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ABSTRACT

Representational straightening refers to a decrease in curvature of visual feature
representations of a sequence of frames taken from natural movies. Prior work
established straightening in neural representations of the primate primary visual
cortex (V1) and perceptual straightening in human behavior as a hallmark of bi-
ological vision in contrast to artificial feedforward neural networks which did
not demonstrate this phenomenon as they were not explicitly optimized to pro-
duce temporally predictable movie representations. Here, we show robustness to
noise in the input image can produce representational straightening in feedforward
neural networks. Both adversarial training (AT) and base classifiers for Random
Smoothing (RS) induced remarkably straightened feature codes. Demonstrating
their utility within the domain of natural movies, these codes could be inverted
to generate intervening movie frames by linear interpolation in the feature space
even though they were not trained on these trajectories. Demonstrating their bio-
logical utility, we found that AT and RS training improved predictions of neural
data in primate V1 over baseline models providing a parsimonious, bio-plausible
mechanism – noise in the sensory input stages – for generating representations
in early visual cortex. Finally, we compared the geometric properties of frame
representations in these networks to better understand how they produced repre-
sentations that mimicked the straightening phenomenon from biology. Overall,
this work elucidating emergent properties of robust neural networks demonstrates
that it is not necessary to utilize predictive objectives or train directly on natural
movie statistics to achieve models supporting straightened movie representations
similar to human perception that also predict V1 neural responses.

1 INTRODUCTION

In understanding the principles underlying biological vision, a longstanding debate in computational
neuroscience is whether the brain is wired to predict the incoming sensory stimulus, most notably
formalized in predictive coding (Rao & Ballard, 1999; Friston, 2009; Millidge et al., 2021), or
whether neural circuitry is wired to recognize or discriminate among patterns formed on the sensory
epithelium, popularly exemplified by discriminatively trained feedforward neural networks (DiCarlo
et al., 2012; Tacchetti et al., 2018; Kubilius et al., 2018). Arguing for a role of prediction in vision,
recent work found perceptual straightening of natural movie sequences in human visual perception
(Hénaff et al., 2019). Such straightening is diagnostic of system whose representation could be
linearly read out to perform prediction over time, and the idea of representational straightening res-
onates with machine learning efforts to create new types of models that achieve equivariant, linear
codes for natural movie sequences. Discriminatively trained networks, however, lack any prediction
over time in their supervision. It may not be surprising then that large-scale ANNs trained for clas-
sification produce representations that have almost no improvement in straightening relative to the
input pixel space, while human observers clearly demonstrated perceptual straightening of natural
movie sequences (subsequently also found in neurons of primary visual cortex, V1 (Hénaff et al.,
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Figure 1: Perceptual straightening of movie frames can be viewed as invertibility of latent represen-
tations for static images. Left: straightening of representations refers to a decrease in the curvature
of the trajectory in representation space such as a neural population in the brain or human perceptual
space, but standard ANNs do not show straightening (Hénaff et al., 2019; 2021). Right: Invertibility
of latent representation refers to interpolation between representation of two images (e.g. an image
of a dog and an image of a cat), where the invertible interpolations show the main features of a dog
morph into the main features of a cat. Invertible representations emerge in robust ANNs (Engstrom
et al., 2019b), obviating the need to directly train for temporal straightening.

2019; 2021)). This deficiency in standard feedforward ANNs might suggest a need for new models
trained on predictive loss functions rather than pure classification to emulate biological vision.

Here, we provide evidence for an alternative viewpoint, that biologically plausible straightening can
be achieved in ANNs trained for robust discrimination, without resorting to a prediction objective
or natural movies in training. Drawing on insights from emergent properties of adversarially-trained
neural networks in producing linearly invertible latent representations, we highlight the link between
perceptual straightening of natural movies to invertible latent representations learned from static
images (Figure 1). We examine straightening in these robust feedforward ANNs finding that their
properties relate to those in the biological vision framework. The contributions of this work are as
follows:

1. We show that robust neural networks give rise to straightened feature representations for
natural movies in their feature space, comparable to the straightening measured in the pri-
mate brain and human behavior, and completely absent from standard feedforward net-
works.

2. We show that linearly interpolating between the start and end frames of a movie in the
output feature space of robust ANNs produces synthetic frames similar to those of the
original natural movie sequence in image space. Such invertible linear interpolation is
precisely the definition of a temporally predictive feature representation.

3. Compared to prior models of early visual cortex, robustness to input noise (corruption or
adversarial robustness) is significantly better at explaining neural variance measured from
V1 neurons than non-robustly trained baseline models, suggesting a new hitherto unconsid-
ered mechanism for learning the representations in early cortical areas that achieves natural
movie straightening.
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2 RELATED WORK

2.1 MECHANISMS FOR PRODUCING BRAIN-LIKE REPRESENTATIONS

Feedforward ANNs as models of biological vision. Standard feedforward ANNs, although
lacking a number of bio-plausible features such as feedback connections or a local learning rule
(Whittington & Bogacz, 2019), still can explain the neural variance (Schrimpf et al., 2018) recorded
from rodent (Bakhtiari et al., 2021), monkey (Yamins et al., 2014; Bashivan et al., 2019), and human
visual cortex (Khaligh-Razavi & Kriegeskorte, 2014; Cichy et al., 2016) better than alternatives
which are considered more bio-plausible by using a prediction objective function (e.g., PredNet and
CPC (Zhuang et al., 2021; Schrimpf et al., 2020)). Thus, to learn the representations in the brain,
regardless of bio-plausibility of mechanisms, feedforward ANNs provide a parsimonious more
tractable class of leading models for object recognition in the visual cortex.

Models of primary visual cortex. In neuroscience, rather than rely solely a on top-down
training objective like standard ANNs do, there has been a tradition of explaining early visual
representations using more fundamental principles such as sparse coding and predictive coding
as well as invoking unsupervised training (Olshausen & Field, 1996; Rao & Ballard, 1999). For
example, unsupervised slow feature analysis extracts the slow-varying features from fast-varying
signals in movies based on the intuition that most external salient events (such as objects) are
persistent in time, and this idea can be used to explain the emergence of complex cells in V1
(Berkes & Wiskott, 2005). Recent work in machine learning has attempted to blend more bottom-up
principles with top-down training by experimenting with swapping out ANN early layers with
V1-like models whose filters are inspired from neuroscience studies (Dapello et al., 2020). This
blended model turns out to have benefits for classification robustness in the outputs. However, it
remains unclear whether there is a form of top-down training that can produce V1-like models. Such
a mechanism would provide a fundamentally different alternative to prior proposals of creating a
V1 through sparse coding or future prediction (Hénaff et al., 2019; 2021).

2.2 TEMPORAL PREDICTION AND INVERTIBILITY IN NEURAL NETWORKS

Learning to predict over time. Changes in architecture, training diet (movies), and objective
(predicting future frames) have all been explored as mechanisms to produce more explicit equiv-
ariant representations of natural movies (Lotter et al., 2016; van den Oord et al., 2018). Directly
related to the idea of straightening, penalizing the curvature of representations of frames was used
in Learning to linearize (Goroshin et al., 2015) to learn straightened representations from unlabeled
videos. This class of models does not need supervision which makes them more bio-plausible in
nature; however, as mentioned in the previous section, they lag behind supervised feedforward
ANNs both in terms of learning effective representations for object recognition and in producing
feature representations that predict neural data.

Learning invertible latents. In deep learning applications, invertibility is mostly discussed
in generative neural networks as a constraint to learn a prior to address applications in signals and
systems such as image de-noising, signal compression and image reconstruction from few and
noisy measurements or to be able to reconstruct or modify real images. Usually invertibility is
implemented by carefully designing dedicated architectures (Jacobsen et al., 2018b; Chen et al.,
2019). However, recently it has been shown it can be implemented in standard feedforward ANNs
when they undergo training for adversarial robustness (Engstrom et al., 2019b;c). These works
showed empirically that adversarially robust training encourages invertibility as linear interpolation
between classes (e.g., cat to dog) results in semantically smooth image-to-image translation
(Engstrom et al., 2019b) as opposed to blurry image sequences produced by standard ANNs.

We reasoned that robust networks which encourage invertibility may also lead to straighten-
ing as this a property that would be related to improved invertibility of a network, so we sought to
extend prior work and study the behavior of robustly trained networks specifically in the domain of
natural movies. We report on how these networks straighten natural movies in their features spaces
and can invertibly reproduce movie frames in a natural sequence.
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Figure 2: ANNs show straightening of representations when robustness to noise constraints (noise
augmentation or adversarial attack) is added to their training. Measurements for straightening of
movie sequences (from (Hénaff et al., 2019), in each layer of ResNet50 architecture under different
training regimes: supervised training (standard), no training (random parameters), self-supervised
training (Zbontar et al., 2021), supervised training with no augmentations, supervised training with
extensive augmentations, supervised training with noise augmentation (base classifiers for RS) (Co-
hen et al., 2019), and supervised training with adversarial training (Engstrom et al., 2019a)

3 METHODS

3.1 BASELINE MODELS

We consider the class of feedforward convolutional neural networks, typically restricting to the
ResNet-50 (He et al., 2015) architecture trained on ImageNet for the main analyses. Baseline net-
works (not trained for robustness) include a supervised ResNet-50/ResNet-101/ResNet-152, and
self-supervised (Barlowtwins (Zbontar et al., 2021)). We trained ResNet-50 for imagenet classifica-
tion without augmentations and with extensive augmentations (Chen et al., 2020), labeled as Sup-
NoAugm and SupMocoAugm, respectively. We also consider Voneresnet (biological V1 front-end
(Dapello et al., 2020)) and ResNet-50 trained as a base network for action recognition (Chen et al.,
2021) but include these as separate examples in the Appendix since they use a modified architecture.

Table 1: Clean accuracy and robust (attack: L2, ϵ = 0.1) accuracy for the models used. Except for
the custom models, all the other models were obtained from the repository of the references. Note
that RS here refers to the base classifier in random smoothing without probabilistic inference.

Models Clean accuracy Robust accuracy Model reference
RN50 AT L2 : ϵ = 3 58.50 57.81 (Engstrom et al., 2019a)
RN50 AT L∞ : ϵ = 4 62.80 61.40 (Engstrom et al., 2019a)
RN50 AT L∞ : ϵ = 8 48.29 47.01 (Engstrom et al., 2019a)
RN50 RS L2 : ϵ = 0.25 39.40 36.01 (Cohen et al., 2019)
RN50 RS L2 : ϵ = 0.5 23.75 22.21 (Cohen et al., 2019)
RN50 RS L2 : ϵ = 1 10.62 10.17 (Cohen et al., 2019)
RN50 Standard 75.43 52.32 (He et al., 2015)
RN50 No augmentation 64.35 28.13 custom
RN50 Extensive augmentation 75.27 53.08 custom
RN50 Self-supervised 70.18 41.73 (Zbontar et al., 2021)

4



3.2 MODELS TRAINED FOR ROBUSTNESS

We consider two forms of models trained for minimizing a classification loss Lce in the face of input
perturbations δ ∈ Rh×w×c subject to constraints on the overall magnitude of perturbations in the
input space, where x, y, θ are the network input, output, and classifier parameters, respectively:

Lce(θ, x+ δ, y) (1)

In adversarially trained networks, projected gradient descent from the output space finds maximal
directions of perturbation in the input space limited to length ϵ, and training entails minimizing
the effect of these perturbation directions on the network’s output (Madry et al., 2018). In random
smoothing (Lecuyer et al., 2018; Cohen et al., 2019), a supervised network is trained but in the face
of Gaussian noise added to the input space as the base classifier before performing a probabilistic
inference. In this work, we only use the representations as learned in base classifiers without the
probabilistic inference. The perturbations in the base classifiers δ thus can follow:

δrand ∼ N (0, σ2I), δadv := argmax
|δ|p≤ϵ

Lce(θ, x+ δ, y) (2)

These defenses to input noise have different motivations. Adversarial robustness provides defense
against white box attacks whereas random smoothing is protecting against general image corrup-
tions. However, prior work has suggested a connection between corruption robustness and adver-
sarial robustness (Ford et al., 2019). Theoretically, random smoothing leads to certified robustness
(Cohen et al., 2019) and trains a condition of invertible networks (Jacobsen et al., 2018a), while
adversarial robustness has been shown empirically to lead to invertible latent representations in net-
works (Engstrom et al., 2019b).

3.3 REPRESENTATIONAL METRICS

Representational straightening estimates the local curvature c in a given representation r of a se-
quence of images (natural or artificial) of length N , Cseq : {xt1 , xt2 , ..., xtN } as the angle between
vectors connecting nearby frames, and these local estimates are averaged over the entire movie se-
quence for the overall straightening in that representational trajectory (same as (Hénaff et al., 2019)):

ct = arccos

(
rt − rt−1

∥rt − rt−1∥
· rt+1 − rt
∥rt+1 − rt∥

)
, Cseq =

1

N

N−1∑
t=1

ct (3)

Lower curvature (angle between neighboring vectors) indicates a straighter trajectory, and in the
results we generally reference curvature values to the curvature in the input space (i.e., straightening
relative to pixel space). This metric has been utilized in neuroscience showing that humans tend to
represent nearby movie frames in a straightened manner relative to pixels (Hénaff et al., 2019). This
curvature metric is also closely related to objectives used in efforts to train models with equivariance
by linearizing natural transformations in the world as an alternative to standard networks trained for
invariant object classification (Goroshin et al., 2015; Sabour et al., 2017).

Expansion. We define the radius of a sequence of images from a movie clip as the radial size of
the minimum covering hyper-sphere circumscribing all points representing the frames in r (Gärtner,
1999). We use this measure to supplement geometrical characterization of a movie sequence in
pixel space and in a model’s representational spaces. Like representational straightening values,
expansion values for models in the main text are referenced to the radius measured in pixel space or
to the radius measure for the same layer in a baseline network by simply dividing by those references.
We used mini-ball, a publicly available python package based on (Gärtner, 1999) to measure radius
of the covering hyper-sphere.

4 RESULTS

4.1 ROBUST ANNS EXHIBIT REPRESENTATIONAL STRAIGHTENING

With insights from connections to invertibility (see Figure 1), we hypothesized representational
straightening of movie trajectories could be present in robustly trained neural networks. We took
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Figure 3: Invertibility as measured by the SSIM (Wang et al., 2004) of the actual in-between frames
(labeled as Natural Movie) and the pixel-space projected linear interpolations between the first and
the last frame labeled Pixels, standard ResNet50, RS (ResNet50, L2 : σ2 = 0.5) and AT (ResNet50,
L2 : σ2 = 3). Interpolating the representations of the first and last frames in an invertible repre-
sentation space generates a sequence of frames that are more similar to the ground-truth in-between
frames, but for a non-invertible representation the generated frames are blurry and more similar to
the interpolation in pixel space (a.k.a. artificial sequence). Interpolating the first and last frames in
pixel space, second row, gives exactly what was called an artificial sequence in studies of straight-
ening (Hénaff et al., 2019; 2021), as opposed to natural sequence which were the actual in-between
frames.

the same movie stimuli publicly available (Hénaff et al., 2019)(A.4.1, Figure 12) and the same met-
rics, and we tested the same architecture, ResNet50 (He et al., 2015)) trained under different loss
functions Table 1 to perform controlled head-to-head comparisons. Figure 2 shows representational
straightening of natural movies measured in layers of ResNet50 trained under AT (Engstrom et al.,
2019a) and RS (Cohen et al., 2019) at different adversarial attack or noise levels, respectively. Ro-
bust neural networks in contrast to other ANNs decreased the curvature of natural movies. Straight-
ening for artificial sequences as measured in (Hénaff et al., 2019) (A.1, Figure 7) and other models
(A.2, Figures 9 and 8) are provided in Appendix. Importantly, although most models, whether a
standard ResNet-50 or one with a V1-like front-end, may display an initial dip in curvature for nat-
ural movies in the very earliest layers, this is not sustained in feature representations of later layers
except for robustly trained networks (A.2, Figure 9 vs. A.1, Figure 7) and those trained on action
recognition from temporally instructed training, which we include here as a proxy for a movie-
like training though its feedforward architecture deviates from a ResNet50 by additional temporal
processing components (A.2, Figure 8).

Perceptual Straightening measured as invertibility of latent representations. Next, we sought
to empirically test how well robust networks can invert natural movies given that they contain lin-
earized feature representation of movie frames in their high level feature spaces and given the general
conceptual benefit of linearity for invertibility Figure 1. We measured invertibility of each model
on the same movie sequences used for measuring straightening as follows. We linearly interpolated
between latent representation of the first and last frame of each movie and used the same procedure
as that used previously in (Engstrom et al., 2019b;a) to obtain the pixel-space correspondence of
those interpolated representations. Whereas those generated pseudo-frames can be assessed by for
their pixel-by-pixel distance to the actual movie frame, we chose a metric, Structural Similarity In-
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Figure 4: Left: RS and AT are more predictive of V1 neural responses than other non-robust models
of the same architecture (ResNet50). Right: each dot represents a layer in ResNet50 trained under
different loss function (color codes same as left). Higher representational straightening (negative
curvature change) associates with higher V1 predictivity. Intriguingly, the highest V1 predictiv-
ity corresponds to layers that exhibit comparable straightening to that measured from V1 neurons
(−10◦ on average) (Hénaff et al., 2021). Explained variance is noise-corrected and computed as in
(Schrimpf et al., 2018)

.

dex Measure (SSIM (Wang et al., 2004)), that utilizes intermediate-level statistics motivated from
biological vision and putatively more related to some aspects of human perception than simple pixel
space correspondence. Figure 3 shows an example of such inverted frames for standard ResNet50,
RS (L2 : σ2 = 0.5) and AT (L2 : σ2 = 3), and a summary of average measured invertibility
using the SSIM metric on pseudo-frames from each model. As expected, inline with the findings
of previous work (Engstrom et al., 2019b), AT models scored relatively higher on invertibility of
frames than a baseline discriminative model. However, what had not been previously shown is
that RS models, using merely the benefits of their robustness to noisy augmentation (base classifier
on top of learned representation; no probabilistic inference), also exhibit higher invertibility scores
compared to standard trained models. Invertibility scores were consistently improved in RS and AT
models across a variety of movies tested including those with relatively stationary textures and not
just dynamic objects (see A.4.4, Figure 13 for further examples and A.4.3, Table 3 for scores across
all 11 movies). Thus, RS models along with AT models exhibit invertibility of representations for
movie frames which further demonstrates their ability to support perceptual straightening of natural
movies in their highest layers that may be functionally similar to perceptual straightening previously
measured from human subjects (Hénaff et al., 2019).

4.2 RANDOM SMOOTHING AND ADVERSARIAL TRAINING IN EXPLAINING NEURAL
REPRESENTATIONS IN THE PRIMATE VISUAL SYSTEM

Robustness to noise as a bio-plausible mechanism underlying straightening in primary visual
cortex. As shown above, straightening which is a constraint for brain-like representations in visual
cortex manifests in robust neural networks. Both classes of RS and AT training for robustness to
L2 norm generate straightened representations of movie sequences. However, to distinguish among
models of object recognition, we can measure how well they explain variance in patterns of neural
activity elicited in different visual cortical areas. Here, for all neural comparisons in our analyses,
we measured the Brain-Score (Schrimpf et al., 2018) using the publicly available online resource to
assess the similarity to biological vision of each model, which is a battery of tests comparing models
against previously collected data from the primate visual system (see Brain-Score.org). We found
that RS and AT models provided a better model of V1 (in terms of explained variance) compared to
non-robust models Figure 4. On other benchmarks, as we go up the ventral stream hierarchy from V1
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Figure 5: Can straightening for a movie sequence be explained by the size of the hyper-sphere
bounding the frames (i.e. radius in pixel space)? While RS exhibits a small but positive correlation,
the rest of the models, including AT, show negative or no correlations. Positive correlation means the
smaller the size of the bounding hyper-sphere in pixel space, the more straightened the representation
over the layers of the model.

to IT again, keeping the layer assignment fixed across models for proper comparison, we observed
a decrease in explainability of robust models (A.3, Figure 11), in part presumably because robust
models have lower object classification performance which is known to drive fits in higher brain
areas like V4 and IT supporting object recognition (Yamins et al., 2014). Previous work (Dapello
et al., 2020; Kong et al., 2022) linked adversarial robustness in models to their higher Brain-Score for
V1, but we found that it may not be specifically driven by adversarial robustness per se, rather (L2)
noise robustness is also sufficient (as in base classifiers of RS tested here). More broadly, looking at
neural fits across all models and their layers, we find that straightening in a particular model-layer
correlates with improved explanatory power of variance in cortical area V1 (Figure 4, middle panel,
each dot is a layer from a model), being even more strongly predictive than robustness of the overall
model (A3, Figure 10). The level of straightening reached by best fitting layers of RS and AT models
was comparable to the 10 degree straightening estimated in macaque V1 neural populations (black
dashed reference line in Figure 4). This complements the fact that robust models peak near the 30
degree straightening measured in perception (Figure 2), suggesting that robust models can achieve a
brain-like level of straightening to V1 and perception.

Does the geometry of movie frame representations in pixel space dictate straightening in down-
stream representations? The connection between two properties of the same representation mani-
fold, robustness to independently sampled noise and straightened trajectories of smooth input tem-
poral sequences, is not immediately clear. Because robustness is achieved by adding noise bounded
by a norm (L2, L2, or L∞) in pixel space, a natural question is whether the radius of the bounding
hyper-sphere of the frames of the tested movies in pixel space (see Expansion in Methods) was cor-
related with the measured straightening in feature space in each layer of the robustly trained models
(Figure 5; also see A.5, Figure 14). We found, however, that there seemed to be different mech-
anisms at play for RS versus AT in terms of achieving straightening. RS models showed (small
but) positive correlations, which means the smaller the ball containing all the frames of the movie
in input space, the larger the straightening effect for the representations of frames of that movie in
the model. While in AT models we see the opposite (negative) or no correlation. These divergent
patterns underscore differences between these models and suggest that geometric size in pixel space
is not strongly constraining the degree to which a movie can be straightened.

Geometry of movie frame representations in feature space is relevant for capturing neural
representations in V1 Between different RS models tested on different input noise levels, RS
L2 : σ2 = 0.5 stands out as it gives a better model of V1 than those using smaller or larger
magnitude input noise (Figure 4). For this model, we found that in addition to its intermediate
level of straightening, the expansion score of movie frames, which is the radial size in its represen-
tation normalized to size in the same layer of a baseline ResNet50, was highest compared to the
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Figure 6: Geometric characteristics, straightening and curvature, of RS models related to V1 ex-
plainability. ∆ means quantity is referenced to the same measure in a standard ResNet50.

other RS models (Figure 6, middle panel; measures are referenced to layers in a standard ResNet50
to highlight relative effect of robustness training rather than effects driven by hierarchical layer).
This demonstrates a potential trade-off between improving straightening in a representation while
avoiding too much added contraction of movies by robust training relative to standard training. This
balance seems to be best achieved for σ2 = 0.5, where we also see the significantly higher predic-
tivity of V1 cortical data (Figure 6, right panel). The best AT model also shows little contraction of
movies coupled with high straightening (A.5, 15).

5 DISCUSSION

We have demonstrated novel properties of robust neural networks in how they represent natural
movies. Conceptually, this work establishes a seemingly surprising connection between disparate
ideas, robust discriminative networks trained on static images on one hand, to work learning to
linearize by training on natural movies, on the other. These modeling paths could both result in
linearized, or straightened, natural movie representations (Figure 1). From a machine learning per-
spective, the invertibility and concomitant representational straightening of robust networks suggests
that they learn explainable representations of natural movie statistics. Biologically, the emergence
of straightening in these networks as well as their ability to better explain V1 data than baselines
relatively lacking in straightening Figure 4 provides new insights into potential neural mechanisms
for previously difficult to explain brain phenomena.

Biological constraints could lend parsimony to selecting among models, each with a different engi-
neering goal. On face, RS by virtue of utilizing Gaussian noise instead of engineered noise gains
traction over adversarial training as a more simple, and powerful way of achieving robustness in
ANNs, which is inline with a long history of probabilistic inference in visual cortex of humans
(Pouget et al., 2013). Indeed, looking across the range of robust models tested, the best fitting model
of V1 was not necessarily the most robust but tended toward more straightened representations that
also showed the least contracted representations – consistent with a known dimensionality expansion
from the sensory periphery to V1 in the brain (Field, 1994). Future work exploring a wider variety
of robustness training in conjunction with more bioplausible architectures, objectives, and training
diets may yet elucidate the balance of factors contributing to biological vision.

At the same time, our work does not directly address how straightened representations in the visual
system may or may not be utilized to influence downstream visual perception and behavior, and
this connection is an important topic for future work. On the one hand, for supporting dynamical
scene perception, behaviors that predict (extrapolate) or postdict (interpolate) scene properties over
time (e.g., object position) may be supported by straightened natural movie representations. Indeed,
both explanations, prediction and postdiction, have been invoked to account for psychophysical phe-
nomena like the flash-lag illusion which present an interesting test case of how the brain processes
complex stimuli over time (Eagleman & Sejnowski, 2000). However, even for relatively stationary
scenes such as those containing textures, we observed benefits for straightening and invertibility in
robustly trained networks (see A.4, Tables 2 and 3). Further work is needed to explore how spatially
local versus global features in the presence of simple versus complex motion are affected in their
relative straightening by model training.
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A APPENDIX

A.1 STRAIGHTENING FOR BOTH NATURAL AND ARTIFICIAL SEQUENCES
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Figure 7: ANNs show straightening of representations when robustness to noise constraints (noise
augmentation or robustness to adversarial attack) is added to their training. Counterclockwise
from top left, measurements for straightening of movie sequences (from (Hénaff et al., 2019),
natural sequence: green, artificial sequence: black) in each layer of ResNet50 architecture un-
der different training regimes: supervised training (standard), supervised training with adversarial
training (L2, σ

2 = 3) (Engstrom et al., 2019a) and supervised training with noise augmentation
(L2, σ

2 = 0.5) (Cohen et al., 2019). Top right shows straightening for artificial (open circles) and
natural (closed circles) sequences using ResNet architecture with no training (random parameters),
self-supervised training (Chen et al., 2020) or additional layers.
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A.2 STRAIGHTENING IN OTHER ARCHITECTURES
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Figure 8: Straightening for ResNet50 and ResNet101 trained as the base architecture for action
recognition (Chen et al., 2021) They were trained on video clips for action recognition. Although
these models were not trained for straightening or predicting the next frame, they exhibit small but
measurable straightening for natural movies. However, the curvatures for artificial sequences were
not increased as much as curvature increase for artificial sequences in robust neural networks (Figure
7).
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Figure 9: Lack of straightening for natural movies in ResNet50 trained with a biologically-inspired
model of V1 in the front-end (Dapello et al., 2020). Vone-ResNet50 exhibits robustness to adversar-
ial attack, but the fact that it does not exhibit straightening (except for the front-end) provides further
evidence that adversarial robustness does not always accompany straightening.
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A.3 MORE ON NEURAL DATA PREDICITIVITY
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Figure 10: Clean accuracy (left) and robust accuracy (right) vs. V1 predictivity (same color conven-
tion as used in main text).
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Figure 11: Brain-score (data and metric publicly available (Schrimpf et al., 2018)) for the models
used in this study. The bar plot Figure 4 is a summary of this plot. Since the focus of this work was
on V1 which is the only visual area for which neural straightening has been measured (Hénaff et al.,
2021), we measured the brain-score for more layers for V1.
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A.4 MOVIE CHARACTERISTICS AND ADDITIONAL INTERPOLATION EXAMPLES

A.4.1 MOVIES
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Figure 12: Movies used to evaluate straightening and invertibility (11 frames each).

17



A.4.2 TABLE FOR AVERAGE STRAIGHTENING

Table 2: Average curvature change (re: pixels) for each movie. RN stands for ResNet. The architec-
ture of all robust models used was ResNet50.

water carn. walk. dogv. egomo. chiron. bees leaves smile chiron. prair.
RN18 45.29 36.25 -27.58 12.39 -34.82 13.30 -5.94 -58.03 9.28 0.69 48.45
RN34 44.79 36.63 -28.43 12.39 -35.67 12.39 -5.81 -58.65 12.08 0.43 48.14
RN50 48.85 37.33 -28.13 14.00 -34.68 13.45 -5.66 -58.53 10.79 0.76 49.72
RN50 Self-sup 52.05 40.32 -26.73 18.98 -33.19 14.37 -5.68 -58.22 19.42 0.52 49.90
RN50 MocoAugm 49.03 36.15 -26.04 16.75 -32.88 13.82 -5.22 -57.69 14.00 0.57 49.30
RN50 NoAugm 46.38 33.64 -24.79 15.89 -33.58 14.71 -5.10 -57.32 8.87 0.77 48.31
RN101 48.81 37.73 -29.28 12.51 -35.03 12.68 -6.17 -59.23 11.87 -1.05 49.63
RN152 48.91 40.38 -29.09 13.27 -35.53 12.23 -6.60 -59.75 13.80 -1.00 50.68
AT L2 : ϵ = 3 17.43 2.78 -40.56 -3.61 -55.42 -2.54 -13.44 -73.01 -25.09 -13.06 30.34
AT L∞ : ϵ = 4 25.93 16.51 -36.55 3.48 -50.46 5.45 -12.90 -68.74 -11.49 -7.91 38.46
AT L∞ : ϵ = 8 25.64 13.15 -40.79 1.10 -54.99 4.11 -15.59 -71.48 -17.99 -10.23 39.09
RS L2 : ϵ = 0.25 24.97 12.23 -31.81 5.38 -45.86 5.10 -9.37 -63.84 -9.08 -5.22 34.23
RS L2 : ϵ = 0.5 16.25 1.34 -34.65 1.76 -51.28 0.80 -12.57 -70.21 -14.35 -10.09 24.26
RS L2 : ϵ = 1 10.65 -0.61 -42.40 -7.27 -58.04 -4.68 -16.57 -79.82 -23.55 -14.62 18.03

A.4.3 INVERTIBILITY MEASURE FOR EACH MOVIE

Table 3: Average SSIMs for each movie. RN stands for ResNet. Architecture of all robust models
used was ResNet50.

water carn. walk. dogv. egomo. chiron. bees leaves smile chirono. prair.
RN18 0.47 0.34 0.21 0.22 0.13 0.28 0.31 0.20 0.29 0.31 0.34
RN34 0.46 0.34 0.21 0.22 0.13 0.27 0.30 0.20 0.29 0.30 0.34
RN50 0.47 0.34 0.22 0.22 0.14 0.28 0.30 0.20 0.29 0.31 0.34
RN50 Self-sup 0.49 0.34 0.22 0.23 0.14 0.29 0.33 0.20 0.33 0.33 0.34
RN50 MocoAugm 0.44 0.32 0.20 0.21 0.12 0.25 0.27 0.19 0.27 0.28 0.31
RN50 NoAugm 0.43 0.32 0.20 0.21 0.12 0.26 0.32 0.19 0.28 0.28 0.32
RN101 0.48 0.35 0.22 0.23 0.14 0.28 0.31 0.21 0.30 0.30 0.35
RN152 0.49 0.36 0.22 0.23 0.14 0.29 0.31 0.21 0.30 0.31 0.36
AT L2 : ϵ = 3 0.76 0.59 0.52 0.67 0.22 0.62 0.58 0.35 0.81 0.63 0.59
AT L∞ : ϵ = 4 0.72 0.56 0.43 0.60 0.25 0.57 0.53 0.32 0.69 0.55 0.56
AT L∞ : ϵ = 8 0.78 0.59 0.45 0.66 0.29 0.65 0.56 0.35 0.78 0.61 0.62
RS L2 : ϵ = 0.25 0.53 0.48 0.35 0.47 0.18 0.44 0.44 0.29 0.57 0.46 0.42
RS L2 : ϵ = 0.5 0.60 0.49 0.37 0.51 0.22 0.44 0.45 0.30 0.54 0.49 0.46
RS L2 : ϵ = 1 0.61 0.50 0.35 0.53 0.24 0.44 0.48 0.30 0.52 0.49 0.48
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A.4.4 ADDITIONAL MOVIE INTERPOLATION EXAMPLES

Figure 13: Three more example for interpolations for movies: chironomous, dogville, and egomo-
tion, respectively. The gray dot in the middle of all frames is known as fixation spot where subjects
(humans or monkeys) are instructed to keep their gaze toward during the experiment.
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A.5 EXPANSION METRIC VS. STRAIGHTENING ACROSS MODELS AND LAYERS

Expansion (re: pixels)
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Figure 14: For each layer in each model, the expansions (re: pixels) and curvature change (re:
pixels) were plotted for first row: all movies, second row: average over movies.
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Figure 15: Geometric straightening and expansion of AT models and their relation to V1 explain-
ability. ∆ means quantity is referenced to the same measure in a standard ResNet50.
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A.6 REPRODUCIBILITY INFORMATION

Almost all data (models, movies, and metrics) used in this work are publicly available and we pro-
vided references to them in the text (for instance see Table 1). We will release the code to reproduce
the main results in this work at
https://github.com/toosi/BrainLike_Straightening
and we provide pointers to the publicly available resources used in this work as listed below.
Movies and images. We used the same movies used in the original studies on human perception
and monkey primary visual cortex (Hénaff et al., 2019; 2021) which are available from first author
Github as referenced in their papers. Images used to measure the clean accuracy and robust accuracy
were taken from ImageNet validation set.
Models. All the models used in this study were from ResNet family and checkpoints for the main
robust models are publicly available as references in the main text (Table 1). The checkpoints for
the only two custom trained models (supervised with no augmentions and supervised with Moco
augmentation) will be made publicly available along with the code.
Neural predictivity metric. We used brain-score, which is a publicly available benchmark to eval-
uate how well a model predicts variance in neural data (Schrimpf et al., 2018).
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