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ABSTRACT

Identifying disease interconnections through manual analysis of large-scale clin-
ical data is labor-intensive, subjective, and prone to expert disagreement. While
machine learning (ML) shows promise, three critical challenges remain: (1) se-
lecting optimal methods from the vast ML landscape, (2) determining whether
real-world clinical data (e.g., electronic health records, EHRs) or structured dis-
ease descriptions yield more reliable insights, (3) the lack of ”ground truth,” as
some disease interconnections remain unexplored in medicine. Large language
models (LLMs) demonstrate broad utility, yet they often lack specialized medical
knowledge. To address these gaps, we conduct a systematic evaluation of seven
approaches for uncovering disease relationships based on two data sources: (i) se-
quences of ICD-101 codes from MIMIC-IV EHRs and (ii) the full set of ICD-10
codes, both with and without textual descriptions. Our framework integrates the
following: (i) a statistical co-occurrence analysis and a masked language mod-
eling (MLM) approach using real clinical data; (ii) domain-specific BERT vari-
ants (Med-BERT and BioClinicalBERT); (iii) a general-purpose BERT and docu-
ment retrieval; and (iv) four LLMs (Mistral, DeepSeek, Qwen, and YandexGPT).
Our graph-based comparison of the obtained interconnection matrices shows that
the LLM-based approach produces interconnections with the lowest diversity of
ICD code connections to different diseases compared to other methods, including
text-based and domain-based approaches. This suggests an important implication:
LLMs have limited potential for discovering new interconnections. In the absence
of ground truth databases for medical interconnections between ICD codes, our
results constitute a valuable medical disease ontology that can serve as a founda-
tional resource for future clinical research and artificial intelligence applications
in healthcare. The results are available in our GitHub repository2

1 INTRODUCTION

Electronic health records (EHRs) provide a valuable resource for studying disease progression and
relationships between diagnoses. However, analyzing such data manually is not feasible due to its
large volume and complexity, especially when dealing with conditions like cancer that often progress
without clear symptoms 34. Moreover, experts’ examination is a subjective process, characterized
by inter-rater variability.

Machine learning (ML) can help discover hidden patterns in medical data, but many existing models
are hard to interpret. In particular, it is not always clear whether large language models (LLMs) make
predictions based on meaningful medical knowledge or simply rely on textual similarities between
diagnosis descriptions (Cui et al., 2025). This is especially critical in healthcare, where model
decisions must align with established medical knowledge and pathophysiological mechanisms.

1International Classification of Diseases, 10th Revision (ICD-10), https://icd.who.int/browse10/2019/en
2https://anonymous.4open.science/r/medical-disease-ontology/
3https://combatcancer.com/the-challenges-of-asymptomatic-silent-cancer
4
https://www.vinmec.com/eng/blog/how-long-does-it-take-for-cancer-to-progress-without-you-even-knowing-it-en
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To address this gap, we compare different ways of obtaining diseases interconnections’ scores. We
also analyze and compare the obtained results and summarize it into medical disease ontology. Our
contribution is the following:

1. We provide an interconnections between diseases using 10 different approaches: (real data-
based) Fisher’s exact test, Jaccard similarity, and a masked language modeling (MLM);
(models pretrained on medical domain) pretrained Med-BERT and BioClinicalBERT; (text-
based approaches) pretrained BERT and Yandex Doc Search; (LLMs) DeepSeek, Qwen,
and YandexGPT.

2. We conduct an analysis of the resulting interconnection matrices, including visual anal-
ysis of interconnection matrices, t-SNE visualization, graph-based comparison including
graphs’ degrees analysis, PR AUC calculation and assessment without real ground truth.

3. We aggregate all inferred disease interconnections based on the number of methods that
independently identify them, thereby constructing a consensus medical ontology. Intercon-
nections consistently recovered by a large number of diverse models are assigned higher
confidence and are more likely to reflect established clinical relationships. Conversely,
those supported by only a few methods may represent novel or previously underreported
associations, offering promising hypotheses for further clinical investigation.

4. We analyze manually some of the revealed cases using the existing medical literature.
These confirm the correctness of the utilized methods and their ability for further diseases
interconnections’ examination.

All the codes and materials, including interconnection matrices, figures and the ontology are pro-
vided in our GitHub5.

2 RELATED WORK

Predictive modeling with EHRs has advanced from early temporal models to transformer-based and
pretrained representations, improving how disease interconnections are identified. Key challenges
include heterogeneous data formats (structured codes, free text, numerical measurements) and scarce
labels for rare outcomes, motivating the use of robust pretrained models (Shickel et al., 2018; Wang
et al., 2024).

Models extracting social determinants of health (SDoH), such as Flan-T5, accurately identify em-
ployment, housing, and social support, outperforming rule-based systems (Guevara et al., 2024).
LLMs have also been applied to de-identify clinical text and normalize temporal data, enabling
secondary EHR use while preserving privacy (Dai et al., 2025).

Large-scale generative models extend these advances. Delphi-2M, trained on UK Biobank and
validated on Danish cohorts, predicts over 1000 diseases and simulates long-term health trajecto-
ries (Shmatko et al., 2025). Similarly, Foresight models entire timelines to synthesize plausible
future events (Kraljevic et al., 2024).

Transformer architectures for sequential EHR modeling (e.g., BEHRT, Med-BERT) improve down-
stream prediction and transfer to smaller cohorts by encoding event order and patient-specific con-
text (Li et al., 2020; Rasmy et al., 2020). More recent extensions such as ExBEHRT and CEHR-
BERT explore disease subtypes and temporal structure (Rupp et al., 2023; Pang et al., 2021). Graph-
augmented transformers further enrich representations with structural priors like code hierarchies or
knowledge graphs, enhancing tasks such as medication recommendation and disease progression
modeling (Shang et al., 2019).

Statistical baselines remain relevant. For example, (Fotouhi et al., 2018) compared network con-
struction methods (OER, disparity filter, link salience) to uncover distinct comorbidity patterns.

In parallel, statistical methods for constructing disease comorbidity networks have remained impor-
tant baselines. For example, (Fotouhi et al., 2018) compared network construction methods (OER,
disparity filter, link salience) to uncover distinct comorbidity patterns.

5https://anonymous.4open.science/r/medical-disease-ontology/
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Emerging directions explore hybrid integration of episodic memory and knowledge graphs with
transformers (e.g., AriGraph), enabling structured reasoning beyond co-occurrence and temporal
analysis (Anokhin et al., 2024).

Overall, the field has progressed from statistical networks and EHR-specific transformers to graph-
augmented and generative models. Systematic comparative studies evaluating statistical baselines,
EHR transformers, LLM embeddings, and generative approaches under a unified framework remain
scarce. Moreover, it remains unclear whether the relationships identified by text-based LLMs reflect
real clinical patterns or are artifacts of textual similarity. Our work fills this gap by conducting a
comprehensive comparison of six different categories of methods on a single dataset.

3 METHODOLOGY

3.1 DATA OVERVIEW

3.1.1 REAL-WORLD DATA

Data description The Medical Information Mart for Intensive Care (MIMIC) is a family of pub-
licly available, real-world clinical datasets developed by the Massachusetts Institute of Technology
and hosted on the PhysioNet platform 6. These resources contain rich, structured information from
electronic health records of patients admitted to intensive care units, making them invaluable for
clinical research and the development of medical AI applications.

For this study, we use real-world clinical data from the MIMIC-IV dataset, the most recent and
comprehensive release in this series. It contains longitudinal records of 223, 291 unique patients,
including diagnoses coded using both ICD-9 and ICD-10 systems. The sequences of ICD codes per
patient vary substantially in length, ranging from 1 to 2, 396 codes (median is 13), while the number
of admissions per patient ranges from 1 to 238 (median is 1).

Data preprocessing In this work, we focus exclusively on the sequences of ICD-10 codes assigned
to each patient, as these form the core representation for our modeling and evaluation. We denote
the set of patients in the following way:

P =
{
pi :

[
ICD1

pi
, . . . , ICD

Npi
pi

]
, i ∈ [1, N ]

}
, (1)

where N is the number of patients, pi is the ith patient with Npi
number of ICD codes.

The patients’ sequences preprocessing includes the following steps:

1. Converting all ICD-9 codes to the ICD-10 system using the General Equivalence Mapping7.

2. Truncating all ICD-10 codes to their 3-character category level, disregarding subcategory
details. For instance, the code C50.911, representing ”Malignant neoplasm of unspecified
site of right female breast”, was reduced to the broader category C50, which covers all
malignant neoplasms of the breast. This abstraction allow us to reduce dimensionality
while retaining clinically meaningful groupings relevant to disease co-occurrence patterns.
The resulting set contained 1, 754 unique three-character ICD-10 categories.

3. Eliminating duplicate pairs (PatientID, ICD-10 code) within a single admission.

3.1.2 ICD CODES DATA

ICD codes We utilize the same set of 1, 754 unique three-character ICD-10 categories, that are
present in MIMIC-IV. In this type of data, we consider each ICD-10 code as a separate object
without any sequential structures.

6https://physionet.org
7Released by the Centers for Medicare & Medicaid Services organization in 2018,

https://www.cms.gov/medicare/health-plans/medicareadvtgspecratestats/risk-adjustors-items/risk2018
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ICD codes with their description We add textual descriptions of the ICD-10 codes from the
paragraph above using the Python library simple-icd-10. The average length of descriptions is
5 words consisting of on average 40 characters.

3.2 METHODS

The methods for revealing interconnections between diseases can be divided into four categories,
which we consider in more detail in the following subsections.

3.2.1 METHODS FOR REAL DATA

To analyze patterns of co-occurring diagnoses among real patients, we utilize the two methods: (M1)
baseline statistical approach and (M2) masked language modeling (MLM).

We start with statistical baseline methods that quantify how often pairs of ICD-10 diagnostic codes
co-occur in the same patient’s medical history and assess the strength of these associations, using
two approaches: (M1.1) Fisher’s exact test and (M1.2) a Jaccard-based method.

M1.1 – Fisher’s exact test We compute co-occurrence statistics between ICD codes by counting,
for each ordered pair (i, j), the number of patients who received diagnosis i before j. We start
with building an N × N co-occurrence matrix, in which entry (i, j) records these ordered counts.
After that, we apply Fisher’s exact test to each row–column pair and control the false discovery rate
(FDR), identifying 138 ”disease → disease” associations with adjusted p-value p < 0.05. The test
evaluates whether two categorical variables are independent by examining the 2 × 2 contingency
table defined for each ordered pair (i, j). The test considers whether the observed co-occurrence
count of diagnosis i preceding j is significantly greater than expected under the null hypothesis of
independence. We employ the one-sided version of the test (“greater” alternative), which is sensitive
to enrichment in the i → j direction. Therefore, the obtained odds ratio quantifies the strength of
association. The corresponding p-values are adjusted using the Benjamini–Hochberg procedure.

M1.2 – Jaccard co-occurrence matrix For each patient, we consider all unique ICD-10 codes
and compute a Jaccard-like co-occurrence matrix. For each pair of ICD codes i and j, we calculate:

Ji,j =
Ni,j

Ni +Nj −Ni,j
, (2)

where Ni,j is the number of patients diagnosed with both codes i and j, Ni and Nj are the number
of patients diagnosed with codes i and j, correspondingly.

This measure mirrors the classical Jaccard index by normalizing the number of patients with both
diagnoses by the total number of patients in either group. Values near 1 indicate frequent co-
occurrence, while values near 0 suggest little or no overlap.

M2 – MLM We apply this method to determine if the sequential structure of diagnosis codes
contains enough information to reveal meaningful disease relationships, expecting to reveal inter-
connections based on real patient data patterns.

For MIMIC-IV data preprocessing, we use the following procedure:

1. Filter lengths of sequences of patient ICD codes between 5 and 100, following prior
work (Placido et al., 2023).

2. Generated masked sequences according to the BERT pretraining strategy (Devlin et al.,
2019): in each sequence, 15% of tokens are selected for prediction; of these selected tokens,
80% are replaced with [MASK], 10% with a random token, and 10% are left unchanged.
The model was trained with cross-entropy loss on these tokens.

The model architecture consists of an embedding layer (dimension 128) with positional encodings,
followed by 3 Transformer encoder layers (8 heads, feed-forward dimension 512, dropout 0.1). The
output is produced through a linear layer. We train for up to 100 epochs using AdamW (learning

4
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rate 5× 10−4, weight decay 0.001) with batch size 128, ReduceLROnPlateau scheduling, and early
stopping (patience = 5). Linear layers are initialized with Xavier uniform values, and the embedding
layer with normal initialization.

Dataset is split into 80% training and 20% test sets. The final model achieves test accuracy of 0.3011
and test loss of 3.6263.

The detailed description of hyperparameter optimization with Optuna is provided in Appendix A.1.

3.2.2 PRETRAINED MODELS ON ICD SEQUENCES AND TEXT DESCRIPTIONS

M3 – Pretrained Med-BERT Med-BERT (Rasmy et al., 2020) adapts BERT to medical data
by treating a patient’s ICD-10 code sequence as a ”sentence.” Pretrained on large-scale EHRs, it
reflects real-world clinical patterns. We use it to obtain ICD-10 code embeddings and compute their
full pairwise cosine similarity matrix to capture semantic relationships between diagnoses.

M4 – Pretrained BioClinicalBERT We use BioClinical BERT8 – initialized from BioBERT-Base
v1.0 (pretrained on PubMed and PMC) and further trained on all MIMIC-III clinical notes (Huang
et al., 2019). Each ICD code is mapped to its long-form description (e.g., ”Malignant neoplasm
of bronchus and lung”), tokenized, padded/truncated, and passed through the model in evaluation
mode. We extract the final-layer [CLS] embedding, L2-normalize all embeddings, and compute the
full pairwise cosine similarity matrix.

3.2.3 METHODS FOR TEXTUAL DESCRIPTIONS

We utilize the Python library simple-icd-109 to obtain textual descriptions of ICD codes.

M5 – Pretrained BERT We use bert-base-uncased, a BERT model pretrained on general
(non-medical) text, to embed ICD code descriptions and compute pairwise cosine similarities. It
serves as a baseline capturing purely textual similarity without domain-specific medical knowledge.

M6 – Yandex Doc Search We employ Yandex Cloud’s pretrained text-search-doc embed-
ding model – designed for document-level semantic retrieval – to generate semantic representations
of ICD descriptions and compute pairwise cosine similarities, providing an additional text-based
baseline for identifying disease interconnections.

3.2.4 LLM-BASED METHODS

We use LLMs to leverage their pretrained medical knowledge for predicting ICD-10 code co-
occurrence patterns; prompt engineering details are in Appendix A.2. The final prompt is the fol-
lowing:

I’ll give you ICD-10 categories (for example, C25, NOT C25.0!) and their descriptions. You have
to tell me, If a patient has an ICD code for a given category in their medical record, what other
categories of codes are also likely to be in their medical record?
ANSWER IN JSON FORMAT: { ”comment”: your thoughts and explanations , ”answer”: list of
categories in square brackets, separated by comma, for example: [A01, C05, ..., H12] } DO NOT
ADD ANYTHING ELSE IN YOUR ANSWER.
TEMPLATE MULTI = {{ icd code: {}, description: {}, }}

This prompt is constructed in such a way as to obtain multiple connections for each ICD-10 category
and avoid O(N2) API requests to the model due to the high estimated execution time in such a case
(more than three weeks) and prohibitive cost. We test three models using API: DeepSeek-V3,
Yandex-GPT 5, and Qwen 3-235B-A22B. The ablation study on the minimum required model’s
size (including smaller models) is presented in Appendix A.3.

8https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
9https://pypi.org/project/simple-icd-10/
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Table 1: Spearman correlations (value [95% CI]) between LLM and other methods.
Basic statistics MLM Text data Pretrained on medical data

M1.1 M1.2 Pretrained BERT Yandex Doc Search Pretrained Med-BERT Pretrained BioClinicalBERT

DeepSeek-V3 0.079 [0.076, 0.081] -0.008 [-0.010, -0.007] 0.115 [0.112, 0.117] -0.034 [-0.035, -0.033] 0.107 [0.106, 0.108] 0.060 [0.058, 0.063] 0.061 [0.060, 0.062]
Yandex-GPT 5 0.092 [0.090, 0.095] 0.054 [0.052, 0.055] 0.069 [0.066, 0.071] 0.057 [0.055, 0.058] 0.093 [0.092, 0.094] 0.071 [0.068, 0.073] 0.064 [0.063, 0.065]
Qwen 3-235B-A22B 0.079 [0.076, 0.081] 0.060 [0.058, 0.061] 0.045 [0.042, 0.048] 0.029 [0.028, 0.030] 0.093 [0.092, 0.094] 0.049 [0.046, 0.051] 0.049 [0.048, 0.050]

4 EXPERIMENTS AND RESULTS

4.1 OBTAINING DISEASES INTERCONNECTIONS

The disease interconnections obtained from all methods are presented in the Appendix A.4.

Figures 2 and 3 show that MLM and Med-BERT yield similar patterns, whereas BioClinicalBERT
produces largely opposite results – high similarity where the others are low, and vice versa. Baseline
methods (Fisher’s exact test and Jaccard similarity) show some resemblance but generally weak
disease pair connections.

Text-based methods (Figure 4) exhibit uniformly high similarity scores, likely due to shared termi-
nology among diseases in the same chapter.

Among LLMs (Figure 5), DeepSeek reveals more interconnections than Qwen and YandexGPT, yet
all align with patterns from Med-BERT, MLM, and Jaccard co-occurrence (Figures 3 and 2).

Boxplots (Figures 6–9) show text-based and LLM approaches yield high scores (avg. ≈ 0.8), while
statistical methods and some LLMs cluster near 0. Medical-domain pretrained models fall in be-
tween: Med-BERT averages 0.6 and BioClinicalBERT 0.2 (Figure 7).

The following sections offer a detailed qualitative and quantitative comparison of these methods.

4.2 COMPARISON OF OBTAINED DISEASES INTERCONNECTIONS

Section 4.1 presents a visual comparison of the obtained disease interconnections using heatmaps.
However, visual comparison becomes challenging due to the substantial number of ICD codes, as
we generated 10 matrices, each with dimensions of 1646 × 1646. Furthermore, traditional matrix
comparison methods, such as distance-based and correlation-based approaches, are inappropriate
for our analysis since we lack ground truth data. Instead, our objective is to identify similar patterns
across groups of methods, which can then be investigated further and selected as the most significant
interconnections that appear consistently across nearly all methods.

In the following subsections, we present additional comparative methods for analyzing the obtained
disease interconnection matrices.

4.2.1 INTERCONNECTIONS’ CORRELATIONS ACROSS DIFFERENT METHODS

After applying the previously described methods to the data, we receive ten disease interconnection
matrices. We evaluate them by using pairwise correlations with 95% confidence intervals. We use
Spearman correlation used bootstrap resampling (500 iterations) due to its rank-based nature. Matrix
alignment was achieved by intersecting common rows and columns before vectorization.

The correlation analysis shows relatively low associations between LLM-generated matrices and
other methods (Table 1). All Spearman correlations remain below 0.12, indicating weak effect
sizes. However, their 95% confidence intervals exclude zero, confirming statistical significance.
DeepSeek-V3 shows moderate correlation with MLM (p = 0.115) while demonstrating significant
negative correlations with basic statistics (M1.2: p = -0.008) and text-based approaches. Yandex-
GPT achieves the most consistent performance across methods, with statistically significant corre-
lations ranging from 0.054 to 0.093. Notably, all three LLMs show similarly weak but statistically
significant correlations with medically pretrained models (0.049-0.071), suggesting they capture
fundamentally different relationship patterns from domain-specific approaches. These results show
that LLMs have limited utility for discovering novel disease interconnections, as they produce rela-
tionship patterns that reach statistical significance but correlate weakly with all tested models.
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4.2.2 T-SNE VISUALIZATION

We visualized ICD code embeddings from BERT, Med-BERT, Yandex Doc Search, and MLM mod-
els using 2D t-SNE (Figure 11), with each point representing a disease category color-coded by ICD
chapter. Med-BERT shows the clearest clustering, with well-separated groups closely matching ICD
chapters despite using only ICD codes (no text). Yandex Doc Search and BERT yield moderately
coherent clusters – diseases from the same chapter are generally proximate but with less distinct
boundaries. MLM embeddings exhibit the weakest separation, though the non-random distribution
suggests some learned semantic structure.

4.2.3 GRAPH-BASED COMPARISON OF OBTAINED INTERCONNECTIONS

To convert our matrices of disease interconnections to undirected graphs, we calculate for each
matrix its 0.95-quantile and consider two ICD codes as connected if their interconnection score is
higher than 0.95-quantile. In this procedure, we, on the one hand, lose a lot of interconnections, on
the other hand, consider only those of them, in which models are confident. The detailed graphs’
characteristics are presented in Appendix A.6.

Number of ”degrees” of ICD codes from the largest connected components For each graph, we
find the largest connected component. After that, for each vertex-ICD code we calculate its degree
– the number of connected other vertices. We obtain the degrees for all methods and for groups
of methods. When we group some of our methods, we calculate the ”intersection” of their largest
components: we consider all ICD codes and edges between them that are present in the graphs of
all methods within each group. Figures 12, 13, 14, 15, 16, 17, and 18 show that methods in groups
perform differently and have different patterns in graph connections (when comparing their upper
parts to the bottom ones). The detailed description of the cancer-related and non-cancer-related
interconnections is presented in Appendix A.6.

PR AUCs without ground truth We define three ”ground truth indicators”: (1) Fisher’s ex-
act test as a real-data statistical baseline; (2) pretrained BERT and Yandex Doc Search as text-
similarity–based methods; and (3) Med-BERT, trained on real patient ICD sequences. We exclude
Jaccard similarity, because it can inflate co-occurrence scores for rare diseases (e.g., yielding 1

3 sim-
ilarity from just three (out of huge number of) patients with [ICD1], [ICD2], and [ICD1, ICD2]),
and BioClinicalBERT, which produces fewer interconnections (Section 4.2.3).

When Fisher’s exact test is the ground truth (Figure 19), Jaccard achieves the highest PR AUC,
followed by Qwen (0.055), Med-BERT and BERT (0.053), YandexGPT and Yandex Doc Search
(0.051), and DeepSeek (0.050). Notably, Med-BERT performs similarly to non-medical BERT.

When textual methods serve as ground truth (Figure 20), pretrained BERT and Yandex Doc Search
show strong mutual alignment (PR AUCs 0.124 and 0.131). Med-BERT aligns more closely with
Yandex Doc Search (0.174) than with BERT (0.069), suggesting Yandex Doc Search may incorpo-
rate medical text. Figure 21 confirms the superiority of Yandex Doc Search relatively to Med-BERT
with the highest PR AUC 0.182.

We formulate the following hypotheses:

• H1: Med-BERT does not rely purely on textual data. To test this hypothesis, we exam-
ine cases that are present in pretrained BERT but absent in Med-BERT and assess their
semantic similarity.

• H2: (H2.1) MIMIC-IV contains noisy data or (H2.2) these represent previously unknown
disease interconnections. To investigate this, we examine in detail (H2.1) interconnections
that are present in Fisher’s exact test but absent in Med-BERT and, conversely, (H2.2)
interconnections that are present in Med-BERT but absent in Fisher’s exact test. (H2.1).

Since Yandex Doc Search and YandexGPT are the models most similar to Med-BERT according to
Figure 21, we include them alongside Med-BERT in our subsequent experiments.

H1: Med-BERT does not purely rely on textual data We identify 118492 ICD code pairs in-
terconnected by pretrained BERT but not by Med-BERT. Grouping codes by chapter, we compute

7
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semantic similarities for all intra-chapter pairs using both plain ICD descriptions and descriptions
prefixed with ICD codes, yielding mean similarities of 0.534±0.118 and 0.616±0.089, respectively.
If BERT relied solely on textual descriptions, its similarities would align with these baselines. How-
ever, Figure 10 (left) shows most similarities fall in the 0.2–0.3 range, indicating pretrained BERT
leverages non-textual medical information – confirmed by examining its pretraining data:

• English Wikipedia: contains extensive health- and medicine-related content, attracting
billions of annual page views and linking to substantial academic research. Dedicated
initiatives assess and improve its medical articles, with studies examining their readabil-
ity and popularity (Farič et al., 2024; Brezar & Heilman, 2019). Specialized corpora like
the ”Wikipedia Human Medicine Corpus” (Marcos et al., 2017) and ”Wiki[Alt]Med cor-
pus” (Jones, 2025) are built directly from this content.

• BookCorpus (Zhu et al., 2015): composed mainly of unpublished fiction and non-fiction
by indie authors, may include medical or health-themed books, though this is less system-
atically documented than in Wikipedia.

We also tested interconnections present in Med-BERT but absent in pretrained BERT. The mean
semantic distance for 116482 such ICD code pairs is 0.531±0.121 for descriptions and 0.614±0.092
for descriptions with ICD codes. As shown in Figure 10 (right), their similarity scores (0.1–0.2)
are even lower than in the previous case, indicating that most Med-BERT-derived interconnections
exhibit low semantic similarity – lower than pretrained BERT’s – suggesting Med-BERT relies on
non-semantic forms of similarity.

Both experiments (1) confirm that Med-BERT does not rely solely on textual descriptions and (2)
demonstrate that pretrained BERT also possesses some knowledge in the medical domain.

H2: Noise or surprisingly novel disease interconnections? We begin by examining ICD code
pairs that are statistically associated via Fisher’s exact test but not linked by Med-BERT, Yandex Doc
Search, and YandexGPT. These form a connected graph of 981 ICD codes. Focusing on lung cancer
(C34: ”Malignant neoplasm of bronchus and lung”) and prostate cancer (C61: ”Malignant neoplasm
of prostate”), we find that both share five frequently co-occurring comorbidities among their top 10
most reported codes: E11 (type 2 diabetes mellitus), E78 (disorders of lipoprotein metabolism), I10
(essential hypertension), I25 (chronic ischaemic heart disease), and Z87 (personal history of other
diseases).

All five rank among the top-20 most frequently co-occurring ICDs in Fisher’s exact test. Their fre-
quent co-occurrence reflects real-world multimorbidity patterns driven by shared risk factors (e.g.,
age, obesity, sedentary lifestyle) (Tazzeo et al., 2023; Franken et al., 2023) and pathophysiological
links – particularly metabolic syndrome (Rus et al., 2023). Clinically, type 2 diabetes (E11) com-
monly coexists with hypertension (I10) and dyslipidaemia (E78) (Alawdi et al., 2024), forming a
triad that markedly increases the risk of chronic ischaemic heart disease (I25) (Al-Ghamdi et al.,
2022). Z87 often captures relevant prior events (e.g., stent placement or transient ischaemic attack)
that inform ongoing care. Thus, these associations likely represent genuine clinical patterns rather
than data artifacts.

Accordingly, we cannot conclude that MIMIC-IV contains noisy data – though we currently lack
definitive evidence either way. All results are available in our GitHub repository.

We also analyze the complementary set: ICD pairs linked by Med-BERT, Yandex Doc Search,
and YandexGPT but not by Fisher’s exact test. This yields a large connected component of 1600
ICD codes. For C34, our models identify the following top-associated conditions: malignant neo-
plasm of stomach (C16), other and ill-defined digestive organs (C26), larynx (C32), trachea (C33),
thymus (C37), heart, mediastinum and pleura (C38), peripheral nerves and autonomic nervous sys-
tem (C47), retroperitoneum and peritoneum (C48), adrenal gland (C74); C45 (mesothelioma), D02
(carcinoma in situ of respiratory system), D15 (benign intrathoracic neoplasm), D38 (neoplasm of
uncertain behaviour in respiratory/intrathoracic sites), and E10 (type 1 diabetes mellitus). Several
of these have plausible clinical explanations: C33 and C38 can be results of anatomical contiguity
or invasion (Al-Ayoubi & Flores, 2016), C74 and C48 – metastatic spread (Bazhenova et al., 2014;
Nishiyama et al., 2016), C37 and C47 – paraneoplastic syndromes (Hernández et al., 2021), D02
and D38 – pathological progression (Gardiner et al., 2014; Lambe et al., 2020), D15 – diagnostic
mimicry (Homrich et al., 2015). The remaining codes – C16, C26, C32, C45, and E10 – lack clear
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mechanistic explanations in current literature and may represent underexplored or novel disease
interconnections.

Diseases, connected with top-10 cancers according frequency in MIMIC-IV Sections 4.2.3
and 4.2.3 show that even text-based models have some medical knowledge, that is why we also
consider them alongside with the others.

Table 3 presents the top-10 cancers according to frequency in our data. We choose non-secondary
neoplasms with certain behavior, and provide plots for all∗ of them in our repository. In this paper,
Figures 22 and 23 show the radar plots for cancer-related and non-cancer-related ICDs connected
with C34, respectively. All plots consider all 10 models: (real data-based) Fisher exact test, Jaccard
similarity, MLM; (pretrained models on medical domain) pretrained Med-BERT, pretrained Bio-
ClinicalBERT; (text-based approaches) pretrained BERT, Yandex Doc Search; and (LLMs) Qwen-
3, DeepSeek-v3, YandexGPT-5. We can see that most of models (five or more) indicate C47, C38,
C74, C37, C33, C32, C45, C16 as the connected ones with C34 (they are also considered in the
previous paragraph). Four models indicate C26 and C48 as connected with C34 ; three models –
D02, D38, two models – E10. Two models identified D15 as connected with C34; however, D15
during plotting was categorized as non-cancer.

5 CONCLUSION AND DISCUSSION

We derived ICD-10 disease interconnections from patient co-occurrence data and compared multi-
ple methods: (1) real-data approaches (Fisher’s exact test, Jaccard similarity, MLM); (2) medical-
domain models (Med-BERT, BioClinicalBERT); (3) general text models (BERT, Yandex Doc
Search); and (4) LLMs (DeepSeek, Qwen, YandexGPT). Methods within the same category did
not consistently yield similar interconnection patterns.

Lacking ground truth, we introduced an unsupervised evaluation procedure. Results show even
general text models encode medical knowledge, making them viable complements to EHR-based
and LLM approaches for studying disease relationships.

Manual inspection of MIMIC-IV revealed no clear noise, though we cannot confirm the data is
entirely clean due to limited sampling analysis. All interconnections, visualizations, graphs, and the
ontology are publicly available on GitHub.

All the findings mentioned above outline the future directions of our research. First, we plan to
investigate the presence of noise in the MIMIC dataset in more detail. Second, we will examine
how the identified interconnections and model embeddings affect downstream tasks, such as cancer
prediction and mortality risk assessment. Finally, we aim to incorporate an unsupervised quality
assessment of LLMs.

6 LIMITATIONS

Our analysis uses MIMIC-IV, an ICU-only dataset that excludes healthy individuals and may not
reflect the general population.

Diagnosis sequence construction involves nuances: chronic conditions (e.g., E06.3) are often repeat-
edly coded regardless of further admissions. Additionally, ICD-10 coding can introduce dependen-
cies, e.g., E11.65 (type 2 diabetes with hyperglycemia) inherently includes hyperglycemia, making
a separate R73.9 code redundant, though R73.9 can occur independently in other contexts.

These coding complexities were not explicitly modeled, and we did not assess whether the evaluated
models learned such relationships during training.
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Table 2: Hyperparameter search space for MLM training

HYPERPARAMETER SEARCH SPACE

Learning rate {5× 10−5, 1× 10−4, 3× 10−4, 5× 10−4, 1× 10−3}
Weight decay {1× 10−3, 1× 10−2}
Dropout {0.05, 0.1, 0.2}
Embedding dimension {128, 256, 512}
Number of Transformer layers {1, . . . , 7}
Number of attention heads {1, . . . , 8}
Feed-forward hidden dimension {256, 512, 1024}
Output layer depth {1, 2, 3}

A APPENDIX

A.1 TECHNICAL DETAILS OF MLM TRAINING

We performed hyperparameter optimization using Optuna with Median Pruner to accelerate trial se-
lection. The objective function minimized validation loss. Patients were randomly split into training
(80%) and validation (20%) sets at the subject level to prevent leakage. The hyperparameter search
space is presented in Table2. For the output projection, we experimented with three alternatives:

1. a single linear layer,
2. two linear layers with GELU and dropout in between,
3. three linear layers with GELU activations and dropout between each layer.

Each trial was trained for up to 100 epochs with batch size 128, AdamW optimizer, and ReduceL-
ROnPlateau scheduler. Early stopping (patience = 3) was applied to reduce overfitting. All experi-
ments were conducted on a single NVIDIA A100 GPU (40GB VRAM).

A.2 PROMPT ENGINEERING FOR OBTAINING INTERCONNECTIONS VIA LLMS

After several additional experiments, we set a requirement: the model must return results strictly
in JSON format with two mandatory fields – comment (a meaningful analysis of the relations) and
answer (a clear list of categories in square brackets). The comment field was included to make
sure the model would not skip the requirement of generating the ICD code list while providing its
reasoning. In addition, we introduced a restriction against any extra information outside the JSON
structure. This helped minimize variability and ensure reproducibility of the results.

A.3 THE NECESSARY MINIMUM OF LLMS’ PARAMETERS FOR ITS REASONABLE BEHAVIOR

For the LLM research block, we used large-scale models such as Qwen3-235B-A22B, YandexGPT-
5, and DeepSeek-V3. However, during the study, an important question arose: at what parameter
scale do language models begin to produce meaningful answers, and can we define an approximate
threshold for this transition?

To explore this, we conducted experiments with a wide range of models, focusing mainly on Mistral-
7B and the DeepSeek-R1-Distill-Qwen family (1.5B, 7B, 14B, 32B). When tested with the estab-
lished prompt, Mistral-7B often returned a list of all ICD codes it recognized or produced other
irrelevant outputs. More stable behavior was observed in DeepSeek-R1-Distill-Qwen (1.5B and
7B), as well as in Granite-3.2 (8B). These models did not generate completely nonsensical results,
but they consistently failed to follow the required unified JSON format, which we attribute to the
limited parameter size.

With DeepSeek-R1-Distill-Qwen (14B), we achieved greater stability in keeping the JSON structure,
although the formatting varied and required complex post-processing. In contrast, the 32B variant
of the same family was able to meet the prompt requirements reliably.
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Still, assessing the meaningfulness of the answers remains difficult. To approximate this, we calcu-
lated the MSE metric, using as ground truth the relation matrix produced by Qwen3-235B-A22B.

For the DeepSeek-R1-Distill-Qwen models, we expected the mean squared error (MSE) between
their learned interconnections and those of the original model to decrease as the number of param-
eters increases. However, Figure 1 reveals a slightly different trend. This discrepancy can be at-
tributed to two factors: (1) the MSEs were computed using only 101 interconnection distance (ICD)
measurements, rather than the full set of 1646; and (2) the DeepSeek-R1-Distill-Qwen models were
fine-tuned from the Qwen2.5 series, whereas our reference model is Qwen-3-235B-A22B.

Figure 1: Mean squared error (MSE) between the original Qwen model and its DeepSeek distilla-
tions.

A.4 VISUALIZATION OF MATRICES OF DISEASES INTERCONNECTIONS

Figure 2: Disease interconnection matrices of methods working with real data: statistical approaches
(Fisher’s exact test and Jaccard similarity) and MLM. For Fisher’s exact test, we substitute all ele-
ments higher than 0.997-quantile as 0.997-quantile, which equals to 2262. This technique is imple-
mented as the number of co-occurrences for Fisher’s exact test varies from 0 to 91108.
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Figure 3: Disease interconnection matrices of methods pretrained on medical domain data: Med-
BERT and BioClinicalBERT.

Figure 4: Disease interconnection matrices of methods working with ICD codes’ textual descrip-
tions: pretrainde BERT and Yandex Doc Search.

Figure 5: Disease interconnection matrices of LLMs.
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Figure 6: Boxplots of disease interconnection scores of methods working with real data: statistical
approaches (Fisher’s exact test and Jaccard similarity) and MLM. For Fisher’s exact test, we nor-
malize all scores using MinMax-scaling.

Figure 7: Boxplots of disease interconnection scores of methods pretrained on medical domain data:
Med-BERT and BioClinicalBERT.
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Figure 8: Boxplots of disease interconnection scores of methods working with ICD codes’ textual
descriptions: pretrainde BERT and Yandex Doc Search.

Figure 9: Boxplots of disease interconnection scores of LLMs.
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Figure 10: Results for testing H1: distributions of similarities between ICD pairs. Left: pairs, which
are present in pretrained BERT and absent in Med-BERT. Right: pairs, which are present in Med-
BERT and absent in pretrained BERT.

A.5 T-SNE VISUALIZATION DETAILS

Figure 11: T-SNE visualization of methods where embeddings are produced.
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A.6 OBTAINED GRAPHS’ DEGREES

This Section presents the more detailed analysis (mentioned in Section 4.2.3) of the ”degrees” of
obtained graphs.

Figure 12 shows that Fisher’s exact test, pretrained BERT, and Jaccard/MLM/DeepSeek have the
widest variety in the number of connections identified, suggesting these approaches are capable of
detecting diverse relationship patterns across the disease spectrum. Moreover, Fisher’s exact test,
Yandex Doc Search, pretrained Med-BERT, DeepSeek, and pretrained BERT showed the highest
mean number of connections, indicating these methods tend to identify more interconnected disease
networks overall. Notably, YandexGPT and Qwen exhibited the narrowest ranges with values close
to zero, suggesting these LLM-based approaches may be more conservative in establishing disease
connections or may require different optimization strategies for medical domain tasks.

Figure 12: Boxplots of the number of connected diseases for each ICD code. Up: all methods
presented separately. Bottom: methods are grouped by the training data type.

When examining connections specifically involving cancer-related ICDs, distinct methodological
patterns emerged. Figure 13 shows that Fisher’s exact test, Med-BERT, pretrained BERT, and Yan-
dex Doc Search have wide ranges in connectivity patterns, indicating high variability in how these
methods assess cancer-related disease relationships. This variability could reflect the complex and
heterogeneous nature of cancer pathophysiology and its interactions with other medical conditions.
DeepSeek presents a unique profile with small ranges but consistently high values (approaching
100), suggesting this method identifies strong, consistent connections between cancer-related dis-
eases. MLM demonstrates similar patterns to BioClinicalBERT and Jaccard, indicating convergent
results among these real data and medical-based approaches for cancer-related connectivity.

The analysis of connections between non-cancer-related diseases (Figure 14) reveals relatively con-
sistent performance across most methods, with some notable exceptions. Fisher’s exact test main-
taines the highest range of connectivity patterns, while LLMs consistently show the lowest ranges.

Figure 15 shows that Yandex Doc Search, pretrained BERT, and Med-BERT demonstrate the widest
ranges and highest averages for cancer-to-cancer connections, indicating these methods are par-
ticularly effective at identifying comorbidities and related conditions across cancer categories. The
same effect is demonstrated by Figure 16 – these methods capture well the interconnections between
cancers and other ICD codes.

Figures 17 and 18 show more or less the same range and average for all methods, except for LLMs.
The surprising thing is that DeepSeek performs alongside the other methods, meaning that it better
captures non-cancers interconnections.
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Figure 13: Boxplots of the number of connected diseases for each cancer ICD code. Up: all methods
presented separately. Bottom: methods are grouped by the training data type.

Figure 14: Boxplots of the number of connected diseases for each non-cancer ICD code. Up: all
methods presented separately. Bottom: methods are grouped by the training data type.

Figure 15: Boxplots of the number of connected cancers for each cancer ICD code. Up: all methods
presented separately. Bottom: methods are grouped by the training data type.
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Figure 16: Boxplots of the number of connected non-cancers for each cancer ICD code. Up: all
methods presented separately. Bottom: methods are grouped by the training data type.

Figure 17: Boxplots of the number of connected non-cancers for each non-cancer ICD code. Up: all
methods presented separately. Bottom: methods are grouped by the training data type.

Figure 18: Boxplots of the number of connected cancers for each non-cancer ICD code. Up: all
methods presented separately. Bottom: methods are grouped by the training data type.
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A.7 PR AUC SCORES’ FIGURES

Figure 19: PR AUC scores for all methods, when Fisher’s exact test’s results are considered as
”ground truth”.

Figure 20: PR AUC scores for all methods, when pretrained BERT’s (left) and Yandex Doc Search’s
(right) results are considered as ”ground truth”.
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Table 3: Top-10 cancers according frequency in MIMIC-IV. The considered ICD codes for visual-
ization are highlighted with ∗

ICD CODE NUMBER OF PATIENTS ICD CODE DESCRIPTION

C78 7724 Secondary malignant neoplasm of respiratory and digestive organs
C79 7534 Secondary malignant neoplasm of other and unspecified sites
C77 4907 Secondary and unspecified malignant neoplasm of lymph nodes
C34∗ 4215 Malignant neoplasm of bronchus and lung
D47 3554 Other neoplasms of uncertain or unknown behaviour of lymphoid, haematopoietic and related tissue
C61∗ 2497 Malignant neoplasm of prostate
C50∗ 2225 Malignant neoplasm of breast
C25∗ 1958 Malignant neoplasm of pancreas
C22∗ 1771 Malignant neoplasm of liver and intrahepatic bile ducts
C18∗ 1403 Malignant neoplasm of colon

Figure 21: PR AUC scores for all methods, when Med-BERT’s results are considered as ”ground
truth”.

A.8 RADAR PLOTS OF CANCER- AND NON-CANCER-RELATED ICDS CONNECTED WITH C34
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Figure 22: Radar plot of all connected cancer-related ICDs with C34.
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Figure 23: Radar plot of all connected non-cancer-related ICDs with C34.
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