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Abstract

Convolutional residual neural networks (ConvResNets), though overparameter-1

sized, can achieve remarkable prediction performance in practice, which cannot2

be well explained by conventional wisdom. To bridge this gap, we study the per-3

formance of ConvResNeXts, which cover ConvResNets as a special case, trained4

with weight decay from the perspective of nonparametric classification. Our analy-5

sis allows for infinitely many building blocks in ConvResNeXts, and shows that6

weight decay implicitly enforces sparsity on these blocks. Specifically, we consider7

a smooth target function supported on a low-dimensional manifold, then prove8

that ConvResNeXts can adapt to the function smoothness and low-dimensional9

structures and efficiently learn the function without suffering from the curse of10

dimensionality. Our findings partially justify the advantage of overparameterized11

ConvResNeXts over conventional machine learning models.12

1 Introduction13

Deep learning has achieved significant success in various real-world applications. One notable14

example of this is in the field of image classification, where the winner of the 2017 ImageNet15

challenge achieved a top-5 error rate of just 2.25% [9] using ConvResNets.16

Among various deep learning models, ConvResNets have gained widespread popularity in practical17

applications [2, 8, 20, 28]. Compared to vanilla feedforward neural networks (FNNs), ConvResNets18

possess two distinct features: convolutional layers and skip connections. Specifically, each block19

of ConvResNets consists of a subnetwork, called bottleneck, and an identity connection between20

inconsecutive blocks. The identity connection effectively mitigates the vanishing gradient issue. Each21

layer of the bottleneck contains several filters (channels) that convolve with the input. Moreover,22

ConvResNets have various extensions, one of which is ConvResNeXts [25]. This structure generalizes23

ConvResNets and includes them as a special case. Each building block in ConvResNeXts has a24

parallel architecture that enables multiple “paths” within the block.25

There are few theoretical works about ConvResNet, despite its remarkable empirical success. Pre-26

vious research has focused on the representation power of FNNs [1, 3, 11, 18, 26], while limited27

literature exists on ConvResNets. Oono and Suzuki [16] developed a representation and statisti-28

cal estimation theory of ConvResNets, and showed that if the network architecture is appropri-29

ately designed, ConvResNets with O(nD/(2α+D)) blocks can achieve a minimax optimal conver-30

gence rate Õ(n−2α/(2α+D)) when approximating a Cα function with n samples. Additionally, Liu31

et al. [14] proved that ConvResNets can universally approximate any function in the Besov space32

Bα
p,q on d-dimensional manifolds with arbitrary accuracy. They improved the convergence rate to33

Õ(n−2α/(2α+d)) for ConvResNets with O(nd/(2α+d)) blocks. Their results only depend on the34

intrinsic dimension d, rather than the data dimension D.35

These previous works, however, have limitations in explaining the success of ConvResNets achieved36

by overparameterization, where the number of blocks can be much larger than the sample size. In37
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practice, the performance of ConvResNets becomes better when they go deeper [8, 24], but the38

previous results required a finite number of blocks and thus cannot explain this phenomenon. For39

instance, Liu et al. [14] shows that the number of blocks for ConvResNets is O(nd/(2α+d)), which is40

smaller than the order of the sample size n.41

To bridge this gap, we study ConvResNeXts under an overparameterization regime [25]. We42

consider a nonparametric classification problem using ConvResNeXts trained with weight decay. We43

prove that even if ConvResNeXts are overparameterized, i.e., the number of blocks is larger than44

the order of the sample size n, they can still achieve an asymptotic minimax rate for learning Besov45

functions. Specifically, assuming the target function is supported on a d-dimensional manifold and46

belongs to the Besov space Bα
p,q, we prove that the estimator given by the ConvResNeXt class can47

converge to the target function at the rate Õ(n− α/d
2α/d+1

(1−o(1))) with n samples. Here, weight decay is48

a common method in deep learning to reduce overfitting [12, 17]. With this approach, ConvResNeXts49

can have infinitely many blocks to achieve arbitrary accuracy, which corresponds to the real-world50

applications [8, 24].51

Our work is partially motivated by Zhang and Wang [27]. However, our work distinguishes itself52

through two remarkable technical advancements. Firstly, we develop approximation theory for53

ConvResNeXts, while Zhang and Wang [27] only focuses on FNNs. Secondly, we take into account54

low-dimensional geometric structures of data. Notably, the statistical rate of convergence in our55

theory only depends on the intrinsic dimension d, which circumvents the curse of dimensionality in56

Zhang and Wang [27]. Another technical highlight of our paper is bounding the covering number57

of weight-decayed ConvResNeXts, which is essential for computing the critical radius of the local58

Gaussian complexity. This technique provides a tighter bound than choosing a single radius of the59

covering number as in Suzuki [18], Zhang and Wang [27]. To the best of our knowledge, our work is60

the first to develop approximation theory and statistical estimation results for ConvResNeXts.61

2 Architecture of ConvResNeXts62

In this part, we provide the architecture of ConvResNeXts. This structure has three main features:63

residual connections, convolution kernel, and parallel architecture.64

The building blocks of ConvResNeXts are residual blocks. Given an input x, each residual block65

computes x+ F (x), where F is a subnetwork called bottleneck, consisting of one-sided stride-one66

convolutional layers. Figure 2(a) provides a brief illustration of convolution operation W ⋆ z and its67

detailed definition is given in Section A.3 .68

In ConvResNeXts, a parallel architecture is introduced to each building block, which enables69

multiple “paths” in each block. In this paper, we study the ConvResNeXts with rectified linear unit70

(ReLU) activation function, i.e., ReLU(z) = max{z, 0}. We next provide the detailed definition of71

ConvResNeXts as follows:72

Definition 1. Let the neural network comprise N residual blocks, each building block has a parallel73

architecture with M building blocks, and each building block contains L layers. The number of74

channels is w, and the convolution kernel size is K. Given an input x ∈ RD, a ConvResNeXt with75

ReLU activation function can be represented as76

f(x) = Wout ·
(

M∑

m=1

fN,m + id

)
◦ · · · ◦

(
M∑

m=1

f1,m + id

)
◦ P (x),

fn,m = W
(n,m)
L ⋆ ReLU

(
W

(n,m)
L−1 ⋆ · · · ⋆ ReLU

(
W

(n,m)
1 ⋆ x

))
,

where id is the identity operator, P : RD → RD×w0 is the padding operator satisfying P (x) =77

[x, 0 . . . 0] ∈ RD×w, {W(n,m)
l }Ll=1 is a collection of convolution kernels for n = 1, . . . , N,m =78

1, . . . ,M , Wout ∈ RwL denotes the linear operator for the last layer, and ⋆ is the convolution79

operation defined in (6).80

The structure of ConvResNeXts is shown in Figure 2(b). When M = 1, the ConvResNeXt defined in81

Definition 1 reduces to a ConvResNet. For the simplicity of notation, we exclude biases in the neural82

network structure. This can be compensated by extending the input dimension and padding the input83

with a scalar 1 (See Proposition 18 for more details). The channel with 0’s is used to accumulate the84

output.85
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3 Theory86

In this section, we study a binary classification problem on a smooth manifold M ⊆ [−1, 1]D.87

Specifically, we are given i.i.d. samples {xi, yi}ni=1 ∼ D where xi ∈ M and yi ∈ {0, 1} is the label.88

The label y follows the Bernoulli-type distribution89

P(y = 1|x) = exp(f∗(x))

1 + exp(f∗(x))
and P(y = 0|x) = 1

1 + exp(f∗(x))

for some f∗ : M → R belonging to the Besov space. Detailed definitions and concepts about smooth90

manifold and Besov space are deferred to Appendix A. More specifically, we make the following91

assumption on f∗.92

Assumption 1. Let 0 < p, q ≤ ∞, d/p < α < ∞. Assume f∗ ∈ Bα
p,q(M) and ∥f∗∥Bα

p,q(M) ≤ CF93

for some constant CF > 0.94

To learn f∗, we minimize the empirical logistic risk over the training data:95

f̂ = argmin
f∈FConv

1

n

n∑

i=1

[yi log(1 + exp(−f(xi))) + (1− yi) log(1 + exp(f(xi)))] , (1)

where FConv is some neural network class specified later. For notational simplicity, we denote the96

empirical logistic risk function in (1) as Lossn(f), and denote the population logistic risk as97

ED[Loss(f)] = E(x,y)∼Dy log(1 + exp(−f(x))) + (1− y) log(1 + exp(f(x))).

We next specify the class of ConvResNeXts for learning f∗:98

FConv(N,M,L,K,w,Bres, Bout) =
{
f | f is in the form in Definition 1 with N residual blocks.

Every residual block has M buliding blocks with each building block containing L layers.
Each layer has kernel size bounded by K, number of channels bounded by w,

N∑

n=1

M∑

m=1

L∑

ℓ=1

∥W(n,m)
ℓ ∥2F ≤ Bres, ∥Wout∥2F ≤ Bout, f(x) ∈ [0, 1] for any x ∈ M.

}
.

As can be seen, FConv contains the Frobenius norm constraints of the weights. For the sake of com-99

putational convenience in practice, such constraints can be replaced with weight decay regularization100

the residual blocks and the last fully connected layer separately. More specifically, we can use the101

following alternative formulation:102

f̃ = argmin
f∈FConv(N,M,L,K,w,∞,∞)

Lossn(f) + λ1

N∑

n=1

M∑

m=1

L∑

ℓ=1

∥W(n,m)
ℓ ∥2F + λ2∥Wout∥2F,

where λ1, λ2 > 0 are properly chosen regularization parameters.103

3.1 Approximation theory104

In this section, we provide a universal approximation theory of ConvResNeXts for Besov functions105

on a smooth manifold:106

Theorem 1. For any Besov function f0 on a smooth manifold satisfying p, q ≥ 1, α− d/p > 1,107

∥f0∥Bα
p,q(M) ≤ CF,

for any P > 0 and any ConvResNeXt class FConv(N,M,L,K,w,Bres, Bout) satisfying L = L′ +108

L0 − 1, L′ ≥ 3, where L0 = ⌈ D
K−1⌉, and109

MN ≥ CMP, w ≥ C1(dm+D), Bres ≤ C2L/K, Bout ≤ C3C
2
F((dm+D)LK)L(CMP )L−2/p,

there exists f ∈ FConv(N,M,L,K,w,Bres, Bout) such that110

∥f − f0∥∞ ≤ CFCM

(
C4P

−α/d + C5 exp(−C6L
′ logP )

)
, (2)

where C1, C2, C3 are universal constants and C4, C5, C6 are constants that only depends on d111

and m, d is the intrinsic dimension of the manifold and m is an integer satisfying 0 < α <112

min(m,m− 1 + 1/p).113

The approximation error of the network is bounded by the sum of two terms. The first term is a114

polynomial decay term that decreases with the size of the neural network and represents the trailing115

term of the B-spline approximation. The second term reflects the approximation error of neural116

networks to piecewise polynomials, decreasing exponentially with the number of layers. The proof is117

deferred to Section B.1 and the appendix.118
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3.2 Estimation theory119

Theorem 2. Suppose Assumption 1 holds. Set L = O(log(n)) and120

MN ≥ CMP, P = O(n
1−2/L

2α/d(1−1/L)+1−2/pL ).

Let f̂ be the global minimizer given in (1) with the function class F =121

FConv(N,M,L,K,w,Bres, Bout). Then the estimation error of f̂ satisfies122

ED[Loss(f̂(x), y)] ≤ ED[Loss(f
∗)] + Õ(n− α/d

2α/d+1
(1−o(1))),

where Õ(·) omits the logarithmic term.123

The proof for the above theorem is proveded in Section B.2. It shows that under weight decay,124

the building blocks in a ConvResNeXt are sparse, i.e. only a finite number of blocks contribute125

non-trivially to the network even though the model can be overparameterized. This explains why126

a ConvResNeXt can generalize well despite overparameterization. Furthermore, we would like to127

make the following remarks about the results:128

• Strong adaptivity: By setting the width of the neural network to w = 2C1D, the model can adapt129

to any Besov functions on any smooth manifold, provided that dm ≤ D. This remarkable flexibility130

can be achieved simply by tuning the regularization parameter. The cost of overestimating the width131

is a slight increase in the estimation error. Considering the immense advantages of this more adaptive132

approach, this mild price is well worth paying.133

• No curse of dimensionality: The above error rate only depends polynomially on the ambient134

dimension D and exponentially on the intrinsic dimension d. Since in real data, d can be much135

smaller than D, this result shows that neural networks can explore the low-dimension structure of136

data to overcome the curse of dimensionality.137

• Overparameterization is fine: The number of building blocks in a ConvResNeXt does not138

influence the estimation error as long as it is large enough. In other words, our This matches the139

empirical observations that neural networks generalize well despite overparameterization.140

• Close to minimax rate: The lower bound of the 1-Lipschitz error for any estimator θ is141

min
θ

max
f∗∈Bα

p,q

L(θ(D), f∗) ≳ n− α/d
2α/d+1 .

The proof can be found in Appendix E. Comparing to the minimax rate, we can see that the above142

error rate converges to the minimax rate as sample size n grows. In other words, overparameterized143

ConvResNeXt can achieve close to the minimax rate in estimating Besov functions. In comparison,144

all kernel ridge regression including any NTKs will have a suboptimal rate lower bounded by 2α−d
2α ,145

which is suboptimal.146

4 Discussion and conclusion147

We compare the Besov space with the Hölder and Sobolev spaces, which are also popular in existing
literature. The Hölder space Hs,α requires the functions to be differentiable everywhere up to the
s-th order. The Sobolev space slightly generalizes the Hölder space, but still requires high order
(weak) differentiablity. In contrast, the Besov space Bs

p,q does not require weak differentiability,
and therefore is more general and desirable than the Hölder and Sobolev spaces. Existing work has
shown that the Besov space can capture important features, such as edges in image processing [10].
In particular, the Hölder and Sobolev spaces are special cases of the Besov space:

Hs,α = W s+α,∞ ⊆ Bs+α
∞,∞ ⊆ Bs+α

p,q

for any 0 < p, q ≤ ∞, s ∈ N and α ∈ (0, 1]. Due to the generality of the Besov space, existing148

literature has been shown that that kernel ridge estimators, including neural tangent kernel only attain149

a sub-optimal rate for learning Besov functions [19], which is worse than deep neural networks such150

as ConvResNeXts.151

In this paper, we study the approximation and estimation error of ConvResNeXts. We show that152

with proper weight decay, the blocks in a ConvResNeXt converge to a sparse representation, so153

the covering number of a ConvResNeXt depends only on the total norm of the parameters and154

not on the number of residual blocks, which explains why an overparameterized neural network155

generalizes. Assume that the target function is supported on a smooth manifold, the estimation error of156

ConvResNeXt depends only weakly (polynomially) on the ambient dimension of the target function.157

This result shows that these models do not suffer from the curse of dimensionality, and thus can adapt158

to functions on a smooth manifold. While our discussion focuses on binary classification, our result159

can be generalized to multi-class classification problems by extending the results to vector-valued160

functions.161
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A Background229

In this section, we introduce some concepts on manifolds. Details can be found in [22] and [13].230

Then we provide a detailed definition of the Besov space on smooth manifolds and the convolution231

operation.232

A.1 Smooth manifold233

Firstly, we briefly introduce manifolds, the partition of unity and reach. Let M be a d-dimensional234

Riemannian manifold isometrically embedded in RD with d much smaller than D.235

Definition 2 (Chart). A chart on M is a pair (U, ϕ) such that U ⊂ M is open and ϕ : U 7→ Rd,236

where ϕ is a homeomorphism (i.e., bijective, ϕ and ϕ−1 are both continuous).237

In a chart (U, ϕ), U is called a coordinate neighborhood, and ϕ is a coordinate system on U .238

Essentially, a chart is a local coordinate system on M. A collection of charts that covers M is called239

an atlas of M.240

Definition 3 (Ck Atlas). A Ck atlas for M is a collection of charts {(Ui, ϕi)}i∈A which satisfies241 ⋃
i∈A Ui = M, and are pairwise Ck compatible:242

ϕi ◦ ϕ−1
β : ϕβ(Ui ∩ Uβ) → ϕi(Ui ∩ Uβ) and ϕβ ◦ ϕ−1

i : ϕi(Ui ∩ Uβ) → ϕβ(Ui ∩ Uβ)

are both Ck for any i, β ∈ A. An atlas is called finite if it contains finitely many charts.243

Definition 4 (Smooth Manifold). A smooth manifold is a manifold M together with a C∞ atlas.244

Classical examples of smooth manifolds are the Euclidean space, the torus, and the unit sphere.245

Furthermore, we define Cs functions on a smooth manifold M as follows:246

Definition 5 (Cs functions on M). Let M be a smooth manifold and f : M → R be a function on247

M. A function f : M → R is Cs if for any chart (U, ϕ) on M, the composition f ◦ϕ−1 : ϕ(U) → R248

is a continuously differentiable up to order s.249

We next define the C∞ partition of unity, which is an important tool for studying functions on250

manifolds.251

Definition 6 (Partition of Unity, Definition 13.4 in [22]). A C∞ partition of unity on a manifold M252

is a collection of C∞ functions {ρi}i∈A with ρi : M → [0, 1] such that for any x ∈ M,253

1. there is a neighbourhood of x where only a finite number of the functions in {ρi}i∈A are254

nonzero;255

2.
∑

i∈A
ρi(x) = 1.256

An open cover of a manifold M is called locally finite if every x ∈ M has a neighborhood that257

intersects with a finite number of sets in the cover. The following proposition shows that a C∞258

partition of unity for a smooth manifold always exists.259

Proposition 3 (Existence of a C∞ partition of unity, Theorem 13.7 in [22]). Let {Ui}i∈A be a locally260

finite cover of a smooth manifold M. Then there is a C∞ partition of unity {ρi}∞i=1 where every ρi261

has a compact support such that supp(ρi) ⊂ Ui.262

Let {(Ui, ϕi)}i∈A be a C∞ atlas of M. Proposition 3 guarantees the existence of a partition of unity263

{ρi}i∈A such that ρi is supported on Ui. To characterize the curvature of a manifold, we adopt the264

geometric concept: reach.265

Definition 7 (Reach [6, 15]). Denote266

G =

{
x ∈ RD : ∃ p ̸= q ∈ M such that ∥x− p∥2 = ∥x− q∥2} = inf

y∈M
∥x− y∥2

}
.

as the set of points with at least two nearest neighbors on M. The closure of G is called the medial
axis of M. Then the reach of M is defined as

τ = inf
x∈M

inf
y∈G

∥x− y∥2.

Reach has a simple geometrical interpretation: for every point x ∈ M, the osculating circle’s radius267

is at least τ . A large reach for M indicates that the manifold changes slowly.268
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A.2 Besov functions on a smooth manifold269

We next define the Besov function space on the smooth manifold M, which generalizes more270

elementary function spaces such as the Sobolev and Hölder spaces.271

Roughly speaking, functions in the Besov space are only required to have weak derivatives with272

bounded total variation. For example, consider a wiggly piecewise linear function as shown in Figure273

1. Its derivative can go to infinite while the total variation of the function is upper bounded. Therefore,274

according to the definition of the Besov space in Definition 9, the function given in Figure 1 is Besov,275

but not Hölder.276

Nonparametric Classification on Low Dimensional Manifolds using Overparameterized ConvResNeXt
Kaiqi Zhang1 , Zixuan Zhang2, Minshuo Chen3, Yuma Takeda1, Mengdi Wang3, Tuo Zhao2, & Yu-Xiang Wang1

1UC Santa Barbara, 2 Georgia Institute of Technology, 3 Princeton University

1 Central research question: Can overparameterized ConvResNeXt
learn Besov functions on low-dimensional manifold?

• Besov class function can have heterogeneous smoothness — kernel ridge
regression is provably suboptimal (including NTK).

• Can neural networks learn the manifold — so no curse of dimensionality
w.r.t. the ambient dimension?

2 Problem Setup

•x ∈ RD lies on a d-dimensional
manifolds M in a D-dimensional
space.

• The manifold is smooth and de-
composes into overlapping charts.

• The label y = f (x) + Noise for re-
gression, or y ∼ Ber(f (x)) for clas-
sification where f : M → [0, 1].

•f is assumed to be a Besov function
on the manifold M.

• d-dimension compact, smooth manifold

• It has a low reach (Federer, 1959)

3 Background: ResNeXt

4 Main Results

Theorem: For any fixed α − d/p > 1, q ≥ 1, L ≥ 3, for any f0 ∈ Bα
p,q,

stacking ResNeXt blocks as in Figure 1(b) above with each fi,j being an L-
layer constant width stacked Convolutional Layers. Choose L = O(log n)

and M,N such that MN = O(n). With proper choice of the parameter of
weight decay λ, the ERM solution with any Lipschitz Loss satisfies

ED[Loss(f̂ (x), y)] ≤ ED[Loss(f0(y))] + Õ(n− α
2α+d(1−o(1))),

where Õ hides only logarithmic factors and the o(1) factor in the exponent
is O(1/ log(n)).
• No (exponential) dependence on the ambient dimension D.

• No need to know the intrinsic dimension d, and other parameters

• Tune only the weight decay parameter.

• Formal separation with NTK. Neural network works better, representati-
on is needed!

5 Interesting architectural observations

Compare to parallel neural networks, the result shows that one can ex-
change depth with width to achieve overparameterization.

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

ConvNet
Block

≈ ≈

6 Experiments
Data generation process:

x′
i =




ti sin(4πti)

ti cos(4πti)

ti(1− ti)

Uniform[0, 1]
...

Uniform[0, 1]




∈ RD,

xi = Rx′
i,

where R ∈ RD×D

is a rotation matrix.
yi = f0(ti) +N(0, σ2),

where f0 : R → R is piecewise linear.

Take Home Messages: (a) Neural Networks discover / adapt to low-
dimensional stucture; (b) With Residual Connections Deep ResNet can
implement PNN; (c) Optimal rates on Besov class separates from NTK
in high-dimension.

Figure 1: A piecewise linear function which is Besov.

To define Besov functions rigorously, we first introduce the modulus of smoothness.277

Definition 8 (Modulus of Smoothness [4, 18]). Let Ω ⊂ RD. For a function f : RD → R be in278

Lp(Ω) for p > 0, the r-th modulus of smoothness of f is defined by279

wr,p(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥Lp , where

∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) if x ∈ Ω,x+ rh ∈ Ω,

0 otherwise.

Definition 9 (Besov Space Bα
p,q(Ω)). For 0 < p, q ≤ ∞, α > 0, r = ⌊α⌋+ 1, define the seminorm

| · |Bα
p,q

as

|f |Bα
p,q(Ω) :=





(∫ ∞

0

(t−αwr,p(f, t))
q dt

t

) 1
q

if q < ∞,

supt>0 t
−αwr,p(f, t) if q = ∞.

280

The norm of the Besov space Bs
p,q(Ω) is defined as ∥f∥Bα

p,q(Ω) := ∥f∥Lp(Ω) + |f |Bα
p,q(Ω). Then the281

Besov space is defined as Bα
p,q(Ω) = {f ∈ Lp(Ω)|∥f∥Bα

p,q
< ∞}.282

Moreover, we show that functions in the Besov space can be decomposed using B-spline basis283

functions in the following proposition.284

Proposition 4 (Decomposition of Besov functions). Any function f in the Besov space Bα
p,q, α > d/p285

can be decomposed using B-spline of order m,m > α: for any x ∈ Rd, we have286

f(x) =

∞∑

k=0

∑

s∈J(k)

ck,s(f)Mm,k,s(x), (3)
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where J(k) := {2−ks : s ∈ [−m, 2k+m]d ⊂ Zd}, Mm,k,s(x) := Mm(2k(x−s)), and Mk(x) =287 ∏d
i=1 Mk(xi) is the cardinal B-spline basis function which can be expressed as a polynomial:288

Mm(z) =
1

m!

m+1∑

j=1

(−1)j
(
m+ 1

j

)
(z − j)m+

= ((m+ 1)/2)m
1

m!

m+1∑

j=1

(−1)j
(
m+ 1

j

)(
z − j

(m+ 1)/2

)m

+

.

(4)

We next define Bα
p,q functions on M.289

Definition 10 (Bα
p,q Functions on M [7, 21]). Let M be a compact smooth manifold of dimension290

d. Let {(Ui, ϕi)}CM
i=1 be a finite atlas on M and {ρi}CM

i=1 be a partition of unity on M such that291

supp(ρi) ⊂ Ui. A function f : M → R is in Bα
p,q(M) if292

∥f∥Bα
p,q(M) :=

CM∑

i=1

∥(fρi) ◦ ϕ−1
i ∥Bα

p,q(Rd) < ∞. (5)

Since ρi is supported on Ui, the function (fρi)◦ϕ−1
i is supported on ϕ(Ui). We can extend (fρi)◦ϕ−1

i293

from ϕ(Ui) to Rd by setting the function to be 0 on Rd \ ϕ(Ui). The extended function lies in the294

Besov space Bs
p,q(Rd) [21, Chapter 7].295

A.3 Architecture of ConvResNeXt296

In this part, we present the formulation of the one-sided stride-one convolution in ConvResNeXts.297

Let W = {Wj,k,l} ∈ Rw′×K×w be a convolution kernel with output channel size w′, kernel size K298

and input channel size w. For z ∈ RD×w, the convolution of W with z gives y ∈ RD×w′
such that299

y = W ⋆ z, yi,j =

K∑

k=1

w∑

l=1

Wj,k,lzi+k−1,l, (6)

where 1 ≤ i ≤ D, 1 ≤ j ≤ w′ and we set zi+k−1,l = 0 for i + k − 1 > D, as demonstrated in300

Figure 2(a).301

(a)

x

+
+

+

f(x)

id

id

id f1,1
. . . f1,M

fN,1

. . .

fN,M

. . .

(b)
Figure 2: (a) Demonstration of the convolution operation W ∗ z, where the input is z ∈ RD×w,
and the output is W ∗ z ∈ RD×w′

. Here Wj,:,: is a D × w matrix for the j-th output channel. (b)
Demonstration of the ConvResNeXt. f1,1 . . . fN,M are the building blocks, each building block is a
convolution neural network.

B Proof overview302

B.1 Approximation error303

We follow the method in Liu et al. [14] to construct a neural network that achieves the approximation304

error we claim. It is divided into the following steps:305

• Step 1: Decompose the target function into the sum of locally supported functions.306

In this work, we adopt a similar approach to [14] and partition M using a finite number of open307

balls on RD. Specifically, we define B(ci, r) as the set of unit balls with center ci and radius r such308

that their union covers the manifold of interest, i.e., M ⊆ ∪CM
i=1B(ci, r). This allows us to partition309

9



the manifold into subregions Ui = B(ci, r) ∩M, and further decompose a smooth function on the310

manifold into the sum of locally supported smooth functions with linear projections. The existence of311

function decomposition is guaranteed by the existence of partition of unity stated in Proposition 3.312

See Section C.1 for the detail.313

• Step 2: Locally approximate the decomposed functions using cardinal B-spline basis functions.314

In the second step, we decompose the locally supported Besov functions achieved in the first step315

using B-spline basis functions. The existence of the decomposition was proven by Dũng [5], and was316

applied in a series of works [27, 18, 14]. The difference between our result and previous work is that317

we define a norm on the coefficients and bound this norm, instead of bounding the maximum value.318

The detail is deferred to Section C.2.319

• Step 3: Approximate the polynomial functions using neural networks. In this section, we follow320

the method in Zhang and Wang [27], Suzuki [18], Liu et al. [14] and show that neural networks can321

be used to approximate polynomial functions, including B-spline basis functions and the distance322

function. The key technique is to use a neural network to approximate square function and multiply323

function [1]. The detail is deferred to the appendix. Specifically, Lemma 17 proves that a neural324

network with width w = O(dm) and depth L can approximate B-spline basis functions, and the error325

decreases exponentially with L; Similarly, Proposition 9 shows that a neural network with width326

w = O(D) can approximately calculate the distance between two points d2(x; c), with precision327

decreasing exponentially with the depth.328

• Step 4: Use a ConvResNeXt to Approximate the target function. Using the results above, the329

target function can be (approximately) decomposed as330

CM∑

i=1

P∑

j=1

ai,kj ,sjMm,kj ,sj ◦ ϕi × 1(x ∈ B(ci, r)). (7)

We first demonstrate that a ReLU neural network taking two scalars a, b as the input, denoted as331

a×̃b, can approximate332

y × 1(x ∈ Br,i),

where ×̃ satisfy that y×̃1 = y for all y, and y×̃x̃ = 0 if any of x or y is 0, and the soft indicator333

function 1̃(x ∈ Br,i) satisfy 1̃(x ∈ Br,i) = 1 when x ∈ Br,i, and 1̃(x ∈ Br,i) = 0 when334

x /∈ Br+∆,i. The detail is deferred to Section C.3.335

Then, we show that it is possible to construct MN = CMP number of building blocks, such that
each building block is a feedforward neural network with width C1(md+D) and depth L, where m
is an interger satisfying 0 < α < min(m,m− 1 + 1/p). The k-th building block (the position of
the block does not matter) approximates

ai,kj ,sj
Mm,kj ,sj

◦ ϕi × 1(x ∈ B(ci, r)),

where i = ceiling(k/N), j = rem(k,N). Each building block has where a sub-block with width336

D and depth L − 1 approximates the chart selection, a sub-block with width md and depth L − 1337

approximates the B-spline function, and the last layer approximates the multiply function. The norm338

of this block is bounded by339

L∑

ℓ=1

∥W(i,j)
ℓ ∥2F ≤ O(22k/LdmL+DL). (8)

Making use of the 1-homogeneous property of the ReLU function, by scaling all the weights in340

the neural network, these building blocks can be combined into a neural network with residual341

connections, that approximate the target function and satisfy our constraint on the norm of weights.342

See Section C.4 for the detail.343

By applying Lemma 12, which shows that any L-layer feedforward neural network can be reformu-344

lated as an L+ L0 − 1-layer convolution neural network, the neural network constructed above can345

be converted into a ConvResNeXt that satisfies the conditions in Theorem 1.346

B.2 Estimation error347

The formal theorem for the upper bound of estimation error of f̂ is presented as follows:348

10



Theorem 5. Suppose Assumption 1 holds. Set L = L′ + L0 − 1, L′ ≥ 3, where L0 = ⌈ D
K−1⌉, and

MN ≥ CMP, P = O(n
1−2/L

2α/d(1−1/L)+1−2/pL ), w ≥ C1(dm+D).

Let f̂ be the global minimizer given in (1) with the function class F =349

FConv(N,M,L,K,w,Bres, Bout). Then we have350

ED[Loss(f̂(x), y)] ≤ ED[Loss(f
∗(x), y)] + C7

(K− 2
L−2w

3L−4
L−2 L

3L−2
L−2

n

) α/d(1−2/L)
2α/d(1−1/L)+1−2/(pL)

+ C8 exp(−C6L
′),

where the logarithmic terms are omitted. C1 is the constant defined in Theorem 1, C7, C8 are351

constants that depend on CF, CM, d,m, K is the size of the convolution kernel.352

To prove the above theorem, we first compute the covering number of an overparameterized Con-353

vResNeXt with norm-constraint as in Lemma 6, then compute the critical radius of this function class354

using the covering number as in Corollary 19. The critical radius can be used to bound the estimation355

error as in Theorem 14.20 in Wainwright [23]. The proof is deferred to Section D.2.356

Lemma 6. Consider a neural network defined in Definition 1. Let the last layer of this neural network357

is a single linear layer with norm ∥Wout∥2F ≤ Bout. Let the input of this neural network satisfy358

∥x∥2 ≤ 1,∀x, and is concatenated with 1 before feeding into this neural network so that part of the359

weight plays the role of the bias. The covering number of this neural network is bounded by360

logN (·, δ) ≲ w2LB
1

1−2/L
res K

2−2/L
1−2/L

(
B

1/2
out exp((KBres/L)

L/2)
) 2/L

1−2/L δ−
2/L

1−2/L , (9)

where the logarithmic term is omitted.361

The key idea of the proof is to split the building block into two types (“small blocks” and “large362

blocks”) depending on whether the total norm of the weights in the building block is smaller than363

ϵ or not. By properly choosing ϵ, we prove that if all the “small blocks” in this neural network are364

removed, the perturbation to the output for any input ∥x∥ ≤ 1 is no more than δ/2, so the covering365

number of the ConvResNeXt is only determined by the number of “large blocks”, which is no more366

than Bres/ϵ.367

Proof. Using the inequality of arithmetic and geometric means, from Proposition 20, Proposition 22
and Proposition 23, if any residual block is removed, the perturbation to the output is no more than

(KBm/L)L/2B
1/2
out exp((KBres/L)

L/2),

where Bm is the total norm of parameters in this block. Because of that, the residual blocks can be368

divided into two kinds depending on the norm of the weights Bm < ϵ (“small blocks”) and Bm ≥ ϵ369

(“large blocks”). If all the “small blocks” are removed, the perturbation to the output for any input370

∥x∥2 ≤ 1 is no more than371

exp((KBres/L)
L/2)B

1/2
out

∑

m:Bm<ϵ

(KBm/L)L/2

≤ exp((KBres/L)
L/2)B

1/2
out

∑

m:Bm<ϵ

(KBm/L)(Kϵ/L)L/2−1

≤ exp((KBres/L)
L/2)KL/2BresB

1/2
out (ϵ/L)

L/2−1/L.

Choosing ϵ = L

(
δL

2 exp((Bres/L)L/2)KL/2BresB
1/2
out

) 1
L/2−1

, the perturbation above is no more than372

δ/2. The covering number can be determined by the number of the “large blocks” in the neural373

network, which is no more than Bres/ϵ.374

Taking our choice of ϵ into Proposition 13 and noting that for any block, BinLpost ≤375

B
1/2
out exp((KBres/L)

L/2) finishes the proof, where Bin is the upper bound of the input to this376

block as defines in Proposition 13, and Lpost is the Lipschitze parameter of all the layers following377

the block.378

379
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Remark 1. The proof of Lemma 6 shows that under weight decay, the building blocks in a Con-380

vResNeXt are sparse, i.e. only a finite number of blocks contribute non-trivially to the network even381

though the model can be overparameterized. This explains why a ConvResNeXt can generalize well382

despite overparameterization, and provide a new perspective in explaining why residual connections383

improve the performance of deep neural networks.384

C Proof of the approximation theory385

C.1 Decompose the target function into the sum of locally supported functions.386

Lemma 7. Approximating Besov function on a smooth manifold using B-spline: Let f ∈ Bα
p,q(M).387

There exists a decomposition of f :388

f(x) =

CM∑

i=1

f̃i ◦ ϕi(x)× 1(x ∈ B(ci, r)),

and f̃i = f · ρi ∈ Bα
p,q,

∑CM
i=1 ∥f̃i∥Bα

p,q
≤ C∥f∥Bα

p,q(M), ϕi : M → Rd are linear projections,389

B(ci, r) denotes the unit ball with radius r and center ci.390

The lemma is inferred by the existence of the partition of unity, which is given in Proposition 3.391

C.2 Locally approximate the decomposed functions using cardinal B-spline basis functions.392

Proposition 8. For any function in the Besov space on a compact smooth manifold f∗ ∈ Bs
p,q(M),393

any N ≥ 0, there exists an approximated to f∗ using cardinal B-spline basis functions:394

f̃ =

CM∑

i=1

P∑

j=1

ai,kj ,sj
Mm,kj ,sj

◦ ϕi × 1(x ∈ B(ci, r)),

where m is the integer satisfying 0 < α < min(m,m− 1 + 1/p), Mm,k,s = Mm(2k(· − s)),Mm395

denotes the B-spline basis function defined in (4), the approximation error is bounded by396

∥f − f̃∥∞ ≤ C9CMP−α/d

and the coefficients satisfy397

∥{2kjai,kj ,sj
}i,j∥p ≤ C10∥f∥Bα

p,q(M)

for some constant C9, C10 that only depends on α.398

As will be shown below, the scaled coefficients 2kjai,kj ,sj
corresponds to the total norm of the399

parameters in the neural network to approximate the B-spline basis function, so this lemma is the key400

to get the bound of norm of parameters in (10).401

Proof. From the definition of Bα
p,q(M), and applying Proposition 3, there exists a decomposition of402

f∗ as403

f∗ =

CM∑

i=1

(fi) =

CM∑

i=1

(fi ◦ ϕ−1
i ) ◦ ϕi × 1Ui

,

where fi := f∗ ·ρi, ρi satisfy the condition in Definition 6, and fi◦ϕ−1
i ∈ Bα

p,q . Using Proposition 16,404

for any i, one can approximate fi ◦ ϕ−1
i with f̄i:405

f̄i =

P∑

j=1

ai,kj ,sj
Mm,kj ,sj

such that ∥fi ◦ ϕ−1
i ∥∞ ≤ C1M

−α/d, and the coefficients satisfy

∥{2kjakj ,sj}j∥p ≤ C10∥fi ◦ ϕ−1
i ∥Bα

p,q
.

Define

f̄ =

CM∑

i=1

f̄i ◦ ϕi × 1Ui .

12



one can verify that ∥f − f̃∥∞ ≤ C9CMN−α/d. On the other hand, using triangular inequality (and406

padding the vectors with 0),407

∥{2kjai,kj ,sj
}i,j∥p ≤

CM∑

i=1

∥{2kjai,kj ,sj
}j∥p ≤

CM∑

i=1

C10∥fi ◦ ϕ−1
i ∥Bα

p,q
= C10∥f∗∥Bα

p,q(M),

which finishes the proof.408

409

C.3 Neural network for chart selection410

In this section, we demonstrate that a feedforward neural network can approximate the chart selection411

function z × 1(x ∈ B(ci, r)), and it is error-free as long as z = 0 when r < d(x, ci) < R. We start412

by proving the following supporting lemma:413

Proposition 9. Fix some constant B > 0. For any x, c ∈ RD satisfying |xi| ≤ B and |ci| ≤ B for414

i = 1, . . . , D, there exists an L-layer neural network d̃(x; c) with width w = O(d) that approximates415

d2(x; c) =
∑D

i=1(xi − ci)
2 such that |d̃2(x; c)− d2(x; c)| ≤ 8DB2 exp(−C11L) with an absolute416

constant C11 > 0 when d(x; c) < τ , and d̃2(x; c) ≥ τ2 when d(x; c) ≥ τ , and the norm of the417

neural network is bounded by418

L∑

ℓ=1

∥Wℓ∥2F + ∥bℓ∥22 ≤ C12DL.

Proof. The proof is given by construction. By Proposition 2 in Yarotsky(2017), the function f(x) =419

x2 on the segment [0, 2B] can be approximated with any error ϵ > 0 by a ReLU network g having420

depth and the number of neurons and weight parameters no more than c log(4B2/ϵ) with an absolute421

constant c. The width of the network g is an absolute constant. We also consider a single layer ReLU422

neural network h(t) = ReLU(t)− ReLU(−t), which is equal to the absolute value of the input.423

Now we consider a neural network G(x; c) =
∑D

i=1 g ◦ h(xi − ci). Then for any x, c ∈ RD424

satisfying |xi| ≤ B and |ci| ≤ B for i = 1, . . . , D, we have425

|G(x; c)− d2(x; c)| ≤
∣∣∣∣∣

D∑

i=1

g ◦ h(xi − ci)−
D∑

i=1

(xi − ci)
2

∣∣∣∣∣

≤
D∑

i=1

∣∣g ◦ h(xi − ci)− (xi − ci)
2
∣∣

≤ Dϵ.

Moreover, define another neural network426

F (x; c) = −ReLU(τ2 −Dϵ−G(x; c)) + τ2

=

{
G(x; c) +Dϵ if G(x; c) < τ2 −Dϵ,

τ2 if G(x; c) ≥ τ2 −Dϵ,

which has depth and the number of neurons no more than c′ log(4B2/ϵ) with an absolute constant c′.427

The weight parameters of G are upper bounded by max{τ2, Dϵ, c log(4B2/ϵ)} and the width of G428

is O(D).429

If d2(x; c) < τ2, we have430

|F (x; c)− d2(x; c)| = | − ReLU(τ2 −Dϵ−G(x; c)) + τ2 − d2(x; c)|

=

{|G(x; c)− d2(x; c) +Dϵ| if G(x; c) < τ2 −Dϵ,

τ2 − d2(x; c) if G(x; c) ≥ τ2 −Dϵ.

For the first case when G(x; c) < τ2 − Dϵ, |F (x; c) − d2(x; c)| ≤ 2Dϵ since d2(x; c) can be431

approximated by G(x; c) up to an error ϵ. For the second case when G(x; c) ≥ τ2 −Dϵ, we have432

d2(x; c) ≥ G(x; c)−Dϵ ≥ τ2 − 2Dϵ and . Thereby we also have |F (x; c)− d2(x; c)| ≤ 2Dϵ.433
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If d2(x; c) ≥ τ2 instead, we will obtain G(x; c) ≥ d2(x; c) − Dϵ ≥ τ2 − Dϵ. This gives that434

F (x; c) = τ2 in this case.435

Finally, we take ϵ = 4B2 exp(−L/c′). Then F (x; c) is an L-layer neural network with O(L)436

neurons. The weight parameters of G are upper bounded by max{τ2, 4DB2 exp(−L/c′), cL/c′}437

and the width of G is O(D). Moreover, F (x; c) satisfies |F (x; c)− d2(x; c)| < 8DB2 exp(−L/c′)438

if d2(x; c) ≤ τ2 and F (x; c) = τ2 if d2(x; c) ≥ τ2.439

Proposition 10. There exists a single layer ReLU neural network that approximates ×̃, such that for440

all 0 ≤ x ≤ C, y ∈ {0, 1}, x×̃y = x when y = 1, and x×̃y = 0 when either x = 0 or y = 0.441

Proof. Consider a single layer neural network g(x, y) := A2ReLU(A1(x, y)
⊤) with no bias, where442

A1 =

[
− 1

C 1
0 1

]
, A2 =

[
−C
C

]
.

Then we can rewrite the neural network g as g(x, y) = −CReLU(−x/C + y) + CReLU(y). If443

y = 1, we will have g(x, y) = −CReLU(−x/C + 1) + C = x, since x ≤ C. If y = 0, we will444

have g(x, y) = −CReLU(−x/C) = 0, since x ≥ 0. Thereby we can conclude the proof.445

By adding a single linear layer446

y =
1

R− r − 2∆
(ReLU(R−∆− x)− ReLU(r +∆− x))

after the one shown in Proposition 9, where ∆ = 8DB2 exp(−CL) denotes the error in Proposition 9,447

one can approximate the indicator function 1(x ∈ B(ci, r)) such that it is error-free when d(x, ci) ≤448

r or ≥ R. Choosing R ≤ τ/2, r < R−2∆, and combining with Proposition 10, the proof is finished.449

Considering that fi is locally supported on B(ci, r) for all i by our method of construction, the chart450

selection part does not incur any error in the output.451

C.4 Constructing the neural network to Approximate the target function452

In this section, we focus on the neural network with the same architecture as a ResNeXt in Definition 1453

but replacing each building block with a feedforward neural network, and prove that it can achieve454

the same approximation error as in Theorem 1. For technical simplicity, we assume that the target455

function f∗ ∈ [0, 1] without loss of generality. Then our analysis automatically holds for any bounded456

function.457

Theorem 11. For any f∗ under the same condition as Theorem 1, any neural network architecture458

with residual connections containing N number of residual blocks and each residual block contains459

M number of feedforward neural networks in parallel, where the depth of each feedforward neural460

networks is L, width is w:461

f = Wout ·
(
1 +

M∑

m=1

fN,m

)
◦ · · · ◦

(
1 +

M∑

m=1

f1,m

)

fn,m = W
(n,m)
L ReLU(W

(n,m)
L−1 . . .ReLU(W

(n,m)
1 x)) ◦ P (x),

where P (x) = [xT , 1, 0]T is the padding operation,462

satisfying463

MN ≥ CMP, w ≥ C1(dm+D),

Bres :=

N∑

n=1

M∑

m=1

L∑

ℓ=1

∥W(n,m)
ℓ ∥2F ≤ C2L,

Bout := ∥Wout∥2F ≤ C3C
2
F((dm+D)L)L(CMP )L−2/p,

(10)

there exists an instance f of this ResNeXt class, such that464

∥f − f∗∥∞ ≤ CFCM

(
C4P

−α/d + C5 exp(−C6L logP )
)
, (11)

where C1, C2, C3, C4, C5, C6 are the same constants as in Theorem 1.465
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Proof. We first construct a parallel neural network to approximate the target function, then scale the466

weights to meet the norm constraint while keeping the model equivalent to the one constructed in the467

first step, and finally transform this parallel neural network into the ConvResNeXt as claimed.468

Combining Lemma 17, Proposition 9 and Proposition 10, by putting the neural network in Lemma 17469

and Proposition 9 in parallel and adding the one in Proposition 10 after them, one can construct470

a feedforward neural network with bias with depth L, width w = O(d) + O(D) = O(d), that471

approximates Mm,kj ,sj (x)× 1(x ∈ B(ci, r)) for any i, j.472

To construct the neural network with residual connections that approximates f∗, we follow the473

method in Oono and Suzuki [16], Liu et al. [14]. This network uses separate channels for the inputs474

and outputs. Let the input to one residual layer be [x1, y1], the output is [x1, y1 + f(x1)]. As a result,475

if one scale the outputs of all the building blocks by any scalar a, then the last channel of the output476

of the entire network is also scaled by a. This property allows us to scale the weights in each building477

block while keeping the model equivalent. To compensate for the bias term, Proposition 18 can be478

applied. This only increases the total norm of each building block by no larger than a constant term479

that depends only L, which is no more than a factor of constant.480

Let the neural network constructed above has parameter W̃(i,j)
1 , b̃

(i,j)

1 , . . . ,W̃
(i,j)
L , b

(i,j)
L in each481

layer, one can construct a building block without bias as482

W
(i,j)
1 =

[
W̃

(i,j)
1 b̃

(i,j)

1 0
0 1 0

]
, W

(i,j)
ℓ =

[
W̃

(i,j)
ℓ b̃

(i,j)

ℓ
0 1

]
W

(i,j)
L =




0 0
0 0

W̃
(i,j)
L b̃

(i,j)

L


 .

Remind that the input is padded with the scalar 1 before feeding into the neural network, the above483

construction provide an equivalent representation to the neural network including the bias, and route484

the output to the last channel. From Lemma 17, it can be seen that the total square norm of this block485

is bounded by (8).486

Finally, we scale the weights in the each block, including the “1” terms to meet the norm constraint.487

Thanks to the 1-homogeneous property of ReLU layer, and considering that the network we construct488

use separate channels for the inputs and outputs, the model is equivalent after scaling. Actually the489

property above allows the tradeoff between Bres and Bout. If all the weights in the residual blocks are490

scaled by an arbitrary positive constant c, and the weight in the last layer Wout is scaled by c−L, the491

model is still equivalent. We only need to scale the all the weights in this block with |ai,kj ,sj |1/L,492

setting the sign of the weight in the last layer as sign(ai,kj ,sj
), and place CMP number of these493

building blocks in this neural network with residual connections. Since this block always output 0494

in the first D + 1 channels, the order and the placement of the building blocks does not change the495

output. The last fully connected layer can be simply set to496

Wout = [0, . . . , 0, 1], bout = 0.

Combining Proposition 16 and Lemma 15, the norm of this ResNeXt we construct satisfy497

B̄res ≤
CM∑

i=1

P∑

j=1

a
2/L
i,kj ,sj

(22k/LC14dmL+ C12DL)

≤
CM∑

i=1

P∑

j=1

(2kai,kj ,sj
)2/L(C14dmL+ C12DL)

≤ (CMP )1−2/(pL)∥{2kai,kj ,sj
}∥2/Lp (C14dmL+ C12DL)

≤ (C10CF)
2/L(CMP )1−2/(pL)(C14dmL+ C12DL),

B̄out ≤ 1.

By scaling all the weights in the residual blocks by B̄
−1/2
res , and scaling the output layer by B̄

L/2
res , the498

network that satisfy (10) can be constructed.499

Notice that the chart selection part does not introduce error by our way of construction, we only500

need to sum over the error in Section B.1 and Section B.1, and notice that for any x, for any linear501

projection ϕi, the number of B-spline basis functions Mm,k,s that is nonzero on x is no more than502

md logP , the approximation error of the constructed neural network can be proved.503
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C.5 Constructing a convolution neural network to approximate the target function504

In this section, we prove that any feedforward neural network can be realized by a convolution neural505

network with similar size and norm of parameters. The proof is similar to Theorem 5 in [16].506

Lemma 12. For any feedforward neural network with depth L′, width w′, input dimension h and507

output dimension h′, for any kernel size K > 1, there exists a convolution neural network with depth508

L = L′ + L0 − 1, where L0 = ⌈ h−1
K−1⌉ number of channels w = 4w′, and the first dimension of509

the output equals the output of the feedforward neural network for all inputs, and the norm of the510

convolution neural network is bounded as511

L∑

ℓ=1

∥Wℓ∥2F ≤ 4

L′∑

ℓ=1

∥W′
ℓ∥2F + 4w′L0,

where W′
1 ∈ Rw′×h′

;W′
ℓ ∈ Rw′×w′

, ℓ = 2, . . . , L′ − 1;W′
L′ ∈ Rh′×w′

are the weights in the512

feedforward neural network, and W1 ∈ RK×w×h,Wℓ ∈ RK×w×w, ℓ = 2, . . . , L − 1;WL ∈513

RK×h×w are the weights in the convolution neural network.514

Proof. We follow the same method as Oono and Suzuki [16] to construct the CNN that is equivalent515

to the feedforward neural network. By combining Oono and Suzuki [16] lemma 1 and lemma 2, for516

any linear transformation, one can construct a convolution neural network with at most L0 = ⌈ h−1
K−1⌉517

convolution layers and 4 channels, where h is the dimension of input, which equals D + 1 in our518

case, such that the first dimension in the output equals the linear transformation, and the norm of all519

the weights is no more than520
L0∑

ℓ=1

∥Wℓ∥2F ≤ 4L0, (12)

where Wℓ is the weight of the linear transformation. Putting w number of such convolution neural521

networks in parallel, a convolution neural network with L0 layers and 4w channels can be constructed522

to implement the first layer in the feedforward neural network.523

To implement the remaining layers, one choose the convolution kernel Wℓ+L0−1[:, i, j] =524

[0, . . . ,W′[i, j], . . . , 0],∀1 ≤ i, j ≤ w, and pad the remaining parts with 0, such that this con-525

volution layer is equivalent to the linear layer applied on the dimension of channels. Noticing that526

this conversion does not change the norm of the parameters in each layer. Adding both sides of (12)527

by the norm of the 2− L′-th layer in both models finishes the proof.528

D Proof of the estimation theory529

D.1 Covering number of a neural network block530

Proposition 13. If the input to a ReLU neural network is bounded by ∥x∥2 ≤ Bin, the covering531

number of the ReLU neural network defined in Proposition 20 is bounded by532

N (FNN , δ, ∥ · ∥2) ≤
(
Bin(B/L)L/2wL

δ

)w2L

.

Proof. Similar to Proposition 20, we only consider the case ∥Wℓ∥F ≤
√
B/L. For any 1 ≤ ℓ ≤ L,533

for any W1, . . .Wℓ−1,Wℓ,W
′
ℓ ,Wℓ+1, . . .WL that satisfy the above constraint and ∥Wℓ−W ′

ℓ∥F ≤ ϵ,534

define g(. . . ;W1, . . .WL) as the neural network with parameters W1, . . .WL, we can see535

∥g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)− g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)∥2
≤ (B/L)(L−ℓ)/2∥Wℓ −W ′

ℓ∥2∥ReLU(Wℓ−1 . . . ReLU(W1(x)))∥2
≤ (B/L)(L−1)/2Binϵ.

Choosing ϵ = δ
L(B/L)(L−1)/2 , the above inequality is no larger than δ/L. Taking the sum over ℓ, we536

can see that for any W1,W
′
1, . . . ,WL,W

′
L such that ∥Wℓ −W ′

ℓ∥F ≤ ϵ,537

∥g(x;W1, . . .WL)− g(x;W ′
1, . . .W

′
L))∥2 ≤ δ.
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Finally, observe that the covering number of Wℓ is bounded by538

N ({W : ∥W∥F ≤ B}, ϵ, ∥ · ∥F) ≤
(
2Bw

ϵ

)w2

. (13)

Substituting B and ϵ and taking the product over ℓ finishes the proof.539

Proposition 14. If the input to a ReLU convolution neural network is bounded by ∥x∥2 ≤ Bin, the540

covering number of the ReLU neural network defined in Definition 1 is bounded by541

N (FNN, δ, ∥ · ∥2) ≤
(
Bin(BK/L)L/2wL

δ

)w2KL

.

Proof. Similar to Proposition 13, for any 1 ≤ ℓ ≤ L, for any W1, . . .Wℓ−1,Wℓ,W
′
ℓ ,Wℓ+1, . . .WL542

that satisfy the above constraint and ∥Wℓ − W ′
ℓ∥F ≤ ϵ, define g(. . . ;W1, . . .WL) as the neural543

network with parameters W1, . . .WL, we can see544

∥g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)− g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)∥2
≤ KL/2(B/L)(L−ℓ)/2∥Wℓ −W ′

ℓ∥2∥ReLU(Wℓ−1 . . . ReLU(W1(x)))∥2
≤ KL/2(B/L)(L−1)/2Binϵ,

where the first inequality comes from Proposition 24. Choosing ϵ = δ
KL/2BinL(B/L)(L−1)/2 , the545

above inequality is no larger than δ/L. Taking this into (13) finishes the proof.546

D.2 Proof of Theorem 5547

Define f̃ = argminf ED[Loss(f)]. From Theorem 14.20 in Wainwright [23], for any function class548

∂F that is star-shaped around f̃ , the empirical risk minimizer f̂ = argminf∈F Lossn(f) satisfy549

ED[Loss(f̂)] ≤ ED[Loss(f̃)] + 10δn(2 + δn) (14)

with probability at least 1− c1 exp(−c2nδ
2
n) for any δn that satisfy (18), where c1, c2 are universal550

constants.551

The function of neural networks is not star-shaped, but can be covered by a star-shaped function class.552

Specifically, let {f − f̃ : f ∈ FConv} ⊂ {f1 − f2 : f1, f2 ∈ FConv} := ∂F .553

Any function in ∂F can be represented using a ResNeXt: one can put two neural networks of the554

same structure in parallel, adjusting the sign of parameters in one of the neural networks and summing555

up the result, which increases M,Bres and Bout by a factor of 2. This only increases the log covering556

number in (9) by a factor of constant (remind that Bres = O(1) by assumption).557

Taking the log covering number of the ResNeXt (9), the sufficient condition for the critical radius as558

in (18) is559

n−1/2wL1/2B
1

2−4/L
res K

1−1/L
1−2/L

(
B

1/2
out exp((KBres/L)

L/2)
) 1/L

1−2/L δ
1−3/L
1−2/L
n ≲

δ2n
4
,

δn ≳ K(w2L)
1−2/L
2−2/LB

1
2−2/L
res

(
B

1/2
out exp((KBres/L)

L/2)
) 1/L

1−1/Ln− 1−2/L
2−2/L ,

(15)

where ≲ hides the logarithmic term.560

Because Loss is 1-Lipschitz, we have561

Loss(f) ≤ Loss(f̃) + ∥f − f̃∥∞.

Choosing

P = O



(
K− 2

L−2w
3L−4
L−2 L

3L−2
L−2

n

)− 1−2/L
2α/d(1−1/L)+1−2/pL


 ,

and taking Theorem 1 and (15) into (14) finishes the proof.562
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E Lower bound of error563

In this section, we study the minimax lower bound of any estimator for Besov functions on a d-564

dimensional manifold. It suffices to consider the manifold M as a d-dimensional hypersurface.565

Without the loss of generalization, assume that ∂Loss(y)
∂y ≥ 0.5 for −ϵ ≤ y ≤ ϵ. Define the function566

space567

F =



f =

s∑

j1,...,jd=1

± ϵ

sα
×M (m)((x− j)/s)



 , (16)

where M (m) denotes the Cardinal B-spline basis function that is supported on (0, 1)d, j =568

[j1, . . . , jd]. The support of each B-spline basis function splits the space into sd number of blocks,569

where the target function in each block has two choices (positive or negative), so the total number of570

different functions in this function class is |F| = 2s
d

. Using Dũng [5, Theorm 2.2], we can see that571

for any f ∈ F ,572

∥f∥Bα
p,q

≤ ϵ

sα
sα−d/psd/p = ϵ.

For a fixed f∗ ∈ F , let D = {(xi, yi)}ni=1 be a set of noisy observations with yi = f∗(xi)+ ϵi, ϵi ∼573

SubGaussian(0, σ2I). Further assume that xi are evenly distributed in (0, 1)d such that in all574

regions as defined in (16), the number of samples is nj := O(n/sd). Using Le Cam’s inequality, we575

get that in any region, any estimator θ satisfy576

sup
f∗∈F

ED[∥θ(D)− f∗∥j ] ≥
Cmϵ

16sα

as long as ( ϵ
σsα )

2 ≲ sd

n , where ∥ · ∥j := 1
ni

∑
s(x−j)∈[0,1]d |f(x)| denotes the norm defined in the577

block indexed by i, Cm is a constant that depends only on m. Choosing s = O(n
1

2α+d ), we get578

sup
f∗∈F

ED[∥θ(D)− f∗∥j ] ≥ n− α
2α+d .

Observing 1
n

∑n
i=1 L((̂f(xi))) ≥ 0.5

∑n
i=1 |f(xi)− f∗(xi)| ≂ 1

sd

∑
j∈[s]d ∥f̂ − f∗∥j finishes the579

proof.580

F Supporting theorem581

Lemma 15. [Lemma 14 in Zhang and Wang [27]] For any a ∈ RM̄ , 0 < p′ < p, it holds that:

∥a∥p
′

p′ ≤ M̄1−p′/p∥a∥p′

p .

Proposition 16 (Proposition 7 in Zhang and Wang [27]). Let α − d/p > 1, r > 0. For
any function in Besov space f∗ ∈ Bα

p,q and any positive integer M̄ , there is an M̄ -sparse
approximation using B-spline basis of order m satisfying 0 < α < min(m,m − 1 + 1/p):
f̌M̄ =

∑M̄
i=1 aki,si

Mm,ki,si
for any positive integer M̄ such that the approximation error is bounded

as ∥f̌M̄ − f∗∥r ≲ M̄−α/d∥f∗∥Bα
p,q

, and the coefficients satisfy

∥{2kiaki,si
}ki,si

∥p ≲ ∥f∗∥Bα
p,q

.

Lemma 17 (Lemma 11 in [27]). Let Mm,k,s be the B-spline of order m with scale 2−k in each582

dimension and position s ∈ Rd: Mm,k,s(x) := Mm(2k(x− s)), Mm is defined in (4). There exists583

a neural network with d-dimensional input and one output, with width wd,m = O(dm) and depth584

L ≲ log(C13/ϵ) for some constant C13 that depends only on m and d, approximates the B spline585

basis function Mm,k,s(x) := Mm(2k(x−s)). This neural network, denoted as M̃m,k,s(x),x ∈ Rd,586

satisfy587

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤ m+ 1,∀i ∈ [d],588

• M̃m,k,s(x) = 0, otherwise.589

• The total square norm of the weights is bounded by 22k/LC14dmL for some universal590

constant C14.591
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Proposition 18. For any feedforward neural network f with width w and depth L with bias, there592

exists a feedforward neural network f ′ with width w′ = w + 1 and depth L′ = L, such that for any593

x, f(x) = f ′([xT , 1]T )594

Proof. Proof by construction: let the weights in the ℓ-th layer in f be Wℓ, and the bias be bℓ, and
choose the weight in the corresponding layer in f ′ be

W′
ℓ =

[
W̃ℓ b̃ℓ
0 1

]
, ∀ℓ < L; W′

L = [W̃L b̃L].

The constructed neural network gives the same output as the original one.595

Corollary 19 (Corollary 13.7 and Corollary 14.3 in Wainwright [23]). Let

Gn(δ,F) = Ewi

[
sup

g∈F,∥g∥n≤δ

∣∣∣∣∣
1

n

n∑

i=1

wig(xi)

∣∣∣∣∣

]
,Rn(δ,F) = Eϵi

[
sup

g∈F,∥g∥n≤δ

∣∣∣∣∣
1

n

n∑

i=1

ϵig(xi)

∣∣∣∣∣

]
,

denotes the local Gaussian complexity and local Rademacher complexity respectively, where wi ∼596

N (0, 1) are the i.i.d. Gaussian random variables, and ϵi ∼ uniform{−1, 1} are the Rademacher597

random variables. Suppose that the function class F is star-shaped, for any σ > 0, any δ ∈ (0, σ]598

such that599
16√
n

∫ δn

δ2n/4σ

√
logN (F , µ, ∥ · ∥∞)dµ ≤ δ2n

4σ

satisfies600

Gn(δ,F) ≤ δ2

2σ
. (17)

Furthermore, if F is uniformly bounded by b, i.e. ∀f ∈ F ,x|f(x)| ≤ b any δ > 0 such that601

64√
n

∫ δn

δ2n/2b4σ

√
logN (F , µ, ∥ · ∥∞)dµ ≤ δ2n

b
.

satisfies602

Rn(δ,F) ≤ δ2

b
. (18)

Proposition 20. An L-layer ReLU neural network with no bias and bounded norm603

L∑

ℓ=1

∥Wℓ∥2F ≤ B

is Lipschitz continuous with Lipschitz constant (B/L)L/2604

Proof. Notice that ReLU function is 1-homogeneous, similar to Proposition 4 in [27], for any neural605

network there exists an equivalent model satisfying ∥Wℓ∥F = ∥Wℓ′∥F for any ℓ, ℓ′, and its total606

norm of parameters is no larger than the original model. Because of that, it suffices to consider the607

neural network satisfying ∥Wℓ∥F ≤
√
B/L for all ℓ. The Lipschitz constant of such linear layer is608

∥Wℓ|∥2 ≤ ∥Wℓ|∥F ≤
√
B/L, and the Lipschitz constant of ReLU layer is 1. Taking the product609

over all layers finishes the proof.610

Proposition 21. An L-layer ReLU convolution neural network with convolution kernel size K, no611

bias and bounded norm612
L∑

ℓ=1

∥Wℓ∥2F ≤ B.

is Lipschitz continuous with Lipschitz constant (KB/L)L/2613

This proposition can be proved by taking Proposition 24 into the proof of Proposition 20.614

Proposition 22. Let f = fpost ◦ (1 + fNN + fother) ◦ fpre be a ResNeXt, where 1 + fNN + fother615

denotes a residual block, fpre and fpost denotes the part of the neural network before and after this616

residual block, respectively. fNN denotes one of the building block in this residual block and fother617

denotes the other residual blocks. Assume fpre, fNN, fpost are Lipschitz continuous with Lipschitz618

constant Lpre, LNN, Lpost respectively. Let the input be x, if the residual block is removed, the619

perturbation to the output is no more than LpreLNNLpost∥x∥620
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Proof.
|fpost ◦ (1 + fNN + fother) ◦ fpre(x)− fpost ◦ (1 + fother) ◦ fpre(x)|
≤ Lpost|(1 + fNN + fother) ◦ fpre(x)− (1 + fother) ◦ fpre(x)|
= Lpost|fNN ◦ fpre(x)|
≤ LpreLNNLpost∥x∥.

621

Proposition 23. The neural network defined in Lemma 6 with arbitrary number of blocks has622

Lipschitz constant exp((KBres/L)
L/2), where K = 1 when the feedforward neural network is the623

building blocks and K is the size of the convolution kernel when the convolution neural network is624

the building blocks.625

Proof. Note that the m-th block in the neural network defined in Lemma 6 can be represented626

as y = fm(x;ωm) + x, where fm is an L-layer feedforward neural network with no bias. By627

Proposition 20 and Proposition 21, such block is Lipschitz continuous with Lipschitz constant628

1+(KBm/L)L/2, where the weight parameters of the m-th block satisfy that
∑L

ℓ=1 ∥W
(m)
ℓ ∥2F ≤ Bm629

and
∑M

m=1 Bm ≤ Bres.630

Since the neural network defined in Lemma 6 is a composition of M blocks, it is Lipschitz with631

Lipschitz constant Lres. We have632

Lres ≤
M∏

m=1

(
1 +

(
KBm

L

)L/2
)

≤ exp

(
M∑

m=1

(
KBm

L

)L/2
)
,

where we use the inequality 1 + z ≤ exp(x) for any x ∈ R. Furthermore, notice that633 ∑M
m=1(KBm/L)L/2 is convex with respect to (B1, B2, . . . , BM ) when L > 2. Since

∑M
m=1 Bm ≤634

Bres and Bm ≥ 0, then we have
∑M

m=1(KBm/L)L/2 ≤ (KBres/L)
L/2 by convexity. Therefore,635

we obtain that Lres ≤ exp((KBres/L)
L/2).636

Proposition 24. For any x ∈ Rd,w ∈ RK ,K ≤ d, ∥Conv(x,w)∥2 ≤
√
K∥x∥2∥w∥2.637

Proof. For simplicity, denote xi = 0 for i ≤ 0 or i > d.638

∥Conv(x,w)∥22 =
∑d

i=1⟨x[i− K−1
2 : i+ K−1

2 ],w⟩2

≤∑d
i=1 ∥x[i− K−1

2 : i+ K−1
2 ]∥22∥w∥22

≤ K∥x∥22∥w∥22,
where the second line comes from Cauchy-Schwarz inequality, the third line comes by expanding639

∥x[i − K−1
2 : i + K−1

2 ]∥22 by definition and observing that each element in x appears at most K640

times.641
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