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ABSTRACT

The performance of masked autoencoders hinges significantly on masking, prompt-
ing considerable efforts towards devising superior masking strategies. However,
these strategies mask only once and employ masking directly on the input image.
Afterward, inspired by the flexibility of masking, subsequent works introduce two
rounds of masking. Unfortunately, all initiatives primarily focus on enhancing
model performance, lacking an in-depth and systematical understanding of mul-
tiple masking for masked autoencoder. To bridge this gap, this work introduce
a masked framework with multiple masking stages, termed Conditional MAE,
where subsequent maskings are conditioned on previous unmasked representa-
tions, enabling a more flexible masking process in masked image modeling. By
doing so, our study sheds light on how multiple masking affects the optimiza-
tion in training and performance of pretrained models, e.g., introducing more
locality to models, and summarizes several takeaways from our findings. Fi-
nally, we empirically evaluate the performance of our best-performing model
(Conditional-MAE) with that of MAE in three folds including transfer learning,
robustness, and scalability, demonstrating the effectiveness of our multiple masking
strategy. We also follow our takeaways and show the generalizability to other
heterogeneous networks including SimMIM and ConvNeXt V2. We hope our
findings will inspire further work in the field and release the code at https:
//anonymous.4open.science/r/conditional-mae-512C.

1 INTRODUCTION

Masked autoencoder (MAE) (He et al., 2021) has recently emerged prominently in the field of
self-supervised learning (Bao et al., 2021; He et al., 2021; Chen et al., 2021). One of the most
representative work, MAE, which partitions an image into visible patches and masked ones, and
predict the masked patches from visible ones in RGB space, has gained vast attention from community.

A crucial element of the masked autoencoder is masking, e.g., how (where) to mask and how much to
mask, which directly impacts model’s performance. Thus, follow-up work develops various masking
strategies categorized into four different types by a recent survey (Li et al., 2023b) including Hard
Sampling (Kakogeorgiou et al., 2022; Li et al., 2022a; Wang et al., 2023a; Hou et al., 2022; Wu & Mo,
2022), e.g., guided by attention (Kakogeorgiou et al., 2022), Mixture (Chen et al., 2023b; Liu et al.,
2022a; Zhang & Shen, 2022), e.g., by mixing different images (Chen et al., 2023b; Liu et al., 2022a),
Adversarial (Shi et al., 2022; Chen et al., 2023a), e.g., by introducing adversarial learning (Shi et al.,
2022), and Contextual Masking (Li et al., 2022b; Chen et al., 2022a) e.g., using local window (Chen
et al., 2022a). Basically, these works mostly mask once and mask only on the input image and focus
on how to further improve the performance.

Intuitively, masking is a flexible operation that can be performed at different stages (e.g., the input im-
age and different levels of representations) and with different ratios. Following this line, UnMAE (Li
et al., 2022b) introduces two rounds of masking but still perform on the input image. VideoMAE
v2 (Wang et al., 2023b) introduces dual masking but primarily focuses on reducing computational
costs. A2MIM (Li et al., 2023a) proposes to mask intermediate features from PatchEmbed layer
following MAE (He et al., 2021). Though these initiatives have effectively reduced computational
costs or enhanced model performance, these efforts have gone only so far, lacking an in-depth and
systematical analysis of multiple rounds of masking for masked autoencoder. Hence, a question
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naturally arises: How does multiple masking impact the optimization of the masked autoencoder in
both training and performance?

To answer this question, this work presents a framework called Conditional MAE, which aims
to explore the impact of multiple rounds of masking in the training process and performance. In
Conditional MAE, subsequent maskings are conditioned on previous unmasked representations,
enabling more flexible masking on different granularities of inputs. Based on it, we progressively
conduct a thorough empirical study about multiple masking to address three critical questions: 1)
where to mask, 2) how much to mask, and 3) what’s the impact? In our experiments, we investigate
one, two, and three-shot masking 1, where each round of masking is considered a shot. Our results
highlight several key takeaways from each shot:

• In the one-shot case, we find that masking at the beginning is always beneficial for task performance.
Moreover, it is critical to find a suitable mask ratio. Generally, though the model size is different, e.g.,
ViT-S and ViT-B, 75% mask ratio is firstly recommended.

• In the two-shot case, building on the best one-shot setting, increasing the interval of two-shot
masking with a large ratio followed by a small ratio is helpful for fine-tuning. Additionally, our
experiments strongly suggest that there may not exist a positive relationship between linear probing
and fine-tuning. Finally, the second masking brings locality bias into the model and helps capture
low-level features, especially for finer-grained classification

• In the three-shot case, we find that using a greedy-like masking selection strategy, which uses the
best two-shot setting as a starting point, is superior to other three-shot strategies. Simultaneously, the
third masking brings more locality into models than two-shot case.

Based on the above results of our empirical experiments, we select the best-performing model
(Conditional-MAE) and evaluate its transferability to downstream tasks, including image classifica-
tion, object detection, and semantic segmentation. We also verify its robustness to noisy inputs, e.g.,
random occlusion and shuffling, and empirically demonstrate its scalability. Besides, we follow our
takeaways and evaluate the generalizability to other network architectures including SimMIM (Xie
et al., 2022) and ConvNeXt V2 (Woo et al., 2023).

Note that in this work, we are not to propose a state-of-the-art method, but to enhance both the
understanding and performance of MAE by exploring the potential of masking and to inspire future
work. Our contributions are three-fold:

• Building on our proposed flexible framework, i.e., Conditional MAE, our primary contribution lies in
the first in-depth and comprehensive analysis of how multiple masking influences model optimization
from the various aspects including performance comparison, loss, representation, attention map, etc.

• Through extensive empirical experiments on multiple masking, we provide several key takeaways
from each shot as shown above. More importantly, we observe a key phenomenon that multiple
masking is capable of introducing locality bias to models.

• We demonstrate the superiority of our Conditional-MAE over MAE in downstream transfer,
robustness against occlusion and shuffling, and scalability. We also show the generalizability to other
network architectures.

2 CONDITIONAL MAE

2.1 PRELIMINARIES

Given an image, MAE first partitions it into N patches P = {P 1, P 2, . . . , PN} that are randomly
categorized into two parts, i.e., visible patches Pv = {P 1

v , P
2
v , . . . , P

N1
v } and masked patches

Pm = {P 1
m, P 2

m, . . . , PN2
m }, with a pre-define ratio η1 (N2 = η1 ∗ N and N1 + N2 = N ). Then,

Pv are feed into Encoder that outputs corresponding patch representations Zv = {z1v , z2v , . . . , zN1
v }.

Finally, Zv along with learnable mask token [MASK] 2 are sent into Decoder to predict masked

1Note that we do not study more shots as it is inferior to three-shot masking in our preliminary experiments.
2We omit the operation of adding position embedding for description convenience.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑙𝑎𝑦𝑒𝑟!→#∗

Conditional MAE

Input: 𝑁! = (1− 𝜂!)𝑁 patches

Encoder

…

Decoder

…

MAE

One shot masking (𝑖 = 0)
Input: 𝑁% = (1− 𝜂%)𝑁

Two shots masking (𝑗)
Input:𝑁& = 1− 𝜂' 𝑁%

𝑙𝑎𝑦𝑒𝑟#→(∗ Decoder

Encoder

mask

𝑁!
𝑁"

𝑙𝑎𝑦𝑒𝑟(→)∗

Three shots masking (𝑘)
Input:𝑁* = 1− 𝜂& 𝑁&

𝑙𝑎𝑦𝑒𝑟+→%%…

More shots masking
(optional)

…

…

patch representation [MASK] token reconstructed patch

…

…
…

Figure 1: An overview of our Conditional MAE. For convenience, we follow MAE (He et al., 2021)
and use random masking for each shot. N1, N3, and N5 indicate the number of unmasked patches or
representations. In Sec 3.3, we also transfer our conditional framework to other model structures. It
is worth mentioning that we do not alter model structures.

patches in RGB space. Pm is served as the supervision signal. The whole process is formulated as:

Zv = Encoder(Pv) , (1)

P̂m = Decoder(Zv, [MASK]) , (2)

L = MSE(P̂m, Pm) , (3)

where MSE is the mean square error loss function.

2.2 CONDITIONAL MAE

Our Conditional MAE is derived from MAE and able to perform multiple shots masking on MAE as
shown in Fig 1. We take two-shot masking for example to elaborate why we call it Conditional MAE.
The first masking is implemented on RGB space with a pre-defined mask ratio η1 on image patches,
which is what MAE does. Afterward, the second masking is conditioned on previous unmasked
representations on a given layer of the encoder, e.g., j. Thus, for visible patch representations
Zj∗

v (output from the j∗-th layer of the encoder, j∗ = j − 1), Conditional MAE mask part of
them with another pre-defined masking ratio η2. We denote the left visible patch representations
as Y j∗

v = {y1v , y2v , . . . , yN3
v } and the masked patch representations as Y j∗

m = {y1m, y2m, . . . , yN4
m }

(N3 +N4 = N1 and N4 = η2 ∗N1). Additionally, we collect the visible patches corresponding to
Y j∗

m from Pv , denote them as P j∗

m = {P 1
m, P 2

m, . . . , PN4
m }, and merge them with Pm as {Pm, P j∗

m }
(||{Pm, P j∗

m }|| = N2 +N4) as our new reconstruction target. Therefore, for two-shot masking, the
whole process can be formulated as:

Zj∗

v = Encoder0→j∗(Pv) , (4)

Y j∗

v , Y j∗

m = Mask(Zj∗

v , η2) , (5)

Zv = Encoderj→11(Y
j∗

v ) , (6)

P̂m = Decoder(Zv, [MASK]) , (7)

L = MSE(P̂m, {Pm, P j∗

m }) , (8)

where Encoder0→j∗ means that the input passes through 0-th layer of the encoder and is outputted
from j∗-th layer.

Compared with MAE, due to the Mask function, the main discrepancies lie in Eq (6) and Eq (8). We
need to reconstruct two targets, i.e., Pm and P j∗

m , with less visible patch representations. Note that
this process cannot be bridged by increasing mask ratio η1 of MAE to remove more visible patches.
We explain it below. For Pm, similar to MAE, it has never been seen by the encoder and thereby
we need infer it via visible patch representations Y j∗

v . For P j∗

m , it has been seen by partial encoder
(i.e., layers before j), resulting in its information involved in Y j∗

v via attention-manner interaction
between Y j∗

v and Y j∗

m before j-th layer. We reconstruct the patches P j∗

m primarily conditioned on
the “borrowed” information involved in Y j∗

v via the interaction above. This is easily generalized to
multiple shots. Particularly, in the two-shot showcase, if j is set to 0 or η2 is 0, Conditional MAE is

3
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Figure 2: Results of one-shot masking on ViT-S/16.

reduced to MAE. if η1 (the first mask ratio) is 0, our Conditional MAE is still established with only
reconstruction of Pm removed.

3 EXPERIMENT

3.1 MULTIPLE SHOTS MASKING

In our study, we investigate the Conditional MAE in three different settings by pretraining on
ImageNet100: one-shot masking, two-shot masking, and three-shot masking. We do not explore
settings with more shots, as preliminary experiments have shown them to be inferior to three-shot. For
ease of description, we denote the three mask ratios as η1, η2, η3, and the corresponding layer indexes
as i, j, k, respectively, where masking is applied before inputting. Considering our Conditional MAE
is derived from MAE, we fix i = 0 to match with MAE. Through exhaustive experiments conducted
below, we aim to address three key questions: where to mask, how much to mask, and what is the
impact? For training details, please refer to the Appendix A.1.

3.1.1 ONE-SHOT MASKING

In the one-shot setting, we only mask patch tokens in the encoder once, allowing us to examine
the impact of different mask positions and mask ratios on encoder performance. Specifically,
for mask positions, we consider four positions at equal intervals: the 0-th, 3-th, 6-th, and 9-th
layer of encoder blocks, denoted as (i, j, k) = (0, 0/3/6/9, 0). We exclude the 12-th layer as it
cause a denoise autoencoder to degenerate into a vanilla one. Regarding mask ratios, we carefully
select two representative ratios used in MAE (He et al., 2021), namely 0.75 and 0.9, denoted as
(η1, η2, η3) = (0, 0.75/0.9, 0) 3. The reasons are two-fold: 0.75 is widely used in MAE; For 0.9,
previous work (Riquelme et al., 2021) has shown that even using 10% patch features can still yield
competitive performance in visual recognition. The results on ViT-S/16 are illustrated in Fig 2.

It has been observed that masking at the beginning position (j = 0) is beneficial for both linear
probing and fine-tuning. Conversely, we also notice a significant drop in performance for linear
probing when masking is applied at the other positions. This implies that the representations
encoded by the fixed encoder at j = 0 are relatively more distinguishable while other encoders learn
comparatively less knowledge compared to the encoder at j = 0, which could be attributed to the
information leakage from attention interaction. To support this speculation, we visualize the training
loss curves of pretraining and linear probing and t-SNE of output representation in Appendix A.2.1.

Table 1: Comparisons on ViT-S/16 and ViT-B/16 with
different mask ratio.

Model Size Mask Ratio Linear Probe Fine-tune

ViT-S/16 0.75 45.0 82.5
0.90 44.9 81.3

ViT-B/16 0.75 62.9 86.9
0.90 57.9 85.6

Finally, to investigate the impact of mask
ratio on models of different sizes, we
also conduct experiments on ViT-B/16
and present the results in Tab 1. Inter-
estingly, we observe that a mask ratio of
0.75 enhances the performance of ViT-
B/16 compared to a mask ratio of 0.9,
which is similar to ViT-S/16. Moreover,
our results are consistent with MAE (He
et al., 2021) trained on ImageNet1k (Rus-
sakovsky et al., 2015) with best mask ratio 75%.

3We set η1 to 0 as its layer index i = 0 is fixed as described at beginning while our mask position should be
flexible.
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Takeaways. For one-shot masking, we summarize two useful tips: ① Masking at the beginning is
always beneficial for task performance; ② Finding a suitable mask ratio is critical. Generally, though
the model size is different, e.g., ViT-S and ViT-B, a 75% mask ratio is firstly recommended.

Remark. Though mask ratio ablation has been explored in MAE paper, our focus on the one-
shot masking aims to delve deeper into the specifics of how different masking positions and ratios
collectively influence the model’s performance. Moreover, it serves as the basis for the subsequent
two-shot masking.

3.1.2 TWO-SHOT MASKING

Two-shot masking means we can mask twice in the encoder. For convenience, we use L(i, j) (k is
omitted) to indicate that we mask the i-th and j-th Layers (i = 0 and i < j < 12). We use (η1, η2)
(η3 is omitted) to denote the mask ratio of two-shot masking. By combining them, L(i, j; η1, η2)
means that we mask the i-th layer with mask ratio η1 and mask the j-th layer with mask ratio η2.
To fully explore model capabilities, we follow the conclusion from one-shot and first mask patch
tokens at the beginning also with two representative mask ratios (0.75 and 0.9). Thus, it is critical to
figure out where the second masking should be and how much it should mask. The experiments on
ViT-S/16 are shown in Fig 3. The dashed line denotes the one-shot baseline (i.e., MAE) with masking
ratios of 0.75. It is worth mentioning that compared to standard MAE, the adopted two-shot masking
is capable of reducing the computational cost as it introduces additional masking to remove more
tokens in the forward pass, that is, fewer tokens are involved in the forward calculation 4. Since it is
not our primary focus, we would not highlight the advantage in this aspect.
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Figure 3: Results of two-shot masking on ViT-S/16.
The dashed line is the one-shot baseline (MAE).

For η1 = 0.75, we ablate five combinations
of mask layers for two-shot masking. Three
involve an equal interval for the second mask-
ing layer indexes following the one-shot mask-
ing scheme: L(0, 3), L(0, 6), and L(0, 9); Two
are continuous combinations: L(0, 10) and
L(0, 11) 5. We initially set a larger mask ratio
of η2 (0.5). Considering that the performance
is inferior to the baseline in both linear probing
and fine-tuning, we replace η2 = 0.5 with three
relatively smaller ones containing 0.25, 0.15,
and 0.1. As shown in Fig 3 (a), the performance
of two-shot masking is inferior to the baseline
for linear probing. However, as opposed to linear probing, one can see in Fig 3 (b) that our two-shot
masking shows potential to outperform the baseline in fine-tuning: An apparent trend for fine-tuning
is that the second masking performed at the last several layers (i.e., increasing the interval of two-shot
masking) with a smaller η2 leads to significant improvement compared to baseline, especially at
L(0, 10) 6. The contradictory experiment results imply that there may not exist a positive correlation
between linear probing and fine-tuning. Hence, following (Woo et al., 2023), we would pay more
attention to fine-tuning because of its practical relevance in transfer learning. Two-shot results of
η1 = 0.9 is in Appendix A.3.1

Given the superior improvement, a question arises: what two-shot masking brings to the encoder?
We dive deep into two-shot masking and analyze its layer representation and attention map.

4For example, on 4 A800, our Conditional MAE (ViT-Large with two-shot L(0,10;0.75.0.1)) is around
650ms/iteration while MAE is 670ms/iteration when input size is 224x224 and batch size is 256. Moreover,
Conditional MAE saves around 1G GPU memory compared to MAE. If batch size and input size is larger and
training time is longer, the saved memory and time will be considerably impressive.

5In our preliminary experiments, L(0, 9) performs the best in fine-tuning among these three combinations.
To provide a more comprehensive analysis, we include L(0, 10) and L(0, 11). We do not include L(0, 8) as it
performs worse than L(0, 9).

6We also verify this characteristic in large-scale ImageNet1K and ViT-Large in Sec 3.4. Moreover, we
compare the performance of our best two-shot masking L(0, 10; 0.75, 0.1) with one-shot L(0; 0.775) where
they retain the same number of patch tokens. The one-shot perfromance (83.2% Acc) is inferior to our two-shot
(84.6%). Similarly, we compare two-shot masking L(0, 10; 0.9, 0.05) with one-shot L(0; 0.905). Our two-shot
(82.1%) also outperforms one-shot (81.1%) whose performance is even inferior to that of L(0; 0.9) (81.2%).

5
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Figure 4: Layer representation similarity between pretrained two-shot masking model and baseline.
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Figure 5: Comparison of two-shot masking L(0, 10; 0.75, 0.1) and baseline model L(0; 0.75) on
attention distance and attention entropy before/after fine-tuning. The lp means pretrained model. The
ft means fine-tuned models.

Layer Representation Analyses. We first leverage Centered Kernel Alignment (CKA) (Cortes et al.,
2012; Nguyen et al., 2020) to analyze the layer representation similarity across pretrained models 7.
As shown in Fig 4, we visualize the layer representation similarity between several two-shot masking
pre-trained models and baseline (0, 0.75) as heatmaps. It is seen an increasing discrepancy between
the representations of two-shot models and that of baseline, especially between the high layer of
two-shot models and shallow layer of baseline. This implies that the second masking introduce
certain bias into pretrained models, rendering the representations varying from that of baselines 8.

Attention Map Analyses. We then analyze the attention maps that reveal the behaviors for aggregating
information in the attention mechanism of ViTs. Following (Wang et al., 2023c) we use two metrics,
i.e., attention distance and attention entropy 9, to analyze two-shot masking and baseline models. We
pick L(0, 10; 0.75, 0.1) as it performs best and illustrate its attention distance and entropy variation
before/after fine-tuning and compare with that of baseline L(0; 0.75) in Fig 5. We see that the second
masking decreases the attention distance and entropy to some extent during pretraining in Fig 5 (a),
bringing locality inductive bias into model and thereby rendering the representations varying from
that of baselines. From the view of reconstruction, we conjecture such adjustment is because the
second masking requires the unmasked patches to recover their parallel neighbor (masked ones) of a
forward. In Fig 5 (b) and (c), compared to pretraining, we find that fine-tuning actually demonstrates
similar behavior. Specifically, for lower layers, both L(0, 10; 0.75, 0.1) and L(0; 0.75) decrease their
lower and upper bounds of attention distance during fine-tuning compared to pretraining. For higher
layers, both models increase their lower bound of attention distance. Finally we compare the attention
distance and entropy between the two models after fine-tuning in Fig 5 (d) to figure out what makes
L(0, 10; 0.75, 0.1) have potential to outperform baseline L(0; 0.75). We see that L(0, 10; 0.75, 0.1)

7CKA computes the normalized similarity in terms of the Hilbert-Schmidt Independence Criterion
(HSIC (Song et al., 2012)) between two feature maps or representations.

8Note that the disparity in the heatmap does not necessarily imply whether the learned representation is
advantageous or detrimental. It reflects how the representation learned by our two-shot masking model varies
from that of the baseline.

9The attention distance reveals how much local vs. global information is aggregated, and a lower distance
means each token focuses more on neighbor tokens. The attention entropy reveals the concentration of the
attention distribution, and lower entropy means each token attends to fewer tokens. We refer the reader of interest
to (Wang et al., 2023c) for detailed formula
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Figure 6: Visualization of reversed attentions (showing how much information a second-masked
patch sends to others) in layer 9 of models. Top: single masking model L(0; 0.75) (vanilla MAE).
Bottom: two-shot masking model L(0, 10; 0.75, 0.1). By comparing every map pair, one can see
that these second-masked tokens tend to send and store the information to their neighbors just prior
to being masked. Especially in the centered highlighted part, L(0, 10; 0.75, 0.1) tends to be more
compact and localized.

has similar attention distance and entropy in high layers while more concentrated and lower attention
distance and entropy in low and middle layers. We attribute it to locality inductive bias brought by
the second masking that captures better low-level features. Similar observations can be found in other
two-shot model variants (η1 = 0.75 and 0.9) which we put in Appendix A.3.2.

Information Leakage and Locality. In the two-shot setting, the second masked patches have been
seen by previous layers, potentially resulting in information leakage. However, it’s important to note
that this leakage does not cause a trivial solution as the presence of η1 and its substantial gap in
magnitude compared to η2 necessitates the model to acquire the ability to infer the masked patch in the
first masking. In contrast, the presence of the second masking necessitates that patches that interacted
in previous layers must recover their corresponding masked neighbors in the forward pass. As a result,
the model needs to dedicate a portion of its capacity to learn how to infer local neighbors. This would
introduce a certain degree of locality bias. To illustrate this, we visualize the reversed attention (Ding
et al., 2023) of pretrained model L(0, 10; 0.75, 0.1) as shown in Fig 6 (bottom), containing the
information flow of second masking, i.e., how much information a second-masked patch sends to
other. It clearly demonstrates that the attention head retains object-related local information. In this
way, the information leakage is controllable, and information of the second-masked patch flows and is
stored in the neighboring patches, to be reconstructed after the second masking. Also, compared with
single masking in Fig 6 (top), the locality of the attention head is enhanced, potentially benefiting
some downstream tasks that require low-level or local representations (Jiang et al., 2022).

Potential Application. Intuitively, the derived locality of two-shot masking allows models to capture
nuanced, locally fine-grained characteristics, thereby discern subtle distinctions between close classes.
To prove this, we conduct fine-grained classification on three widely-used fine-grained datasets
including Flower102 (Nilsback & Zisserman, 2008), Stanford Dog (Khosla et al., 2011), and CUB-
200 (Wah et al., 2011) using ViT-S, and compare the results with that of ImageNet100 (generic
classification) in Tab 2. We find L(0, 10; 0.75, 0.1) obtains more enhancement than L(0; 0.75) in
fine-grained classification.

Table 2: Comparisons on fine-grained datasets.
Dataset L(0; 0.75) L(0, 10; 0.75, 0.1)

ImageNet100 82.5 84.6 (+2.1)
Flower102 34.7 37.3 (+2.6)
Standford Dog 51.6 54.3 (+2.7)
CUB-200 48.2 51.1 (+2.9)

Additionally, a subtle and interesting phe-
nomenon is captured during our experi-
ments. We take L(0, 10; 0.75, 0.15) and
L(0, 10; 0.9, 0.1) for example and in Fig 7, the
second reconstruction loss (orange) of masked
patches (2nd shot) unanimously decreases faster
than that of the first (blue) (1st shot). This re-
sult indicates the second reconstruction task is
relatively easier to optimize than the first. To some extent, using the same loss weights for them is
unreasonable and wastes model’s capability. Hence, intuitively, we adopt their mask ratios as their
new loss weights during training to force the model to concentrate more on the first reconstruction
task. In Tab 3, we find that this adjustment significantly improves the performance of linear probing
but has limited enhancement on fine-tuning. Since our focus is primarily on the performance of
finetuning, we did not adopt this strategy in our experiments and leave it as a potential avenue for
future exploration.

Finally, we apply our findings in ViT-S/16 on ViT-B/16, hoping to further improve its performance as
well. Since the performance of η1 = 0.9 for ViT-B/16 in Tab 1 is inferior to that of η1 = 0.75, we
focus primarily on η1 = 0.75 for ViT-B/16 in the experiment. Specifically, we employ the three best
two-shot settings of finetuning performance of ViT-S/16 on ViT-B shown in Tab 4 and compare the
results with MAE. Our two-shot masking strategy unanimously outperforms MAE. And among them,
L(0, 10; 0.75, 0.1) performs best, which also performs best for ViT-S/16.
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Figure 7: Training loss curves of two-shot.

η1, η2 w1, w2 LP FT

0.75, 0.15 0.5, 0.5 31.0 83.9
0.75,0.15 35.2 83.9

0.9, 0.1 0.5, 0.5 35.5 81.9
0.9,0.1 36.3 82.0

Table 3: Results of different loss weights
i, j η1, η2 FT
L(0) 0.75 86.88

L(0,10) 0.75, 0.1 87.66
L(0,10) 0.75, 0.15 87.46
L(0,11) 0.75, 0.1 87.26

Table 4: Results on ViT-B/16 compared to MAE

Takeaways. For two-shot masking, we summarize four useful findings: ① building on one-shot,
increasing the interval of two-shot masking with a large η1 and a small η2 is helpful for fine-tuning in
both ViT-S/16 and ViT-B/16, e.g., L(0, 10) in our experiments; ② it strongly suggests that there may
not exist a positive relationship between linear probing and fine-tuning; ③ the second masking brings
locality bias into model and help capture low-level features, especially for finer-grind classification;
④ adopting a weighted reconstruction loss for different shot is helpful for linear probing.

Remark. Our empirical analysis reveals the impact of two-shot masking on representation and
attention maps. Moreover, we believe it would be interesting to explore the multi-stage masking
process from an information theory perspective, e.g., examining how the information content evolves
at each masking stage, which we plan to address in future work.

3.1.3 THREE-SHOT MASKING

We further explore the three-shot masking. Specifically, we leverage a greedy-algorithm-like
strategy by using the best two-shot setting L(0, 10; 0.75, 0.1) and add the third masking on the
last layer of encoder (k = 11) with a small masking ratio η3 = 0.1. We verify the effec-
tiveness of our three-shot masking by comparing it with various strategies including “Equal
interval", “Prefer front layer", and “Unbalanced interval". Moreover, we also find there do
not exist a positive relationship between linear probing and fine-tuning in three-shot mask-
ing. For example, L(0, 10, 11; 0.75, 0.1, 0.1) achieves 29.6% Acc in linear probing, inferior to
L(0, 1, 10; 0.75, 0.1, 0.1) (31.0%). But L(0, 10, 11; 0.75, 0.1, 0.1) achieves 81.9% Acc in fine-tuning,
superior to L(0, 1, 10; 0.75, 0.1, 0.1) (81.8%). Besides, by visualizing the attention distance and
entropy and comparing with that of two-shot and one-shot masking, we find the third masking
introduces a more prominent locality bias as shown in Fig 20. Similarly, we conduct fine-grained
classification in Tab 8 and find that though the model outperforms the baseline but the enhancement
is inferior to that of two-shot. Intuitively, we speculate that this would be due to the over-locality
introduced by the third shot masking. Due to the limited space, we put all the results in Appendix A.4.

Takeaways. In three-shot masking, we find that a greedy-like masking strategy is superior over a
wide range of strategies. And more prominent locality is brought into models.

Table 5: Downstream performance of Conditional-MAE compared to MAE. DTD (Cimpoi et al.,
2014), CF means CIFAR (Krizhevsky et al., 2009). Tiny indicates TinyImageNet (Le & Yang, 2015)

Model Classification Obj Det Sem Seg
DTD CF10 CF100 Tiny APb APm

MAE 57.9 84.5 62.5 63.4 38.9 35.1 38.3

Conditional-MAE 59.1 85.5 63.4 64.1 39.5 35.5 38.9

3.2 TRANSFER LEARNING

To conduct transfer learning in downstream tasks, we compare the best results of one-shot (82.5
Acc@1), two-shot (84.6 Acc@1), and three-shot (Acc@1), among which two-shot performs the best.
Hence, we pick up the best two-shot masking ImageNet100 pretrained ViT-B/16 model (Conditional-
MAE). To verify its effectiveness in transfer learning, We perform classification on four datasets,
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Model L(i, j; η1, η2) FT

SimMIM (Swin-B) L(0; 0.6) 83.8
SimMIM (Two-shot Swin-B) L(0, 3; 0.6, 0.1) 84.9

ConvNeXt V2-B L(0; 0.6) 80.2
ConvNeXt V2-B (Two-shot) L(0, 3; 0.6, 0.1) 81.1

Table 6: Comparisons on two-shot variants and
baseline.
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Figure 8: Results of scaling Conditional-MAE on
larger model and longer training time.

object detection on COCO (Lin et al., 2014), and semantic segmentation on ADE20K (Zhou et al.,
2017; Zhu et al., 2022) following previous works (He et al., 2021; Chen et al., 2022b; Zhou et al.,
2021). As shown in Tab 5, Conditional-MAE generally produces better performance than MAE in
downstream tasks, showing its great transfer capability. Besides, we consider pretraining Conditional-
MAE on larger ImageNet1K with 300 epochs and fine-tune it on downstream task, e.g., semantic
segmentation using ADE20K. The Conditional-MAE produces 46.1 for mIoU, superior over MAE
(45.8), further verifying the effectiveness of two-shot masking. In addition of transfer learning,
we also shows the robustness of Conditional-MAE over MAE against occlusion and shuffling in
Appendix A.5.

3.3 GENERALIZATION

Besides MAE, we follow our empirical takeaways above and perform two-shot masking on two
different structures including SimMIM (Swin Transformer) and ConvNeXt V2 (CNN). In Tab 6, since
both SimMIM and ConvNeXt V2 use a hierarchical encoder, here we use i and j to denote different
stages. We see that the two-shot variants outperform the baselines, showing great generalization of
our two-shot masking to other structures beyond ViT.

3.4 SCALABILITY

To verify the scaling capability, we pretrain Conditional-MAE on ImageNet1K (Russakovsky et al.,
2015), scaling on large model, i.e., ViT-L, and longer pretraining times, e.g., 1600 epoch. The result
is presented in Fig 8 where the left is training with 300 epochs for both models and the right uses
ViT-B/16. It is shown that pretraining Conditional-MAE with a longer time and increasing the size
of pretrained Conditional-MAE can significantly improve performance, demonstrating promising
scaling capability of Conditional-MAE.

4 RELATED WORK

Masked image modeling. Masked image modeling is the task of predicting the masked part of an
image from the visible part. Inspired by masked language modeling in natural language processing,
BEiT (Bao et al., 2021) is the first to employ this paradigm in computer vision. PeCo (Dong et al.,
2021) further improves the performance of BEiT by involving more semantics in visual tokens.
MAE (He et al., 2021) removes the need for a tokenizer (e.g., d-vae (Ramesh et al., 2021) in BEiT)
by directly predicting the masked part in RGB space. This greatly simplifies the whole pipeline and
improves the model performance simultaneously. CAE (Chen et al., 2022b) adds a regressor between
the encoder and decoder to align masked and visible representations in the same representation space.
iBOT (Zhou et al., 2021) combines masked image modeling with contrastive learning, showing great
potential. (Shi et al., 2022) uses an adversarial objective to consistently improve on state-of-the-art
self-supervised learning (SSL) methods. MaskFeat (Wei et al., 2022a) uses Histograms of Oriented
Gradients (HOG), a hand-crafted feature descriptor, as reconstruction target. Recently, with more
effort devoted to this field, numerous works (Dong et al., 2022a; Gao et al., 2022; Zhang et al., 2022b;
Chen et al., 2022c; Kakogeorgiou et al., 2022; Li et al., 2021; El-Nouby et al., 2021; Liu et al., 2022b;
Tao et al., 2022; Wei et al., 2022a; Zhang et al., 2022a; Yu et al., 2022; Assran et al., 2022; Fang et al.,
2022; Bachmann et al., 2022; Shi et al., 2022; Wei et al., 2022b; Huang et al., 2022a;b; Dong et al.,
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2022b) are proposed including BootMAE (Dong et al., 2022a), SdAE (Chen et al., 2022c), MST (Li
et al., 2021), SplitMask (El-Nouby et al., 2021), SIM (Tao et al., 2022), etc.

Understanding masked image modeling. Xie et al. shows that masked image modeling brings
rich diversity to the self-attention head and pays more attention to locality compared to supervised
one (Xie et al., 2021b). Additionally, Xie et al. also demonstrates that larger models, more data, and
longer training times are beneficial for masked image modeling (Xie et al., 2021a). CAE (Chen et al.,
2022b) illustrates its attention map and speculates that masked image modeling cares more about the
global including both foreground and background. Kong & Zhang (Kong & Zhang, 2022) point out
that masked image modeling brings occlusion invariant to the model representation. Cao et al. (Cao
et al., 2022) deliver a mathematical understanding of masked image modeling. More recently, Zhu et
al. (Zhu et al., 2023) speculate that masked image modeling is a part-to-part process: the masked
representations are hallucinated from the visible part.

Masking. Masking is a key operation in masked image modeling. Trandional masked strategies
include random masking used in MAE (He et al., 2021), and block masking used in BEiT (Bao et al.,
2021) and CAE (Chen et al., 2022b). Besides, previous works also explore extra masking strategies.
MST (Li et al., 2021) masks low-attended patches to enhance the performance without additional
cost. AttMask (Kakogeorgiou et al., 2022) further proves the usefulness of masking highly attended
portions. AMT (Gui et al., 2022) uses the attention map in the last layer of the vision transformer to
guide the masking. SemMAE (Li et al., 2022a) leverages a masking with semantics provided by an
additional pretrained model. However, it is worth noticing that almost all of them mask an image just
at the beginning and primarily focus on how to further improve the performance. UnMAE (Li et al.,
2022b), VideoMAE v2 (Wang et al., 2023b), and A2MIM (Li et al., 2023a) introduces two rounds
of masking but these efforts have gone only so far, lacking an in-depth and systematical analysis
of multiple rounds of masking for masked autoencoder. In contrast, our work fills this gap and
reveals the secret of multiple masking on masked autoencoder’s optimization with different masking
positions and ratios. We also discuss masking in generation modeling in Appendix A.6.

5 CONCLUSION

In this paper, we reveal how multiple masking affects masked autoencoder’s optimization in training
and performance by using a flexible framework called Conditional MAE. Based on our findings, we
summarize several takeaways from each shot and find that multiple masking can bring locality bias
to models. We also show the superiority of our best two-shot model Conditional-MAE over MAE
in downstream tasks, robustness again occlusion and shuffling, masking generalizability to other
heterogeneous architectures, and model scalability, providing sufficient insight for future work.

Limitation and Broader Impact. Our study is constrained by limited computational resources.
We conducted our experiments using small, base, and large ViT. Therefore, it would be interesting
to extend this study to larger models e.g., Huge ViT. Our empirical study primarily focuses on the
masked autoencoder. There may not exist any negative effects on itself but on how it is used.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Pretraining. Similar as MAE, we use the original image without color jittering, gradient clip, or
other transformations. For the experiments in multiple shots masking, we conduct pretraining on the
ImageNet-100 dataset, which is a subset of ImageNet-1K and contains 135,000 images from 100
random classes with 224× 224 pixels. The batch size is 256, weight decay is 0.05, warmup epochs
is 40, and the base learning rate is 1.5e− 4 following MAE (He et al., 2021). We train each model
for 300 epochs equally. For pre-training, we use AdamW as the optimizer.

Linear Probe. Following MAE (He et al., 2021), we conduct training of linear probing for 90 epochs
with learning rate 0.1 and 1024 batch size. CLS token is used for classification. The LARS optimizer
is utilized for linear probing.

Fine-tuning. We fine-tune pretrained model for 100 epochs following MAE (He et al., 2021). The
weight decay is 0.05 and layer decay is 0.65. We set drop path to 0.1. We search from three base
learning rates, 1e− 4, 5e− 4, and 1e− 3. The batch size is 256. We use AdamW as the optimizer
with warmup epoch set to 5 and cosine learning rate scheduler. Following MAE (He et al., 2021), we
use global pooled representation for classification. In part classification, we set batch size to 16 for
all datasets and use two base learning rates 7e− 4 and 8e− 4 respectively while maintaining other
setting.

Transfer learning. In downstream transfer, we use the final pretrained checkpoint to initialize model
and then finetune it. For classification, we finetune for 100 epoch using AdamW as optimizer with
weight decay 0.05 and layer decay 0.65. Due to the computation limitation, we use 32×32 for
CIFAR100 and CIFAR10 with batch size 512 and set learning rate to 1.5e− 3. We use 64×64 for
TinyImageNet with batch size 512 and set learning rate to 1.5e− 3. We use 448×448 for DTD with
batch size 16. We use learning rate 2.5e− 3. For semantic segmentation, we following CAE (Chen
et al., 2022b) The input resolution is 512× 512. The batch size is 16 and the layerwise decay rate is
0.65 and the drop path rate is 0.1. We search from three learning rates, 3e− 4, 4e− 4, and 5e− 4. We
conduct fine-tuning for 160K steps. We do not use multi-scale testing. For object detection, we utilize
multi-scale training and resize the image with the size of the short side between 480 and 800 and the
long side no larger than 1333. The batch size is 16. We use learning rate 5e− 4. The layerwise decay
rate is 0.75, and the drop path rate is 0.2. We train the network with the 1× schedule: 12 epochs with
the learning rate decayed by 10× at epochs 9 and 11. We do not use multi-scale testing. The Mask
R-CNN implementation follows MMDetection.

Scalability. We scale the model size including ViT-B/16 and ViT-L/16 with 300 epoch on Ima-
geNet1K. For ViT-B/16, in pretraining, we use 40 warmup epoch, 1.5e− 4 base learning rate, 0.05
weight decay, and 4096 batch size. In fine-tuning, we use 5e − 4 as base learning rate with 0.65
layerwise decay. The batch size is 1024, warmup epoch is 5, and weight decay is 0.05. The drop
path is set to 0.1. For ViT-L/16, in pretraining, we use 30 warmup epoch, 5e− 6 base learning rate.
Due to the limited resource, we only use 1024 batch size. The weight decay is 0.05. In fine-tuning,
we search from three learning rate 1e − 3, 1.1e − 3, and 1.2e − 3 with 0.75 layer decay. We set
the drop path as 0.2. The batch size is set to 1024 as well. Hence, the performance of ViT-L may
not significantly outperforms MAE. We also scale the training time including 800 epoch and 1600
epoch. For 800 epoch ViT-B/16, in pretraining we use use 40 warmup epoch, 1e− 5 base learning
rate, 0.05 weight decay, and 4096 batch size. In fine-tuning, we use 5e− 4 base learning rate, 0.65
layerwise decay, 0.05 weight decay. We set batch size to 1024, warmup epoch to 5, and drop path to
0.12. For 1600 epoch ViT-B/16, in pretraining we use use 40 warmup epoch, 5e− 6 base learning
rate, 0.05 weight decay, and 4096 batch size. As for fine-tuning, we use 5e− 4 base learning rate,
0.65 layerwise decay, 0.05 weight decay. We set batch size to 1024, warmup epoch to 5, and we
search from two drop path 0.1 and 0.12. For optimization, we use the same optimizer as MAE for
both pretraining and fine-tuning.
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Figure 9: Loss curve of pretraining and linear probing with masking at 75% and 90% on the training
tasks. We also illustrate the curves of finetuning in Appendix.

Figure 10: Visualization of the latent representations of the patches before (the first row) and after
finetuning (the second row). Four columns from left to right represent encoders (j = 0, 3, 6, 9),
respectively. Mask ratio η2 is 0.9.

A.2 ONE-SHOT MASKING

A.2.1 REPRESENTATION DISCRIMINATION

We analyze the discrimination of output representation from pretrained model masked at different
postions (j = 0, 3, 6, 9) from two aspects inclduing loss curve and representation visualization.

Loss curve. During pretraining, as depicted in Fig 9(a) and (b), masking at the beginning makes the
optimization more challenging. This difficulty forces the encoder to learn more clues from visible
patches. Consequently, in the linear probing phase (with fixed parameters), as shown in Fig 9(c)
and (d), the encoder at j = 0 is more easily optimized compared with others. This implies that the
representations encoded by the fixed encoder at j = 0 are relatively more distinguishable.

Representation visualization. To further verify this finding, we follow the approach of CAE (Chen
et al., 2022b) and visualize the latent representations of patches from randomly sampled images from
the ADE20K dataset in a 2D space using t-SNE (Van der Maaten & Hinton, 2008), as illustrated in
Fig 10. We adopt t-SNE (Van der Maaten & Hinton, 2008) to visualize the high-dimensional patch
representations output from our pretrained encoder on ADE20K (Zhou et al., 2019). ADE20K has a
total of 150 categories. For each patch in the image, we set its label to be the category that more than
half of the pixels belong to. We collect up to 200 patches for each category from sampled 500 images.
In the first row, the latent representations of the encoder at j = 0 are clustered to some degree for
different categories, while the encoders at j = 3, 6, 9 fail to achieve such clustering. Additionally, in
the second row, finetuning causes the representations of different categories to scatter while those of
the same category cluster together, thereby significantly enhancing the performance of pretrained
encoders.

A.2.2 ATTENTION MAP VISUALIZATION

To figure out what fine-tuning brings to encoders at j = 0, 3, 6, 9, we visualize the attention maps
averaged over attention heads between the class token and the patch tokens in the last layer of
ViT, as shown in Fig 11. It can be observed that fine-tuning narrows the attention scope of the
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Figure 11: Visualization of the mean attention map of all heads in the last block of ViT before (1-8
columns) and after fine-tuning (9-16 columns). The region inside the blue contour is obtained by
thresholding the attention weights to keep 50% of the mass. These images are randomly sampled
from the ImageNet100 val set. The last four rows represent encoders (j = 0, 3, 6, 9), respectively.

encoder at j = 0, potentially removing some noise factors. In contrast, fine-tuning remarkably
expands the attention field of encoders at j = 3, 6, 9, involving more information. Similar results can
also be observed for each attention head in Fig 12 and Fig 13. It can be observed that fine-tuning
narrows the attention scope of the encoder at j = 0, potentially removing some noise factors. In
contrast, fine-tuning remarkably expands the attention field of encoders at j = 3, 6, 9, involving more
information.

Figure 12: Visualization of the attention map of six heads in the last block of transformer encoder
before and after finetuning. Four rows represents encoders (0-th, 3-th, 6-th, and 9-th) respectively.
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Figure 13: Visualization of the attention map of six heads in the last block of transformer encoder
before and after finetuning. Four rows represents encoders (0-th, 3-th, 6-th, and 9-th) respectively.

A.3 TWO-SHOT MASKING

A.3.1 RESULTS OF TWO-SHOT MASKING
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Figure 14: Results of two-shot masking on ViT-S/16. The
dash line is the one-shot baseline (MAE).

For η1 = 0.9, in Fig 14 (c) and Figure 14
(d), using a smaller η2, e.g., 0.1 and 0.05,
helps model obtain superior performance
compared to η2 = 0.25 and 0.15 in both
linear probing and fine-tuning. We also
find that the performance of two-shot
masking is inferior to the baseline for
linear probing. This is in line with ex-
pectation as η1 is considerably large, re-
sulting in quite few patches (clues) left.
The second shot masking further elimi-
nates the visible patches, making it more
challenging to reconstruct the missing
information. However, as opposed to lin-
ear probing, one can see that although η1 = 0.9 is quite large, our two-shot masking still shows
potential to outperform the baseline in fine-tuning, especially at L(0, 10).

A.3.2 MORE VISUALIZATION

We first visualize We first leverage Centered Kernel Alignment (CKA) to analyze the layer representa-
tion similarity across pretrained models. As illustrated in Fig 15, we visualize the layer representation
similarity between several two-shot masking pre-trained models and baseline (0, 0.9) as heatmaps.
We can see that the representation varies from that of baseline, similar to two-shot models η1 = 0.75.
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Figure 15: Layer representation similarity between pretrained two-shot masking model and baseline.

Then we visualize the attention distance and attention entropy over different two-shot models and
baselines in Fig 16 (η1 = 0.75) and Fig 17 (η1 = 0.9). We see that the second masking decreases the
attention distance and entropy for all two-shot models no matter where the position of the second
masking is.

We also present the attention distance and attention entropy before/after fine-tuning for two-shot
model variants (η1 = 0.75) shown in Fig 18. Compared to pretraining, fine-tuning decreases the
attention distance and entropy in low layer and also elevates attention distance in high layer for all
models.
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Figure 16: Comparison of two-shot masking and baseline model (η1 = 0.75) on attention distance
and attention entropy.
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Figure 17: Comparison of two-shot masking and baseline model (η1 = 0.9) on attention distance and
attention entropy.

Finally, we compare the attention distance and entropy between baseline and two-shot model variants
after fine-tuning (L(0, 3/6/9/10/11; 0.75, 0.1)) in Fig 19. We see that two-shot model variants have
similar attention distance and entropy in high layers while more concentrated and lower attention
distance and entropy in low and middle layers.

A.4 THREE-SHOT MASKING

We present the three-shot result in Tab 7. The "Equal interval" strategy refers to equally spaced
masking positions, while the "Prefer front layer" indicates that the three-shot masking is performed
in the early layers. The "Unbalanced interval" strategy selects the third masking position based on
the best two-shot masking setting, which could be close to either the first or second masking position.

Among different strategies, we find our three-shot masking method (η1, η2, η3) = (0.75, 0.1, 0.1)
yielded the best results. This highlights the superiority of our step-by-step strategy, which exhibits a
resemblance to the greedy algorithm.

A.5 ROBUSTNESS ANALYSIS

Considering Conditional-MAE suffers extra masking, it should be intuitively more robust than MAE.
To verify it, we use a fine-tuned model to conduct two kinds of perturbation schemes, i.e., occlusion
and shuffling, aiming to simulate the real circumstances. For occlusion, we randomly mask half of
the patches following (Zhou et al., 2021) before inputting the model. For shuffling, we randomly
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Figure 18: Comparison of two-shot model variants L(0, 3/6/9/10/11; 0.75, 0.1) and baseline model
L(0; 0.75) on attention distance and attention entropy before/after fine-tuning. Lp means pretrained
model. Ft means fine-tuned models.
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Figure 19: Comparison of two-shot model variants (L(0, 3/6/9/10/11; 0.75, 0.1)) and baseline
model on attention distance and attention entropy.

shuffle the patches as well. As presented in Tab 9, compared to Tab 5, Conditional-MAE suffers less
performance drop than MAE, indicating more excellent robustness.

A.6 MORE RELATED WORK

Masking in generation modeling. Chang et al. introduce MaskGIT (Chang et al., 2022), which
employs a bidirectional transformer decoder and is capable of learning to predict randomly masked
tokens via attending to tokens in all directions during training. When inference, MaskGIT first
generates all tokens of an image and then refines the generated image iteratively based on the previous
generation. Recently, Chang et al. propose Muse (Chang et al., 2023) and train it to predict randomly
masked image tokens given the text embedding extracted from a pre-trained large language model
(LLM). Leveraging LLM enables Muse to understand fine-grained language, translate to high-fidelity
image generation, etc. Moreover, Muse directly enables inpainting, outpainting, and mask-free
editing without the need to fine-tune or invert the model. Li et al. (Li et al., 2023c) propose to
use semantic tokens learned by a vector-quantized GAN at inputs and outputs and combine this
with masking to unify representation learning and image generation. Bandara et al. propose an
adaptive masking strategy called AdaMAE (Bandara et al., 2023). AdaMAE samples visible tokens
based on the semantic context using an auxiliary sampling network and empirically demonstrates the
efficacy. Xiao et al. introduce a simple yet effective adaptive masking over masking strategy called
AMOM (Xiao et al., 2023) to enhance the refinement capability of the decoder and make the encoder
optimization easier.
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Table 7: Our step-by-step three-shot masking compared to others three-shot masking strategies.
Different three-shot masking strategy i, j, k η1, η2, η3 FT

Equal interval

0, 4, 8 0.5,0.5, 0.5 66.42

0, 5, 10

0.5, 0.5, 0.5 67.2
0.75, 0.25, 0.25 73.5
0.75, 0.25, 0.1 77.7
0.75, 0.1, 0.1 80.9

0, 6, 11 0.75, 0.25,0.1 77.7
0.75, 0.1, 0.1 80.9

Prefer front layers
0, 3, 6

0.5,0.5, 0.5 64.1
0.75, 0.25,0.1 77.1
0.75, 0.1, 0.1 80.5

0, 2, 4 0.75, 0.1, 0.1 80.3
0, 1, 2 0.75, 0.1, 0.1 81.4

Unbalanced interval

0, 3, 10
0.5, 0.5, 0.5 64.7

0.75, 0.25, 0.1 78.1
0.75, 0.1, 0.1 81.3

0, 2, 10 0.75, 0.1, 0.1 81.4
0, 1, 10 0.75, 0.1, 0.1 81.8

0, 9, 10 0.75, 0.1, 0.1 81.7
0, 8, 10 0.75, 0.1, 0.1 81.6

Our three-shot 0, 10, 11 0.75, 0.1, 0.1 81.9
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Figure 20: Comparison on attention distance and entropy among one-shot, two-shot, and three-shot
masking.

Table 8: Comparisons on fine-grained datasets among one-shot, two-shot, and three-shot masking.
Dataset L(0; 0.75) L(0, 10; 0.75, 0.1) L(0, 10, 11; 0.75, 0.1, 0.1)

ImageNet100 82.5 84.6 (+2.1) 81.9 (-0.6)
Flower102 34.7 37.3 (+2.6) 35.1 (+0.4)
Standford Dog 51.6 54.3 (+2.7) 52.2 (+0.6)
CUB-200 48.2 51.1 (+2.9) 48.7 (+0.5)

Table 9: Robustness analysis (occlusion and shuffling) of Conditional-MAE and MAE with four
classification datasets.

Model occlusion shuffling

DTD CF10 CF100 Tiny DTD CF10 CF100 Tiny

MAE 56.3 71.6 48.4 49.9 47.7 68.8 45.6 42.9

Conditional-MAE 57.8 72.8 49.5 51.2 49.1 70.2 47.1 44.0
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