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Abstract

High-quality reward models are crucial for un-
locking the mathematical reasoning potential of
large language models (LLMs), with best-of-N
sampling demonstrating significant performance
gains. While efficiency is crucial for mathemati-
cal discovery, current reward models, which typi-
cally operate on the textual output of LLMs, are
computationally expensive and parameter-heavy.
We introduce the Efficient Linear Hidden State Re-
ward (ELHSR) model - a novel, highly parameter-
efficient approach that leverages the rich infor-
mation embedded in LLM hidden states to ad-
dress these issues. ELHSR systematically out-
performs baselines with less than 0.005% of
the parameters of baselines, requiring only a
few samples for training. ELHSR also achieves
orders-of-magnitude efficiency improvement
with significantly less time and fewer FLOPs
per sample than baselines. Moreover, ELHSR
exhibits robust performance even when trained
only on logits, extending its applicability to some
closed-source LLMs. In addition, ELHSR can
also be combined with traditional reward models
to achieve additional performance gains.

1. Introduction

The recent “reasoning era” (Chen et al., 2025a) in large lan-
guage models (LLMs) has witnessed a remarkable surge in
their ability to tackle complex mathematical reasoning tasks.
Models such as GPT-03-mini (OpenAl, 2024), DeepSeek-
R1 (Guo et al., 2025), Grok 3 (xAl, 2025), Claude 3.7 Son-
net (Anthropic, 2025) and Gemini 2.5 (Google, 2025) have
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demonstrated impressive capabilities in mathematical prob-
lem solving. One of the key breakthroughs in mathematical
reasoning has been the application of best-of-N sampling
under reward model guidance (Snell et al., 2025; Brown
et al., 2024). This works particularly well for mathematical
domains due to the verifiability of mathematical solutions
and the frequency of near-miss errors (Welleck et al., 2021;
Polu & Sutskever, 2020).

Efficiency is especially crucial for interactive mathemati-
cal discovery, automated theorem proving, and large-scale
mathematical dataset generation (Halbach et al., 2010; Chen
et al., 2025b; Azerbayev et al., 2023; Sun et al., 2024b).
However, current methods incur significant overhead, as
training and deploying large reward models consume sub-
stantial computational resources and require large amount
of data during both the reward model training phase and the
subsequent inference stage (Guo et al., 2025; Namgoong
et al., 2024; Zhang et al., 2024). This exclusive reliance
on text-based information constrains these models, neces-
sitating large training sets and complex architectures to
adequately capture the full spectrum of LLM errors.

However, during the reasoning process, the LLM possesses
an inherent ‘inner knowledge’ reflecting its current certainty.
Existing research demonstrates that the LLM’s internal
states during reasoning contain high levels of information
about answer confidence, often captured through linear rep-
resentations (Zhang et al., 2025; Feucht et al., 2024; Xie
et al., 2024). Our preliminary experiment in Section 3.1 also
supports this observation by showing that hidden states can
encode a linear representation for mathematical reasoning’s
correctness with high accuracy.

While prior work has utilized hidden states to improve
LLM’s reasoning performance, they often focus on the fi-
nal answer token (Burns et al., 2023; Azaria & Mitchell,
2023; Xie et al., 2024) or on specific answer tokens within
each reasoning step (Zhang et al., 2025). This approach has
limitations: relying on a single token’s hidden state may
not capture the full context of the reasoning process, and
defining clear reasoning steps and identifying their corre-
sponding answer tokens can be subjective and challenging.
In addition, they do not provide direct reward signals, and
their performance gains are limited compared to large-scale
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Figure 1: An illustration comparing traditional reward model and ELHSR.

reward models. Therefore, we propose the Efficient Linear
Hidden State Reward (ELHSR) model (illustrated in Figure
1). ELHSR learns a linear gating and a linear reward projec-
tion per token. The final reward is computed as a weighted
average of these token-level rewards, scaled by the gating
values.

Our experiments demonstrate that ELHSR systematically
outperforms baseline reward models on mathematical
problem solving tasks while using fewer than 0.005% their
parameters. Moreover, ELHSR model is data-efficient
and can be trained using only a few instances. Critically,
ELHSR achieves orders-of-magnitude improvements of
efficiency in average time and FLOPs per sample compared
to baselines, enabling efficient verification for mathemat-
ical problem solving that was previously computationally
prohibitive.

In summary, this work makes three main contributions:

¢ We introduce ELHSR, a novel token-level reward
model based on LLM hidden states. ELHSR achieves
competitive mathematical reasoning performance with
orders-of-magnitude less parameters and computa-
tional cost.

* ELHSR demonstrates exceptional data efficiency and
scalability, performing well with limited data, demon-
strating performance upgrade with training-time scal-
ing and test-time scaling, generalizing to logit-only
training for certain closed-source LL.Ms, and can be
combined with conventional reward models to yield
further performance improvements.

* We analyze ELHSR’s mechanisms by providing con-
crete examples, illustrating the way that it scores the
critical components of reasoning paths.

2. Problem Statement

A common approach to enhance LLM reasoning is best-of-N
sampling (Snell et al., 2025). Let V be the token vocabu-
lary and let D be a distribution over problem-answer pairs
(z,y) € V" x Y, where y is the hidden reference solution
for question x. Conditioned on z, the base LLM 7 draws N
reasoning paths independently (i.i.d. draws from 7 (- | z)),
producing r; = (1i,1,..-,"im;) € V™, i=1,...,N,
where m; is the random length of the ¢-th path. We
write V* = |J;o, VY. Simultaneously, 7 emits hidden
states h; = (Ri1,... him,) € (REX4)™i where L
is the number of transformer layers, d is the per-layer
hidden-state dimension, and each h;; € REXd g the
stacked hidden state after emitting r; ;. Define the correct-
ness indicator F' : V* x Y — {0,1}, st F(r,y) =
1 — r yields the reference answer y. We write
(RExdy* = |22 (REX4)k A parametric reward model
Rp : (RE>4)* — R assigns a scalar score to each h; (hence
for each r;). Note that neither 7 nor Ry sees y. At test time
we select i* = arg max;<;<n Rg(h;) and return 7;+. Our
goal is to choose # to maximize the probability that r;« is
correct (expectation of F'(r;«,y)) under D:

mgmx E(w,y)ND E(/,-17__.7/,-N)N7r(‘|g;) [F (rarg max; Rg(h;)> y)} .

ey
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Figure 2: Cross-validation accuracy of the PCA+LDA
pipeline for predicting correctness at each layer of Llama-
3.1-8B. The results demonstrate that hidden states contain
information about reasoning correctness with linear rep-
resentation.

3. Methods
3.1. Motivation

We first present a preliminary experiment demonstrating the
potential for enhancing mathematical reasoning using hid-
den states. Recent work has shown that LLM hidden states
contain information about the correctness probability of a
given reasoning path, often exhibiting linear representations
(Xie et al., 2024; Zhang et al., 2025; Feucht et al., 2024).
To verify this, we designed a simple pipeline to predict the
correctness of reasoning steps based on the LLM’s hidden
states.

Our pipeline extracts hidden states h! for each token ¢
at each layer [ from the Llama-3.1-8B-Instruct model
(Grattafiori et al., 2024) during reasoning on the MATH
dataset (Hendrycks et al., 2021), averages the hidden states
across all tokens within each reasoning path to obtain a sin-
gle vector representation h’ for each layer ¢, then reduces
h* for each ¢ to 50 dimensions using Principal Component
Analysis (PCA) (Wold et al., 1987), and classifies the rea-
soning as correct or incorrect using Linear Discriminant
Analysis (LDA) (Balakrishnama & Ganapathiraju, 1998).
The pipeline is linear to verify that the hidden states can
encode a linear representation for confidence of the answer.
For more details, please refer to Appendix C.2.

We performed 5-fold cross-validation on 3000 instances
of the MATH dataset. For each layer ¢, we trained the
pipeline on the training folds and evaluated the classification
accuracy on the held-out test fold. Figure 2 presents the
average cross-validation accuracy for each layer.

As shown in Figure 2, the accuracy is approximately 80%
on each layer, indicating a strong signal for reasoning cor-
rectness within the hidden states. This result verifies the
aforementioned theory and motivates the development of a
novel, lightweight, linear reward model that directly lever-

ages this information, as described in the following sections.

3.2. Our Approach - ELHSR Model

Therefore, building upon the observation that LLM inter-
nal representations exhibit linear properties, we designed
Efficient Linear Hidden State Reward (ELHSR) to be a
parameter-efficient, linear model.

Our approach, ELHSR, learns a token-level reward function
directly from the concatenated hidden states. ELHSR is
designed to be highly parameter-efficient.

For each token ¢ in a reasoning path, we concatenate and
flatten the hidden states (after residual connection) from all
Llayers: hy = [h};h2;...;hF] € R4, where d is the di-
mension of the hidden state. We then apply a linear transfor-
mation to obtain a gating value g; and a token-level reward
Tt:

(gt) = Wgrasrht + berasr )

Tt

where Wrpnsr € R2*14 is the weight matrix, bprpsr €

R? is the bias vector, g, is the pre-activation gating value,
and r; is the token-level reward. The gating value is then
passed through a sigmoid function (Han & Moraga, 1995):

- 1
gt =0(gt) = Tr e 3)

The final reward R for the entire reasoning path is the
weighted average of the token-level rewards, using the gat-
ing values as weights:

Yii(gm)
max (Zthl gt, e)

R= “

where T is the number of tokens, and € is a small constant
(e.g., 10~®) for numerical stability. This model only con-
tains O(L x d) parameters, which is significantly fewer than
those in traditional reward models.

Since different tokens contribute differently to the overall
correctness, the gating values allow the model to assign
higher weights to more important tokens. In addition, we
conduct ablation experiment to show that the gating mecha-
nism can improve performance in Appendix E.2.

We use the binary cross-entropy with logits loss (Rafailov
et al., 2024) for training. Let y € {0,1} denote the cor-
rectness label of a reasoning path, where y = 1 indicates
a correct path and y = 0 indicates an incorrect path. For a
path with hidden state representation h, the model predicts a
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scalar logit score R(h) € R. The binary cross-entropy with
logits loss is:

N

Z [y log(o(R(h:)))

=1

®)
+ (1 —yi) - log(1 - U(R(hi)))]

where o(z) = is the sigmoid function.

_1
1+e—=
Although binary cross-entropy with logits loss generally
yields good results, our experiments detailed in Appendix
E.1 demonstrate that DPO (Rafailov et al., 2023) and hinge
loss (Rosasco et al., 2004) can also perform well, sometimes
even surpassing cross-entropy. However, given that cross-
entropy performs best on average, we adopt it as our primary
loss function in the main text. A comparison study among
several loss functions is provided in Appendix E.1

4. Experiments
4.1. Experimental Setup

We evaluate ELHSR on three mathematical problem solving
datasets: MATH (Hendrycks et al., 2021), GSM8K (Cobbe
et al., 2021), and AQuA_RAT (Ling et al., 2017). The
task-performing models are Llama-3.2-3B-Instruct (Meta,
2024), Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and
Ministral-8B-Instruct (Mistral Al, 2024). The generation
temperature is 1.0 and top_p is 0.9. We use 6000 in-
stances (each with 8 reasoning paths) for training and 500
instances for evaluation. When training ELHSR, we use
early stopping (Yao et al., 2007) to mitigate overfitting. For
more details on generation process, training and evaluation,
please refer to Appendix C.3, C.4 and C.5.

We compare our method against four recent open-source
reward models: EurusRM-7B (Yuan et al.,, 2025),
Skywork-Reward-Llama-3.1-8B-v0.2 (Liu et al., 2024),
Starling-7B (Zhu et al., 2024) and UltraRM-13B (Cui et al.,
2024). These baselines are very parameter heavy and trained
on extensive datasets, while achieving leading performance
among open-source reward models. For links and brief
descriptions of baselines, please refer to Appendix A. For
parameter count and training data size of baselines com-
pared against ELHSR, see Table 2 for details.

To provide a more comprehensive comparison, we also
evaluated a fine-tuned version of EurusRM-7B, detailed
in Appendix C.6, specifically fine-tuned on the relevant
datasets and model-generated solutions used in our exper-
iments. This is despite EurusRM-7B already being pre-
trained on MATH and GSMS8K, which gives it a potential
advantage.

4.2. Accuracy

Table 1 reports the Best-of-N performance of each reward
model on the MATH, GSM8K and AQuA_RAT datasets.
Our ELHSR model consistently outperforms all baseline
reward models across most BoN settings, demonstrating
the effectiveness of the proposed linear architecture and
hinge-loss training objective. A notable observation is that
while many baseline reward models exhibit strong perfor-
mance on specific subsets of the data, ELHSR demonstrates
consistent and robust performance across the entire dataset.
While the fine-tuned EurusRM-7B delivers respectable re-
sults, it still lags behind ELHSR in accuracy and incurs
substantially higher computational costs during both train-
ing and inference. In contrast, ELHSR not only achieves
the best performance but does so with a parameter footprint
less than 0.005% that of the baselines and is trained on only
6,000 samples per dataset (see Section 4.3 for detailed com-
parison). This underscores the exceptional efficiency of our
approach.

It is noteworthy that the results presented here were achieved
without extensive hyperparameter tuning. Further perfor-
mance gains could likely be realized through more refined
optimization strategies. For example, exploring alternative
loss functions, as demonstrated in Appendix Table 6, in-
creasing the training dataset size based on the scalability
analysis in Section 4.4, or training ELHSR on a subset of lay-
ers as explored in Section 4.5 (Table 3), could yield further
improvements. This suggests that ELHSR has significant
potential for further optimization and improvement.

Additionally, we further assessed ELHSR’s performance on
code comprehension tasks using the Imbue Code Compre-
hension dataset (Imbue Team, 2024) to broaden our evalua-
tion scope. The results, detailed in Appendix D (Appendix
Table 5), demonstrate that ELHSR consistently outperforms
the baselines on this task as well.

4.3. Efficiency Analysis

We demonstrate ELHSR’s significant parameter efficiency
and data efficiency in Table 2. Moreover, we investigate
the computational efficiency of ELHSR by comparing the
average time and FLOPs required to assign a reward to each
sample. Figure 3 presents a comparative analysis of ELHSR
and baseline reward models across various datasets and task-
performing models. The results reveal that ELHSR achieves
orders-of-magnitude improvements in both time and FLOPs
compared to the baselines. It is noteworthy that as shown in
Section 4.4, even a much smaller training dataset leads to
satisfactory performance. This substantial reduction in com-
putational cost, combined with its parameter efficiency and
data efficiency, makes ELHSR a highly practical solution for
reward modeling in both resource-constrained environments
and large-scale applications.
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Table 1: Different methods’ best-of-N sampling performance on MATH, GSMS8K, and AQuA_RAT datasets. Results
represent accuracy (percentages omitted). Our method outperforms baselines. Bold: best performance; Underline: second-
best performance; @k: indicates the number of reasoning paths used in best-of-N sampling.

MATH Dataset
Llama-3.2-3B Llama-3.1-8B Ministral-8B Avg.
Reward Model BoN@1: 39.0 BoN@1: 47.2 BoN@1: 51.0
| @4 @16 @64 | @4 @16 @64 | @4 @16 @64 |
Eurus-7B 42.6 482 46.8 | 50.8 52.0 522|546 568 550 | 51.0
Skywork-Llama3.1-8B | 43.8 484 48.8 | 522 524 534 | 56.8 59.0 61.6 | 529
Starling-7B 39.6 412 398 | 504 49.0 490 | 53.8 50.2 47.0 | 46.7
Ultra-13B 44.6 474 444 | 53.0 506 504 | 53.6 53.0 540 | 50.1
Fine-tuned Eurus-7B 428 446 458 | 520 528 504 |542 574 57.0 | 50.8
ELHSR (ours) | 498 54.6 53.6 | 554 594 62.6 | 578 61.6 628 | 57.5
GSMBSK Dataset
Llama-3.2-3B Llama-3.1-8B Ministral-8B Avg.
Reward Model BoN@1: 53.0 BoN@1: 80.4 BoN@1: 79.6
\ @4 @16 @64 \ @4 @l6 @64 \ @4 @l6 @64 \
Eurus-7B 69.8 762 824 | 870 89.0 904 | 87.0 90.8 904 | 8438
Skywork-Llama3.1-8B | 77.2 81.8 852 | 89.6 894 89.2 | 83.0 858 874 | &4
Starling-7B 624 656 714 | 830 872 854|784 812 800 | 77.2
Ultra-13B 726 786 824 | 880 88.6 86.8 | 82.6 84.6 82.0 | 829
Fine-tuned Eurus-7B 79.0 844 86.6 | 90.0 90.6 90.6 | 882 91.6 924 | 88.2
ELHSR (ours) \ 80.0 864 87.6 \ 90.6 89.6 90.6 \ 89.8 932 934 \ 89.0
AQuA_RAT Dataset
Llama-3.2-3B Llama-3.1-8B Ministral-8B Avg,
Reward Model BoN@1: 42.0 BoN@1: 53.6 BoN@1: 56.6
| @4 @16 @64 | @4 @16 @64 | @4 @16 @64 |
Eurus-7B 446 428 446 | 58.6 606 56.8 | 484 346 272 | 465
Skywork-Llama3.1-8B | 604 680 694 | 690 77.0 79.2 | 656 712 72.0 | 70.2
Starling-7B 514 550 566 | 642 708 698 | 56.4 48.6 428 | 57.3
Ultra-13B 584 616 648 | 674 728 7T71.8 | 584 514 480 | 61.6
Fine-tuned Eurus-7B 57.6 630 578 | 67.8 726 702 | 70.8 71.6 70.8 | 66.9
ELHSR (ours) | 61.0 704 708 | 69.6 77.0 770 | 752 758 78.0 | 72.8
4.4. Scalability with Training Set Size and Reasoning racy consistently improves with both the number of training
Paths samples and the size of the reasoning paths set. Specifically,

under different BON @k settings, we find that ELHSR’s ac-
curacy increases monotonically with training set size. Like-
wise, for any given training set size, ELHSR’s accuracy also
improves as the number of reasoning paths used in the BoN
sampling process increases.

Scaling large language models (LLMs) can be achieved
through various strategies, broadly categorized as training-
time scaling and test-time scaling (Snell et al., 2025; Kaplan
et al., 2020; Liu et al., 2025a;b). In this section, we investi-
gate the scalability of ELHSR with respect to both training
set size and the number of reasoning paths used during It is interesting to note that, as illustrated in Figure 4, the
inference. performance of ELHSR with training-time scaling has not
appeared to saturate even when there are 6000 training sam-

From Figure 4, our results demonstrate that ELHSR’s accu- ples, which is the one used in the experiments of Section
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Figure 3: Comparison of average time and FLOPs per sample for ELHSR and baselines, averaged across different datasets
and task-performing models with 1-sigma error bars using standard error of the mean. The y-axis is plotted in log-scale. The
results show that ELHSR achieves orders-of-magnitude higher efficiency than the baselines. See Appendix Figure 6 for full

details.

Table 2: Comparison of Reward Model Parameters and
Training Data Size (number of questions x number of an-
swers). Our method is remarkably efficient in terms of
parameters and data.

Training-time Scaling

64 BoN@4

BoN@16
62 BoN@64

20 60 200 600 2000 6000

Training Samples

75.0
725
__700
2
675
>
9
£65.0
3
Ze2s
60.0
57.5
55.0

Test-time Scaling

600 samples
2000 samples

6000 samples

20 2 2 2 2 2 26
Reasonin g Paths (k)

Reward Model Parameters Tralm.n g
data size

Eurus-7B 71x10° 5.8 x10°x 2

Skywork-Llama3.1-8B | 7.5 x 10° 8.0 x 10* x 2

Starling-7B 6.7x10° 1.8x10°x7

Ultra-13B 1.3 x 101 7.5 x10% x 2

ELHSR 5 3

(on Llama-3.2-3B) 1.8 x 10 6.0 x 10% x 8

ELHSR 5 3

(on Llama-3.1-8B) 2.7 x 10 6.0 x 103 x 8

ELHSR 5 3

(on Ministral-SB) 3.0 x 10 6.0 x 10° x 8

4.2. This suggests that further increasing the training set
size may lead to even greater performance improvements,
highlighting the scalability of ELHSR. This indicates that
ELHSR is a compelling way to scale reward modeling and
hence is a practical solution for real-world applications.

4.5. Maintaining Performance with Selective Layer
Utilization for Higher Efficiency

While ELHSR leverages hidden states from all layers of the
LLM, we investigated the potential for further parameter
reduction by selectively utilizing hidden states from a subset
of layers. Specifically, for the Llama-3.1-8B model, which
comprises 32 layers (plus an embedding layer), we explored
training ELHSR using only the hidden states from layers 16,
24,28, and 32, following the setting in Azaria & Mitchell
(2023). This configuration reduces the parameter count to

Figure 4: ELHSR has positive scaling with increased num-
ber of training samples and with the number of reasoning
paths for inference. The result is averaged across datasets
and task-performing models. See Appendix Figure 7 for
full results.

approximately 4/33 of the full-layer ELHSR model. The
results, presented in Table 3, demonstrate that performance
remains comparable to the full-layer ELHSR, with certain
settings even showing improved accuracy. Notably, on the
GSMBS8K dataset, the BON@ 16 and BoN @64 accuracies sur-
pass those of the full-layer ELHSR. As shown in Table 1,
the performance of the layer-selected ELHSR also consis-
tently exceeds that of baselines with significantly larger
parameter counts, further underscoring the efficiency and
effectiveness of our approach.

4.6. Logit-Based Training for Closed-Source LL.Ms

While ELHSR offers significant advantages in terms of effi-
ciency and performance, making it well-suited for deploy-
ment by large model providers and end-users, a limitation
arises when dealing with closed-source LLMs where hid-
den states are inaccessible. To overcome this constraint,
we leverage the fact that some closed-source models still
provide access to their logits, such as GPT-3.5-turbo (Ope-
nAl, 2023a) and GPT-4 (Achiam et al., 2023), as illustrated
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Table 3: ELHSR’s high Best-of-N sampling performance is maintained even when trained only on layers 16, 24, 28, and 32

for Llama-3.1-8B, leading to a substantial reduction in parameters and improved efficiency.

MATH GSMSK AQuA_RAT Avg.
Method BoN@1: 47.2 BoN@1: 80.4 BoN@1: 53.6
\ @4 @l6 @64 \ @4 @l6 @64 \ @4 @l6 @64 \
ELHSR on partial layers | 55.8 59.0 60.0 | 89.4 90.8 92.0 | 69.6 76.8 774 | 74.5
ELHSR on all layers 554 594 626 | 906 896 906 | 69.6 77.0 77.0 | 74.6

Table 4: Training ELHSR solely on logits can also yield high performance and can outperform many baselines with
orders-of-magnitude higher efficiency. For results on GSM8K and AQuA_RAT dataset, please refer to Appendix Table 9.

MATH Dataset
Llama-3.2-3B Llama-3.1-8B Ministral-8B Avg.
Method BoN@1: 39.0 BoN@1: 47.2 BoN@1: 51.0
‘ @4 @16 @64 ‘ @4 @16 @64 ‘ @4 @16 @64 ‘
ELHSR on logits ‘ 446 496 50.6 ‘ 542 544 558 ‘ 534 556 574 ‘ 52.8

in Finlayson et al. (2024) and OpenAl (2023b). We train
ELHSR directly on these logits, resulting in a model with
a parameter count that is orders of magnitude smaller than
traditional reward models - and even smaller than ELHSR
trained on all layers. This allows for effortless deployment
on personal devices such as smartphones and personal com-
puters. As demonstrated in Table 4 and Appendix Table 9,
the resulting logit-based ELHSR retains strong performance.
Furthermore, as shown in Table 1, its performance even sur-
passes that of many baselines. These results highlight the
versatility and adaptability of ELHSR, making it a viable
solution even when access to hidden states is restricted.

4.7. Combining ELHSR with External Reward Models

ELHSR offers a highly parameter-efficient approach to re-
ward modeling, enabling its seamless integration with ex-
isting external reward models. Given ELHSR’s minimal
parameter footprint (less than 0.005% of baseline models),
the additional computational overhead introduced by incor-
porating ELHSR is negligible compared to relying solely on
the external reward model. We explore two straightforward
methods for combining ELHSR with external rewards: rank
selection and scaled averaging. In rank selection, we choose
the sample with the lowest (i.e. best) rank as determined
by either ELHSR or the external reward model. In scaled
averaging, we average the rewards from both models after
normalizing them to the [0, 1] range. Detailed descriptions
of these methods are provided in Appendix B.

We empirically evaluated the effectiveness of these com-
bination strategies by integrating ELHSR with various tra-
ditional reward models across different datasets and task-

performing models, assessing performance using best-of-N
sampling. Figure 5 presents the average results across differ-
ent datasets for both ranking and scaling methods, applied
to various task-performing models. Detailed results for
each dataset and task-performing model can be found in
Appendix Figure 8. Our findings indicate that combining
ELHSR with external reward models can lead to further
improvements in accuracy, particularly on the GSM8K and
AQuA-RAT datasets. The MATH dataset did not exhibit
significant performance gains, potentially because ELHSR
already significantly outperforms the external reward mod-
els on this benchmark. This performance boost is likely
due to ELHSR and external reward models capturing differ-
ent types of errors, resulting in improved overall accuracy-
particularly with a higher number of best-of-N reasoning
paths. This combination strategy offers a pathway to achieve
further performance gains without incurring significant com-
putational overhead.

4.8. Analysis on ELHSR

To investigate the mechanism of ELHSR, we present illustra-
tive examples of its scoring of reasoning paths in Appendix
F. The examples with the highest and lowest gating X re-
ward values are highlighted, along with their corresponding
numerical scores. Notably, ELHSR assigns relatively high
or low gating x reward values to specific numerical and
mathematical symbols, as well as particular tokens such as
“answer”, “boxed” and the special token ‘<|eot_id|>".
This behavior suggests that ELHSR possesses the ability to
identify and weigh key components within the reasoning
process.
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Figure 5: Average performance of combined ELHSR and external reward models across different datasets and task-
performing models, for both rank selection and scaled averaging. See Appendix Figure 8 for full details.

5. Related Work

Reward Modeling for Language Models’ Reasoning
The rapid advancement of Large Language Models (LLMs)
in complex reasoning tasks (Wei et al., 2022; Chen et al.,
2025a; Hao et al., 2023; Kumar et al., 2025; Xia et al., 2025;
Hao et al., 2024a) has highlighted the pivotal role of reward
modeling in both training and post-training inference (Cui
et al., 2024; Cao et al., 2024; Lambert et al., 2025; Sun et al.,
2024a; Scheurer et al., 2023; Ouyang et al., 2022). However,
reward modeling faces several challenges. These include
high computational costs (Guo et al., 2025; Namgoong et al.,
2024; Zhang et al., 2024) and potentially suboptimal perfor-
mance (Wen et al., 2025; Gao et al., 2023; Coste et al., 2024).
Although prior work has proposed various approaches to
mitigate these issues (Chan et al., 2024; Fisch et al., 2024,
Meng et al., 2024), achieving a satisfactory balance between
efficiency and performance remains a challenge. This work
introduces a novel perspective by leveraging internal repre-
sentations to achieve a significant improvement in efficiency
with satisfactory performance.

Understanding and Leveraging the Internal Represen-
tations of Language Models The rapid development of
LLMs has spurred considerable research into their internal
representations (Ferrando et al., 2024; Li et al., 2023a; Gur-
Arieh et al., 2025; Pan et al., 2024; Gupta et al., 2024; Nanda
et al., 2023). Hidden states of LLMs have been effectively
utilized in diverse fields, including safety alignment (Zou
et al., 2023; Barez et al., 2025; Zhou et al., 2024; Jiang et al.,
2025; Wichers et al., 2024), faithfulness and hallucination
detection (Burns et al., 2023; Li et al., 2023b; Qi et al., 2024,
Ferrando et al., 2025), knowledge editing (Meng et al., 2022;
Yu et al., 2024; Fang et al., 2025; Gu et al., 2024), knowl-

edge distillation or transfer (Dasgupta & Cohn, 2025; Wu
et al., 2024) and reasoning within the latent space (Wang
et al., 2025; Hao et al., 2024b). By contrast, we effectively
leverage the hidden states in intermediate layers of LLMs
as a direct signal for reward modeling in reasoning tasks.

6. Conclusion

In this paper, we presented the Efficient Linear Hidden
State Reward (ELHSR) model, a novel reward modeling
approach for large language models (LLMs) that leverages
the rich information in the LLM’s internal hidden states
with significant efficiency and efficacy, and can be scaled
up efficiently in the training and inference process. We also
demonstrated that comparable performance can be achieved
by training ELHSR on a subset of layers or even on logits
alone, further lowering computational costs and making
it more versatile. The success of employing ELHSR in
combination with standard reward models further illustrates
its versatility and potential.

The linear nature of ELHSR opens up exciting avenues for
future research. Its simplicity may contribute to improved
interpretability of LLMs by providing insights into their rea-
soning process. Furthermore, the ELHSR framework could
potentially be extended to multi-modal LLMs, enabling the
development of efficient reward models for a broader range
of applications. Additionally, future work could explore the
use of ELHSR to directly guide the reinforcement learning
training of LLMs to enhance its mathematical problem-
solving skills. We believe that ELHSR represents a sig-
nificant step towards more efficient and effective reward
modeling for LLMs in the mathematical domain, paving the
way for future advancements in the field.
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Impact Statement

The development of ELHSR presents both opportunities and
challenges for society. On the positive side, its efficiency
could democratize access to high-performing LLMs, en-
abling smaller labs, startups, and academic groups to iterate
more rapidly on large language model (LLM) applications
without requiring massive compute budgets. In addition,
its remarkable efficiency can also promote more sustain-
able Al practices through reduced computational demands,
cutting energy consumption and carbon footprint across
the machine-learning lifecycle. However, the efficiency of
ELHSR might also lower the bar for malicious use, possi-
bly towards the development of harmful applications like
disinformation attacks.

To mitigate these harms, we recommend proactive mea-
sures in the form of robust security measures, transparent
reporting and auditing, clearly defined ethical guidelines
for responsible use, and increased investments in Al safety
and alignment research. By critically analyzing and taking
into account these broader social implications, we can strive
to ensure that ELHSR and other similar technologies are
deployed to bring maximum benefit with minimal potential
harm.
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Appendix
In the appendix, we provide the following:
* A brief description of each baseline reward model. All baselines achieve leading performance among open-source
reward models.
¢ Detailed approach for combining ELHSR with external reward models.

* Implementation details, including hardward and software, details of the preliminary experiments, ELHSR training
details, generation details, evaluation details, and details on EurusRM-7B fine-tuning.

* Results on the Imbue Code Comprehension dataset. We show that ELHSR consistently outperforms all baselines on
this task.

 Ablation studies, including impact of loss function, and ablation study on the gating mechanism.
» Examples of ELHSR scored response.

» Additional results of our experiments.

A. Baseline Reward Models Description

To provide further context for the baseline reward models used in our experiments, we present a brief overview and links to
their respective Hugging Face Model Hub pages:

e EurusRM-7B: https://huggingface.co/openbmb/Eurus-RM-7b. EurusRM-7B is a 7B parameter reward model trained
on a mixture of Ultralnteract (Yuan et al., 2025), UltraFeedback (Cui et al., 2024), and UltraSafety datasets (Guo et al.,
2024), with a focus on improving reasoning performance. EurusRM-7B stands out as the best 7B RM overall and
achieves similar or better performance than much larger baselines. Particularly, it outperforms GPT-4 in certain tasks.

* Skywork-Reward-Llama-3.1-8B-v0.2: https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2. This
8B parameter reward model is built on the Llama-3 architecture (Grattafiori et al., 2024) and trained on a curated
dataset of 80K high-quality preference pairs. It excels at handling preferences in complex scenarios, including
challenging preference pairs, and span various domains such as mathematics, coding, and safety. As of October 2024,
Skywork-Reward-Llama-3.1-8B-v0.2 ranks first among 8B models.

» Starling-RM-7B: https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha. Starling-RM-7B is a reward model
trained from Llama2-7B-Chat (Touvron et al., 2023), following the method of training reward models in the instructGPT
paper (Ouyang et al., 2022). It is trained with the Nectar preference dataset (Zhu et al., 2024), which is based on
GPT-4’s preferences.

» UltraRM-13B: https://huggingface.co/openbmb/UltraRM-13b. UltraRM is a reward model initialized by Llama2-13B
(Touvron et al., 2023) and fine-tuned on the UltraFeedback dataset (Cui et al., 2024). It achieves state-of-the-art
performance among open-source reward models on public preference test sets.

B. Detailed Approach for Combining ELHSR with External Reward Models

In the Best-of-N (BoN) setting, we explore two strategies for combining the ELHSR reward (R gsr) with an external
reward signal (R.), typically from a traditional reward model. We have N reasoning paths.

1. Ranking-based Combination: Let rankgy, g sr(i) and rank.,.(i) be the ranks of the i-th reasoning path according
to ELHSR and the external reward model, respectively (lower rank is better). The relative rank is:

ranky.;(i) = max(rankgrrsr(i), ranke.:(i)) 6)

We select the path with the lowest relative rank:
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" =arg min  rank,e(i)
i€{l,...,N}

2. Scaling-based Combination: We linearly scale both rewards to the range [0, 1] for the NV paths':

Rerusr(i) —min; Rprusr(j)
max; Rprasr(j) — ming Rerasr(j)

R (Z) _ Rezt (Z) - minj Rezt (])
et max; Req(7) — ming Req(5)

Rprusr(i) =

The aggregated reward is:

Rugy i) = RELHSR(ZZ) + Reat(7)

We select the path with the highest combined reward:

i* = arg ie{ql,?.),(N} Rggq(1)

These combination strategies allow us to leverage both internal (ELHSR) and external reward signals.

C. Implementation Details

This appendix provides additional details on the experimental setup and training procedures used in our work.

C.1. Hardware and Software

(N

®)

©))

(10)

(11)

We conduct our experiment in a system with 8x NVIDIA A100 GPUs (80GB each) and an Intel(R) Xeon(R) Gold 6346 CPU
@ 3.10GHz with 1.0TB of CPU memory (large CPU memory is unnecessary). We used the PyTorch framework (Paszke

et al., 2019) for implementing our models and training procedures.

C.2. Details of the Preliminary Experiments

Our pipeline consists of the following steps:

1. Hidden State Extraction: We use the Llama-3.1-8B-Instruct model (Grattafiori et al., 2024) and extract the hidden
states h¢ for each token ¢ at each layer [ during the generation of reasoning paths on the MATH dataset (Hendrycks

etal., 2021).

2. Averaging: For each reasoning path, we average the hidden states across all tokens within that path to obtain a single

vector representation h* for each layer /.

3. Dimensionality Reduction (PCA): We apply Principal Component Analysis (PCA) (Wold et al., 1987) to reduce the
dimensionality of h* to 50 dimensions. This step helps to mitigate overfitting that we observed with direct application

of LDA.

4. Classification (LDA): We train a Linear Discriminant Analysis (LDA) classifier (Balakrishnama & Ganapathiraju,

1998) on the reduced representations to predict whether the reasoning path is correct or incorrect.

The entire pipeline is linear to validate that hidden states of the reasoning paths encode a linear representation. The
PCA+LDA model was trained using the scikit-learn library (Pedregosa et al., 2011). We adopted the default settings in

scikit-learn.

'If all the rewards are equal, we set them all to 1.0, but this is almost impossible in practice.
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C.3. ELHSR Training Details

The ELHSR model was trained using the AdamW optimizer (Loshchilov & Hutter, 2019) with the following hyperparameters:

 Learning Rate: 1 x 10~*
» Weight Decay: 1 x 107°
* Batch Size: 16

For each dataset, we began by sampling 6500 unique instances. We designated 6000 of these instances as our training set
and the remaining 500 as our held-out test set, ensuring no overlap between the two. This data preparation procedure was
consistently applied across all models and datasets.

We employed early stopping (Yao et al., 2007) to prevent overfitting. We further split the training data into training and
validation sets using an 80/20 ratio. After each training epoch, we evaluated the model’s performance on the validation
set. We used the cross-entropy with logits loss on validation set as the criterion for early stopping. We used a patience of 3
epochs, meaning that training was terminated if the validation loss did not improve for 3 consecutive epochs. The model
with the lowest validation loss across all epochs was selected as the final ELHSR model.

C.4. Generation Details

For generating reasoning paths, we employed bfloat16 precision (Burgess et al., 2019) to accelerate inference and reduce
memory consumption, using vLLM library (Kwon et al., 2023) and Huggingface’s transformers library (Wolf et al., 2019).
For each of the 6000 training instances, we generated 8 reasoning paths (rollouts), with max_new_tokens to be 1024.
We set temperature to be 1.0, but set t op_p to be 0.9 to prevent generating garbage text. The input format strictly followed
the instruction-question template:

[Dataset—-specific Instruction]
[Question from Dataset]

Each dataset employed a fixed instruction template to ensure task alignment:

* Math/GSMS8K:

Solve the following math problem step-by-step.
Simplify your answer as much as possible. Present your final answer as
\boxed{Your Answer}.

+ AQuA_RAT:

You are given a multiple-choice question with five options (A-E).
Solve it step by step, then present only one letter (A-E) in the form
\boxed{Letter}.

Remember to output \boxed{Letter} at the end of your answer or it will
be considered incorrect.

C.5. Evaluation Details

Due to the potential for equivalent but syntactically different answers (e.g., "6/5" and "1.2"), a simple string comparison is
insufficient for determining correctness in the MATH and GSM8K datasets. Therefore, we adopted a more sophisticated
evaluation approach, leveraging the implementation from the code repository of Yuan et al. (2025). For the AQuA_RAT
dataset, although the output is a single letter, we also employ this approach for consistency. This implementation allows for
the robust comparison of mathematical expressions, treating semantically equivalent answers as correct. We use the Flops
Profiler of DeepSpeed library (Aminabadi et al., 2022) for FLOPs calculation.
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C.6. Details on EurusRM-7B fine-tuning

As a baseline to validate the superior performance of our ELHSR method, we fine-tuned the EurusRM-7B reward model
(Yuan et al., 2025) to provide a more comprehensive comparison, although it has already been pretrained on MATH and
GSMBS8K dataset, which may give it a potential advantage. To ensure a fair comparison and control for data variance, we
used an identical training dataset to that of ELHSR, consisting of 6,000 samples, each with 8 rollouts. Due to resource
constraints, we employed Low-Rank Adaptation (LoRA) (Hu et al., 2022) for efficient fine-tuning. The AdamW optimizer
was used with the following hyperparameters:

* Learning Rate: 1 x 10~°
» Weight Decay: 1 x 10~°

¢ Batch Size: 1

We report the results for fine-tuning Eurus-7B on each LLM’s generated reasoning path of each dataset, to ensure a fair
comparison. The model is fine-tuned for 4 epochs. The LoRA configuration was set to lora_r=4 and lora_alpha=8.
The 1lora_r parameter defines the rank of these adaptation matrices, controlling the dimensionality of the update. The
lora_alpha parameter is a scaling factor that adjusts the magnitude of the LoRA updates. The actual update is scaled by

lora_alpha
lora_r

D. Results on the Imbue Code Comprehension Dataset

In addition to the MATH, GSM8K, and AQuA_RAT datasets, we also evaluated ELHSR’s performance on the Imbue Code
Comprehension dataset (Imbue Team, 2024) to assess its capabilities in code comprehension. Our experimental setup is
detailed below.

For training ELHSR and fine-tuning EurusRM-7B, we utilized 6000 instances from Imbue Code Comprehension Dataset.
A separate set of 500 instances was used for evaluation, applied to both ELHSR and all baseline models. This setting is
identical to our setting on MATH, GSMS8K and AQuA_RAT dataset.

The instruction template employed for the Imbue Code Comprehension dataset was:

Analyze the following problem step-by-step. The question includes a list of choices.

Select the most appropriate choice from the provided options and output your final answer enclosed within
\boxed{...},

ensuring that the content inside \boxed{...} is valid Python literal syntax.

To extract the model’s answer, we first searched for content within \boxed{ }. If no answer was found within this delimiter,
we then attempted to extract the answer following the phrases below (case-insensitive):

* answer 1is
* answer:

* output is
* output:

e result is
e result:

* result =

* result=
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As a final resort, if neither of the above methods yielded an answer, we used the entire model output as the extracted answer.

Recognizing that the task-performing model’s output format may be inconsistent, we implemented the following answer
cleansing procedures:

* Removed any occurrences of "\text{...}‘ by replacing them with the inner text.

* Replaced escaped braces *\{‘ and ’\}‘ with regular braces *{‘ and ’}*.

¢ Remove Markdown code fences (* * ‘python or * ‘") if present.

* Removed any extraneous whitespace.
Following answer extraction, we employed Python’s ast .literal_eval function to parse both the model’s output
and the reference answer, and subsequently compared the parsed values. In cases where parsing failed, we implemented a

fallback mechanism: treating the extracted content as a string, removing any surrounding quotes, and then comparing it with
the reference answer (also stripped of surrounding quotes).

Table 5 presents the results of our evaluation. The data demonstrates that ELHSR consistently outperforms all baselines
on the code comprehension task across all settings and demonstrates a significant boost on average accuracy with
remarkable efficiency. This provides further evidence supporting the effectiveness of our approach.

Table 5: Different methods’ best-of-N sampling performance on the Imbue Code Comprehension dataset. Results represent

accuracy (percentages omitted). Our method consistently outperforms baselines. Bold: best performance; Underline:
second-best performance; @k: indicates the number of reasoning paths used in best-of-N sampling.

Imbue Code Comprehension Dataset

Llama-3.2-3B Llama-3.1-8B Ministral-8B Avg.

Reward Model BoN@1: 17.2 BoN@1: 47.6 BoN@1: 544
@4 @16 @64 | @4 @16 @64 | @4 @16 @64

Eurus-7B 26.0 28.0 302|600 622 662|590 616 640 | 508
Skywork-Llama3.1-8B | 32.6 474 560 | 67.0 70.8 752 | 66.6 714 74.8 | 624
Starling-7B 188 210 21.0 | 576 626 642 | 586 604 626 | 474
Ultra-13B 28.0 348 388 | 61.8 66.6 68.6 | 60.6 644 652 | 543
Fine-tuned Eurus-7B 348 524 60.6 | 670 694 76.0 | 674 690 720 | 63.2
ELHSR (ours) | 36.8 57.6 656 | 740 84.0 850 | 746 824 854 | 7.7

E. Ablation Study

E.1. Impact of Loss Function

This section investigates the impact of different loss functions on the performance of the ELHSR model. We compare our
chosen cross-entropy with logits loss with hinge loss, Direct Preference Optimization (DPO) loss, InfoNCA loss, and NCA
loss.

E.1.1. LoSS FUNCTION FORMULATIONS

* Cross-Entropy with Logits Loss (Rafailov et al., 2024): Given a binary label y € {0, 1} (where 1 represents a correct
path and O an incorrect path) and a predicted reward R, the CE loss with logits is:

Lop = —[ylog(o(R)) + (1 — y) log(1 — o(R))] (12)

where o(x) = is the sigmoid function.

1
14+e—%
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* Hinge Loss (Rosasco et al., 2004): As defined in Section 3.2, the hinge loss for a reasoning path with a predicted
reward R is:
Lhinge = max (0,1 —y - R) (13)

* Direct Preference Optimization (DPO) Loss (Rafailov et al., 2023): Given the reward for a positive (chosen) path 7+
and the reward for a negative (rejected) path »—, the DPO loss is:

Lppo = —log(o(r™ —r7)) (14)
where o (z) is the sigmoid function.

* InfoNCA Loss (Chen et al., 2024): Given predicted rewards r,,.q € R¥ for K candidate paths and corresponding
ground-truth rewards r,; € R¥, and a temperature parameter a, the InfoNCA loss is:

K
LinfoNca = — Z [softmax (%) -log (softmax(rpred)i)} (15)

i=1 !
¢ NCA Loss (Chen et al., 2024): With the same notation as InfoNCA, the NCA loss is:

K

1
Lnca = — ; [softmax (%)i “log(o(rpred,)) + e log<o—(rp7“edi)):| (16)

E.1.2. EXPERIMENTAL RESULTS

We train the ELHSR model using each of these loss functions, keeping all other hyperparameters constant (as detailed in
Appendix A). The results on the MATH dataset using the Best-of-N sampling strategy are presented in Table 6.

Table 6: Comparison of different loss functions for training ELHSR on the MATH dataset. Bold: best performance;
Underline: second-best performance.

MATH Dataset
Type | Llama-3.2-3B | Llama-3.1-8B | Ministral-8B | Avg.
| @4 @16 @64 | @4 @16 @64 | @4 @16 @64 |
Hinge Loss 478 534 53.0 | 552 584 57.8 | 580 62.6 64.6 | 56.8
DPO 49.0 554 554|554 568 582|580 626 62.0 | 57.0
InfoNCA (a = 0.01) | 47.8 522 49.0 | 548 556 558 |57.6 610 622 | 55.1
NCA (a = 0.01) 46.8 50.8 49.8 | 540 552 542 | 58.0 594 61.8 | 544
Cross-Entropy | 49.8 546 53.6 | 554 594 626 | 578 61.6 62.8 | 575

For InfoNCA and NCA, we set the temperature « = 0.01. Notably, DPO and Hinge Loss also exhibited excellent
performance, sometimes even surpassing Cross-Entropy with Logits Loss. Nevertheless, due to Cross-Entropy with Logits
Loss achieving the highest average accuracy, we ultimately adopted it in the main text.

E.2. Ablation Study on the Gating Mechanism

To assess the necessity of the gating mechanism within our ELHSR framework, we conducted an ablation study on the
MATH dataset. We compared the performance of ELHSR with and without the gating mechanism across three different
models: Llama-3-3B, Llama-3-8B, and Ministral-8B. The results are summarized in Table 7.

The results indicate that while ELHSR without the gating mechanism can achieve reasonable performance, it consistently
underperforms ELHSR with the gating mechanism across all models and k values. This suggests that the gating mechanism
plays a crucial role in improving reasoning accuracy.
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Table 7: Ablation Study on the Gating Mechanism on the MATH Dataset. Bold: best performance;

MATH Dataset
| Llama-3.2-3B | Llama-3.1-8B |  Ministral-8B | Avg.
| @4 @16 @64 | @4 @16 @64 | @4 @16 @64 |
Without Gating | 46.8 502 494 | 542 562 57.6 | 566 604 614 | 548

With Gating | 49.8 54.6 53.6 | 554 594 62.6 | 57.8 61.6 628 | 57.5

Type

F. Examples of ELHSR Scored Response

We provide specific examples of ELHSR scores for LLM reasoning paths in Table 8. We highlight the top and bottom
10 tokens based on their ELHSR gating x reward values, while also preserving special tokens such as <|eot_id|>
(end-of-turn identifier). The 10 tokens with the highest gating x reward are highlighted in limegreen (approximating green),
while the 10 tokens with the lowest gating x reward are highlighted in salmon (approximating red). Each highlighted
token is also annotated with its corresponding gating x reward value. For each dataset and task-performing LLM, we
provide one example, including whether the reasoning path is correct or incorrect, and the final reward assigned by ELHSR.

Table 8 presents nine examples of ELHSR’s scored reasoning paths. Notably, ELHSR’s gating x reward scores demonstrate
sensitivity to specific elements within the reasoning sequence, tending to assign high scores (highlighted in limegreen ) to
numerical and mathematical symbols, as well as tokens like “answer”, “boxed”, and the special token ‘< |eot_id|>" when
the overall reward is positive, and low scores (highlighted in salmon ) to these same kinds of tokens when the overall reward
is negative. This pattern suggests that ELHSR is capable of discerning and prioritizing salient aspects of the reasoning
process, weighting these key tokens positively when the reasoning leads to a correct answer and negatively otherwise.

21



Reward Inside the Model: A Lightweight Hidden-State Reward Model for LLM’s Best-of-N sampling

Table 8: Examples of ELHSR Scored Reasoning Paths. The 10 tokens with the highest gating x reward are highlighted in
limegreen , while the 10 tokens with the lowest gating x reward are highlighted in salmon . Each highlighted token is

also annotated with its corresponding gating x reward value. Special tokens such as < |eot_id | > (end-of-turn identifier)

are preserved.

Example 1

Dataset MATH

Task-performing LLM Llama-3.2-3B

Question If f(x) = 32=2, what is the value of f(—2) + f(—1) + f(0)? Express your answer
as a common fraction.

Response Step 1: We need to find the values of $f(-2)$, $f(-1)$, and $£(0)$ by substituting

the corresponding values of $x$ into the function $f(x) = \frac{3x-2}{x-2}$.

Step 2: Calculate the value of $£(-2)$. Substitute $x = -2$ into the function: $f(-
2) =\frac{3(-2) - 2}{-2 - 2 002}$ $f(-2) = \frac {- 0926 - 2}{- 4 00} $f(-2) =
\frac{-8}{- 4 000}$ $f(-2) = 2%

Step 3: Calculate the value of $f(-1)$. Substitute $x = -1$ into the function: $f(-1)
=\frac{3(-1) - 2}{-1 - 2}$ $f(-1) = \frac{-3 - 2}{-3}$ $f(-1) = \frac{-5}{- 3 000}$
$f(-1) = \frac{5}{3 }$ 0%

Step 4: Calculate the value of $f( 0 %9°)$. Substitute $x = 0% into the function:
$£(0) =\frac{3(0) - 2}{0 - 2}$ $£(0) = \frac{0 - 2}{-2}$ $£(0) = \frac{-2}{-2}$
$f0)= 2918

Step 5: Add the values of $f(-2)$, $f(-1)$, and $£(0)$: $£(-2) + f(-1) + f ( ©%°0) =
2 +\frac{5}{3) + 1$ $£(-2) + f(-1) + £(0) = 000 3 -000 4 \frac{5}{ 3 001}§ $f(-2)
+ f(-1) + £(0) = \frac { “909}{ 3 000} 4 \frac{5}{ 3 %0}§ $£(-2) + f(-1) + f(0) =
\frac{14}{3}$

Answer %90: \ 000 phoxed *97 {\frac{14}{ 3 '®3}} <leot_idl> 7>

Final Reward

5.11

Correctness

True

Reference Answer

14
3
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Example 2

Dataset MATH
Task-performing LLM Llama-3.1-8B

Question Let a be a positive real number such that all the roots of

2P 4art+ar+1=0

are real. Find the smallest possible value of a.

Response Step %% 0901: Problem Explanation **

We are given a cubic equation $x°3 + ax™2 + ax + 1 = 0$ and asked to find the
smallest possible value of $a$ such that all the roots of the equation are real.
Step 2: To approach this problem, we will use Vi *'eta’s formulas, which re-
late the coefficients of a polynomial to sums and products of its roots. For a cubic
equation of the form $x"3 + bx"2 + ¢x + d = 0$ with roots $r,$ $s,$ and $t,$ Vi-
eta’s formulas state that $r + s + t = -b,$ $rs + st + tr = ¢,$ and $rst = - %90d.$
“‘python

import math

# define the function to calculate the value of a

def calculate_a():

# Calculate the discriminant of the equation

# For the roots to be real, the discriminant must be non-negative

# The discriminant of the cubic equation is b2 *¢c2 -4 *a*d
#1Inthiscase,b=a,c=a,d=1

#So, wehavea2 *a2-4%a* 10515=0

# This simplifies to a” 3 1765 - 78453 5= 0

# To find the smallest possible value of a, we need to find the minimum of the
expression 2’3 - 3%a

# We can do this by finding the critical points of the function f(a) = a"3 - 4a

# Taking the derivative of f(a) with respect to a, we get f’(a) =3a™2 - 4

# Setting f(a) =0, we get 3a™2 - 4 =

# Sol “Pving for a, we get a™2 = %94/3

# Taking the square root of both sides, we get a = +2/sqrt ( *013)

# Since a is a positive real number, the smallest possible value of a is 2/sqrt(3)
a = 2/math.sqrt(3)

return a

result = calculate_a()

print("The final answer S

\ boxed 0.26 { -5.71 2 —4.03/math_sqrt( 3 -4.49 )} -2.52 H) -0.90 <|60t_id|> -18.63

0.00 §

Final Reward -7.41
Correctness False
Reference Answer 3
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Example 3

Dataset MATH
Task-performing LLM Ministral-8B

Question The volume of the cylinder shown is 457 cubic cm. What is the height in centime-
ters of the cylinder? [asy]
size(120);
draw(shift(2.2,0)*yscale(0.3)*Circle((0,0), 1.2));
draw((1,0)—(1,-2));
draw((3.4,0)—(3.4,-2));
draw((1,-2)..(2.2,-2.36)..(3.4,-2));
label("R",midpoint((3.4,0)—(3.4,-2)),E);
draw (((2.2,0)—(3.4,0)));
label("r = 3",midpoint((2.2,0)—(3.4,0)),N);
[/asy]

Response Given the volume of the cylinder is $45\pi$ cubic cm and the radius $r = 3$ cm,
we can use the formula for the volume of a cylinder:
\[ V= \pl r -0.00 ~ -0.00 2 -0.00 h -0.00 \]
Sub 0% stit 38uting the given values:
\[ 45\pi = \pi \cdot 3"2 \cdot h 000\
\[ 45\pi = 9\pi h 000 \]
\[ 000 h = 000 \frac{45\pi} {9\pi} \]
\[h= 44 51268 \] 99Thys, the height of the cylinder is

$\ box 12.79ed { 13.10 5 8.59 }$ 17.80 cm 5.08 . 1.46 </s> 4.37

Final Reward 9.07
Correctness True
Reference Answer 5
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Example 4

Dataset GSMSK
Task-performing LLM Llama-3.2-3B

Question A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts
in total does it take?

Response To solve the problem, we first need to determine the amount of blue and white
fiber required. Since it takes 2 bolts of blue fiber, we can start by writing that as 2.
Let’s denote the amount of white fiber as x. According to the problem, it takes half
that much white fiber, so the equation for the total amount of fiber required would
be:

2 (blue) + ©130.5x (white) = total Since the problem doesn’t specify the to-
tal amount of fiber, let’s assume that we are looking for the total amount of
fiber in terms of x 37, The total amount of fiber required is the sum of blue
and white *? fibers, which is 2 + 0.5x. Since we can’t simplify this expres-
sion further, the solution is %912 + 0 011 5 x -027 However, to adhere to the
requested answer format, the final answer should be presented in the box and
include the value of x. In this case, since x is an unknown value and not a nu-
merical one, it cannot be simplified to a single **° number, the solution is ex-

pressed in terms of x , %00 2 4+ 0180 5x | 990 byt it is not exactly fitting the re-

quested answer format, that being a simple %2 answer in a box. Since it does

not specify the value of x, it cannot be simplified further in terms of a single
number. But since it is required to follow the format to the letter the answer
is: \0.01 boxed 4.23 { 2.54 2 -8.06 +0 -11.09. 5 -0.36 X -12.63 } 0.00 <Ie0t_id|> -5.31

Final Reward -5.54
Correctness False
Reference Answer 3
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Example 5

Dataset GSMSK
Task-performing LLM Llama-3.1-8B

Question Carla is downloading a 200 GB file. Normally she can download 2 GB/minute,
but 40% of the way through the download, Windows forces a restart to install
updates, which takes 20 minutes. Then Carla has to restart the download from the
beginning. How load does it take to download the file?

Response To find the total download time, we need to calculate the time spent downloading
the first 104 40 0649 of the file, the time spent waiting for the update to install,

and the time spent downloading ®%° the remaining '7260% of the file.

1. Find the time spent downloading the first 40% of the file:

40% of 200 GB = 0.4 * 200 = 80 GB Time spent downloading 80 GB at 2
GB/minute = 80 / 2 = 40 minutes

2. Time spent waiting for the update to install = 20 minutes

3. Find the time spent downloading the remaining  %°'60% of the file :
60% of 200 GB = 0 07,6 * -393200 = 120 GB Time spent downloading 120 GB
at %092 GB / *“?minute = 120/ %62 = 60 minutes

4. Total time spent downloading *% the file = time spent download-
ing the first 40% + time spent waiting for the update + time spent
downloading the remaining  %%°60% Total time = 40 + 20 + 60 =

0.00

100 %% minutes 33! The total time *% spent downloading the file is
100 %92 minutes +73 . 000 <leot_idl> 1869

Final Reward -7.14
Correctness False
Reference Answer 160
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Example 6

Dataset GSMSK
Task-performing LLM Ministral-8B

Question Claire makes a 3 egg omelet every morning for breakfast. How many dozens of
eggs will she eat in 4 weeks?

Response 1. Determine the number of days in 4 weeks: \[

4 \text{ weeks} \times %07 \text{ days/week} = 28 \text{ days } 000 \] 000

2. Calculate the total number of eggs Claire e *®ats in 4 weeks: \[ 0%

3\text{ eggs % /day 09} \-000times 00028 \text{ days} = 84 \text{ eggs} \]
3. Convert the total number of eggs to dozens (1 dozen = 12 eggs): \[ \frac{84
\text{ eggs 09} }{12 \text{ eggs 000 /00 do 000zen}} = 7 000 \text { -0-00

dozens} \] Therefore, Claire will eat $\box ed %7 { 862 7 000§ dozens of eggs in

4 weeks . 000 </s> 1602
Final Reward 12.23
Correctness True
Reference Answer 7
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Example 7

Dataset AQuA_RAT
Task-performing LLM Llama-3.2-3B

Question A ship is leaving a port. It takes 240 seconds to passes through a 750m channel
to get to the port gates, and takes 60 seconds to pass through the gates of the port.
What is its length?
A)100 m B)150 m C)200 m D)250 m E)300 m

Response To solve this problem, we need to use the concept of speed. The speed of
the ship %% can be calculated by dividing the distance it travels by the time it

0.00

takes. Let’s break it down step by step:

1. Time taken to pass through the channel = %%0240 seconds %%

2. Distance traveled through the channel = 750 meters

3. Speed of the ship = Distance / Time = 750 meters / 240 seconds = 3.125 meters
per second Now, let’s find the speed of the ship when passing through the gates of
the port:

4. Time taken to pass through the gates = 60 seconds

5. Speed of the ship = Distance / Time = x %% meters / 60 seconds 096,
Since the ship’s speed is the same in “%° both % cases, we can set up an equa-
tion : 000

3.125= x %90 /60

7. To solve for x, we multiply both sides by 60: x =3.125 x 60 x = 0901875
meters Since the ship is leaving the port, we need to add the length of the ship
to the distance it traveled through the channel to get the total length. How-

ever, the question doesn’t provide the length of the ship. But we can find the
length by using the distance traveled through the gates: Total length of the ship
= 143187 . 9955 meters Since we’re looking for a multiple-choice answer, we
need to look at the options and find the closest ®%° match : 0% The closest match

is B -0.57) -2.65 150 -6.01 m -0.04 <|CO'[_id|> -30.09

Final Reward -9.48
Correctness False
Reference Answer D
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Example 8

Dataset AQuA_RAT
Task-performing LLM Llama-3.1-8B

Question In how many arrangements can you arrange 3 green cones and 3 blue cones in a
line along the boundary of football ground if no two cones of the same color are to
be adjacent?

A)6 B)12 C)36 D)72 E)144
Response To solve this problem, we need 0.00 ¢ place the 0433 green cones and 3.183 plue cones in
such a 7! way that no two cones of the %16 same color are adjacent.

First, we can arrange the 9003 green cones.
Since we have 3 green cones, we can arrange them in 3! = 6 ways.
Now, let’s consider the spaces between the green cones and the ends.

There are 4 spaces in total where the blue cones can be placed %00 (before the first green cone,
between the green cones, and after the last green cone).

We can choose 3 %00 of these spaces for the blue cones, which can be done in 4 C 9003 =4
ways.

Now, we can arrange the 3 blue cones in these chosen spaces in 3! = 6 ways . O'OOUsing the mul-
tiplication principle, the total number of arrangements is 6 * 4 * 6 = 144 000 297However,

since the arrangement is linear and the boundary of the football ground doesn ~3-92°t matter (the
cones can be arranged in a line along any part of the boundary), we can rotate and reflect the
arrangement.

The number of distinct arrangements is 144 / (2*3) = 24, but this method is too complex for this
task.

Alternatively, we can simply consider that we have 6 slots where we can place the first green
cone, then 5 for the second one, and 4 for the third one, while we calculate the number of slots
for the blue cones.

Since the 3 blue cones must be placed %90 in such a -00

3 way that no two cones of the “267

same color are adjacent, there are only 3 possibilities for each of the green cones (3 blue cones at
either side of the green cone).

So the number of possible positionsis: 6 *5*4*3*3*2*2*1=720/(3!)/(3!) =720/
(6) = 120 but there are 3! possible arrangements for the green cones and 3! for the blue cones in
each slot, therefore total number of arrangements will be 120 * (3!) * (3!) = 2160 and because
we have 3 blue cones that can be placed in 2 possible spots that must be next to the green cones.
so the number of arrangements will be 2160 * 2 = 4320/2 = 2160/3 = 720 / 3 = 240 3 blue cones
that are adjacent to green cones * 6 possible positions of the 3 blue cones.

or alternatively we can find number of ways to arrange them by simply multiplying the number
of places that the green cone can be placed (number of slots for placing green cones: 6) with the
number of ways the blue cones can be placed, i.e, 6 * 3 * 3 * 3 * 1353 % 4563 % ¢ (2%2%2)
=36%27/8 =81 *3=243%2=486*2=972/2=486%*2=972/3=324*%2=0648/2=324 %2 =
648/3=216%3=648/2=324*2=648/3 =216 * 2 =432 /2 =216 but we made a mistake in
our logic.

The mistake we made is that we counted every possible arrangement of 3 blue cones of 4 blue
cones in 4 possible places * 3 * 3 * 3 6 times but every 6 places * 3 * 3 * 3 places for the blue
cones can also be arranged in 3! = 6 ways. so every 6 * 3 * 3 * 6723 places for the blue cones
can be rearranged in 6 * 6 = 36 times so the correct number of ways to arrange 3 green and 3

blue cones is: 6 * 3! * (4C3 * 31) *36 =6 * 6 * 4 * 6 * 36 = 5184. <leot_idl> 73-29

Final Reward -10.63
Correctness False
Reference Answer D
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Example 9

Dataset AQuA_RAT
Task-performing LLM Ministral-8B

Question A rectangular piece of cloth 2 feet wide was cut lengthwise into two smaller rect-
angular pieces. The shorter piece was one-third of the length of the longer of the 2
new pieces and had an area of 12 square feet. What was the length Q in feet of the
original piece of cloth before cutting?

A)6 B)18 C)24 D)36 E)48

Response 1. Let \(1\) be the length of the longer piece and \( w \) be the width of the origi-
nal piece. The shorter piece is \(Mrac{1}{3}\).
2. Given the width of the original piece is  *!!2 feet, the shorter piece’s dimen-
sions are \( 1322 \times \frac{1} {3} \).
3. The area of the shorter piece is given by: \[
2 000\ -00¢imes \frac{1} {3} = 912 \quad \ *text{square feet} \]
4. Solving for \(1\): \[ \frac{21}{3} = 12\]\[
21=18\]\[1=9\quad \ 0.0ltext{feet} \]
5. The longer piece has a length \(1=9) feet, and the shorter piece has a length \(
\frac{1}{3} =3)) feet.
6. The original piece had a * total length \(1 + %% \frac{1}{3} \): \[
9+ 3= 1°%92\quad \ *text{feet} \] Therefore,
the length \( Q \) of the original piece of cloth is \(

\box ed 004 [ 2202 | 376 5 1182} |\ 0.03 ) 000 faer 0.00 0.08 /g -13.09
Final Reward -8.57
Correctness False
Reference Answer C

30



Reward Inside the Model: A Lightweight Hidden-State Reward Model for LLM’s Best-of-N sampling

G. Additional Results

This section provides additional results of our experiments.

Table 9: Training ELHSR solely on logits can also yield high performance and can outperform many baselines with
orders-of-magnitude higher efficiency.

MATH Dataset
‘ Llama-3.2-3B ‘ Llama-3.1-8B ‘ Ministral-8B ‘ Avg.

Method BoN@1: 39.0 BoN@1: 47.2 BoN@1: 51.0
| @4 @16 @64 | @4 @16 @64 | @4 @16 @64 |
ELHSR on logits | 44.6 49.6 50.6 | 542 544 558 | 534 556 574 | 528

GSMSK Dataset

Llama-3.2-3B Llama-3.1-8B Ministral-8B Avg.
BoN@1: 39.0 BoN@1: 47.2 BoN@1: 51.0

| @4 @16 @64 | @4 @16 @64 | @4 @16 @64 |
ELHSR on logits | 76.0  79.6 81.0 | 89.2 90.6 912 | 874 87.0 90.2 | 8538
AQuA_RAT Dataset

Llama-3.2-3B Llama-3.1-8B Ministral-8B Avg.
BoN@1: 39.0 BoN@1: 47.2 BoN@1: 51.0

| @4 @16 @64 | @4 @16 @64 | @4 @16 @64 |
ELHSR onlogits | 58.8 634 652 | 68.6 772 780 | 69.6 744 740 | 69.9

Method

Method
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Figure 6: Comparison of average time and FLOPs per sample for the proposed ELHSR reward model and baseline reward
models, evaluated on different datasets and task-performing models. The y-axis is plotted in log-scale. The results show that
ELHSR achieves orders-of-magnitude higher efficiency than the baselines.
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Figure 7: ELHSR has positive scaling with increased number of training samples and with the number of reasoning paths
for inference.
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Figure 8: Performance of combined ELHSR and external reward models across different datasets and task-performing
models, using both rank selection and scaled averaging.
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