ν0 − µ0)

+

∫
ψAn(· − Eµ1

[X])− ψA(· − Eµ1
[X])d(ν1 − µ1)

−
∫

8E(X,Y )∼πAn

[
∥X∥2Y

]⊺
(·) + 8E(X,Y )∼πA

[
∥X∥2Y

]⊺
(·)d(ν1 − µ1)

∣∣∣∣ .
By the previous deliberations, the right hand side converges to ϵ as n→ ∞ and, as ϵ is arbitrary, Υη
is continuous, concluding the proof.

A.9 Proof of Theorem 5

Lemma 12. The class F0,K is µ0-Donsker.

Proof. For any x, ξ, ξ′ ∈ X , A,A′ ∈ BF (M), and z, z′ ∈ RN with ∥z∥∞, ∥z′∥∞ ≤ K,∣∣∣∣ min
1≤i≤N

{
cA(x− ξ, y(i))− zi

}
− min

1≤i≤N

{
cA′(x− ξ′, y(i))− z′i

}∣∣∣∣
≤ max

1≤i≤N

∣∣∣−4(∥x− ξ∥2 − ∥x− ξ′∥2)∥y(i)∥2 − 32 ((x− ξ)⊺A− (x− ξ′)⊺A′) y(i) − (zi − z′i)
∣∣∣ .

Observe that∣∣∥x− ξ∥2 − ∥x− ξ′∥2
∣∣ = |∥x− ξ∥ − ∥x− ξ′∥| (∥x− ξ∥+ ∥x− ξ′∥) ≤ 2 diam(X )∥ξ − ξ′∥,

and
∣∣(x− ξ′)

⊺
(A−A′)− (ξ − ξ′)⊺A

∣∣ ≤ diam(X )∥A−A′∥F + ∥A∥F ∥ξ − ξ′∥. That is,∣∣∣∣ min
1≤i≤N

{
cA(x− ξ, y(i))− zi

}
− min

1≤i≤N

{
cA′(x− ξ′, y(i))− z′i

}∣∣∣∣
≲M,d0,d1,X ,Y ∥ξ − ξ′∥+ ∥A−A′∥F + ∥z − z′∥∞.

At this point, it is easy to adapt the proof of Lemma 1 to prove Donskerness of the class H0,K

(hence also H0,K ∪ {0}). Further, C∞
K (X ) is known to be Donsker (cf. e.g. [30] or [49]). As

F0,K = H0,K ∪ {0}+ C∞
K (X ) and Donskerness is preserved under pairwise sums, conclude that

F0,K is a Donsker class.

Proof of Theorem 5. As the samples Xi and Yi are assumed to be independent, it follows from
Example 1.5.6 in [50], Lemma 3.6 in [16], and Lemmas 1 and 12 that(√

n(µ̂0,n − µ0),
√
n(µ̂1,n − µ1)

) d→ (Gµ0 , Gµ1) in ℓ∞(F0,K)× ℓ∞(G1,K).

Remark that the map (l0, l1) ∈ ℓ∞(F0,K) × ℓ∞(G1,K) 7→
(
f0 ⊕ f1 ∈ F⊕

K 7→ l0(f0) + l1(f1)
)
∈

ℓ∞(F⊕
K) is continuous such that

√
n(µ̂0,n ⊗ µ̂1,n − µ0 ⊗ µ1)

d→ Gµ0⊗µ1
in ℓ∞(F⊕

K),

whereGµ0⊗µ1(f0⊕f1) = Gµ0(f0)+Gµ1(f1) for any f0⊕f1 ∈ F⊕
K . It follows from the portmanteau

theorem that Gµ0⊗µ1
∈ TP(µ0 ⊗ µ1) with probability 1. The claimed result then follows from the

extended functional delta method (see e.g. Theorem 1 in [41]).

B Auxiliary results

Proposition 6 (Well-definedness of identification). ν0 ⊗ ν1 = ν′0 ⊗ ν′1 as elements of P if and only
if ν0 = ν′0 and ν1 = ν′1 as measures on P(X ) and P(Y) respectively.
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Proof. Suppose that ν0 ⊗ ν1 = ν′0 ⊗ ν′1 as elements of P. As F0,K and G1,K both contain 0, we
must have that

∫
f0dν0 =

∫
f0dν

′
0 and

∫
f1dν1 =

∫
f1dν

′
1 for every f0 ∈ F0,K and f1 ∈ G1,K .

By linearity of integration, these equalities extend, respectively, to f0 ∈ lin(F0,K), f1 ∈ lin(G1,K),
where lin(G1,K) = {f : Y → R}, so ν1 = ν′1 as measures. Furthermore, C∞(X ) ⊂ lin(F0,K), and
this former set is dense in C(X )|spt(µ0); the set of all restrictions of continuous functions on X to
spt(µ0) (cf. e.g. Lemma 7.1 in [24]). Consequently, ν0 = ν′0 as measures as well.

Proposition 7 (Hadamard and Gâteaux derivatives). Let E be a Banach space. If ζ : P ⊂ ℓ∞(F⊕
K) →

E is such that

∥ζ(ν0 ⊗ ν1)− ζ(ρ0 ⊗ ρ1)∥E ≤ C∥ν0 ⊗ ν1 − ρ0 ⊗ ρ1∥∞,F⊕
K
,

for every ν0 ⊗ ν1, ρ0 ⊗ ρ1 ∈ P and, for any ν0 ⊗ ν1 ∈ P, the limit

lim
t↓0

ζ (µ0 ⊗ µ1 + t(ν0 ⊗ ν1 − µ0 ⊗ µ1))− ζ(µ0 ⊗ µ1)

t
= ζ ′µ0⊗µ1

(ν0 ⊗ ν1 − µ0 ⊗ µ1) (17)

exists. Then ζ is Hadamard directionally differentiable at µ0⊗µ1 with derivative coinciding with (17)
on P−µ0⊗µ1. If E = R and ζ ′µ0⊗µ1

(ν0⊗ν1−µ0⊗µ1) = (ν0⊗ν1−µ0⊗µ1)(f0⊕f1) for some
f0 ⊕ f1 ∈ F⊕

K , the Hadamard directional derivative is given by η ∈ TP(µ0 ⊗ µ1) 7→ η (f0 ⊕ f1).

Proof. The proof of the first part follows from that of Proposition 1 in [25] or Lemma 8 in [38]
and is hence omitted. The expression for the Hadamard directional derivative in the second part
follows from the fact that the derivative is positively homogeneous and continuous [41] and that

TP(µ0 ⊗ µ1) = {t−1(ν0 ⊗ ν1 − µ0 ⊗ µ1) : ν0 ⊗ ν1 ∈ P, t > 0}
ℓ∞(F⊕

K)
.
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