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Abstract
Quantifying the causal influence of input features within neural networks has become a topic of
increasing interest. Existing approaches typically assess direct, indirect, and total causal effects.
This work treats NNs as structural causal models (SCMs) and extends our focus to include in-
trinsic causal contributions (ICC). We propose an identifiable generative post-hoc framework for
quantifying ICC. We also draw a relationship between ICC and Sobol’ indices. Our experiments
on synthetic and real-world datasets demonstrate that ICC generates more intuitive and reliable
explanations compared to existing global explanation techniques.
Keywords: Intrinsic Causal Contribution, Causal Normalizing Flow, Sobol Indices.

1. Introduction

In recent years, there has been a significant surge of interest in incorporating causal principles
into deep learning models (Pawlowski et al., 2020; Saha and Garain, 2022). Much of the existing
research has focused on post-hoc explanations of trained neural networks’ decisions using causal
effect analysis (Chattopadhyay et al., 2019; Alvarez-Melis and Jaakkola, 2017). Other studies have
explored counterfactuals for explanations or data augmentation (Dash et al., 2022; Goyal et al.,
2019b; Reddy et al., 2023b; Pitis et al., 2020), causal disentangled representation learning (Yang
et al., 2021; Schölkopf et al., 2021; Shen et al., 2022), and causal discovery methods (Zhu et al.,
2020). However, despite efforts (Chattopadhyay et al., 2019; Reddy et al., 2023a; Kancheti et al.,
2021) to quantify the causal attributions learned by neural networks, there is presently no viable
method for elucidating the “intrinsic causal contribution” (ICC) (Janzing et al., 2024) in neural
networks. In this paper, we present a new framework based on generative models—the first of its
kind, to the best of our knowledge—that quantifies intrinsic causal contributions in neural network
models. To illustrate this concept of ICC, imagine a relay race with three runners: A, B, and C.
Runner A starts the race and passes the baton late to runner B, who then hands it off late to runner
C, who ends up finishing late as well. To determine the “intrinsic contribution” of runner B to the
delay of runner C, we compare the delay of C to a situation where B only contributes the delay it
inherited from A without adding any additional delay of its own. This means we’re looking at how
much delay B is responsible for beyond what it received from A. This concept helps differentiate
between delays that B causes itself (intrinsic) and delays it simply passes on from A (inherited).

* Saptarshi was a Fulbright-Nehru Doctoral Research Fellow at the University at Buffalo during this work.
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This distinction is meaningful whether we analyze the delay in a single race, the average delay
across many races, or the variation in delays across multiple races.

To motivate the need for studying intrinsic causal contributions in neural network models, let’s
consider the task of predicting a patient’s recovery time (R) using the features: treatment type (T ),
initial health condition (H), and post-treatment care (P ). In the real world,H influences both T and
P ; while T also influences P . H , T , and P all influence R. However, these relationships among
the input features H , T , and P are often not explicitly modeled in a neural network model. Now,
assume that patients with severe initial health conditions are assigned to more aggressive treatment.
It is possible that a neural network model might misattribute the longer recovery times directly to
aggressive treatments without considering the severity of the initial health condition. Usual causal
effect estimates the expected change in Recovery Time R as the treatment T changes. It doesn’t
account for the effect of upstream variable H on T (due to the do-intervention on T ). With intrinsic
attribution analysis, the model aims to understand the part of T ’s impact on R that is inherited from
H , and the part that represents T ’s intrinsic effect. Thus, learning intrinsic causal attributions can
also find application in medicine. For example, medical practitioners can look at treatments that
have shown intrinsic benefits and consider optimizing these treatments for broader patient use.

To this end, the aim of our work is to identify the intrinsic causal contribution of an input on the
output of a neural network. Our main contributions can be summarized as follows: We introduce
an identifiable framework for computing intrinsic causal attributions in neural networks, a concept
previously unexplored in neural network attribution to our knowledge. In addition to Shapley-based
contributions, we advocate for asymmetric ICC. In Section 5, we demonstrate that ICC meets several
desirable properties for an attribution method. In Section 6, we establish connections between the
ICC and Sobol indices, offering a fresh perspective on global sensitivity analysis from a causal
viewpoint. Finally, our experiments show that the ICC produces reliable global explanations.

2. Related works

Explainability Several established methods for explaining neural network models quantify the
influence of input features on model outputs. These methods include saliency maps (Simonyan et al.,
2014; Zeiler and Fergus, 2014; Selvaraju et al., 2017), Locally Interpretable Model-Agnostic Expla-
nations (LIME) (Ribeiro et al., 2016a), Integrated Gradients (Sundararajan et al., 2017), DeepLift
(Shrikumar et al., 2017), Shapley values (Lundberg and Lee, 2017) among others. While some of
these techniques are model-agnostic, they are local in nature, meaning that the explanations are
limited to individual predictions. On the other hand, global attributions are a powerful tool for in-
terpretability because they highlight the importance of features across an entire population. They
often use interpretable surrogate models like decision trees or adjust the input space to assess overall
predictive power (Lakkaraju et al., 2016; Frosst and Hinton, 2017; Yang et al., 2018). Submodule
pick LIME (SP-LIME) (Ribeiro et al., 2016b) uses submodular optimization to summarize local
attributions, better capturing learned interactions. However, like surrogate models, it extracts use-
ful and independent explanations from the LIME method, which may not effectively capture the
non-linear feature interactions learned by neural networks. Ibrahim et al. (2019) proposed Global
Attribution Mapping (GAM) to explain the non-linear representations learned by a neural network
across different subpopulations. GAM clusters similar local feature importances to create human-
interpretable global attributions, each tailored to explain a specific subpopulation. Additionally,
GAM allows for adjustable granularity to capture varying numbers of subpopulations in its global
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explanations. Permutation Feature Importance (PFI) (Breiman, 2001; Strobl et al., 2008) is another
comparable measure across model types, offering a global view of the model’s reliance on each
feature. However, none of these methods account for causality in their explanations.

Causal Explanations Frye et al. (2021) proposed Asymmetric Shapley Values to integrate real-
world causal knowledge by restricting feature permutations to those that align with a (partial) causal
ordering. Heskes et al. (2020) introduced causal Shapley values that account for the causal relation-
ships among features to explain their total causal effect on predictions. Jung et al. (2022) presented
the do-Shapley values to measure the strengths of different causes to a target quantity. Chattopad-
hyay et al. (2019) proposed a post-hoc explanation method to find average causal effects in a trained
neural network by treating it as an structural causal model (SCM). It prompts further studies (Yadu
et al., 2021; Wang et al., 2023; Schwab and Karlen, 2019; Goyal et al., 2019a) to quantify learned
causal effects more comprehensively. Reddy et al. (2023a) introduce an ante-hoc method that iden-
tifies and retains direct, indirect, and total causal effects during the neural network model training
process. Other causal explanation methods (Verma et al., 2022; Goyal et al., 2019b; Wachter et al.,
2018; Dandl et al., 2020; Kommiya Mothilal et al., 2021; Mahajan et al., 2019; Van Looveren and
Klaise, 2021) leverage counterfactuals to examine model behavior under semantically meaningful
input changes. Breuer et al. (2024) propose a causality-aware, model-agnostic framework based on
Shapley values for global explanations. However, none of the existing work attempts to quantify
ICC for attributions in deep neural networks.

Sensitivity Analysis Sensitivity analysis (SA) (Saltelli et al., 2008) studies how model inputs
influence outputs and is widely used to explain input-output relationships in complex systems.
Scholbeck et al. (2024) argue that interpretable machine learning is essentially a form of sensi-
tivity analysis applied to machine learning models. FEL et al. (2021) used Sobol’ indices to model
the attributions of image regions. Kuhnt and Kalka (2022); Stein et al. (2022) and Scholbeck et al.
(2024) present an overview of sensitivity analysis methods for interpreting ML models. Tunkiel
et al. (2020) apply derivative-based sensitivity analysis to rank high-dimensional features in a direc-
tional drilling model. Stein et al. (2022) use the Morris method to calculate sensitivity indices for
genomic prediction. Bénesse et al. (2024) demonstrate how fairness can be defined within a global
sensitivity analysis (GSA) framework, highlighting shared indicators between the two fields. They
also demonstrate how GSA frameworks can address causal fairness, using specific Sobol’ indices
to detect causal links between sensitive variables and algorithm outcomes. The generalization of
Sobol indices within a causal framework remains largely unexplored.

3. NNs through the lens of SCMs

Notation Each random variable is denoted by an uppercase letter (e.g., V ) and its realized value
by the corresponding lowercase letter (e.g., v). We use boldface letters V and v to represent a set
of variables and their corresponding realized values, respectively. The set {1, . . . , p} is denoted as
[p]. As we often need to work with A ∪ {j}, it is handy to write A+ j for it. A− j represents the
set difference A \ {j}. Throughout this work, we use P to denote probability distributions and p̃ to
represent the corresponding density or probability mass functions (e.g., P (X1) vs. p̃(x1)).

This work is grounded in the principles of causality, specifically SCMs and the do-calculus, as
outlined by Pearl (2009). A concise overview of the relevant concepts is provided in the Appendix
A. Consider a causal graph G = (X, E), where X = {X1, X2, ..., Xp} represents the set of input
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Figure 1: An example of a causal view of a NN with three input features. White nodes represent
variables that are either observed or assumed to be known, while shaded nodes indicate
unobserved or latent variables. The left graph illustrates the causal relationships between
features along with their exogenous parents, while the right graph utilizes exogenous
variables for the TMI mapping of the SCM of inputs. In both figures, the grey edges
serve to augment the neural network to the SCM.

features (random variables), and E denotes the set of edges that capture the causal relationships
among the variables in X.

Assumption 1 The causal graph G is acyclic and contains no latent (unobserved) confounders.

Let N be a neural network model that has been trained to predict Y from input features X by
minimizing the empirical loss. The neural network N can be envisioned as a directed acyclic
graph (DAG) consisting of directed edges that link successive layers of neurons. Consequently, the
predicted output Ŷ = N (X) can be interpreted as the outcome of a sequence of interactions from
the initial layer to the final layer of the network N . When analyzing the intrinsic contributions of
inputs on the output of N , only the neurons in the first and final layers are considered. Therefore,
akin to the approach in Chattopadhyay et al. (2019); Kancheti et al. (2021) we can marginalize the
influence of the hidden layers within N and concentrate exclusively on the causal structure between
inputs and outputs. With our view of a neural network as an SCM, we define augmented causal
graph G̃ = (V, Ẽ) with V = X∪{Ŷ } and Ẽ = E ∪

⋃p
j=1{(Xj , Ŷ )}. Note that while our perspective

on neural networks as SCMs is the same as Chattopadhyay et al. (2019); Kancheti et al. (2021), they
do not address or model intrinsic causal attribution, which is central to our study. To measure the
intrinsic contribution of each feature to Ŷ , we first recursively substitute structural equations into
one another, expressing each feature Xj solely in terms of the unobserved noise variables U:

Xj = fj(PAj ;Uj) = Fj(U) = Fj(U1, ..., Up), ∀1 ≤ j ≤ p. (1)

Figure 1 portrays an example of our SCM perspective on neural networks. As G is acyclic, F =
(F1, F2..., Fp) is a triangular map. More importantly, any SCM can be represented as a tuple
(F, PU) ∈ F×PU , where F denotes the set of all triangular monotonic increasing (TMI) maps, and
PU represents the set of all fully-factorized distributions PU(u) =

∏p
j=1 PUj (uj). TMI maps are

autoregressive functions where the i-th component is strictly monotonically increasing with respect
to its i-th input. Mathematically, a TMI map is characterized as a function T : Rp → Rp defined as
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follows:

T (u) =
[
T1(u1) T2(u1, u2) · · · Td(u1, . . . , up)

]⊤
,

where each component function Tk depends solely on the first k variables u≤k := (u1, . . . , uk) and
is monotone increasing with respect to the last input uk for any (uk+1, . . . , up). They can approxi-
mate any fully supported distribution and can be parameterized through deep neural networks. For
more details on TMI maps, please see Xi and Bloem-Reddy (2023), Irons et al. (2021).

4. Intrinsic Causal Contributions

Now that we can conceptualize each Xj as being influenced by the independent causal factors
U1, ..., Up, the change in uncertainty within Ŷ is assessed as a result of a hypothetical adjustment
of Uj (which is standard conditioning stemming from exogeneity). We initiate our discussion by
defining the intrinsic causal contributions (Janzing et al., 2024) of input features to the output of a
trained neural network model N .

Definition 1 (Intrinsic Causal Contribution in Neural Network)
Given an adjustment set I ⊆ [p]− {j}, the intrinsic causal contribution of a feature Xj on the

output Ŷ of a NN N is defined as

ICCϕ(Xj → Ŷ |I) = ϕ(Ŷ |Uj+I)− ϕ(Ŷ |UI), (2)

where ϕ is a measure of conditional uncertainty that satisfies one of the following two conditions:
1. monotonicity: ϕ(Ŷ |UI) ≥ ϕ(Ŷ |Uj+I), or ϕ(Ŷ |UI) ≤ ϕ(Ŷ |Uj+I)

2. calibration: ϕ(Ŷ ) = ϕ(Ŷ |U∅) = 0, or ϕ(Ŷ |U) = 0

where ∅ is the empty set. In this context, ϕ(·|UI) denotes conditioning on all noise variables Ui for
which i is an element of the set I .

It is important to note that Ŷ is a deterministic function of X, which differs very slightly from
Janzing et al. (2024). We adapt the definition in the context of explaining the decisions made by a
neural network. Monotonicity is not an absolute necessity, but it is often simpler to understand and
work with positive contributions in practical scenarios. For example, the variance of the conditional
expectation can be seen as a choice of ϕ. We will discuss this in more detail later. The definition
of ICC can be generalized to scenarios involving confounding variables. However, we will not
discuss this here to maintain focus on the main discussion. Please look at the foundational ICC
paper Janzing et al. (2024) for more details.

4.1. Measuring ICC using Shapley value and topological ordering

Unfortunately, the contribution of each feature Xj in (2) depends on the adjustment set I given as
context. Janzing et al. (2024) address this issue by using Shapley values to symmetrize the ICC:

ICCSh
ϕ (Xj → Ŷ ) =

∑
T⊆[p]−j

1

p
(p−1
|T |

)ICCϕ(Xj → Ŷ |T ). (3)
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However, computing the Shapley values can be computationally expensive. Another viable option
would be to utilize topological ordering. A topological ordering of a DAG G is a specific arrange-
ment of the its d nodes such that each node is positioned earlier in the sequence than any of its
descendants. Let Sp be the symmetric group on the set [p]. Given an ordering π ∈ Sp, let T j

π be the
set of indices that occur before j in the ordering π, i.e., T j

π = {k : π(k) < π(j)}. If we define

ICCπ
ϕ (Xj → Ŷ ) = ICCϕ(Xj → Ŷ |T j

π), (4)

it is easy to see that the reliance on arbitrary π introduces an unnecessary level of ambiguity. There-
fore, we may constrain π as a topogical (or causal) ordering of the DAG G. However, several valid
sequences can meet this requirement, making the ordering non-unique. And as π is not unique, the
ambiguity remains unresolved. Therefore, we adjust (4) by averaging exclusively over all potential
topological orderings of the DAG G :

ICCTo
ϕ (Xj → Ŷ ) =

1

|C(G)|
∑

π∈C(G)

ICCϕ(Xj → Ŷ |T j
π), (5)

where C(G) is set of all possible causal ordering of G. An iterative adaptation of the algorithm pro-
posed by Knuth and Szwarcfiter (1974) can be used to generate all possible topological orderings.
The Shapley-based ICC can also be expressed in an alternative, equivalent form (Mitchell et al.,
2022):

ICCSh
ϕ (Xj → Ŷ ) =

1

p!

∑
π∈Sp

ICCϕ(Xj → Ŷ |T j
π). (6)

As |C(G)| ≤ |Sp|, it is clear that from equations 5 and 6 that ICCTo
ϕ is computationally more

efficient than ICCSh
ϕ . We define the value of the coalition for any T ⊆ [p] as ϕ(Ŷ |do(XT )) :=∑

x
T
j
π

ϕ
(
Ŷ |do(XT = xT )

)
p̃(xT ).

Lemma 1 (Janzing et al. (2024)) For a topological ordering π ∈ C(G), we have

ϕ(Ŷ |U
T j
π
) = ϕ(Ŷ |X

T j
π
) = ϕ(Ŷ |do(X

T j
π
)).

Instead of criticizing ICCTo
ϕ for avoiding rung 3 causal models (Janzing et al., 2024, Section 5),

we recognize that Lemma 1 is crucial for establishing the identifiability of the ICCTo
ϕ . This means

we can measure the causal contribution (ICCTo
ϕ ) solely using observational conditionals that are

readily estimable from observational data. We do not see ICCTo
ϕ as a replacement for ICCSh

ϕ . The
intrinsic value of the latter is undeniable. Instead, we view both formulations as suited for different
contexts. Due to space constraints, we provide the causal interpretation of ICC in the Appendix B.
We also recommend that readers refer to Janzing et al. (2024) for further insights. Hereafter, when
we refer to ICC, it encompasses both ICCTo

ϕ and ICCSh
ϕ .

5. Mathematical properties of ICC

This Section demonstrates that intrinsic causal contributions satisfy several desirable properties
(Janzing et al., 2020). To the best of our knowledge, our effort here is the first attempt at an axiomatic
characterization of ICC.1 Due to space limitations, all proofs are provided in the Appendix D.

1. Jung et al. (2022) highlight the complete characterization of ICC as an open problem.
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Property 1 (Efficiency/ Completeness)∑
j

ICCTo
ϕ (Xj → Ŷ ) = ϕ(Ŷ |U)− ϕ(Ŷ ).

In the context of neural network attribution, efficiency means that the uncertainty in the model’s
output is fully distributed across its input features. Shapley-based ICC values inherently guarantee
the completeness, owing to the general properties of Shapley values (Shapley, 1953).

Property 2 (Nullity/ Dummy)

ICCTo
ϕ (Xj → Ŷ ) = ICCSh

ϕ (Xj → Ŷ ) = 0

whenever ϕ(Ŷ |UI) = ϕ(Ŷ |UI∪{j}) for all I ⊆ [p]− {j}.

Nullity ensures that if a feature is entirely disconnected from the model’s output, it receives no
contribution.

Property 3 (Symmetry)

ICCSh
ϕ (Xj → Ŷ ) = ICCSh

ϕ (Xl → Ŷ ),

if ϕ(Ŷ |UI∪{j}) = ϕ(Ŷ |UI∪{l}) ∀I s.t. I ⊆ [p]− {j, l}.

Symmetry requires that attribution be equally distributed among features that provide the same
information for the model’s prediction. While ICCSh

ϕ satisfies the symmetry property, ICCTo
ϕ does

not. However, the symmetry property is not without controversy, as symmetrical approaches to
model explainability can obscure known causal relationships in the data (Frye et al., 2021).

Property 4 (Sensitivity/ Causal irrelevance) IfXi is causally irrelevant (Galles and Pearl, 1997)
to Ŷ for all I ⊆ [p]− {i}, i.e.,

P (Ŷ |do(Xi,XI)) = P (Ŷ |do(XI)), ∀I ⊆ [p]− {i},

then

ICCSh
ϕ (Xi → Ŷ ) = ICCTo

ϕ (Xi → Ŷ ) = 0.

Causal irrelevance captures the causes of an outcome by ensuring that variables not related to
the outcome have zero contribution. From a causal viewpoint, it is also related to sensitivity (Sun-
dararajan et al., 2017): if the function implemented by the deep network does not mathematically
depend on a particular variable, then the attribution for that variable should always be zero. Imple-
mentation invariance (Sundararajan et al., 2017) axiom loses significance if it refers to the properties
of functions rather than focusing on the properties of algorithms (Janzing et al., 2020). While lin-
earity is often a desirable property in many attribution methods, recent progress has been towards
non-linear attribution methods (FEL et al., 2021). The linearity of ICC depends on the choice of
the function ϕ. However, we sacrifice linearity by focusing on using a variance-based uncertainty
measure as a candidate for ϕ.

7



SAHA RATHORE SAHA GARAIN DOERMANN

Choice of ϕ. So far, we have considered ϕ as a general measure of uncertainty without specifying
its form. However, we need to adopt a suitable ϕ for practical purposes. While Janzing et al.
(2024) suggest using variance and entropy for contribution analysis, we will focus on variance-based
uncertainty measures in this article. Quantifying uncertainty using variance is often more intuitive
and easier to estimate from finite data. Furthermore, variance-based measures meet several desirable
properties (axioms) for assessing second-order uncertainty (Corbière et al., 2021), as discussed by
Sale et al. (2023). They have been proposed as an alternative to entropy-based measures, which
have recently faced criticism in the literature(Wimmer et al., 2023). By defining ϕ(Ŷ |UI) :=
VUI

(E(Ŷ |UI)), we can express the contribution of variable Xj to Ŷ , given the context I , as:

ICCϕ(Xj → Ŷ |I) = VUI+j
(E(Ŷ |UI+j))− VUI

(E(Ŷ |UI))

The difference between two variances allows us to measure the intrinsic contribution of Xj to the
uncertainty in predicting Ŷ , relative to the context I . The monotonicity of the variance of the
conditional expectation is immediate from the following theorem.

Theorem 2 Let X,Y and Z be random variables on the same probability space and V(X) < ∞.
Then,

VY (E(X|Y )) ≤ VY,Z(E(X|Y, Z)).

Note that while Theorem 2 is stated for random variables, it also holds for random vectors Y,Z.
We have hitherto guaranteed that contributions are positive. However, normalized contributions are
easier to interpret and visualize. The decomposition of the total variance of Ŷ provides a natural
way for normalizing the ICC:

Corollary 3 (Causal Decomposition of Variance) Let V(Ŷ ) <∞. Then,

V(Ŷ ) =

p∑
j=1

ICCTo
ϕ (Xj → Ŷ ) =

1

|C(G)|

p∑
j=1

∑
π∈C(G)

(
V
(
E(Ŷ |X

T j
π+j

)
)
− V

(
E(Ŷ |X

T j
π
)
))
.

The proof of the Corollary 3 is immediate from Property 1 and our choice of ϕ. A similar variance
decomposition is straightforward for Shapley-based ICC. Going forward, we will consider ϕ to be

normalized by V(Ŷ ). i.e., ϕ(Ŷ |UI) :=
VUI

(E(Ŷ |UI))

V(Ŷ )
.

6. Comparison with Sobol’ method

While variance-based sensitivity analysis (Sobol’, 2001) accommodates non-linear models, it falls
short of capturing causal influence. This is because it focuses on reducing variance by condition-
ing on observed variables without distinguishing whether the statistical relationship with the target
is causal or merely confounded. We view corollary 3 as a causal decomposition of variance as
it allows for the partial allocation of the output variance to each input variable while respecting
the causal ordering, thereby generalizing classical functional ANOVA decomposition of variance
within a causal framework. Although efforts (Li et al., 2010; Kucherenko et al., 2012; Rahman,
2014; Hooker, 2007) have been made to generalize ANOVA by removing the independence as-
sumption among input variables, none have addressed this issue from a causal perspective. Finally,
we establish the connection between variance-based ICC and Sobol’ indices, assuming independent
input variables, in the following theorem:
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Theorem 4 Assume that input features {Xi} are independent. Then, with our specific choice of ϕ,
for any I ⊆ [p] and any j ∈ [p], we have

ϕ(Ŷ |UI) = ϕ(Ŷ |XI) =
∑
T⊆I

ST ; ICCϕ(Xj → Ŷ ) =
∑

j∈T,T⊆[p]

ST

|T |
, (7)

where ST is the Sobol’ sensitivity index of the input subset XT (see Appendix C for more details).

Theorem 4 reflects that ICC may be viewed as a step toward generalizing Sobol indices within
a causal framework.

7. Learning and explaining ICC in NNs

In this Section, we introduce our primary post-hoc (Retzlaff et al., 2024) approach to identifying and
explaining the intrinsic causal contributions of an input feature. We will start by formally defining
the concept of identifiability within the context of ICC.

Definition 5 For a given neural network N , the intrinsic causal contribution of an input feature
Xj on the output Ŷ is identifiable if ICCϕ(Xj → Ŷ ) can be computed uniquely from any positive
probability distribution P (X, Ŷ ).

Prior work (Janzing et al., 2024) does not address the issue of identifiability for ICC. Under the as-
sumption of no latent confounding (Assumption 1), and based on Lemma 1, it is straightforward that
ICCTo

ϕ is identifiable. However, in general, we are unable to find a way to compute ϕ(Ŷ |UI) with-
out knowledge of the SCM. For example, Janzing et al. (2024) inferred the SCM based on common
sense knowledge and assigned all regression coefficients a value of 1. For a dataset (Quinlan, 1993)
with non-linearities, they applied an additive noise model for a simple approximation of structural
equations. In contrast, we propose to learn the entire causal-generating process using causal normal-
izing flow (CNF) (Javaloy et al., 2023) as they are a natural choice for approximating a wide range
of causal data-generating processes. Nevertheless, generative models are vulnerable to cases where
the latent values (u) underlying observations cannot be determined uniquely (Khemakhem et al.,
2019), no matter how much empirical data is available, which may lead to inaccurate estimation of
ϕ(Ŷ |UI). In this scenario, we guarantee that, even though different but equivalent model (CNF) fits
may be obtained from the same data, the estimation of ϕ remains consistent, provided the following
assumptions hold. For further details on normalizing flows, see Papamakarios et al. (2021).

Assumption 2 We constrain the class of SCMs under consideration by adopting the following
fairly common assumptions from Javaloy et al. (2023): i) the data-generating process is diffeomor-
phic — that is, F is invertible, and both F and its inverse are differentiable; ii) causal sufficiency,
i.e., PU(u) =

∏p
j=1 PUj (uj).

Causal normalizing flows are themselves parametric TMI maps that can approximate any other
TMI map with arbitrary precision. With SCMs and causal NFs categorized under the same family,
we leverage existing results on identifiability (Xi and Bloem-Reddy, 2023).

Theorem 6 (Javaloy et al. (2023), Xi and Bloem-Reddy (2023)) If two elements from the family
F × PU yield the same observational distribution, then their data-generating processes differ only
by a component-wise (Borel measurable) invertible transformation of the variables U.
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Theorem 6 says that if a causal normalizing flow (Fθ, Pθ) ∈ F × PU matches the observa-
tional distribution generated by (F, PU) ∈ F × PU , then the exogenous variables in the flow differ
from the true exogenous variables only through independent, component-wise invertible transfor-
mations. Mathematically, for U ∼ PU, it holds that F−1

θ (F(U)) ∼ Pθ and F−1
θ (F(u)) = h(u) =

(h1(u1), h2(u2), ..., hp(up)), where each hi is an invertible function. This component-wise invert-
ibility is fundamental to the identifiability of ICC:

Theorem 7 Under Assumption 2, suppose we have two CNFs (Fθ1 , Pθ1) and (Fθ2 , Pθ2) that both
match the observational distribution P (X, Ŷ ), then the intrinsic causal contributions of Xj on Ŷ
will be equal for both CNFs. Specifically, we have:

ICCϕ,θ1(Xj → Ŷ ) = ICCϕ,θ2(Xj → Ŷ ).

Another crucial advantage of using CNF framework (Javaloy et al., 2023) is its ability to handle
both mixed continuous-discrete data and partial knowledge of the causal graph, making it highly
applicable to real-world scenarios. To handle discrete data, we adopt the general method by Xi and
Bloem-Reddy (2023) that transforms the observed discrete variables into continuous ones by adding
independent noise ϵ ∈ [0, 1] —such as standard uniform noise — ensuring the original distribution
remains recoverable. Essentially, we posit that discrete variables represent the integer parts of noisy
continuous variables generated under an SCM that meets our assumptions. Thereby, it allows our
theoretical and practical insights to remain applicable. Recently, Si et al. (2023) have raised ques-
tions about using likelihood loss to train normalizing flows. In line with their approach, we use
MMD loss instead of likelihood in our experiment to train the normalizing flows. In training the
flow model, we focus on the crucial step of estimating ϕ, which is essential for computing the in-
trinsic causal contributions.The computation of VUI

(EU−I
(Ŷ |UI)) involves a two-fold integration,

which could be challenging. We therefore present a Monte Carlo-based algorithm for the efficient
estimation of ϕ.

Algorithm 1 Pseudocode for estimating ϕ
Input: Batch size B, context I for conditioning, trained CNF (Fθ, Pθ), the neural network N

1: u
(i)
M ,u

(i)
N ∼ Pθ for i = 1, 2, ..., B.

2: u
(i)
Q =

(
u
(i)
M−I

,u
(i)
NI

)
for i = 1, 2, ..., B.

3: ŷ
(i)
M = N

(
Fθ(u

(i)
M )︸ ︷︷ ︸

xM

)
, ŷ

(i)
N = N

(
Fθ(ϵV )︸ ︷︷ ︸

xN

)
, ŷ

(i)
Q = N

(
Fθ(ϵW )︸ ︷︷ ︸

xQ

)
for i = 1, 2, ..., B.

4: ȳ =
1

2B

∑B
i=1

(
ŷ
(i)
M + ŷ

(i)
N

)
; V =

1

2B − 1

∑B
i=1

(
(ŷ

(i)
M − ȳ)2 + (ŷ

(i)
N − ȳ)2

)
5: ψ̂ = V − 1

2B

∑B
i=1

(
ŷ
(i)
N − ŷ

(i)
Q

)2
Output: ϕ̂ =

ψ̂

V

In Algorithm 1, we employ the Jansen estimator (Jansen, 1999), widely recognized as one of the
most efficient (Puy et al., 2022). Jansen’s method is commonly employed alongside a Monte Carlo
sampling strategy. We improve upon the standard Monte Carlo method by employing a Randomized
Quasi-Monte Carlo (RQMC) sampling strategy (L’Ecuyer, 2018), which generates low-discrepancy
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sample sequences for faster and more stable convergence rates (L’Ecuyer and Lemieux, 2002; Ger-
ber, 2015). RQMC methods enable them to be considered variance reduction techniques for the
standard Monte Carlo method. Scrambled nets, a type of RQMC, offer valuable robustness prop-
erties (Owen and Rudolf, 2021). Our experiments utilize the most commonly used QMC method:
Sobol’ sequences (Sobol’, 1967), which can be scrambled (Owen, 1998). Although Algorithm 1
could be applied to both ICCTo and ICCSh, for the sake of completeness, we provide an algorithm
in the Appendix E — using Lemma 1 — specifically dedicated to computing ϕ for ICCTo, where
the CNF is not necessary.

8. Experiment and analysis

Now, we demonstrate that ICCs provide a natural framework for global explanations. We per-
form experiments on three datasets: a synthetic dataset and two well-known real-world benchmark
datasets, AutoMPG (Quinlan, 1993) and COMPAS (Larson et al., 2016). The causal graph of these
datasets is depicted in Figure 2. Appendix F shows more detailed information on each dataset. We
compare the ICC with global attributions generated by GAM, SP-LIME, and permutation feature
importance (PFI). We apply GAM to five different local attribution methods: Integrated Gradients
(IG), Gradient × Inputs (I×G), SmoothGrad (SG), Shapley Values (SHAP), and LIME — to gen-
erate global attributions for the test samples. We train a three-layer feed-forward neural network
with ReLU activation functions on each of the three balanced datasets. The performance metrics
of these networks are presented in Table 1. To calculate the ICC for each dataset, we fit a CNF to
approximate the SCM of the input features. Each CNF is constructed using Masked Autoregres-
sive Flows (Papamakarios et al., 2017) as its layers. We assess the quality of these flows using the
1-Wasserstein distance metric, with the results reported in Table 1. We compute attribution scores
on the test dataset. We use the OpenXAI (Agarwal et al., 2022) codebase as the foundation for our
implementation.

(a) (b) (c)

Figure 2: Causal graphs for experimental datasets: (a) COMPAS, (b) Synthetic, (c) AutoMPG

Global explanation research inherently struggles with effective and reliable validation due to
the absence of baseline truths for attributions, making identifying appropriate validation method-
ologies an open research question. In the absence of a ground truth, we evaluate the reliability of
an attribution method by adapting the Prediction Gap on Unimportant feature perturbation (PGU)
(Dai et al., 2022; Petsiuk et al., 2018). This metric measures the change in the network’s output
when unimportant features are set to zero, while the (top-k) influential features identified by a post

11
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Table 1: Left: Performance metrics for N to Be Explained (Root Mean Squared Error (RMSE)
for Regression and F1 score for Classification). Right: Quality metrics (1-Wasserstein
Distance) of CNF models used to compute the ICC.

N RMSE(↓) F1 Score (↑)

Synthetic 0.1024±0.0019 N/A
Auto-MPG 0.1103±0.0032 N/A
COMPAS N/A 0.9115±0.0016

CNF Model W1-Distance

Synthetic 0.5553±0.0028

Auto-MPG 0.9641±0.0114

COMPAS 0.9562±0.0398

hoc explanation remain unchanged. Smaller values on this metric indicate higher reliability in the
explanation. For each dataset, the PGU values for every attribution method are reported in Table 2.

Figure 3: Global attribution explanations - feature importances. Top left: AutoMPG dataset. Top
right: COMPAS dataset. Bottom: Synthetic dataset.

12
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Figure 3 presents the attribution values of the input features. In the synthetic dataset, we observe
that both ICC methods assign negligible attribution toW , which aligns with expectations as the true
outcome Y depends on W only through X and Z. SmoothGrad and IG methods also support this
assignment. Similarly, in the AutoMPG experiment, both ICC methods produce comparable attri-
butions. However, a discrepancy appears in the COMPAS experiment between ICCTo and ICCSh.
Specifically, ICCTo identifies recidivism as the most critical feature, while ICCSh ranks it as the
second most important. More notably, most other methods assign relatively low importance (attribu-
tion ≤ 0.25) to recidivism, focusing instead on prior offense count as the more influential attribute.
To further examine this discrepancy, we train separate classifiers using each feature individually:
age, recidivism, and prior offense count. The resulting F1 scores are 0.8972, 0.8964, and 0.8912,
respectively.

Table 2: PGU(↓) values for different datasets (scaled by 1× 10−1). We report the aggregated PGU
by summing across all values of k.

Dataset IG I×G SG SHAP LIME SP-LIME PFI ICCTo ICCSh

Synthetic 1.9 1.9 1.9 1.9 1.9 4.77 1.9 1.9 1.9
Auto MPG 2.84 3 2.86 2.78 2.72 6.48 2.76 2.52 2.52
COMPAS 5.73 18.29 6.47 8.51 6.06 6.36 5.48 5.18 5.17

9. Conclusion

This paper proposes a framework that leverages Intrinsic Causal Contributions to generate global
attributions that complement existing interpretability techniques for neural networks. Additionally,
we establish a link between classical sensitivity analysis and Intrinsic Causal Contributions that
bridge causality and sensitivity analysis. This connection suggests a promising overlap area that
warrants further research exploration.
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Drago Plečko and Elias Bareinboim. Causal fairness analysis: A causal toolkit for fair machine
learning. Foundations and Trends® in Machine Learning, 17(3):304–589, 2024. ISSN 1935-
8237. doi: 10.1561/2200000106. URL http://dx.doi.org/10.1561/2200000106.

18

https://api.semanticscholar.org/CorpusID:208857863
https://api.semanticscholar.org/CorpusID:208857863
https://www.sciencedirect.com/science/article/pii/S0885064X98904873
https://www.sciencedirect.com/science/article/pii/S0885064X98904873
https://doi.org/10.1137/130936233
https://doi.org/10.1137/130936233
https://doi.org/10.1137/20M1320535
https://doi.org/10.1137/20M1320535
https://proceedings.neurips.cc/paper_files/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
http://bmvc2018.org/contents/papers/1064.pdf
http://bmvc2018.org/contents/papers/1064.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/294e09f267683c7ddc6cc5134a7e68a8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/294e09f267683c7ddc6cc5134a7e68a8-Paper.pdf
http://dx.doi.org/10.1561/2200000106


ON MEASURING ICC IN DNN

Arnald Puy, William Becker, Samuele Lo Piano, and Andrea Saltelli. A comprehensive comparison
of total-order estimators for global sensitivity analysis. International Journal for Uncertainty
Quantification, 12(2):1–18, 2022. ISSN 2152-5080.

R. Quinlan. Auto MPG. UCI Machine Learning Repository, 1993. DOI:
https://doi.org/10.24432/C5859H.

Sharif Rahman. A generalized anova dimensional decomposition for dependent probability mea-
sures. SIAM/ASA Journal on Uncertainty Quantification, 2(1):670–697, 2014. doi: 10.1137/
120904378. URL https://doi.org/10.1137/120904378.

Abbaavaram Gowtham Reddy, Saketh Bachu, Harsh Nilesh Pathak, Ben Godfrey, Vineeth N. Bala-
subramanian, V Varshaneya, and Satya Narayanan Kar. Towards learning and explaining indirect
causal effects in neural networks. In AAAI Conference on Artificial Intelligence, 2023a. URL
https://api.semanticscholar.org/CorpusID:257756923.

Abbavaram Gowtham Reddy, Saketh Bachu, Saloni Dash, Charchit Sharma, Amit Sharma, and
Vineeth N Balasubramanian. On counterfactual data augmentation under confounding, 2023b.
URL https://arxiv.org/abs/2305.18183.

Carl O. Retzlaff, Alessa Angerschmid, Anna Saranti, David Schneeberger, Richard Röttger,
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Appendix A. Structural Causal Models

A.1. Causality Preliminaries (Kügelgen et al., 2023; Reddy et al., 2023b)

In this Section, we outline the fundamental definitions and concepts necessary to understand our
paper.

Definition 8 (Structural Causal Models) A Structural Causal Model (SCM) S(V,U, f , PU) rep-
resents cause-effect relationships among a set of random variables, divided into endogenous vari-
ables V = {V1, V2, ..., Vp} and exogenous variables U = {U1, U2, ..., Up}, through a collection of
structural equations f = {f1, f2, ..., fp}. Each variable Vj ∈ V is defined in relation to its parents
PAj ⊆ V − j using the causal law Vj = fj(PAj , Uj). PU is the probability distribution over
exogenous variables.

The causal diagram G(S) affiliated with an SCM S is a directed graph where each node rep-
resents a variable, and directed edges point from the elements of PAj and Uj towards Vj . As
exogenous variables U are typically unobserved, it is common practice to focus only on the subset
of G(S) projected onto V. A directed graph is acyclic if it contains no cycles, in which case it is
called a directed acyclic graph (DAG). A path in a causal graph (DAG) is defined as a sequence of
distinct vertices X1, X2, ..., Xn such that there is an edge between each pair of consecutive vertices
Xi and Xi+1. This edge can be either Xi → Xi+1 or Xi+1 → Xi. A directed path is one where
all edges point in the same direction. If there is a directed path from Xj to Xi, then Xj is called an
ancestor of Xi, and Xi is referred to as a descendant of Xj .

Definition 9 (Interventional Distribution) The interventional distribution X under an interven-
tion where Xj is set to a specific value xj , denoted as do(Xj = xj), is defined as follows:

P (X|do(Xj = xj)) = 1Xj=xj ×
∏
i ̸=j

P (Xi|PAi),

where 1 is the indicator function.

Appendix B. Causal Interpretation

Using the backtracking semantics from Kügelgen et al. (2023), we will now explain the causal inter-
pretation of ICC. “Backtracking” alludes to the process of adjusting upstream variables to account
for counterfacts while preserving the underlying causal structures in the system.

Instead of measuring the reduction in uncertainty caused by adjusting the observed value xj of
the node Xj , we assess the reduction achieved by modifying the associated noise uj . However,
through the backtracking, adjustment of a noise uj can be interpreted as an intervention on Xj

without altering the joint distribution of X (Janzing et al., 2024) : After noting that the parent
variables of Xj have taken the values paj , we assign Xj the value x′j = fj(paj , u

′
j), where u′j is

randomly sampled from PUj . As Uj has no parents, we can treat Uj as a randomized treatment.
Thus, the interventional probabilities are reduced to observational probabilities

P (·|do(Uj = u′j)) = P (·|Uj = u′j), ∀1 ≤ j ≤ p.

As a result, we did not explicitly write interventional probabilities in the Definition 1. However, a
statistical dependence between Ŷ and Uj suggests a causal influence of Xj on Ŷ .
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Appendix C. Variance-based Sensitivity Analysis

The Hoeffding decomposition, also known as the ANOVA decomposition or high-dimensional
model representation (HDMR), allows us to represent the function f as follows:

Ŷ = f(X) =
∑
T⊆[p]

fT (XT ), (8)

with the functions fT defined recursively as

fT (XT ) = E(f(X)|XT )−
∑
T ′⊂T

fT ′(XT ′). (9)

The ANOVA decomposition satisfies the orthogonality constraint

ET ̸=T ′(fT (XT )fT ′(XT ′)) = 0 ∀T, T ′ ⊆ [p], (10)

and let us decompose the model variance as follows:

V(f(X)) =
∑
T⊆[p]

V(fT (XT )). (11)

Definition 10 (Sobol’ indices (FEL et al., 2021)) The sensitivity index ST , which quantifies the
contribution of the variable set XT to the model response f(X) in terms of its fluctuations, is
defined as:

ST =
V(fT (XT ))

V(f(X))
. (12)

Sobol indices quantify the proportion of the output’s variance caused by any subset of input features.
Theorem 1 from Owen (2014) establishes a connection between Sobol’ indices and the Shapley
value, where the latter is computed using a variance-based value function. We restate this theorem
to match our setting.

Theorem 11 For any 1 ≤ j ≤ p,∑
T⊆[p]/{j}

1

p
(p−1
|T |

)(V(E(f(X)|XT+j))− V(E(f(X)|XT ))
)
=

∑
T⊆[p],j∈T

ST

|T |
. (13)

Appendix D. Proofs

Lemma 1 (Janzing et al. (2024)) For a topological ordering π ∈ C(G), we have

ϕ(Ŷ |U
T j
π
) = ϕ(Ŷ |X

T j
π
) = ϕ(Ŷ |do(X

T j
π
)).

Proof The first equality holds due to the conditional independence Ŷ ⊥⊥ X
T j
π
|U

T j
π

and the fact that
X

T j
π

is function of U
T j
π

. The second equality is valid as conditioning on all ancestors blocks any
backdoor paths.
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Property 1 (Efficiency/ Completeness)∑
j

ICCTo
ϕ (Xj → Ŷ ) = ϕ(Ŷ |U)− ϕ(Ŷ ).

Proof ∑
j

ICCTo
ϕ (Xj → Ŷ ) =

1

|C(G)|
∑
j

∑
π∈C(G)

ICCTo
ϕ (Xj → Ŷ |I = T j

π)

=
1

|C(G)|
∑

π∈C(G)

∑
j

ICCTo
ϕ (Xj → Ŷ |I = T j

π)

=
1

|C(G)|
∑

π∈C(G)

∑
j

ϕ(Ŷ |U
T j
π∪{j})− ϕ(Ŷ |U

T j
π
)︸ ︷︷ ︸

ϕ(Ŷ |UV )−ϕ(Ŷ )

=
1

|C(G)|
· |C(G)| ·

(
ϕ(Ŷ |UV )− ϕ(Ŷ )

)
= ϕ(Ŷ |U)− ϕ(Ŷ )

Property 2 (Nullity/ Dummy)

ICCTo
ϕ (Xj → Ŷ ) = ICCSh

ϕ (Xj → Ŷ ) = 0

whenever ϕ(Ŷ |UI) = ϕ(Ŷ |UI∪{j}) for all I ⊆ [p]− {j}.

Proof
By definition, if ϕ(Ŷ |UI) = ϕ(Ŷ |UI∪{j}), then ICCϕ(Xj → Ŷ ) = 0. The result follows

immediately when this holds for all I ⊆ [p]− j.

Property 3 (Symmetry)

ICCSh
ϕ (Xj → Ŷ ) = ICCSh

ϕ (Xl → Ŷ ),

if ϕ(Ŷ |UI∪{j}) = ϕ(Ŷ |UI∪{l}) ∀I s.t. I ⊆ [p]− {j, l}.

Proof
Note that for I = ∅, we have ϕ(Ŷ |Uj) = ϕ(Ŷ |Ul). For any I ⊆ [p]− {j, l}, if ϕ(Ŷ |UI∪{j}) =

ϕ(Ŷ |UI∪{l}), then it follows that ICCϕ(Xj → Ŷ |I) = ICCϕ(Xl → Ŷ |I). More importantly, for
each T ⊆ [p]− {j} with l ∈ T , there exists a corresponding subset T ′ ⊆ [p]− {l} such that j ∈ T ′

and

ϕ(Ŷ |UT ) = ϕ(Ŷ |UT ′); ϕ(Ŷ |UT∪{j}) = ϕ(Ŷ |UT ′∪{l}).
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This can be seen from the following:

ϕ(Ŷ |UT∪{j}) = ϕ(Ŷ |UT−{l}, Ul, Uj) = ϕ(Ŷ |UT − {l} ∪ {j}︸ ︷︷ ︸
T ′

, Ul) = ϕ(Ŷ |UT ′∪{l}),

and since T − {l} ⊆ [p]− {l, j}, we have:

ϕ(Ŷ |UT ′) = ϕ(Ŷ |UT−{l}, Uj) = ϕ(Ŷ |UT−{l}, Ul) = ϕ(Ŷ |UT ).

As a result, we get

ICCϕ(Xj → Ŷ |T ) = ICCϕ(Xl → Ŷ |T ′),

with |T | = |T ′|. From the results above, we can easily deduce the following equality:

ICCSh
ϕ (Xj → Ŷ ) =

∑
T⊆[p]/{j}

1

n
(
n−1
|T |

)ICCϕ(Xj → Ŷ |T )

=
∑

T⊆[p]−{j,l}

1

n
(
n−1
|T |

)ICCϕ(Xj → Ŷ |T ) +
∑

T⊆[p]−{j}
l∈T

1

n
(
n−1
|T |

)ICCϕ(Xj → Ŷ |T )

=
∑

T⊆[p]−{j,l}

1

n
(
n−1
|T |

)ICCϕ(Xl → Ŷ |T ) +
∑

T ′⊆[p]−{l}
j∈T ′

1

n
(
n−1
|T ′|

)ICCϕ(Xl → Ŷ |T ′)

=
∑

T⊆[p]/{l}

1

n
(
n−1
|T |

)ICCϕ(Xl → Ŷ |T )

= ICCSh
ϕ (Xl → Ŷ )

Property 4 (Sensitivity/ Causal irrelevance) If Xi is causally irrelevant (Galles and Pearl, 1997)
to Ŷ for all I ⊆ [p]− {i}, i.e.,

P (Ŷ |do(Xi,XI)) = P (Ŷ |do(XI)), ∀I ⊆ [p]− {i},

then

ICCSh
ϕ (Xi → Ŷ ) = ICCTo

ϕ (Xi → Ŷ ) = 0.

Proof Note that for I = ∅,

P (Ŷ |do(Xi = xi)) = P (Ŷ ). (14)

The possible (natural) values of Ŷ are:

Y = {f(x′i,x−i)|x′i ∈ Xi,x−i ∈ X−i}
= {f∗(ui,u−i)|ui ∈ Ui,u−i ∈ U−i},
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where X−i, Xi, U−i and Ui are the supports of X−i, Xi,U−i and Ui, respectively. Similarly, under
do(Xi = xi), the possible values of Ŷ are given by:

Yxi =
{
f(xi,x−i)|x−i ∈ X do(xi)

−i

}
= {f̃(xi,u−i)|u−i ∈ U−i},

where X do(xi)
−i is the support of X−i under the intervention do(Xi = xi). The equality of distribu-

tions in equation 14 imposes the constraint that the support of Y under the intervention must match
its natural support, i.e., Y = Yxi . In other words, for each (ui,u−i) ∈ U ,∃u′

−i ∈ U−i such that
f∗(ui,u−i) = f̃(xi,u

′
−i). Since U does not depend on Xi, the function f∗ also does not depend

on Ui. Therefore, Ŷ functionally does not depend on Ui. Thus, for any I ⊆ [p]− {i},

ϕ(Ŷ |Ui+I) = ϕ(f∗(U−i)|UI , Ui) = ϕ(f∗(U−i)|UI) = ϕ(Ŷ |UI).

The rest follows directly from Property 2.

Theorem 2 Let X,Y and Z be random variables on the same probability space and V(X) < ∞.
Then,

VY (E(X|Y )) ≤ VY,Z(E(X|Y, Z)).

Proof The law of total variance states that V(X) = EY (V(X|Y )) + VY (E(X|Y )). Similarly,
V(X) = EY,Z(V(X|Y,Z)) + VY,Z(E(X|Y, Z)). From this, it follows that the expected vari-
ance of X is greater than or equal to the expected value of the conditional variance of X given
Y , i.e., E(V(X)) ≥ EY (V(X|Y )) which also implies the conditional version EZ(V(X|Z)) ≥
EY,Z(V(X|Y,Z)) for any random variable Z. Interchanging Y and Z in the last expression and
subtracting the expected variances from V(X), we obtain the stated inequality.

Theorem 4 Assume that input features {Xi} are independent. Then, with our specific choice of ϕ,
for any I ⊆ [p] and any j ∈ [p], we have

ϕ(Ŷ |UI) = ϕ(Ŷ |XI) =
∑
T⊆I

ST ; ICCϕ(Xj → Ŷ ) =
∑

j∈T,T⊆[p]

ST

|T |
, (7)

where ST is the Sobol’ sensitivity index of the input subset XT (see Appendix C for more details).

Proof When the input features are independent, we have C(G) = Sp. Consequently, from Lemma
1, for any π ∈ Sp, the following holds:

ϕ(Ŷ |U
T j
π
) = ϕ(Ŷ |X

T j
π
).

In other words, for any subset I ⊆ [p], ϕ(Ŷ |UI) = ϕ(Ŷ |XI). For our specific choice of ϕ, we have:

ϕ(Ŷ |UI) = ϕ(Ŷ |XI) =
VXI

(E(Ŷ |XI))

V(Ŷ )
=

∑
T⊆I V(fT (XT ))

V(f(X)
=

∑
T⊆I

ST ,
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where the third equality follows directly from Equations 9 and 10.

With independent input features,it follows from Equations 6 and 5 that ICCTo
ϕ and ICCSh

ϕ

coincide:

ICCTo
ϕ (Xj → Ŷ ) = ICCSh

ϕ (Xj → Ŷ )

=
∑

T⊆[p]/{j}

1

p
(p−1
|T |

)ICCϕ(Xj → Ŷ |T )

=
∑

T⊆[p]/{j}

1

p
(p−1
|T |

)(ϕ(Ŷ |Uj+T )− ϕ(Ŷ |UT )
)

=
∑

T⊆[p]/{j}

1

p
(p−1
|T |

)(ϕ(Ŷ |Xj+T )− ϕ(Ŷ |XT )
)

=
∑

T⊆[p]/{j}

1

p
(p−1
|T |

)(V(E(f(X)|XT+j))− V(E(f(X)|XT ))
)
,

The rest of the proof is immediate from Theorem 11.

Theorem 7 Under Assumption 2, suppose we have two CNFs (Fθ1 , Pθ1) and (Fθ2 , Pθ2) that both
match the observational distribution P (X, Ŷ ), then the intrinsic causal contributions of Xj on Ŷ
will be equal for both CNFs. Specifically, we have:

ICCϕ,θ1(Xj → Ŷ ) = ICCϕ,θ2(Xj → Ŷ ).

Proof Continuing from Theorem 6, since h is measurable bijection, the σ−algebras generated by
up and hp(up) are identical and thus we have E(Ŷ |up) = E(Ŷ |hp(up)) (Athreya and Lahiri, 2006).
More generally, for any subset I ⊆ [p], it follows that E(Ŷ |uI) = E(Ŷ |hI(uI)), where h(uI) =
hI(uI) =

(
hj(uj)

)
j∈I . Given our specific choice of ϕ, it follows directly that ϕ(Ŷ |h(UI)) =

ϕ(Ŷ |UI), thereby establishing the equality

ICCϕ,θ(Xj → Ŷ ) = ICCϕ(Xj → Ŷ ). (15)

The dependence on θ on the right-hand side arises from the expression F−1
θ (F(u)) = h(u). Equa-

tion 15 states that if a CNF matches the observational distribution, then the ICC computed with
respect to the flow does not depend on the flow parameter θ. The statement of the theorem follows
immediately as a direct consequence.
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Appendix E. Algorithms

Algorithm 2 Pseudocode for estimating ϕ for ICCTo

Input: Batch size B, context I for conditioning, the neural network N
1: x

(i)
M ,x

(i)
N ∼ D for i = 1, 2, ..., B, where D is the dataset.

2: x
(i)
Q =

(
x
(i)
M−I

,x
(i)
NI

)
for i = 1, 2, ..., B.

3: ŷ
(i)
M = N

(
x
(i)
M

)
, ŷ

(i)
N = N

(
x
(i)
N

)
, ŷ

(i)
Q = N

(
x
(i)
Q

)
for i = 1, 2, ..., B.

4: ȳ =
1

2B

∑B
i=1

(
ŷ
(i)
M + ŷ

(i)
N

)
; V =

1

2B − 1

∑B
i=1

(
(ŷ

(i)
M − ȳ)2 + (ŷ

(i)
N − ȳ)2

)
5: ψ̂ = V − 1

2B

∑B
i=1

(
ŷ
(i)
N − ŷ

(i)
Q

)2
Output: ϕ̂ =

ψ̂

V

Appendix F. Experiment Setup and Datasets

We usually train the neural networks N and NFs for 100 epochs with a batch size of 32, using the
Adam optimizer with a learning rate of 3 × 10−4. Only for COMPAS dataset, we train the neural
network using a learning rate of 10−3.

Synthetic Data We employ the same data generation process as Reddy et al. (2023a) for the
synthetic data experiment. Figure 2b contains the causal graph and the detailed specification of the
SCM. In this dataset, the input features W,Z, and X are connected through linear equations with
additive Gaussian noise. The output Y is a non-linear function of these inputs, also incorporating
additive Gaussian noise. The training set consists of 700 samples, while the test set contains 300
samples.

Auto-MPG We use the Auto-MPG dataset to predict miles per gallon (MPG) based on features
including the number of cylinders (C), displacement (D), weight (W), horsepower (H), accelera-
tion (A), and miles per gallon (M). The ground truth causal graph for Auto-MPG is unknown, so
we adopt the causal graph proposed by Reddy et al. (2023a), shown in Figure 2c. This graph is
constructed using relevant domain knowledge and validated through consultations with GPT-3.5
(Brown et al., 2020) to confirm the correctness of each causal edge. The training set includes 274
samples, and the test set includes 118 samples.

COMPAS The dataset comprises criminal records and demographic features for 6,172 defendants
who were released on bail in U.S. state courts between 1990 and 2009. The objective herein is to
classify each defendant into one of two categories: bail (indicating they are unlikely to commit a
violent crime if released) or no bail (indicating they are likely to commit a violent crime). The
causal graph in Figure 2a for the COMPAS dataset is inspired by Plečko and Bareinboim (2024).
The training set comprises 4,937 samples, while the test set comprises 1,235 samples.

Appendix G. Comparison with Janzing et al. (2024)

The fundamental difference between their work and ours is that their work does not aim to explain
a downstream pre-trained model (neural networks, in our case), whereas this is the primary objec-
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tive of our study. While Janzing et al. (2024) introduce the notion of ICC, they do not provide
a clear, general algorithm for its estimation. Instead, their experimental setup relies on restrictive
assumptions — such as treating an additive noise model as a convenient approximation of structural
equations (AutoMPG), or inferring the SCM (River flows) from common-sense knowledge with all
regression coefficients set to 1. Moreover, they do not discuss identifiability. In contrast, our frame-
work, which incorporates causal normalizing flows, is more general and ensures identifiability.

Janzing et al. (2024) utilized the publicly available ICC implementation in DoWhy (Blöbaum
et al., 2024). Specifically, the gcm.intrinsic causal influence function was used with
the auto-assign feature. The gcm.intrinsic causal influence function returns ICC within
a causal model but is not designed to generate explanations for a pre-trained neural network. For
each node in the causal graph, gcm.auto.assign causal mechanisms fits various regres-
sion or classification models and selects the optimal one. In contrast, we model the entire causal
data-generating process of the inputs using a single deep neural network (Javaloy et al., 2023).
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